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Abstract
The rise of generative APIs has fueled interest
in privacy-preserving synthetic data generation.
While the Private Evolution (PE) algorithm gen-
erates Differential Privacy (DP) synthetic images
using diffusion model APIs, it struggles with
few-shot private data due to the limitations of
its DP-protected similarity voting approach. In
practice, the few-shot private data challenge is
particularly prevalent in specialized domains like
healthcare and industry. To address this challenge,
we propose a novel API-assisted algorithm, Pri-
vate Contrastive Evolution (PCEvolve), which
iteratively mines inherent inter-class contrastive
relationships in few-shot private data beyond indi-
vidual data points and seamlessly integrates them
into an adapted Exponential Mechanism (EM)
to optimize DP’s utility in an evolution loop. We
conduct extensive experiments on four specialized
datasets, demonstrating that PCEvolve outper-
forms PE and other API-assisted baselines. These
results highlight the potential of leveraging API
access with private data for quality evaluation, en-
abling the generation of high-quality DP synthetic
images and paving the way for more accessible
and effective privacy-preserving generative API
applications. Our code is available at https:
//github.com/TsingZ0/PCEvolve.

1. Introduction
Recent advances in machine learning for image tasks have
significantly improved efficiency in various fields, such as
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Figure 1: A scenario with 10-shot private images and 100-
shot synthetic images in PE. Private data contribute only 10
votes (red), while the noise (blue) exceeds the red votes.

COVID-19 pneumonia recognition (Harmon et al., 2020)
and industry anomaly detection (Roth et al., 2022). How-
ever, training an effective model requires a sufficient number
of images and computing resources, which is often impracti-
cal for resource-constrained clients (e.g., clinics) in special-
ized domains, where each data producer typically possesses
only a few data (Chen et al., 2023; 2020b). To tackle data
scarcity, data owners are increasingly turning to external
sources, but most specialized data are private (Boland et al.,
2017), raising significant privacy concerns (Zhang et al.,
2022). Healthcare data breaches incur substantial costs,
averaging $9.2 million per year (Hu et al., 2024).

Differential Privacy (DP) (Dwork et al., 2006) is a widely
used privacy protection method. However, traditional
training-based approaches like DP-GAN (Zhang et al.,
2024b) and DP-Diffusion (Ghalebikesabi et al., 2023) for
image generation are impractical for resource-constrained
clients due to their high computational cost and substantial
data requirements (Hu et al., 2020). Nowadays, using pow-
erful generative APIs for image generation has emerged as
a compelling and training-free alternative (Lin et al., 2024).
However, since black-box API providers are untrusted, pro-
tecting user privacy becomes crucial (Lin et al., 2024). The
latest Private Evolution (PE) algorithm (Lin et al., 2024)
leverages diffusion model APIs (Rombach et al., 2022) to
generate DP synthetic images without any training in an
evolution loop. Specifically, PE generates random synthetic
images from APIs and iteratively improves them by se-
lecting (with DP) the most similar synthetic images to the
private dataset, and then querying APIs to generate more
similar images. DP synthetic data can be reused infinitely
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for potential models on various downstream tasks without
additional privacy costs, thanks to the post-processing prop-
erty of DP (Dwork et al., 2006; Hu et al., 2024; Fu et al.,
2024b;a).

However, PE was originally designed for data parties with
large-scale private image datasets, and its performance de-
grades with limited private data due to its reliance on DP-
protected (based on Gaussian Mechanism (GM) (Dwork
et al., 2014)) similarity voting, where one private data gives
one vote to the most similar synthetic data with DP. For
example, the original PE uses 302,436 images from the
Camelyon17 dataset (Koh et al., 2021) as private data1.
However, as shown in Fig. 1, when dealing with few-shot
private data, the added noise overwhelms the actual votes,
leading to nearly random similarity voting and selection.
Subsequently, querying APIs with randomly selected im-
ages as guidance yields nearly random outputs, ultimately
degrading the quality of synthetic data (Pan et al., 2023).

To address the few-shot private data challenge in API-
assisted DP generation inside the evolution loop, we pro-
pose an algorithm called Private Contrastive Evolution
(PCEvolve) by incorporating two key components for se-
lecting high-quality prototypical synthetic data as feedback
to APIs:

(1) We devise a contrastive filter to iteratively exploit inter-
class contrastive relationships between different classes
within the private data, beyond individual data points,
thereby enhancing the class-discriminability of synthetic
data w.r.t. private data.

(2) We adapt the Exponential Mechanism (EM) (Dwork
et al., 2014) to preserve private inter-class contrastive re-
lationships, addressing the excessive noise from the high
sensitivity of GM. Specifically, we devise a similarity cali-
brator to enhance EM’s utility by prioritizing high-quality
synthetic data that closely resembles private data.

To evaluate the effectiveness of PCEvolve, we conduct
extensive experiments in two aspects:

(1) We show that PCEvolve surpasses six API-assisted
synthetic data generation baselines across four practical
datasets from specialized domains like healthcare and in-
dustry. Additionally, we demonstrate the applicability of
PCEvolve in various scenarios, such as varying amounts
of private/synthetic data, different APIs, etc. Our DP syn-
thetic dataset works effectively with six diverse downstream
models, thanks to its enhanced class-discriminability.

(2) We analyze the properties of PCEvolve, including the
visible quality of synthetic images, the effectiveness of each
component, and the influence of the single hyperparameter.

1PE also considers a Cat dataset with 200 images, but only
shows synthetic images with a large domain gap to private data.

2. Related Work
Synthetic image data with APIs. In recent years, numerous
studies have focused on synthetic image generation using
generative models, such as Stable Diffusion (SD) (Rombach
et al., 2022; Moor et al., 2023; Yang et al., 2023; Zhang
et al., 2023b; Brooks et al., 2023). However, in specialized
domains like healthcare, generative models often require
fine-tuning or even redesigning on local platforms with
GPU resources (Ji & Chung, 2024; Guan & Liu, 2021;
Kather et al., 2022), demanding significant human effort and
financial investment—making them impractical for resource-
constrained clients (Abou Baker et al., 2024; Wornow et al.,
2023). An alternative is leveraging cloud-based APIs from
service providers (He et al., 2023; Seo et al., 2024; Samuel
et al., 2024), customizing them through API-based fine-
tuning (OpenAI, 2024) or prompt engineering (Hao et al.,
2024). While this approach reduces resource consumption,
it raises serious privacy concerns (Qi et al., 2024), as local
private data must be uploaded to untrusted API providers
for fine-tuning or prompting (Chen et al., 2024). Although
some API-assisted text data generation methods (Ye et al.,
2022; Gao et al., 2023) avoid using private data, they rely
on specific downstream models, limiting their utility.

DP synthetic image data with APIs. DP (Dwork et al.,
2006) is a widely used technique for protecting privacy in
image data (Ziller et al., 2021) and has also been applied
to synthetic image generation (Li et al., 2024; Hu et al.,
2024; Chen et al., 2022; De Cristofaro, 2024). However,
DP-based generative methods like DP-GAN (Zhang et al.,
2024b) and DP-Diffusion (Ghalebikesabi et al., 2023) are
impractical for resource-constrained clients (Hu et al., 2020)
and infeasible when models are accessed via APIs (Xie et al.,
2024; Lin et al., 2024). Directly adding DP noise to images
makes DP images nearly unusable as input guidance for
APIs, as ensuring privacy demands excessive noise (Croft
et al., 2021). Recently, Private Evolution (PE) (Lin et al.,
2024) optimizes synthetic image data to resemble private
data with DP, performing well with large private datasets
but struggling in few-shot scenarios due to its GM-based
similarity voting. Two follow-up methods in the text do-
main (Xie et al., 2024; Hou et al., 2024) retain PE’s core
GM-based similarity voting while equipping it with more
synthetic data per generation (Xie et al., 2024) or more pri-
vate data from large-scale federated learning (Hou et al.,
2024).

3. Preliminaries
Definition 3.1 (Differential Privacy (Dwork et al., 2006)).
Let D be any private database with data from a space X,
denoted as D ∈ X, with a symmetric neighbor D′, where D
and D′ differ in only one element. Let ϵ > 0 and δ ∈ [0, 1]
be two privacy parameters. A randomized algorithmM :
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X → Y with a value range Y is (ϵ, δ)-DP if the following
inequality holds for any E ⊆ Y:

Pr[M(D) ∈ E ] ≤ eϵPr[M(D′) ∈ E ] + δ.

If δ = 0, we say thatM is ϵ-DP. Any post-processing of a
DP mechanism’s output incurs no additional privacy loss.

Definition 3.2 (Gaussian Mechanism (Dwork et al., 2014)).
Let f : X → RD be a D-dimensional function with ℓ2
sensitivity to be ∆f := maxD,D′ ||f(D) − f(D′)||2. The
Gaussian Mechanism (GM) Mσ with parameter σ adds
noise scaled toN (0, σ2) to each of the D components of the
output, i.e., f̃(D) := f(D)+N (0, σ2ID). For ϵ, δ ∈ (0, 1),
Mσ with σ = ∆f

√
2 log(1.25/δ)/ϵ is (ϵ, δ)-DP.

Definition 3.3 (Exponential Mechanism (Dong et al., 2020;
McSherry & Talwar, 2007)). Given a parameter ϵ, an arbi-
trary range R, and a utility function u : X×R → R with
sensitivity ∆u := maxr∈R maxD,D′ |u(D, r)−u(D′, r)|, a
randomized algorithmMu is called the Exponential Mech-
anism (EM), if the outcome r is sampled with probability
proportional to exp ( ϵ·u(D,r)

2∆u
) andMu is ϵ-DP:

Pr[Mu(D) = r] =
exp ( ϵ·u(D,r)

2∆u
)∑

r′∈R exp ( ϵ·u(D,r′)
2∆u

)
.

Definition 3.4 (Sequential Composition (Dwork et al.,
2006)). Given any mechanismM1(·) that satisfies ϵ1-DP,
andM2(s, ·) that satisfies ϵ2-DP for any s, thenM(D) =
M2 (M1(D),D) satisfies (ϵ1 + ϵ2)-DP .

Remark 3.5. Given the same ϵ, Mu (ϵ-DP) provides
stronger privacy protection thanMσ ((ϵ, δ)-DP) for δ > 0 .

4. Method
Motivation. The Gaussian DP (Mσ)-based similarity vot-
ing approach in the existing method PE corresponds to the
function f (in Definition 3.2) of Mσ. However, due to
the few-shot private dataset Dp, the values in f(Dp) are
extremely small, making the noise from N (0, σ2) appear
larger than f(Dp) and rendering the final votes, f̃(Dp),
nearly random, as shown in Fig. 1. In contrast, EMMu is
tailored for selection, with privacy guarantee depending on
the sensitivity of utility function u (Dwork, 2008). There-
fore, we propose PCEvolve based onMu and adapt EM
to select synthetic (public) data instead of private data, re-
ducing the influence of private data volume and making it
suitable for few-shot scenarios.

Problem Definition. Our goal is to generate a DP syn-
thetic dataset Ds that closely resembles Dp and effectively
supports potential downstream C-class classification tasks
within the same domain as Dp. To achieve this, Ds must
satisfy two key criteria: (1) class-discriminability and (2)
high similarity to Dp.

Following PE, we randomly initializeD0
s using an untrusted

text-to-image (t2i) API Gt2i with a simple text prompt
T—containing only the domain and class label names, with-
out any prompt engineering (Meskó, 2023) (e.g., T = “A
leather texture image with cut defect”). We then iteratively
refine Ds (omitting the iteration superscript t for simplicity)
through the following steps. In each iteration, given the
previously generated Ds and a pre-trained encoder2 (feature
extractor) Ef , we select high-quality prototypical (“proto”)
data points, denoted as Dpro, from Ds. This selection is
guided by Dp using Mu. Next, we refine the synthetic
dataset by leveraging an untrusted image-to-image (i2i) API
Gi2i, using Dpro as feedback and guidance. As this evolu-
tion loop progresses, we iteratively optimize Ds.

A crucial aspect of this process is the selection of Dpro.
According to Definition 3.3 of Mu, Dpro is obtained by
sampling data from Ds with probabilities proportional to
their corresponding u scores. Thus, the effectiveness of our
approach hinges on the design of the utility function u.

Threat Model. We assume that the API provider is honest-
but-curious, aiming to extract private information (e.g.,
membership information) from the private data uploaded by
the client device. While the provider can only access public
images selected by the client’s private data, it can leverage
this information to attack the client’s privacy (Duan et al.,
2024). Specifically, by repeatedly observing the output im-
ages, the provider can infer whether a particular sample ex-
ists in the client’s dataset. Empirical studies have confirmed
privacy risks through viable attacks, such as membership
inference attacks (Shokri et al., 2017; Carlini et al., 2022).

4.1. PCEvolve

Overview. As shown in Fig. 2, our PCEvolve iteratively
enhances the synthetic data with a DP-protected selector
as the core engine. To tackle the few-shot challenge with
DP, we leverage inter-class contrastive relationships from
private data and optimize the utility ofMu within the selec-
tor. Specifically, we (1) aggregate private class centers to
reduce bias caused by the few-shot problem, (2) introduce a
contrastive filter g to improve the class-discriminability of
synthetic data, (3) design a similarity calibrator h to maxi-
mize the selection probability of the most similar synthetic
data byMu, where u := h ◦ g, and (4) utilize the scores
from u (i.e., outputs of h) to construct Dpro viaMu.

(1) Aggregating Class Centers. The fundamental chal-
lenge in few-shot data scenarios is the lack of sufficient
information to represent the entire real data distribution,
leading to inadequate and biased learning of downstream
models (Song et al., 2023; Xu et al., 2022), especially the

2All distance measures are computed in the feature space after
applying Ef . For simplicity, we omit Ef in the following.
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Figure 2: Illustration of our PCEvolve, whose core is the DP-protected selector. Different colors denote distinct data classes
(two classes are explicitly shown, with others indicated by “. . .”). “Agg” and “Exp” denote the class center aggregation and
the EMMu (u = h ◦ g), respectively.

few but useful data that are near the distribution bound-
ary (Yang et al., 2021). To reduce bias from boundary data,
we aggregate few-shot private data to obtain the private
center set D̄p := {d̄cp}c∈[C], where d̄cp := 1

|Dc
p|
∑

dc
p∼Dc

p
dcp,

where we define Dc as the subset of any set D that contains
all data with label c.

(2) Contrastive Filter g. Then, we leverage inter-class con-
trastive relationships to utilize private data fully. Inspired
by metric learning (Kulis et al., 2013) and contrastive learn-
ing (Chen et al., 2020a), we design a contrastive filter g to
select synthetic data that can be correctly classified into their
corresponding classes using D̄p as class identifiers, i.e.,

g(dcs, D̄p) :=

{
1, if ℓ2(dcs, d̄

c
p) < minc′{ℓ2(dcs, d̄c

′

p )}
0, otherwise

,

(1)
∀dcs ∈ Dc

s, c ∈ [C], c′ ∈ [C], c′ ̸= c. We use ℓ2-norm (Luo
et al., 2016) for distance measure. Using g for selection
aligns our discriminability goal by assigning positive scores
to discriminative synthetic data.

(3) Similarity Calibrator h. Given the initial large dif-
ference between the synthetic and private domains, solely
emphasizing discriminability with g while neglecting sim-
ilarity will barely reduce this gap in the next generation
iteration. Thus, we calculate the similarity of discriminative
synthetic data to D̄p by

h(dcs, D̄p) :=

{
e−ℓ2(d

c
s,D̄p), if g(dcs, D̄p) = 1

0, otherwise
, (2)

∀dcs ∈ Dc
s, c ∈ [C]. We apply exponent arithmetic and

negation to convert ℓ2 distances into similarities. Since the
range of ℓ2 is [0,+∞), the range of h is [0, 1], making u =
h◦g with a sensitivity of ∆u = 1 according to Definition 3.3.
SinceMu samples data from Ds into Dpro based on u’s
values, candidates with higher u values are more likely to
be included in Dpro.

In practice, ℓ2 values rarely span the full range of [0,+∞).
Due to random initialization and the large gap between
Ds and Dp, initial ℓ2 values are excessive, leading most
u values to fall near 0. This under-utilizes the full range
[0, 1] of u and causesMu to sample data almost randomly.
To address this issue, we propose calibrating the original
similarity scores to ensure u values span the full range of
[0, 1] in two steps: (1) normalizing the original ℓ2 values
to [0, 1] and (2) scaling them to [0, τ ], where τ is the only
hyperparameter. This forces u values to fall within {0} ∪
[e−τ , 1]. By selecting an appropriate τ value, we can ensure
that e−τ ≈ 0. Consequently, we assign the maximum
u value (i.e., 1) to the best (the most similar) candidate
to maximize its selection probability when applyingMu.
Formally, we rewrite h to

h(dcs, D̄p) :=

e
− ℓ2(dcs,D̄p)−ℓcmin

ℓcmax−ℓc
min

·τ
, if g(dcs, D̄p) = 1

0, otherwise
,

s.t. ℓcmax := max
dc
s∈Dc

s, g(d
c
s,Dp)=1

ℓ2(d
c
s, D̄p),

ℓcmin := min
dc
s∈Dc

s, g(d
c
s,Dp)=1

ℓ2(d
c
s, D̄p),

(3)
∀dcs ∈ Dc

s, c ∈ [C]. As per Definition 3.3, this rewriting
does not impact ∆u, since u values still belong to [0, 1].

(4) ApplyingMu. Given u and ∆u, we simply runMu to
sample synthetic data from Ds into Dpro based on Defini-
tion 3.3. Each execution ofMu consumes a portion of the
total privacy cost ϵ∗. To balance the utility-privacy trade-
off (Dwork et al., 2014), we select only one candidate per
class to form Dpro. The best candidate with the highest h
value has the greatest probability of being selected. Then,
we can generate a refinedDs using an improvedDpro as the
input to Gi2i. We show the overall algorithm in Algorithm 1.
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Algorithm 1 PCEvolve
Input: Private dataset Dp, i2i API Gi2i, t2i API Gt2i, text

prompt T , total privacy cost ϵ∗, number of class C,
number of iteration T , encoder Ef , and similarity cali-
brating factor τ .

Output: Synthetic dataset Ds.
1: D0

s ← Gt2i(T ) and ϵ = ϵ∗
T ·C .

2: for evolution iteration t = 1, . . . , T do
3: for class c = 1, . . . , C do
4: Get u scores for Dt,c

s via Eq. (1) and Eq. (3).
5: Get Dt,c

pro by sampling data from Dt,c
s , with

the index setR of Dt,c
s and probabilities

Pr[Mu(Dp) = r ∈ R] =
exp (

ϵ·u(Dp,r)
2∆u

)∑
r′∈R exp (

ϵ·u(Dp,r′)
2∆u

)
.

6: Dt
s ← Gi2i(T ,Dt

pro), where Dt
pro = {Dt,c

pro}Cc=1.

7: return Synthetic dataset DT
s .

4.2. Privacy Analysis

Theorem 4.1. Algorithm 1 PCEvolve satisfied ϵ∗-DP.

Proof. Firstly, we conduct a privacy analysis for each query
to privacy dataset Dp (Line 5 in Algorithm 1). For any
synthetic data set Ds and its corresponding indexes set R,
the sensitivity ∆u between two adjacent datasets Dp,D′

p ∈
D is bound by 1 according to our scoring function u = h◦g:

∆u = max
r∈R

max
Dp,D′

p∈D
|u(Dp, r)− u(D′

p, r)| = 1.

Thus, based on Definition 3.3, each time privacy dataset Dp

satisfies ϵ-DP.

Since we access T × C times to private data Dp, according
to the Definition 3.4, finally our PCEvolve satisfies ϵ∗-
DP.

5. Experiments
5.1. Setup

Image Generation APIs. We consider three image gener-
ation APIs: Stable Diffusion (SD) (Rombach et al., 2022),
SD with the IP-Adapter (Ye et al., 2023) plug-in (SD+IPA),
and online OpenJourney (PromptHero, 2023) API (OJ (on-
line)). We primarily use the widely adopted SD API (Lin
et al., 2024) as the image generation API. Following PE, we
generate N -shot synthetic images per class in the datasetDs,
with a default setting of N = 100. In our scenario, an ex-
cessively large N is impractical for a resource-constrained
client to generate image data using generative APIs.

Few-Shot Datasets. We evaluate PCEvolve on four

datasets across two specialized domains under K-shot set-
tings. In healthcare, we use (1) COVIDx (Wang et al.,
2020) (chest X-ray images for COVID-19, two classes), (2)
Camelyon17 (Koh et al., 2021) (tumor tissue patches from
breast cancer metastases, two classes), and (3) KVASIR-f
(endoscopic images for gastrointestinal abnormal findings
detection subset from KVASIR (Pogorelov et al., 2017),
three classes). In industry, we use MVTecAD-l (leather sur-
face anomaly detection subset from MVTecAD (Bergmann
et al., 2019), three classes). By default, we set K = 10, as
MVTecAD-l has only 19 images per class. This value of K
is typical for few-shot image tasks (He et al., 2023).

Baselines. We compare PCEvolve with six baselines
across three categories, all of which focus on generating
image datasets using untrusted black-box API(s), without
training:

(I) Using t2i APIs for image generation:
• B (He et al., 2023), which uses only a t2i API with a
simple text prompt T that includes only the domain and
class label name. • LE (Seo et al., 2024), which extends
B with a LLaMA (Touvron et al., 2023) API to enhance
T . • RF (Samuel et al., 2024), which filters out bad t2i-
generated data that closely resemble private data from dif-
ferent classes. • GCap, which generates images using a
t2i API with a LLaVA (Liu et al., 2023) API for extracting
private image captions.

(II) Using i2i APIs for image generation with DP:
• DPImg, which directly adds DP (GM) noise to few-shot
private images to generate DP replicas, which are then input
to an i2i API. DPImg adapts RG (He et al., 2023) to ensure
DP while avoiding modifications to the generative API.

(III) Using t2i and i2i APIs for image generation with DP:
• PE (Lin et al., 2024), like PCEvolve, generates DP syn-
thetic image datasets using private data along with both t2i
and i2i APIs within a privacy-preserving evolution loop.

Implementation Details. To maximize performance in
few-shot scenarios following He et al. (2023), we train a
new classification head for a given pre-trained backbone
model on the final synthetic datasetDs. We report the Top-1
accuracy on the entire downstream test sets from the above
datasets3. Top-1 accuracy, also known as the classification
accuracy score (CAS) (Ravuri & Vinyals, 2019), is a widely
used metric for assessing the quality of synthetic datasets
in downstream tasks (Frolov et al., 2021; Lee et al., 2024).
By default, we use ResNet-18 (He et al., 2016) as the pre-
trained backbone model and encoder Ef due to its broad
applicability across resource-constrained clients. For DP
methods, the overall privacy cost ϵ∗ is set to 10, 8, 8, and
10 for COVIDx, Camelyon17, KVASIR-f, and MVTecAD-l,
respectively. For GM in DPImg and PE, we set δ to 10−5,

3For simplicity, we focus on balanced sets, following PE.
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higher than EM’s 0 in PCEvolve. We run each experiment
three times and report the mean. Please refer to the specific
experiments and Appendix for more details and results.

5.2. Performance of PCEvolve

CAS w.r.t. Four Specialized Datasets

Table 1: Top-1 accuracy (%) on four specialized datasets.

COVIDx Came17 KVASIR-f MVAD-l

Init 49.34 50.47 33.43 33.33

RF 50.01 54.82 34.66 48.17
GCap 50.86 55.77 32.66 27.33
B 50.42 54.41 32.57 43.21
LE 50.02 55.44 35.51 27.93

DPImg 49.14 61.06 33.35 37.03

PE 59.63 63.66 48.88 57.41
PE-EM 57.60 63.34 43.01 50.06
PCEvolve-GM 56.91 62.63 43.55 55.56
PCEvolve 64.04 69.10 50.95 59.26

We first assess PCEvolve across four datasets from spe-
cialized domains like healthcare and industry in Tab. 1,
where “Init” refers to the downstream models with initial
heads. “Came17” and “MVAD” abbreviate Camelyon17
and MVTecAD for space efficiency, respectively. For cat-
egory III, we additionally consider two variants of PE and
PCEvolve as baselines: PE-EM, which applies the EM
Mu to PE’s original similarity votes, and PCEvolve-GM,
which applies the GMMσ to PCEvolve ’s u values.

As shown in Tab. 1, the methods from category III out-
perform the others, with PCEvolve achieving the best
performance among them. Specifically, PCEvolve sur-
passes baselines by up to 5.44% in accuracy on Came17.
This phenomenon stems from the privacy-preserving evolu-
tion loop, which iteratively improves image quality while
maintaining privacy within a given cost (i.e., the privacy
cost ϵ∗). RF and GCap indirectly utilize private images via
private-image-based post-filtering and captions. Without
privacy-preserving techniques, they leak more privacy than
DP-protected methods (Sander et al., 2024), despite access-
ing private data only once without evolution. In contrast,
B and LE use only text prompts, ensuring full privacy pro-
tection. However, their performance is slightly below RF
and GCap. DPImg adds DP noise to private images, ren-
dering them unrecognizable for required privacy, leading to
poor or negative performance (Croft et al., 2021), especially
on hard tasks, e.g., COVIDx and KVASIR-f. All methods
perform better in less specialized domains (roughly, for two-
class datasets, COVIDx (chest X-ray) is harder than Came17
(tumor tissue), and for three-class datasets, KVASIR-f (med-
ical) is harder than MVAD-l (industrial)). Additionally,
APIs (SD, LLaMA, LLaVA, etc.) do not always enhance

performance, as they can introduce noise (Barman et al.,
2024).

Within category III, PE-EM and PCEvolve-GM under-
perform PE and PCEvolve. PE-EM lacks similarity
score calibration, weakening the EM, while PCEvolve-
GM applies the GM to u scores, requiring high sensitivity
(∆f = K ×N ) and reducing utility. By design, the simi-
larity votes in PE align with the GM, while the calibrated
u scores in PCEvolve match the EM. Compared to PE,
PCEvolve is better suited for specialized domains with
few-shot private data, as we incorporate inter-class con-
trastive relationships and maximize the EM’s effectiveness
under the same privacy cost.

CAS w.r.t. K-Shot Private Data
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Figure 3: Top-1 accuracy of ResNet-18 on KVASIR-f with
varying shots of private data per class.

In the previous experiments, we used the default setting
of K = 10 for K-shot private data on the client. We now
explore different values of K to examine how varying the
amount of private data affects downstream models. As
shown in Fig. 3, methods that leverage private data to filter
or evaluate generated synthetic data, such as RF, PE, and
PCEvolve, tend to perform better given more private data.
The performance improvement is particularly noticeable for
PE and PCEvolve, since both methods rely on an evo-
lution loop that iteratively accesses private data multiple
times. This repeated access allows them to benefit more
from richer private data, leading to a greater enhancement in
the quality of the synthetic data generated and, consequently,
the downstream model. In scenarios with extremely small
amounts of private data, such as K = 1, the class center
aggregation subroutine in our PCEvolve becomes invalid,
as the aggregated private class centers are identical to the pri-
vate data. Despite this, PCEvolve still outperforms other
methods with our two key components: contrastive filter (g)
and similarity calibrator (h). The performance of B and LE
remains unaffected by K since they do not require private
data. DPImg performs worse as the amount of private data
increases since DP requires adding more noise to ensure
privacy.

CAS w.r.t. N -Shot Synthetic Data
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Figure 4: Top-1 accuracy of ResNet-18 on COVIDx with
varying synthetic data shots per class per iteration.

We default to generating N = 100 synthetic images per
class on the client. This choice helps mitigate the risk of
generative APIs introducing noise due to insufficient contex-
tual information (Ronanki et al., 2024; Wang et al., 2023),
which, in our scenario, comes from K-shot (K = 10)
private data. The noise becomes even more pronounced
when generating a large volume of synthetic data, as shown
in Fig. 4 (N = 150/200/500), where accumulated noise
and potential inaccuracies degrade the overall quality and
utility of the dataset. Moreover, a larger N increases API
resource consumption, which may become unaffordable
for resource-constrained clients. On the other hand, if the
synthetic data amount is too small (e.g., N = 50), there is
insufficient knowledge for downstream models to effectively
learn from the generative APIs. However, our PCEvolve
maintains its performance even at N = 50, with only a
0.95% drop in accuracy, whereas PE suffers a 4.78% de-
cline. This demonstrates that PCEvolve is more adaptable
to resource-constrained clients, highlighting its practical
value.

CAS w.r.t. Various APIs

Table 2: Top-1 accuracy (%) on COVIDx and KVASIR-f
using SD+IPA and OJ (online) APIs.

COVIDx KVASIR-f

APIs SD+IPA OJ (online) SD+IPA OJ (online)

RF 45.03 47.91 27.22 36.55
GCap 53.70 47.42 28.77 37.11
B 46.61 50.22 26.27 36.61
LE 49.79 53.17 31.22 37.38

DPImg 50.58 49.61 36.89 35.05

PE 56.92 54.47 48.83 48.17
PCEvolve 60.46 65.88 52.77 54.58

To assess PCEvolve’s applicability with other image gen-
eration APIs, we additionally use SD+IPA and OJ (online)
on COVIDx and KVASIR-f. Generative models behind
different APIs are pre-trained on diverse large-scale pub-

lic datasets (Schuhmann et al., 2022; Byeon et al., 2022),
resulting in varying knowledge. Despite these differences,
PCEvolve adapts to different generative APIs while main-
taining its superiority, as shown in Tab. 2. Since SD,
SD+IPA, and OJ (online) share a similar generative back-
bone, with OJ (online) fine-tuned on SD, we infer that
SD+IPA and OJ (online) have been exposed to more public
data than SD, leading to broader knowledge. From Tab. 1
and Tab. 2, we observe an interesting trend: PCEvolve
benefits from APIs trained on larger public datasets, whereas
PE experiences a slight performance decline under the same
conditions.

CAS w.r.t. Various Downstream Models
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Figure 5: Top-1 accuracy of various downstream models on
COVIDx. “Private” represents an additional private base-
line, which directly trains downstream models on few-shot
private data.

To evaluate the versatility of the synthetic dataset for down-
stream models, we consider six models that are widely used
in specialized image domains (Sarwinda et al., 2021; Man-
zari et al., 2023), as shown in Fig. 5. Following our setup in
Sec. 5.1, we use pre-trained backbones and train newly ini-
tialized classification heads on the synthetic dataset. Here,
we use the CLIP image encoder (Radford et al., 2021) as
the encoder Ef following (Lin et al., 2024).

In Fig. 5, the synthetic image dataset generated by our
PCEvolve is compatible with various downstream models
of different architectures (e.g., CNNs (LeCun et al., 2015)
and Transformers (Vaswani et al., 2017)). Models trained
on our PCEvolve’s synthetic dataset achieve the best per-
formance among all counterparts. Notably, PCEvolve sur-
passes the “Private” baseline by up to 8.20%, which directly
trains downstream models on few-shot private data for the
same number of training steps as PCEvolve. This demon-
strates that our synthetic dataset incorporates valuable infor-
mation from the generative API beyond what private data
alone provides. In contrast, PE underperforms compared
to “Private” when using larger models other than ResNet-
18. While both PCEvolve and PE improve downstream
model performance over their initial states, most one-time
generation methods degrade, except for LE. This highlights
the substantial domain gap between synthetic and private

7



PCEvolve: Private Contrastive Evolution for Synthetic Dataset Generation via Few-Shot Private Data and Generative APIs

datasets when an evolution loop is not used to incorporate
sufficient private information.

5.3. Properties of PCEvolve

(a) Initial (b) PE (c) PCEvolve (d) Private

Figure 6: Generated leather surface images w.r.t. MVAD-l
for industry anomaly detection. The three rows show normal
images, cut defects, and droplet defects. “Initial” denotes
the initial synthetic images in PE and PCEvolve. “Private”
denotes the real images from MVAD-l.

Synthetic Images

As illustrated in Fig. 6, the initial synthetic images differ
significantly in meaning, content, color, and detail from
few-shot private images. While PE employs an evolution
loop to refine the initial images iteratively, its DP-protected
similarity voting becomes nearly random with a few-shot
private dataset. This limitation results in synthetic images
that retain much information from the initial data while
remaining distant from the private data. For instance, the
synthetic images in Fig. 6(b) fail to accurately depict the cut
defect, instead emphasizing the boundary of a leather sur-
face, as in Fig. 6(a). Although the normal and droplet defect
images align with the meaning of private images, they still
differ in style and detail, leading to a significant domain gap.
Such synthetic images fail to enhance downstream tasks and
may even negatively impact them (Hataya et al., 2023). In
contrast, our PCEvolve effectively tackles the few-shot
challenge by leveraging inter-class contrastive relationships
via the contrastive filter (g), resulting in class-discriminative
leather images. As illustrated in Fig. 6(c), our synthetic im-
ages demonstrate greater diversity, such as varied lighting
angles, across classes with additional knowledge extracted
from APIs, while preserving a high degree of similarity to
private images. This high similarity is achieved through our
similarity calibrator (h), which enhances the likelihood of
selecting the most similar candidates as prototypical syn-

thetic images.

Ablation Study

Table 3: Top-1 accuracy (%) on four datasets using
PCEvolve (u = h◦g) variants with different u. h′ denotes
the initial h function in Eq. (2).

u = h ◦ g u = g u = h′ ◦ g u = h

COVIDx 64.04 56.59 56.11 55.58
Came17 69.10 66.51 65.29 59.39
KVASIR-f 50.95 44.61 50.67 47.78
MVAD-l 59.26 55.74 55.56 53.71

The design of the utility function u is pivotal to
PCEvolve’s effectiveness. In Tab. 3, we replace u with
alternative variants to demonstrate the significance of each
component in PCEvolve. Notably, the contrastive filter
(g) plays an important role, achieving strong performance
even when used alone. When combined with the similarity
calibrator (h), PCEvolve achieves up to a 7.45% accu-
racy improvement on COVIDx. However, directly using
the uncalibrated similarity scores from h′ ◦ g leads to a
performance drop of up to 7.93% accuracy on COVIDx
compared to PCEvolve. Furthermore, removing g leads to
an even more significant performance drop, with accuracy
decreasing by 9.71% on Came17 at most.

Hyperparameter Study

Table 4: Top-1 accuracy (%) on four datasets using
PCEvolve with varying τ values.

τ = 1 τ = 5 τ = 10 τ = 20 τ = 100

COVIDx 59.34 60.70 64.04 60.61 57.90
Came17 65.85 66.84 69.10 68.42 68.05
KVASIR-f 46.89 47.29 50.95 57.08 54.66
MVAD-l 40.70 53.71 59.26 55.75 55.55

PCEvolve has only one hyperparameter: the similarity
calibrating factor τ in the similarity calibrator (h) (Eq. (3)).
As shown in Tab. 4, selecting an appropriate τ enhances
PCEvolve’s performance, with the optimal value be-
ing τ = 10 for COVIDx, Came17, and MVAD-l, while
KVASIR-f achieves its best performance at τ = 20. When
τ is too small (e.g., τ = 1), the u scores (i.e., outputs of h)
become similar among class-discriminative synthetic data,
leading to nearly uniform selection probabilities after apply-
ing the EMMu (Definition 3.3). Conversely, when τ is too
large (e.g., τ = 100), most u scores become zero, as u com-
putes e−ℓ·τ , where ℓ is the normalized ℓ2 distance in Eq. (3).
In this case, only the best candidate (with ℓ = 0) retains a u
score of 1, while all others—including non-discriminative
candidates—approach (near) 0, inadvertently increasing the
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likelihood of selecting poor candidates according to Defini-
tion 3.3. To balance this trade-off, we choose an appropriate
τ = 10 for PCEvolve.

6. Conclusion and Limitation
Our proposed PCEvolve effectively addresses the few-
shot private data challenge in DP generation with APIs,
particularly for specialized domains like healthcare and in-
dustry, as shown by PCEvolve’s superiority on four spe-
cialized datasets with various scenarios. By leveraging ex-
tra inter-class contrastive relationships in private data and
proposing an adapted EM, PCEvolve outperforms existing
API-assisted methods, enabling high-quality DP synthetic
images while leaving more practical few-shot scenarios for
future exploration.
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A. Experimental Details
We have included the necessary experimental details in the main body, and show more details here.

A.1. Image Generation APIs

We consider three image generation APIs: Stable Diffusion (SD) (Rombach et al., 2022), SD with the IP-Adapter
(SD+IPA) (Ye et al., 2023), and the online OpenJourney (OJ) API (PromptHero, 2023) (OJ (online)). Following PE (Lin
et al., 2024), we manually implement SD on a server, providing an SD API with both text-to-image (t2i) and image-to-image
(i2i) features. Specifically, we use the pre-trained open-source SD v1.5 model from HuggingFace4 and wrap it to expose
only the API interface and serve as an API server, keeping the model details hidden from clients. SD+IPA is implemented
similarly, by integrating a pre-trained open-source IP-Adapter5 to the SD API. For the OJ (online) API, we use the getimg.ai
platform to access the online OJ API6, which requires payments before usage. We retain the default settings (such as
num inference steps =50, guidance scale =7.5, etc.) for all APIs to ensure better generalization. Similar to

PE, we initialize the strength at 0.8 and anneal it to 0.6 with a 0.02 decrease per iteration for the i2i API. Additionally,
we set scale to 0.5 for the IP-Adapter. Further details are available in our code.

A.2. Few-Shot Datasets

We evaluate PCEvolve on four datasets across two specialized domains under K-shot settings. In healthcare, we use (1)
COVIDx7 (Wang et al., 2020) (chest X-ray images for COVID-19, two classes), (2) Camelyon178 (Koh et al., 2021) (tumor
tissue patches from breast cancer metastases, two classes), and (3) KVASIR-f9 (endoscopic images for gastrointestinal
abnormal findings detection subset from KVASIR (Pogorelov et al., 2017), three classes). In industry, we use MVTecAD-l10

(leather surface anomaly detection subset from MVTecAD (Bergmann et al., 2019), three classes). Specifically, KVASIR-f
is a subset of KVASIR containing all pathological finding images, while MVTecAD-l is a subset of MVTecAD focused on
leather surface images. By default, we set K = 10 for MVTecAD-l, containing only 19 leather surface images per class. We
use 10 images for synthetic image generation and reserve the remaining 9 images for evaluating the test accuracy of the
fine-tuned downstream models. This value of K is typical for few-shot image tasks (He et al., 2023). We create few-shot
subsets from these datasets to represent realistic scenarios. In Tab. 5, we list each dataset’s details. We use a uniform simple
text prompt T := “A DOMAIN image with LABEL”, where “DOMAIN” and “LABEL” are placeholders for respective
domain and label names, for all datasets and tasks. More details are available in our code.

Table 5: The details of four few-shot datasets from two specialized domains.

Dataset Image Size Test Set Size Domain Labels

COVIDx 256x256 8482 “chest radiography (X-ray)” [“”, “COVID-19 pneumonia”]
Camelyon17 96x96 85054 “histological lymph node section” [“”, “breast cancer with a tumor tissue”]
KVASIR-f 256x256 600 “pathological damage in mucosa of

gastrointestinal tract”
[“esophagitis”, “polyps”, “ulcerative-colitis”]

MVTecAD-l 256x256 27 “leather texture” [“”, “cut defect”, “droplet defect”]

A.3. Baselines

We compare PCEvolve with six baselines across three categories, all of which focus on generating image datasets using
untrusted black-box API(s), without training:

(I) Using t2i APIs for image generation:
• B (He et al., 2023), which uses only a t2i API with a simple text prompt T that includes only the domain and class label

4https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
5https://huggingface.co/h94/IP-Adapter
6https://dashboard.getimg.ai/models
7https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
8https://wilds.stanford.edu/datasets/#camelyon17
9https://datasets.simula.no/kvasir/

10https://www.mvtec.com/company/research/datasets/mvtec-ad

13

https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
https://huggingface.co/h94/IP-Adapter
https://dashboard.getimg.ai/models
https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
https://wilds.stanford.edu/datasets/#camelyon17
https://datasets.simula.no/kvasir/
https://www.mvtec.com/company/research/datasets/mvtec-ad


PCEvolve: Private Contrastive Evolution for Synthetic Dataset Generation via Few-Shot Private Data and Generative APIs

name. • LE (Seo et al., 2024), which extends B with a LLaMA (Touvron et al., 2023) API to enhance T . Specifically, we use
an additional text prompt to enhance T with the LLaMA API: “refine this description of images to introduce rich context: ”.
• RF (Samuel et al., 2024), which filters out bad t2i-generated data that closely resemble private data from different classes.
• GCap, which generates images using a t2i API with a LLaVA (Liu et al., 2023) API for extracting private image captions.

(II) Using i2i APIs for image generation with DP:
• DPImg, which directly adds DP (GM) noise to few-shot private images to generate DP replicas, which are then input to an
i2i API. DPImg adapts RG (He et al., 2023) to ensure DP while avoiding modifications to the generative API. We compute
the σ for GM based on Definition 3.2 given a total privacy cost ϵ∗.

(III) Using t2i and i2i APIs for image generation with DP:
• PE (Lin et al., 2024), like PCEvolve, generates DP synthetic image datasets using private data along with both t2i and
i2i APIs within a privacy-preserving evolution loop. In few-shot scenarios, there are too few votes but too much noise in PE,
making the thresholding operation on similarity votes meaningless. Therefore, we set H = 0 for PE. Additionally, as shown
in the PE paper, PE performs similarly for H ≥ 0 when ϵ∗ > 2.

A.4. Implementation Details

To maximize performance in few-shot scenarios, following (He et al., 2023), we train a new classification head on a
pre-trained backbone model using the final synthetic dataset Ds. The downstream model training during evaluation is done
with a batch size of 16, a learning rate of 0.001, and 100 epochs. We report the Top-1 accuracy on the entire downstream
test sets (see Tab. 5). Top-1 accuracy, also known as the classification accuracy score (CAS) (Ravuri & Vinyals, 2019), is a
widely used metric for assessing the quality of synthetic datasets in downstream tasks (Frolov et al., 2021; Lee et al., 2024).
By default, we use ResNet-18 (He et al., 2016; Zhang et al., 2025; 2023a; 2024a) as the pre-trained backbone model and
encoder Ef due to its broad applicability across resource-constrained clients. For DP methods, the overall privacy cost ϵ∗ is
set to 10, 8, 8, and 10 for COVIDx, Camelyon17, KVASIR-f, and MVTecAD-l, respectively. For GM in DPImg and PE, we
set δ to 10−5, higher than EM’s 0 in PCEvolve. By default, we set the total generation iteration T = 20 for PCEvolve.
Most of our experiments are run on a machine with 64 Intel(R) Xeon(R) Platinum 8362 CPUs, 256GB of memory, eight
NVIDIA 3090 GPUs, and Ubuntu 20.04.4 LTS. While most experiments are completed within 48 hours, those involving a
large N for N -shot image generation may take up to a week.

B. CAS w.r.t. Overall Privacy Cost ϵ∗

Table 6: Top-1 accuracy (%) on four specialized datasets with varying overall privacy cost ϵ∗.

Dataset DP Algorithm ϵ∗ = 4 ϵ∗ = 8 ϵ∗ = 10 ϵ∗ = 20

COVIDx PE 52.76 57.83 59.63 62.44
PCEvolve 56.74 60.21 64.04 63.82

Camelyon17 PE 62.29 63.66 63.37 65.29
PCEvolve 68.05 69.11 69.58 69.95

KVASIR-f PE 43.72 48.88 51.01 51.83
PCEvolve 50.44 50.95 51.67 52.11

MVTecAD-l PE 50.21 55.85 57.41 58.02
PCEvolve 51.84 57.41 59.26 60.67

To study the impact of the overall privacy cost ϵ∗ on iterative generation algorithms, such as PE and our PCEvolve, we
vary ϵ∗ and present the results in Tab. 6. We observe that both PE and PCEvolve achieve lower accuracy with a smaller ϵ∗
and perform better with larger values, consistent with the DP literature (Dwork et al., 2014). To balance the privacy-utility
trade-off, selecting an appropriate ϵ∗ is crucial for different tasks and environments (Lin et al., 2024).
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Figure 7: The loss curves of ResNet-18 (He et al., 2016), which is retrained at each iteration of synthetic data generation for
algorithm performance evaluation. We use a CLIP image encoder (Radford et al., 2021) as the encoder.

C. Iterative Improvement in the Evolution Loop
In the main body, following (He et al., 2023), we train a new classification head for a pre-trained downstream model (e.g.,
ResNet-18) on the final synthetic dataset Ds. To demonstrate the iterative improvement in the evolution loop, we retrain a
new classification head for the given downstream model at each generation iteration and track the loss value after training
on the synthetic data. The loss curves are shown in Fig. 7. Although the downstream model starts with the same initial
loss value at the 0th iteration for all methods, our PCEvolve rapidly reduces the loss in early iterations and consistently
maintains a near-zero loss value in subsequent iterations, demonstrating steady iterative improvement. In contrast, PE
also starts with the same initial loss but experiences fluctuations throughout the evolution process, ultimately reaching a
higher loss. This is due to its GM-based similarity voting approach, which results in noisy synthetic images that hinder its
performance.

D. CAS w.r.t. Various Encoders Ef
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Figure 8: Top-1 accuracy of ResNet-18 on COVIDx using four encoders. “CLIP” is short for CLIP image encoder.

Here, we analyze PE and PCEvolve to assess the impact of different encoders, which map images into feature vectors for
efficient distance computation when evaluating synthetic data quality against private data. In Fig. 8, we observe that the
downstream model (ResNet-18) achieves optimal performance when paired with the same encoder (ResNet-18). When
using other encoders, our PCEvolve shows less performance degradation (4.50%) compared to PE (6.41%). A small
encoder like ResNet-18 (0.01B parameters) is more practical than a large one like CLIP image encoder (0.3B parameters),
as encoding is performed on resource-constrained clients and is required throughout the iterative synthetic data generation
process. Both PCEvolve and PE improve the performance of the initial downstream models with different encoders.
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E. CAS on the Mixture of Synthetic and Private Data
We follow PE (Lin et al., 2024) to evaluate the quality of the synthetic image data in the main body, considering scenarios
where synthetic data is widely utilized in various downstream tasks outside the private client, and the original private dataset
is typically not accessible. In specific cases where private data owners wish to augment their local private datasets with
synthetic data, the private data can be accessed, and the synthetic and private data can be mixed for augmentation.

Table 7: Top-1 accuracy (%) on the mixture of synthetic and private data based on KVASIR-f. “Syn” is short for synthetic.

Syn Syn + Private

Init 33.43
Private 83.17

RF 34.66 81.61 (-1.56)
GCap 32.66 84.78 (+1.61)
B 32.57 81.01 (-2.16)
LE 35.51 84.61 (+1.44)

DPImg 33.35 62.94 (-20.23)

PE 48.88 88.67 (+5.50)
PCEvolve 50.95 90.51 (+7.34)

For this scenario, we follow He et al. (2023) and apply the mix training with the default downstream model (ResNet-18).
As shown in Tab. 7, most baselines improve the performance when mixing synthetic and private data, with PCEvolve
showing the highest improvement by enhancing the class-discriminability of synthetic data, which benefits classification
tasks. Although some t2i baselines (e.g., GCap and LE) perform poorly when evaluated on synthetic data alone, they show
positive performance when applied to mixed datasets, as they bring additional valuable knowledge from APIs to the private
data. In contrast, DPImg can negatively impact private data, as its synthetic data contains significant noise.
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