
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

A Fast Learning-Based Surrogate of Electrical Machines using a Reduced Basis

Anonymous Authors1

Abstract

A surrogate model approximates the outputs of
a solver of Partial Differential Equations (PDEs)
with a low computational cost. In this article, we
propose a method to build learning-based surro-
gates in the context of parameterized PDEs, which
are PDEs that depend on a set of parameters but
are also temporal and spatial processes. Our con-
tribution is a method hybridizing the Proper Or-
thogonal Decomposition and several Support Vec-
tor Regression machines. This method is con-
ceived to work in real-time, thus aimed for be-
ing used in the context of digital twins, where
a user can perform an interactive analysis of re-
sults based on the proposed surrogate. We present
promising results on two use cases concerning
electrical machines. These use cases are not toy
examples but are produced an industrial compu-
tational code, they use meshes representing non-
trivial geometries and contain non-linearities.

1. Introduction
In the context of numerical simulation, a surrogate model ap-
proximates the outputs of a solver with a low computational
cost. Solvers of differential equations, for instance, those
based on finite element methods, often require long runs.
Thus, they are not well-suited for real-time applications.
In the last five years, the use of machine learning for con-
structing surrogate models has gained a lot of attention from
industry and academics. These surrogates learn from simu-
lation results and/or experimental data. Numerous methods
for building surrogates have been proposed, in section 2 we
discuss some of them, which we find representative of the
variety of learning-based surrogates currently being devel-
oped. However, after analyzing the technical literature, we
found two main limitations of the current state-of-the-art.
First, the majority of use cases correspond to toy examples.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

For instance, the 1D Burgers equation is a popular choice.
In general, the test use cases found in the literature are far
in geometric complexity and size from what computation
codes deal with in the current industrial practice. Second,
the question of the eventual scaling of the method or its
real-time capabilities is not often studied.

In this article, we propose a method to build surrogates in
the context of parameterized Partial Differential Equations
(PDEs), which depend on a set of parameters, that may
represent boundary or initial conditions, materials laws, or
other physical properties. In the general case, constructing
surrogates for parameterized PDEs is a complex task. Our
objective is to develop a learning-based surrogate that can
be used to power a Digital Twin. This surrogate should be
executed on a computer sufficiently fast to allow interactive
exploration of the parameters of the underlying PDEs but
also on space and time. This means that the surrogate should
reconstruct a scalar or vectorial field at any time step and for
any combination of the parameters. This is a state-of-the-art
problem, especially when this task is performed in real time.

We have designed a method hybridizing the Proper Orthog-
onal Decomposition (POD, see chapter 11 of (Brunton &
Kutz, 2019)) and several Support Vector Regression ma-
chines (SVR, see (Drucker et al., 1996)), where the Reduced
Basis obtained by the POD is used to facilitate the training
of our Machine-Learning system. We have designed a two-
step simple method which is very fast at inference due to
its simplicity. The method deals with geometric domains
represented by non-regular meshes. Concerning the tem-
poral discretization, it takes a direct time approach, which
means it produces the state corresponding to the time step
provided as input. This approach, which avoids iterating
over time, is faster than autoregressive methods and thus
well-adapted to real-time applications. The output of the
proposed surrogate is an array containing a whole vectorial
or scalar field, corresponding to the specified input set of
parameters.

This article is structured as follows. Section 2 discusses rele-
vant related work. Section 3 describes our proposed method
for constructing learning-based surrogates. Section 4 intro-
duces two use cases, concerning electric machines. These
use cases are not toy examples but are produced by an in-
dustrial computational code. They use meshes representing

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

non-trivial geometries and contain non-linearities. Results
are shown in Section 5. Section 6 discusses the real-time
capabilities of the proposed method. Section 7 concludes
the article. Finally, a bibliography section is given, followed
by Appendix A which contains a mathematical proof for the
inference error upper bound of the proposed method.

2. Related Work
Reducing the computational complexity of numerical sim-
ulations is not a new subject. The Reduced Order Model
(ROM) community has traditionally tackled this problem.
A ROM can be considered a type of surrogate model. Con-
structing surrogates for parameterized PDEs (the problem
of this article) is, in the general case, a very complex task
(Quarteroni et al.). One of the most popular techniques for
building ROMs is the Proper Orthogonal Decomposition
(POD, see chapter 11 of (Brunton & Kutz, 2019)), which
we use in our work. On the other hand, building surrogates
of simulations by using machine learning techniques is a re-
cent research domain. From the seminal work of Raissi et al.
(Raissi et al., 2019), which introduced the so-called physics-
informed neural networks (PINNs), numerous techniques
have been developed. Most of the learning-based surrogates
found in the literature are trained in a supervised manner
from simulation data. PINNs could stand as an exception,
as they can be trained unsupervised. This is because PINNs
are trained by minimizing the residual error of the PDE at
random collocation points (Raissi et al., 2019; Sirignano &
Spiliopoulos, 2018; Wandel et al., 2021). But PINNs also
benefit from training with simulation data (Krishnapriyan
et al., 2021; Lucor et al., 2022). Our method is also a su-
pervised learning method that learns from the results of an
ensemble of pre-executed numerical simulations.

Building learning-based surrogates still presents several im-
portant challenges, which are associated with different as-
pects of the numerical simulations. In the following, we
discuss some of these aspects.

Spatial discretization. When the meshes supporting the nu-
merical simulations are regular, they can be seen as images
and convolutional networks can be employed successfully
(Zhu et al., 2019; Ronneberger et al., 2015; Kasim et al.,
2021). For instance, U-Net architectures are employed in
(Thuerey et al., 2020; Wang et al., 2020), or auto-encoders
in (Kim et al., 2019). For non-regular meshes Graph Neural
Networks (GNNs) (Bronstein et al., 2017; Battaglia et al.,
2018; Brandstetter et al., 2022) have been used. As an ex-
ample, Deep-Mind introduced a GNN-based framework
for learning mesh-based simulations (Pfaff et al., 2020;
Sanchez-Gonzalez et al., 2020). Our method also supports
the use of non-regular meshes.

Time discretization. Not only does the space discretization

influence the design of the architectures, but the handling of
the time dimension also distinguishes autoregressive from
direct models. Autoregressive models mimic the iterative
process of traditional solvers, where the current state is used
as input to predict the next one. One of the challenges for
autoregressive models is the error accumulation along a tra-
jectory, leading to various mitigation strategies (Brandstetter
et al., 2022; Pfaff et al., 2020; Takamoto et al., 2022). Some
researchers have also integrated the time dimension using
recurrent architectures (Tang et al., 2020) or attention mech-
anisms (Li et al., 2023). Direct models produce the state
corresponding to the time step provided as input. PINNs
are an example of direct models, our proposed method also
uses this approach.

Respecting physical laws. From (Karniadakis et al., 2021),
three main ways allow a learning system to represent correct
physical laws: observational, inductive, and learning biases.
PINNs (Raissi et al., 2019) focus on the learning biases by
introducing physical constraints on the loss function. Tech-
niques such as GNNs (Pfaff et al., 2020; Sanchez-Gonzalez
et al., 2020) focus on designing specialized neural network
architectures that implicitly embed prior knowledge about
the problem (in this case information about the spatial do-
main) thus using inductive biases. Observational bias is the
fact that the data used for training the system contains rele-
vant and correct physical information. In this article, we use
observational bias by preparing designs of experiences that
execute an ensemble of meaningful numerical simulations
(Santner et al., 2003).

Operators. PDEs are theoretically treated in the context
of operators, which are maps between infinite-dimensional
function spaces. However, neural networks learn mappings
between finite-dimensional Euclidean spaces or finite sets
(Kovachki et al., 2023). Efforts exist to create the so-called
Neural Operators, which are neural networks aiming to map
between functional spaces. Examples of this approach are
techniques such as DeepONets (Lu et al., 2021), Graph Ker-
nel Networks for PDEs (Li et al., 2020), or Fourier neural
operators (Li et al., 2021). Neural operators aim at building
surrogates of parametrized PDEs. Our method cannot be
strictly considered a Neural Operator but it certainly maps
from a parameter’s space to a discretized functional space.

In summary, the method proposed in this article aims at
building surrogates of parametrized PDEs. It is a direct time
method that supports irregular meshes. The method learns
from the results of an ensemble of pre-executed numerical
simulations, thus using observational bias. A difference
with the current literature is that its focus is not only on the
quality of the reconstruction but also on the speed of the
inference.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

3. Proposed Method
This section presents the technical details of the conceived
algorithm that combines model reduction via the POD and
support vector regression (SVR). It consists of two main
steps: first, a reduced basis is found using the POD, and
second several SVRs are trained. We remark that before
these two steps, an ensemble of N simulations should be
run in order to create the dataset necessary for the learning.
This step is not specific to our method, any learning-based
surrogate needs a dataset to be trained on.

3.1. Finding a Reduced Basis

We obtain a Reduced Basis using the Proper Orthogonal
Decomposition (POD), see chapter 11 of (Brunton & Kutz,
2019) or chapter 6 of (Quarteroni et al.). The fundamen-
tal step of the POD is the application of a Singular Value
Decomposition (Gilbert & Strang, 1993) to a so-called snap-
shot matrix. Thus we define here how we construct this
matrix for parameterized problems.

Snapshot matrix for a parametric problem: When deal-
ing with parametric and spatio-temporal problems, we pre-
compute an ensemble of N spatio-temporal simulations.
Each simulation contains t times steps and has a different
vector of parameters λ. Afterward, we can build the snap-
shot matrix as follows:

X =

 Xλ1,t1 . . . Xλ1,tT . . . XλN ,t1 . . . XλN ,tT


(1)

where each column Xλi,tj of X contains a vector xi,j in-
dexed by (λi, tj). Thus, discretized and linearized fields,
representing a physical quantity provided by the solver, are
contained in each vector xi,j . We can build a matrix of
snapshots X of size (n,m) by concatenating these vec-
tors. Note that n is equal to the number of mesh cells (or
nodes) used by the simulations multiplied by the number
of components of the field (one for a scalar field, 2 or 3
for vectorial fields); a column of the matrix contains a spa-
tially discretized field with its components stacked inside.
The matrix has m = NT columns, where N is the number
of pre-computed simulations and T is the number of time
steps.

SVD: A description of the singular value decomposition
(SVD) can be found in any introductory linear algebra book,
such as (Gilbert & Strang, 1993). Let X ∈ Rn×m, U ∈
Rn×n,Σ ∈ Rn×m, V ∈ Rm×m the SVD of X is the de-
composition X = U · Σ · V T , where U and V are unitary
matrices and Σ is a diagonal matrix containing the singular
values of X , which are ordered by decreasing value.

Applying a Singular Value Decomposition to the snapshot
matrix allows for finding an orthogonal basis. However, this
basis is of the same size as the original non-transformed
problem. The key to finding a Reduced Basis (RB) comes
from the fact that not all the principal components need
to be kept. Keeping only the first r principal components,
produced by using only the first r eigenvectors, gives the
truncated transformation. The value r is typically found by
looking at the accumulated energy, which is defined by:

E =
σ1 + σ2 + ...+ σr

σ1 + σ2 + ...+ σm
(2)

where the σi (i = 1...m) values are the diagonal elements
of the matrix Σ. Once the value r is chosen we obtain the
following approximation of the matrix X:

Xr = Ur · Σr · V Tr. (3)

3.2. Training the SVRs

The SVR being a supervised learning algorithm, it is neces-
sary to constitute (input, output) pairs for its training. In
figure 1, we depict what a single SVR takes in and out. The
SVR accepts (t, λ) as inputs, where t is a time step and λ
is a vector of parameters. The SVR outputs a prediction ĉi,
corresponding to the i-th coefficient on the reduced space,
i = 1...r.

SV R ĉi
t

λ

Figure 1. A SVR takes as input a time step t and a vector of pa-
rameters λ. It outputs a prediction ĉi, corresponding to the i-th
coefficient on the reduced space, i = 1...r.

Preparing for the training phase. Our idea is to project
the snapshot matrix X into the reduced space C. For this,
we use Ur from equation 3 but we call this projection matrix
Ur
POD to reinforce the fact that it is obtained by the POD.

Consequently, the operation C = Ur
POD · X projects the

snapshot matrix on the reduced space. However, we need
not only a matrix for training but also a matrix for validation.
The matrix X is therefore subdivided into Xtrain and Xval,
thus

X =
[
Xtrain Xval

]
(4)

We can then construct the corresponding matrices of coeffi-
cients C = [Ctrain Cval] by matrix product:

C =
[
Ur
POD ·Xtrain Ur

POD ·Xval

]
(5)

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

At this point, we have defined how to form the training and
validation sets (matrices in this case) for the outputs of the
SVR. In figure 1, we observe that the SVR accepts (t, λ) as
inputs. These inputs can be coded in the following matrix:

x =


t1 t2 . . . tP . . . t1 t2 . . . tP

λ1 λ1 . . . λ1 . . . λN λN . . . λN


(6)

where each column Xλi,tj of X (in equation) is associated
with a vector xi,j = (λi, tj). Thus the matrix x encodes the
time and parameters in exactly the same way as X . Sim-
ilarly, x is therefore subdivided into xtrain and xval, thus
x =

[
xtrain xval

]
. Now it is possible to constitute

the training and validation datasets which are respectively
(xtrain, Ctrain) and (xval, Cval).

Training of r SVRs The second stage of the training phase
is to train r SVRs, one for each element of the vector Ctrain.
For example, the first SVR is trained to predict the first
element of Ctrain from xtrain. In other words, we can say
that the i-th SVR is led to predict the value of the parametro-
temporal coefficients of the i-th mode in the reduced space
generated by Ur

pod, from the parameter values contained in
xtrain. We note that it is in general necessary to center and
reduce the training and validation data sets before training
the SVRs.

3.3. Tuning the hyperparameters of the SVRs

The SVR method contains several hyperparameters that
should be tuned. In this work, we have used the SVR im-
plementation of Scikit-Learn (Pedregosa et al., 2011) and
performed tuning for three important parameters:

• Epsilon in the epsilon-SVR model. It specifies the
epsilon-tube within which no penalty is associated with
the training loss function with points predicted within
a distance epsilon from the actual value.

• The regularization parameter associated with a squared
penalty term.

• We decided to fix the kernel used in the algorithm,
which is a Gaussian. Thus, the standard deviation σ of
the Gaussian must be tuned.

We use the Optuna package (Akiba et al., 2019) for tun-
ing the above-presented parameters. We specifically use
Optuna’s implementation of the Tree-structured Parzen esti-
mator (TPE) algorithm (Bergstra et al., 2011), a Bayesian

Table 1. Comparison of the two use cases concerning: the number
of cells in the mesh, number of time steps, number of runs per-
formed by the design of experiments, and size of the data stored
on disk.

USE CASE CELLS STEPS RUNS STORAGE

TRANSFORMER 88,072 40 327 26G
INDUCTION 30,047 10 750 5.3G

optimization method widely used in recent parameter tuning
frameworks.

We remark that SVRs can take several scalar inputs but
they generate a unique scalar output. This implies that our
method should train r SVRs, where r is the dimension of
the reduced space. Thus a question arises concerning the
3r parameters to be optimized: is each SVR going to be
treated independently, or can the 3r parameters be jointly
tuned? We have found that, when jointly optimizing for the
worst validation error, an upper bound on the error of the
reconstructed fields exists.

We have proven that the reconstruction error of the phys-
ical field ∥Xp − X̂p∥2, computed at each cell p ≤ n, has
an upper bound that is linearly proportional to the highest
validation error of all r SVR machines (the whole prove is
given in Appendix A). Thus:

∥Xp − X̂p∥2 ≤ Kp.e

where Kp is a positive real number, and e is the error. The
constant Kp comprises terms of the projection matrix Ur

POD

and standardization elements: Si is the standard deviation
and Ei is the mean of the coefficient vectors Ci. It is written
as Kp =

√
A+ 2B where:

A =
k=r∑
k=1

(Sk.U
r
PODpk

)2

B =
∑

1≤h<l≤r

|Sh.U
r
PODph

|.|Sl.U
r
PODpl

|

4. Description of the use cases
We present two electrical machines use cases generated
by Code Carmel (code-carmel.univ-lille.fr), which is an
industrial computational code. Table 1 shows a comparison
of these use cases concerning: the number of cells in the
mesh, number of time steps, number of runs performed by
the design of experiments, and size of the data when stored
on disk (compressed).

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

4.1. An induction plate

In the first use case, we are interested in a magneto-
quasistatic phenomenon by the modeling of a magnetic
electric current inductor. This could represent several ap-
plications, such as an induction hotplate in a kitchen or the
induction charger of a mobile phone. The inductor is a
coil of 700 turns at which a current is injected with a sinu-
soidal frequency f . The intensity of the current in the coil
is calculated from the electrical voltage U imposed and a
characteristic resistance of the inductor Rind via a standard
circuit equation. The plate, made of copper, has an electrical
conductivity of σ = 5 · 107S ·m−1.

Figure 2. Mesh of the induction plate use case.

Design of experiments. Four parameters are considered
in this use case: f , U , Rind, and the time t. We run 750
simulations, each one corresponding to a parameter set. The
values of f , U , Rind are sampled from a non-informative
uniform distribution. The sampling of t is given by the
computational code.

Why this use case? The choice of this use case is motivated
by two factors. First, the dynamics of the problem impose a
time resolution of the finite elements model which can be
computationally expensive. Then, we are interested in the
accuracy of the proposed method for time-dependent prob-
lems, as it might provide large calculation speedups. Sec-
ond, the calculation of the source current through a circuit
equation impacts the dynamical evolution of the problem.
Therefore, we aim to evaluate the capacity of the proposed
method to adapt not only to the electromagnetic dynamics
but also to changes in the circuit equation parameters (f , U ,
Rind).

4.2. A three-phase transformer

A power network is a complex system, with a large variety of
voltage levels at generation, transmission, and distribution
points. In this context, transformers are vital components,
as they allow transitioning from one voltage level to the
other, ensuring the transmission of electric energy through
the network. They are static devices, consisting of one or
multiple windings and a magnetic core, used extensively by
electric companies in all types of production sites. For these
reasons, power transformers are the subject of numerous

numerical simulations for diagnosis and design review pur-
poses, and surrogate models have been proposed in recent
years to reduce computational costs (Henneron & Clenet,
2014).

Figure 3. Mesh of the three-phase transformer use case.

Figure 3 shows the mesh used in the finite elements simula-
tions: grey voxels belong to the core, red voxels to the pri-
mary windings, and blue voxels to the secondary windings.
The space around the core and windings is also meshed but
not represented. In this figure, we can see the three columns
of a three-phase transformer, each of them associated with
two windings. A high voltage is imposed in the primary cir-
cuit, associated with a high amplitude electric current, which
generates a magnetic flux traveling through the core. The
core consists of an arrangement of ferromagnetic laminated
sheets, associated with a non-linear magnetic anhysteretic
permeability as shown in Figure 4. It will be approximated
using the so-called Frohlich model (Fröhlich, 1881):

µ(H) = µ0 +
α

β +H
(7)

In this configuration, we are interested in the magnetic flux
density distribution present in the transformer and around it,
when the secondary circuit is short-circuited I2 = 0. The
problem is parameterized by the current amplitude I of the
primary windings and by the coefficients α and β of the
Frohlich approximation (equation 7).

Design of experiments. Four parameters are considered
in this use case: the intensity I , the two coefficients α and
β of the behavior law of the core, and the time t. We run
327 simulations, each one corresponding to a parameter set.
The values of I are sampled from a beta distribution cen-
tered around 1.4A, this is done to better learn a known non-
linearity physically appearing at this current value. Parame-

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Figure 4. Non-linear behavior law of the transformer core.

ters α and β are sampled from a non-informative uniform
distribution. The sampling of t is given by the computational
code.

Why this use case? The choice of this use case is motivated
by several main arguments. First, it is a 3D model initially
created for the industrial purpose of design review. Then,
applying the proposed method to this use case gives us
useful insight, into its capacity to generate accurate results
for real-life engineering problems. Second, the non-linear
behavior law of the magnetic core is not often well known
by engineers when performing numerical simulations for
diagnosis or design review purposes. Then, we aim not
merely to evaluate the accuracy of the proposed method on a
nonlinear problem, but also to assess the possibility of using
this method to solve inverse problems for the deduction of
the parameters of the non-linear behavior law. Third, in the
literature, we can find recent works on surrogate models
(Henneron & Clenet, 2014) and deep learning (Gong &
Tang, 2022) developments for similar devices, setting a
favorable context for future comparison.

5. Results
In this section, we jointly discuss the results of the three use
cases described in section 4. We start by presenting, in table
2, the number of modes necessary to represent the solutions
while keeping 95% , 98%, and 99% of the accumulated
energy, as specified in equation 2. By comparison with the
number of cells given in table 1, we observe that the POD
(which is the first step of our algorithm) introduces a strong
compression on the vector fields associated to the simulation
mesh. This can be considered a sort of spatial compression,
which is induced by the coding we have chosen for the
snapshot matrices.

We calculated, for each of our use cases, the relative RMSE
(Root Mean Square Error) and relative AME (Absolute
Mean Error). These errors are calculated as follows:

Table 2. Comparisson of the two use cases concerning the number
of modes necessary to represent the problem, for three levels of
cumulated energy (95%, 98%, and 99%).

USE CASE # MODES # MODES # MODES
95% 98% 99%

INDUCTION 2 3 3
TRANSFORMER 4 7 10

δRMSE =
1
N

∑N
k=1

1
T

∑T
j=1

1
n

∑n
i=1 ∥v̂ − v∥22

1
N

∑N
k=1

1
T

∑T
j=1

1
n

∑n
i=1 ∥v∥22

(8)

δAME =
1
N

∑N
k=1

1
T

∑T
j=1

1
n

∑n
i=1 | v̂ − v |

1
N

∑N
k=1

1
T

∑T
j=1

1
n

∑n
i=1 | v |

(9)

where δ indicates ”relative”, v is a reference vector from
the test set, v̂ is the estimate provided by our method, N is
the number of simulations in the design of experiences, T
is the number of time steps, and n is the number of mesh
cells. We choose to explicitly write three sum signs to
remark on the parametric and spatio-temporal nature of the
estimated vectorial fields. Table 3 shows these errors, which
are multiplied by 100 to express percentages, for the test
sets of each use case.

Table 3. Errors obtained by the surrogate models, on the simula-
tions test sets, for two levels of cumulated energy (95% and 98%).

USE CASE δ RMSE δ AME δ RMSE δ AME
95% 95% 98% 98%

INDUCTION 4.5% 4.3% 0.98% 0.97%
TRANSFORMER 2.9% 3.2% 2.3% 2.5%

Figure 5 presents a visual comparison between the modu-
lus of a reconstructed magnetic field (top image) and the
reference magnetic field (bottom image), on the test set of
the three-phase transformer introduced in Section 4.2. For
the shown time step and set of parameters, the magnetic
field is oscillating on the core. We observe positive values
in red, negative in blue, and grey indicates near zero values.
We observed that reconstructed and reference images are
visually very similar, which was one of the objectives of the
proposed surrogate. More importantly, the relative errors
shown in Table 3 are very satisfactory.

6. Real-Time Inference
We recall that our final objective is to develop a surrogate
that can be used to power a Digital Twin. This surrogate

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Figure 5. Visual comparison between the modulus of a recon-
structed magnetic field (top image) and the reference magnetic
field (bottom image), on the test set of the three-phase transformer
use case introduced in Section 4.2.

should be executed on a computer sufficiently fast to allow
the interactive exploration of its outputs. The introduced
method fulfills this objective for several reasons. First, when
coding the snapshot matrix as indicated in equation 3.2, the
POD acts as a spatial compression system. This means
that simulations based on large meshes can potentially be
reduced to a vector of relatively few coefficients. Thus the
SVRs can perform the estimation of these coefficients very
fast. Once the coefficients are obtained, a simple matrix
multiplication reconstructs the desired scalar or vectorial
field. Second, the Direct Time approach avoids iterating
overtime at the inference step.

When designing a visualization system for a Digital Twin,
performing an interactive exploration of the results imposes
constraints on the response time of the surrogate model.
Response times in human-computer interactions have been
studied for years, see for instance (Shneiderman, 1984). A
classical reference (Nielsen, 1994) stated that 0.1 second is
about the limit for having the user feel that the system is
reacting instantaneously. Thus, we performed an analysis
of the response times of the proposed surrogate. For this,
we measured the time of inference of a single parameter set,
which corresponds to computing a discretized vectorial field
for a fixed time step and fixed parameters. We perform this
testing in a single node of a cluster, this node contains an
Intel-Xeon Platinum 8260 processor operating at 2,40 GHz,
and it does not contain GPUs. No special optimization has
been performed on the code, composed of Phyton scripts
run sequentially. The results are shown in Table 4, times
are given in milliseconds. Each shown time is the mean of
100 measurements, the standard deviations are always on
the scale 105 thus we consider the measurement reliable.

We observe that, for all our use cases the inference time
is approximately 2ms, thus around 50 times less (in our
slower case) than the time necessary for a fluid real-time
user interaction.

Table 4. Execution time of the surrogate.

USE CASE # MODES # MODES
95% 98%

INDUCTION 0.43 MS 0.56 MS
TRANSFORMER 1.23 MS 2.2 MS

7. Conclusion
We have conceived a novel method that combines model
reduction via the Proper Orthogonal Decomposition (POD)
and Support Vector Regression (SVR). The aim is the con-
struction of a learning-based surrogate model for parameter-
ized PDEs, which are also temporal and spatial processes.
We found an error upper bound of the proposed method
and a mathematical proof of this bound is included. We
have performed tests on two use cases concerning electrical
machines. These use cases are not toy examples. They are
produced by an industrial computational code, they use 3D
meshes representing non-trivial geometries and contain non-
linearities. The obtained results show a good reconstruction
accuracy. Furthermore, we have studied the response time of
the proposed surrogate. The tests indicate that it is adapted
to real-time tasks.

The current results indicate that the method can be applied
to the interactive exploration of use cases based on much
larger meshes or for higher intrinsic complexity. Indeed,
the slower case we treated was 50 times faster than needed
for interactive exploration. Moreover, no code optimiza-
tion has been performed yet. Thus, the proposed method
presents great potential for building parameterized surro-
gates of industrial-level numerical simulations.

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data
mining, pp. 2623–2631, 2019.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algo-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

rithms for hyper-parameter optimization. Advances in
neural information processing systems, 24, 2011.

Brandstetter, J., Worrall, D. E., and Welling, M. Mes-
sage passing neural PDE solvers. In The Tenth Inter-
national Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?
id=vSix3HPYKSU.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Brunton, S. L. and Kutz, J. N. Data-Driven Science and
Engineering: Machine Learning, Dynamical Systems,
and Control. Cambridge University Press, 2019. doi:
10.1017/9781108380690.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., and
Vapnik, V. Support vector regression machines. Advances
in neural information processing systems, 9, 1996.

Fröhlich, O. Investigations of dynamoelectric machines and
electric power transmission and theoretical conclusions
therefrom. Elektrotech. Z, 2:134–141, 1881.

Gilbert and Strang. Introduction to linear algebra, volume 3.
Wellesley-Cambridge Press Wellesley, MA, 1993.

Gong, R. and Tang, Z. Further investigation of convolu-
tional neural networks applied in computational electro-
magnetism under physics-informed consideration. IET
Electric Power Applications, 16(6):653–674, 2022.

Henneron, T. and Clenet, S. Model order reduction of
non-linear magnetostatic problems based on pod and dei
methods. IEEE Transactions on Magnetics, 50(2):33–36,
2014.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kasim, M. F., Watson-Parris, D., Deaconu, L., Oliver, S.,
Hatfield, P., Froula, D. H., Gregori, G., Jarvis, M., Khati-
wala, S., Korenaga, J., et al. Building high accuracy
emulators for scientific simulations with deep neural ar-
chitecture search. Machine Learning: Science and Tech-
nology, 3(1):015013, 2021.

Kim, B., Azevedo, V. C., Thuerey, N., Kim, T., Gross, M.,
and Solenthaler, B. Deep fluids: A generative network
for parameterized fluid simulations. In Computer Graph-
ics Forum, volume 38, pp. 59–70. Wiley Online Library,
2019.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Re-
search, 24(89):1–97, 2023.

Krishnapriyan, A. S., Gholami, A., Zhe, S., Kirby,
R. M., and Mahoney, M. W. Characterizing possible
failure modes in physics-informed neural networks. In
Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang,
P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pp. 26548–
26560, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/
df438e5206f31600e6ae4af72f2725f1-Abstract.
html.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B.,
Bhattacharya, K., Stuart, A. M., and Anandkumar, A.
Fourier neural operator for parametric partial differential
equations. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=c8P9NQVtmnO.

Li, Z., Meidani, K., and Farimani, A. B. Transformer for
partial differential equations’ operator learning. Transac-
tions on Machine Learning Research, 2023. ISSN 2835-
8856. URL https://openreview.net/forum?
id=EPPqt3uERT.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
machine intelligence, 3(3):218–229, 2021.

Lucor, D., Agrawal, A., and Sergent, A. Simple compu-
tational strategies for more effective physics-informed
neural networks modeling of turbulent natural convection.
Journal of Computational Physics, 456:111022, 2022.

Nielsen, J. Usability engineering. Morgan Kaufmann, 1994.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

8

https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=EPPqt3uERT
https://openreview.net/forum?id=EPPqt3uERT

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. Learning mesh-based simulation with graph
networks. In International Conference on Learning Rep-
resentations, 2020.

Quarteroni, A., Manzoni, A., and Negri, F. Reduced Basis
Methods for Partial Differential Equations: an introduc-
tion. doi: 10.1007/978-3-319-15431-2.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical image computing and
computer-assisted intervention, pp. 234–241. Springer,
2015.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In International Con-
ference on Machine Learning, pp. 8459–8468. PMLR,
2020.

Santner, T. J., Williams, B. J., Notz, W. I., and Williams,
B. J. The design and analysis of computer experiments,
volume 1. Springer, 2003.

Shneiderman, B. Response time and display rate in human
performance with computers. ACM Computing Surveys
(CSUR), 16(3):265–285, 1984.

Sirignano, J. and Spiliopoulos, K. Dgm: A deep learning al-
gorithm for solving partial differential equations. Journal
of computational physics, 375:1339–1364, 2018.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. Pdebench:
An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:
1596–1611, 2022.

Tang, M., Liu, Y., and Durlofsky, L. J. A deep-learning-
based surrogate model for data assimilation in dynamic
subsurface flow problems. Journal of Computational
Physics, 413:109456, 2020.

Thuerey, N., Weißenow, K., Prantl, L., and Hu, X. Deep
learning methods for reynolds-averaged navier–stokes
simulations of airfoil flows. AIAA Journal, 58(1):25–36,
2020.

Wandel, N., Weinmann, M., and Klein, R. Learning in-
compressible fluid dynamics from scratch - towards fast,

differentiable fluid models that generalize. In 9th Inter-
national Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/
forum?id=KUDUoRsEphu.

Wang, R., Kashinath, K., Mustafa, M., Albert, A., and Yu,
R. Towards physics-informed deep learning for turbulent
flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 1457–1466, 2020.

Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., and Perdikaris, P.
Physics-constrained deep learning for high-dimensional
surrogate modeling and uncertainty quantification with-
out labeled data. Journal of Computational Physics, 394:
56–81, 2019.

9

https://openreview.net/forum?id=KUDUoRsEphu
https://openreview.net/forum?id=KUDUoRsEphu

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

A. Appendix: inference error upper bound
A.1. Notation

• Let X ∈ Rn×m be a snapshot matrix and X̂ its inferred equivalent.

• Let C, Ĉ ∈ Rr×m be their coefficient matrices which are the projection of X, X̂ by Ur
POD ∈ Rr×n. They verify :

X = Ur
POD.C

X̂ = Ur
POD.Ĉ

(10)

• We denote Xp = (Xp1, ..., Xpm)⊤ , X̂p = (X̂p1, ..., X̂pm)⊤ the snapshot values of X and X̂ at the cell p ≤ n.

• Similarly, we define Ck = (Ck1, ..., Ckm)⊤ and Ĉk = (Ĉk1, ..., Ĉkm)⊤ the k-th component of the original and the
inferred matrices for any k ≤ r.

• By centering and reducing Ck = (Ck1, ..., Ckm)⊤, we derive ck and ĉk which correspond to the training vector and
the output of the k-th SVR respectively. They verify :

Ck = Sk.ck + Ek

Ĉk = Si.ĉk + Ek

(11)

where Ek is the mean of Ck and Sk its standard deviation.

A.2. Introduction

SVR machines are trained with respect to the Root Mean Square Error of inference ek evaluated between the output ĉk and
the standardized k-th component of the original coefficient matrix ck. Thus:

ek = ∥ck − ĉk∥2

To optimize the learning hyper-parameters λ1, λ2, ... of the metamodel, we aim to minimize an objective function e, equal
to the highest of validation errors (e1, e2, ..., er) recorded among all r SVR machines such as :

e = max
1≤k≤r

ek (12)

In fact, we can prove that the root mean square error of inference of X computed at any cell p ≤ n has an upper bound that
is linearly proportional to e (Theorem A.1).

Theorem A.1. ∀p ≤ n ∃Kp > 0 that verifies

∥Xp − X̂p∥2 ≤ Kp.e

Thus, minimizing the objective function contributes to shrinking the validation error evaluated at any component p ≤ n of
the snapshot matrix.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A.3. Proof

At first, we remind the analytical formulation of ∥Xp − X̂p∥2 :

∥Xp − X̂p∥22 =
1

m

j=m∑
j=1

(Xpj − X̂pj)
2

To find an upper bound, we start by expressing the relative error of inference ∆Xpj = Xpj − X̂pj of the j − th snapshot at
the cell p in terms of inference errors of all SVR machines.

∀p ∈ [1, N] ∀j ∈ [1,m] :

∆Xpj = Xpj − X̂pj

(1) =⇒ =

k=r∑
k=1

Ur
PODpk

(Ckj − Ĉkj)

(2) =⇒ =

k=r∑
k=1

Ur
PODpk

(Skckj + Ek − Sk ĉkj − Ek)

=

k=r∑
k=1

Sk.U
r
PODpk

(ckj − ĉkj)︸ ︷︷ ︸
∆ckj

=⇒ ∆Xpj =

k=r∑
k=1

Sk.U
r
PODpk

∆ckj (13)

By squaring ∆Xpj , we obtain :

∆X2
pj = (

k=r∑
k=1

Sk.U
r
PODpk

∆ckj)
2

=

k=r∑
k=1

(Sk.U
r
PODpk

)2∆c2kj + 2
∑

1≤h<l≤r

(Sh.U
r
PODph

).(Sl.U
r
PODpl

).∆chj∆clj

∆X2
pj ≤

k=r∑
k=1

(Sk.U
r
PODpk

)2∆c2kj + 2
∑

1≤h<l≤r

|Sh.U
r
PODph

|.|Sl.U
r
PODpl

|.|∆chj∆clj |

Then, we sum over j:

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

j=m∑
j=1

∆X2
pj ≤

j=m∑
j=1

k=r∑
k=1

(Sk.U
r
PODpk

)2∆c2kj + 2

j=m∑
j=1

∑
1≤h<l≤r

|Sh.U
r
PODph

|.|Sl.U
r
PODpl

|.|∆chj∆clj |

≤
k=r∑
k=1

(Sk.U
r
PODpk

)2
j=m∑
j=1

∆c2kj︸ ︷︷ ︸
1

+2
∑

1≤h<l≤r

|Sh.U
r
PODph

|.|Sl.U
r
PODpl

|
j=m∑
j=1

|∆chj∆clj |︸ ︷︷ ︸
2

We recall that ∀k ∈ [1, r] :

e2k = ∥ck − ĉk∥22 =
1

m

j=m∑
j=1

∆c2kj (14)

Thus, term 1 immediately becomes
∑j=m

j=1 ∆c2kj = me2k ≤ me2.

By virtue of Hölder’s inequality and (5), we establish the following about term 2 :

j=m∑
j=1

|∆chj∆clj | ≤

j=m∑
j=1

∆c2hj

1/2

·

j=m∑
j=1

∆c2lj

1/2

≤ (me2h)
1/2 · (me2l)

1/2

≤ meh · el ≤ me2

By introducing the new bounds on term 1 and 2 , the latter inequality becomes :

j=m∑
j=1

∆X2
pj ≤

k=r∑
k=1

(Sk.U
r
PODpk

)2 · (me2) + 2
∑

1≤h<l≤r

|Sh.U
r
PODph

|.|Sl.U
r
PODpl

| · (me2)

≤

k=r∑
k=1

(Sk.U
r
PODpk

)2 + 2
∑

1≤h<l≤r

|Sh.U
r
PODph

|.|Sl.U
r
PODpl

|

 ·me2

1

m

j=m∑
j=1

∆X2
pj ≤

k=r∑
k=1

(Sk.U
r
PODpk

)2 + 2
∑

1≤h<l≤r

|Sh.U
r
PODph

|.|Sl.U
r
PODpl

|

 · e2

∥Xp −Xp∥2 ≤

k=r∑
k=1

(Sk.U
r
PODpk

)2 + 2
∑

1≤h<l≤r

|Sh.U
r
PODph

|.|Sl.U
r
PODpl

|

1/2

· e

Hence :

∥Xp −Xp∥2 ≤ Kp · e

where Kp =
(∑k=r

k=1(Sk.U
r
PODpk

)2 + 2
∑

1≤h<l≤r|Sh.U
r
PODph

|.|Sl.U
r
PODpl

|
)1/2

12

