
MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

Fei Ni 1 Jianye Hao 1 2 Yao Mu 3 Yifu Yuan 1 Yan Zheng 1 Bin Wang 2 Zhixuan Liang 3

Abstract
Recently, diffusion model shines as a promising
backbone for the sequence modeling paradigm
in offline reinforcement learning (RL). However,
these works mostly lack the generalization ability
across tasks with reward or dynamics change. To
tackle this challenge, in this paper we propose
a task-oriented conditioned diffusion planner for
offline meta-RL (MetaDiffuser), which considers
the generalization problem as conditional trajec-
tory generation task with contextual representa-
tion. The key is to learn a context conditioned
diffusion model which can generate task-oriented
trajectories for planning across diverse tasks. To
enhance the dynamics consistency of the gener-
ated trajectories while encouraging trajectories
to achieve high returns, we further design a dual-
guided module in the sampling process of the
diffusion model. The proposed framework enjoys
the robustness to the quality of collected warm-
start data from the testing task and the flexibil-
ity to incorporate with different task representa-
tion method. The experiment results on MuJoCo
benchmarks show that MetaDiffuser outperforms
other strong offline meta-RL baselines, demon-
strating the outstanding conditional generation
ability of diffusion architecture. More visualiza-
tion results are released on project page.

1. Introduction
Offline Reinforcement Learning (Offline RL) (Levine et al.,
2020) aims to learn policies from pre-collected data with-
out interacting with the environment and has made many
success in the fields of games (Chen et al., 2021; Li et al.,
2022), robotic manipulation (Ebert et al., 2018), sequential

1College of Intelligence and Computing, Tianjin Univer-
sity, Tianjin, China 2Huawei Noah’s Ark Lab, Beijing, China
3Department of Computer Science, The University of Hong
Kong, Hong Kong SAR. Correspondence to: Jianye Hao
<jianye.hao@tju.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

0.4

0.6

0.8

No
rm

al
ize

d
Sc

or
es

Dynamics Change Envs
FOCAL
CVAE-Planner
CORRO
Prompt-DT
MetaDiffuser

Reward Change Envs

Figure 1. Overall few-shot generalization performance compar-
isons on various environments including 2 domains with dynamics
change and 4 domains with reward change. The expert perfor-
mance in each environment is chosen as normalized baseline.

advertising (Hao et al., 2020). However, one of the inherent
difficulties of offline RL is the challenges to generalize to
unseen tasks. Recent work in offline meta-RL (Mitchell
et al., 2021b; Li et al., 2020; 2021a;b; Mu et al., 2022) aims
to solve this problem by training a meta-policy from multi-
task offline datasets that can efficiently adapt to unseen tasks
with small amounts of warm-start data.

Conventional offline meta-RL methods (Li et al., 2021a;
Yuan & Lu, 2022) learn a context encoder to infer task rep-
resentation and a meta policy conditioned on the learned
context for generalization across tasks. These works ex-
tended from the online meta-RL setting, still rely on context-
conditioned policy trained by temporal difference (TD)
learning, which may potentially cause instability in policy
optimization and limited performance (Levine et al., 2020;
Ajay et al., 2022). A more recent work Prompt-DT (Xu et al.,
2022) turn to tackle the generalization problem from the
sequence modeling perspective, which joint models state-
action trajectories to avoid TD-learning. This approach uses
prompting method to generalize across unseen tasks with-
out the need for explicit extraction of task representation
through pre-trained context encoder. However, the key limi-
tation is that the quality of the pre-collected warm-start data
must be high enough, which is challenging to collect in un-
seen tasks, to act as an expert prompt for guiding sequence
generation, otherwise performance may suffer with random
or medium data. The aforementioned limitations raise a key
question: Can we design a offline meta-RL framework to
achieve the generalization ability across multiple tasks with
robustness for the quality of warm-start data while utilize
the promising ability of sequence-modeling paradigm?

Planning with diffusion model (Janner et al., 2022b) pro-
vides a promising paradigm for offline RL, which utilizes

1

https://metadiffuser.github.io

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

diffusion model as a trajectory generator by joint diffus-
ing the states and actions from the noise to formulate the
sequence decision-making problem as standard generative
modeling. The concurrent works (Ajay et al., 2022; Wang
et al., 2022b) also showcase the potential of the diffusion
model as a highly promising generative model, highlighting
its ability to serve as a key backbone for addressing sequence
modeling problems in RL, while avoiding the limitations of
TD-learning. But these works focus on a single task and lack
research on generalization ability across tasks, which leaves
the conditioned diffusion unexplored for offline meta-RL.
However, conditioned diffusion model has made signifi-
cant progress in vision and language tasks (Ho & Salimans,
2022), such as DALL-E (Ramesh et al., 2022) and Image-
Gen (Saharia et al., 2022) for text-to-image generation tasks.
These works demonstrate the powerful conditional genera-
tion capabilities of conditioned diffusion models with the
textual label without the need for expert images as prompts.

Inspired by this, we propose a novel framework for of-
fline meta-RL, named MetaDiffuser that leverages diffusion
model to conduct desired trajectories generation for gen-
eralization across unseen tasks. During meta-training, to
provide accurate conditional labels for subsequent trajectory
generation, we first pre-train an accurate context encoder
that can capture task-relevant information from offline trajec-
tories mixed with different tasks. Then the compact task rep-
resentation is injected as a contextual label to the conditional
diffusion model to manipulate the task-oriented trajectories
generation. In this way, the diffusion model learns to esti-
mate the conditional distribution of multi-task distributions
based on the task-oriented context. During meta-testing,
with the predicted context from provided warm-start data in
the testing task, the conditional diffusion model can denoise
out desired trajectories for the testing task. The generated
trajectories can guide the subsequent action to step into the
next state, similar to the planning (Yuan et al., 2023) in RL.
Moreover, to decrease the discrepancy between generated
trajectories and real-rollout trajectories, we design an ef-
fective dual-guide to enhance the dynamics consistency of
generated trajectories while encouraging the high return si-
multaneously. The contributions of this work are as follows:

• Generalization Ability: We propose MetaDiffuser to
leverage the diffusion model to conduct conditional tra-
jectory generation to achieve the generalization ability
across unseen tasks.

• Robustness and Flexibility: MetaDiffuser enjoys the
flexibility to incorporate with different task representation
method and the robustness to the quality of collected
warm-start data at the testing task.

• Dual-guide Enhanced Planner: We design the dual-
guide of both dynamics and rewards to ensure the feasibil-
ity of guided trajectories while encouraging the generated
trajectories to achieve high returns.

• Superior Performance: The experiments on various
benchmarks empirically show that MetaDiffuser much
better generalizes to unseen tasks than prior methods.

2. Related Work
2.1. Offline Meta-RL

Offline meta-RL investigates learning to learn from offline
data, with the aim to quickly adapt to unseen tasks. Recent
works (Mitchell et al., 2021b; Li et al., 2020; 2021a), in-
cluding FOCAL (Li et al., 2021b) and CORRO (Yuan & Lu,
2022), trains a context encoder for compact task representa-
tion for the conditioned policy to generalize. These methods
extended from the traditional online meta-RL setting, still
rely on context-conditioned policy trained by TD-learning,
which may potentially cause instability in policy optimiza-
tion and limited performance. Prompt-DT (Xu et al., 2022)
turns to solve the generalization problem from the sequence
modeling perspective, which joint models state-action tra-
jectories to avoid TD-learning. This approach can utilize the
collected prompt as a prefix to generalize across tasks with-
out the need for explicit context encoder. However, the key
limitation is the high requirement for the quality of warm-
start data as prompt, which is challenging to pre-collect in
unseen task. See more discussion in Appendix C. To com-
bine the best of both context-based manner and sequence-
modeling fashion, we propose MetaDiffuser, which not only
avoiding TD-loss, but also enjoy the robustness to the qual-
ity of warm-start data.

2.2. Diffusion Model for Sequence Decision Making

Recently, many works have emerged to utilize diffusion
models to solve sequence decision-making tasks, showing
the great potential of diffusion model as a promising back-
bone of sequence modeling. Diffuser (Janner et al., 2022b)
applies a diffusion model as a trajectory generator, which is
trained by diffusing over the full trajectory of state-action
pairs from the noises. A separate reward model is trained
to predict the cumulative rewards of each trajectory sample,
then the gradient guidance from reward model is injected
into the reverse sampling stage. Then the first action in
the generated trajectories will be applied to execute in the
environment to step into the next state, which repeats in a
loop until the terminal. The consequent work Decision Dif-
fuser (Ajay et al., 2022) frames offline sequential decision-
making as conditional generative modeling based on returns,
constraints and skills to eliminate the complexities in tradi-
tional offline RL. The concurrent work Diffusion-QL (Wang
et al., 2022b), build policy with the reverse chain of a condi-
tional diffusion model, which allows for a highly expressive
policy class, as a strong policy-regularization method. How-
ever, these works mostly focus on a single task and lack
the generalization ability to unseen tasks in the setting of

2

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

offline meta-RL. Our approach MetaDiffuser leverages the
conditioned diffusion model to conduct conditional trajec-
tory generation to achieve the generalization across unseen
tasks with different reward functions or dynamics.

2.3. Conditional Diffusion Model

Recently, there have been incredible advances in the field
of conditional content generation with the strong generation
capabilities of conditioned diffusion models. Conditional
diffusion model pushes the state-of-the-art on text-to-image
generation tasks such as DALL-E (Ramesh et al., 2022) and
ImageGen (Saharia et al., 2022). The technique of condition-
ing can divide into two fashions: classifier-guided (Nichol &
Dhariwal, 2021) and classifier-free (Ho & Salimans, 2022).
The former improves sample quality while reducing diver-
sity in conditional diffusion models using gradients from a
pre-trained classifier pϕ(y|xk) during sampling. The latter
is an alternate technique that avoids this pre-trained classi-
fier by instead jointly training a single diffusion model on
conditional ϵθ(xk,y, k) and unconditional ϵθ(xk, k) noise
model via randomly dropping conditional label y.

In fact, the aforementioned Diffuser (Janner et al., 2022b)
can also be considered as a classifier-guided conditional
diffusion model, where the pre-trained reward model is an-
other form of classifier for evaluating the sample quality.
Our designed MetaDiffuser builds upon the Diffuser and
additionally incorporates classifier-free manner, by inject-
ing the context as label y into the conditional noise model
ϵθ(xk,y, k), achieving more precise conditional generation.
The details about the relationship between two different
conditional fashions can be found in Appendix A.

3. Preliminaries
3.1. Problem Formulation

The reinforcement learning problem can be generally mod-
eled as a Markov Decision Process (MDP), represented
as M = (S,A, T, ρ,R), where S is the state space, A
is the action space, T (s′|s, a) is the transition dynamics
of the environment, ρ(s) is the initial state distribution,
R(s, a) is the reward function. The objective is to find
a policy π(a|s) that optimizes the expected cumulative re-
wards, Es0∼ρ,π

∑
t γ

tR(st), starting from the initial state.
In the offline meta-RL setting, aiming to adapt to new tasks
via pre-collected data quickly, an agent is given a set of
tasks T , where a task Ti ∈ T is defined as (Mi, πi), con-
taining an MDP Mi and a behavior policy πi. For each
task Ti, the agent is provided with a pre-collected dataset
Di, which contains trajectories sampled using πi. The agent
is trained with a subset of training tasks denoted as T train
and is expected to find the optimal policies in a set of test
tasks T test, which is disjoint with T train.

3.2. Diffusion Model

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) are a type of generative model that consists a
forward diffusion process and a reverse denoising pro-
cess to learn the data distribution q(x). Here, the data-
generating procedure is modelled with a predefined forward
noising process q(xk+1|xk) := N (xk+1;

√
αkxk, (1 −

αk)I) and a trainable reverse process pθ(xk−1|xk) :=
N (xk−1|µθ(xk, k),Σk), where N (µ,Σ) denotes a Gaus-
sian distribution with mean µ and variance Σ, αk ∈ R
determines the variance schedule, x0 := x is a sam-
ple, xk are the sequentially sampled latent variables for
k = 1, . . . ,K, and xK ∼ N (0, I) for carefully chosen
αk and long enough K. Starting with Gaussian noise,
samples are then iteratively generated through a series of
reverse denoising steps by the predicted noise. The pre-
dicted noise ϵθ(xk, k), parameterized with a deep neural
network, estimates the noise ϵ ∼ N (0, I) added to the
dataset sample x0 to produce noisy xk, which can be
trained by a simplified surrogate loss (Ho et al., 2020):
Ldenoise(θ) := Ek∼[1,K],x0∼q,ϵ∼N (0,I)[||ϵ− ϵθ(xk, k)||2].

4. Methodology
To tackle the generalization challenge from the sequence
modeling perspective, we propose MetaDiffuser, a novel of-
fline meta-RL framework, which leverages the conditioned
diffusion model to conduct task-oriented trajectories gener-
ation for generalization across unseen tasks. As shown in
Figure 2, the overall generalization process can explicitly be
divided into meta-training and meta-testing. During meta-
training, in order to provide accurate conditional labels for
subsequent trajectory generation, we first need to pre-train
an accurate context encoder that can capture both reward
changes and dynamics changes from trajectories. Then the
compact task representation inferred by the context encoder
is injected as a contextual label into the step-wise denoising
process from the Gaussian noise for estimating the condi-
tional distribution of multi-task trajectories. During meta-
testing, with predicted context from provided warm-start
data, the conditional diffusion model can denoise out desired
trajectories for the testing task. Moreover, to alleviate the
discrepancy between generated trajectories and real-rollout
trajectories, the previously trained reward model and dynam-
ics model are utilized as a trajectory evaluator to enhance
the dynamics consistency and high returns of trajectories.

4.1. Task-oriented Context Encoder

To manipulate the conditional trajectory generation with a
high correlation with the desired specific task, it is necessary
to establish an accurate mapping from trajectories to the con-
textual label it belongs to. Considering the environments
in the meta-RL setting can change in reward functions and

3

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

Meta Training Meta Testing

Offline Dataset	𝒯!"#$%

Context Encoder
𝑃&(𝑠′|𝑠, 𝑎, 𝑧)

𝑅'(𝑟|𝑠, 𝑎, 𝑧)

Dynamics Model

Reward Model

Diffusion Process

…

Unseen Task
Warm-start Data

…

MetaDiffuser
Gradient

Guide

Real
Action

Generated Trajectory

𝐸((𝑧|𝑠, 𝑎, 𝑟)

MetaDiffuser

…
𝐸((𝑧|𝑠, 𝑎, 𝑟)

𝒔𝟎 𝑟*𝒂𝟎 𝑠+ 𝑟+𝑎+

𝒔𝒕 𝒔𝒕"𝟏𝑎, 𝑎$"% 𝑠$"& 𝑎$"& 𝑠$"'

𝒔𝒕"𝟏

…

Figure 2. The overview of MetaDiffuser. During meta-training phase, a task-oriented context encoder is trained jointly with conditioned
dynamics model and reward model in a self-supervised manner to infer the current task from the recent historical transitions. Then, the
multi-task trajectories can be labeled with the trained context encoder and the inferred context are injected in the conditioned diffusion
model to estimating the multi-modal distribution mixed by different training tasks. During meta-testing phase, context encoder can
capture the task information from provided warm-start data from the test task. Then the conditioned diffusion model can manipulate the
noise model to denoise out desired trajectories for the test task with the inferred context. Additionally, the pretrained dynamics model and
reward model can serve as classifiers for evaluation, with gradient to guide the conditional generation in a classifier-guide fashion.

transition dynamics, we expect the context can fully distin-
guish between the two types of environmental changes with
a unified learning objective. For this, we propose a simple
yet effective context encoder Eϕ, jointly with generalized
reward model Rψ and dynamics model Pω. We augment
context into state and action to minimize the prediction loss
of both dynamics and reward simultaneously.

Specifically, given the multi-task offline dataset D, which
contains the trajectories τM = {(st, at, rt, st+1)}Kt=1

with horizon K for training task M ∼ T train.
For each trajectories, a trajectories segment τMt =
{(st+i, at+i, rt+i, st+i+1)}hi=0 of size h are sampled
started from random selected t. With the historical sub-
trajectories, the context encoder Eϕ captures the latent rep-
resentations zt = Eϕ(τ

M
t) as the contextual information of

the task. Then the generalized reward model Rψ and dy-
namics model Pw are conditioned on z, parameterized with
ψ, ω. The context encoder is trained jointly by minimizing
the state transition and reward prediction error conditioned
on the learned context:

Lϕ,ψ,ω = −E(st,at,rt,st+1)∼τMt ;M∼T train

[
Ezt=Eϕ(zt|τMt)

[logPω(ŝt+1|st, at, zt) + logRψ(r̂t|st, at, zt)]
]

(1)
Moreover, our method additionally trains the generalized
reward model and dynamics model as byproducts, which
will play a key role as a useful classifier in the later classifier-
guided conditional generation module. It should be noted
that our framework is flexible to other representation meth-
ods, the further analysis is illustrated in Section 5.5. The
detailed experimental results about distribution shift of the
quality of training data can be found in Section 5.6.3.

4.2. Conditional Diffusion Architecture

Inspired by the great success of the diffusion model in text-
to-image tasks, which generates images based on text labels
from noises, we leverage the diffusion model as a trajectory
generator conditioned on the task-oriented context. Follow-
ing Diffuser (Janner et al., 2022b), the states and actions in
the trajectory are generated simultaneously per time step t
over the planning horizon H:

xk(τ) = (st, at, st+1, at+1..., st+H−1, at+H−1)k (2)

where k denotes the timestep in the denoising process. Now
we have the pre-trained context encoder to infer the task
labels for different tasks, we can additionally condition
the diffusion process on the contextual information of the
tasks. In this way, we formulate the meta-RL problem as
the conditional generative modeling problem:

θ∗ = argmax
θ

Eτ∼D[log pθ(x0(τ)|y = Eϕ(τ))] (3)

where the conditional label y denotes the task-oriented con-
text inferred from the pre-collected offline data from the
current task by context encoder Eϕ. The goal is to estimate
the conditional data distribution with pθ so we can later
generate desired trajectory x0(τ) according to the context
label from unseen tasks. The forward diffusion process q
and the reverse denoising process pθ can be formulated as:

q(xk+1(τ)|xk(τ)), pθ(xk−1(τ)|xk(τ),y = Eϕ(τ))) (4)

Specifically, for each trajectory τ in the training offline
dataset, we first sample a Gaussian noise ϵ ∼ N (0, I) and
a denoising timestep k ∈ {1, . . . ,K}. Then we construct a

4

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

noisy array with the same dimension of xk(τ) and finally
predict the denoising noise as ϵ̂θ = ϵθ(xk(τ),y(τ), k) in
the denoising step k.

For the classifier-free conditioned diffusion model (Ho &
Salimans, 2022), the commonly used technique is to ran-
domly drop out the conditioning for improving the quality
of generated samples. Intuitively, we also train the noise
model jointly with a single diffusion model on conditional
and unconditional objective via randomly dropping the con-
ditioning context label with probability β. The proper drop
probability can balance off the diversity and the relevance of
the context label of generated trajectories. The detailed anal-
ysis about the effects of different context drop probability
can be found in Section 5.6.4.

So far, with the mixed trajectories datasets D paired with
contextual information of the task it belongs to, we can train
the reverse denoising process pθ, parameterized through the
conditional noise model ϵθ with the following loss:

L(θ) = Ek,τ∈D
[
∥ϵ− ϵθ (xk (τ) , (1− β)Eϕ (τ) + β∅, k)∥2

]
(5)

After training a conditioned diffusion model for imitating
expert trajectories in the offline datasets, we now discuss
how to utilize the trained diffusion model to achieve the
generalization across unseen tasks. During meta-testing, the
context encoder captures the task information context from
pre-collected trajectories as warm-start data and infer the
task-oriented context as the conditional label y = Eϕ(τ).
Then the context label can be injected into conditioned diffu-
sion model to guide the desired expert trajectory generation
for the current task. x0(τ) is sampled by starting with Gaus-
sian noise xK(τ) and refining xk(τ) into xk−1(τ) at each
intermediate timestep with the perturbed noise:

ϵ̂ = ωϵθ(xk(τ),y, k) + (1− ω)ϵθ(xk(τ),∅, k) (6)

where the scalar ω denotes the guidance weight in the
classifier-free conditioned diffusion model. Setting ω = 1
disables classifier-free guidance while increasing ω > 1
strengthens the effect of guidance. Based on the context-
conditioned noise generated iteratively, the desired trajec-
tories containing future states and actions can be denoised
from the noise step-wisely. With the generated trajectories,
the first action will be applied to execute in the environment
to step into the next state. This procedure repeats in a stan-
dard receding-horizon control loop, similar to traditional
planning in RL, described in Appendix D. For architecture
details, please refer to Appendix H.

4.3. Dual-guide Enhanced Planner

Previous work (Janner et al., 2022a) trains an extra reward
predictor J to evaluate the accumulative return of generated
trajectories and utilizes the gradient of return as a guidance

Time 𝒕 𝒕 + 𝟓 𝒕 + 𝟏𝟎 𝒕 + 𝟏𝟓 𝒕 + 𝟐𝟎 𝒕 + 𝟐𝟓 𝒕 + 𝟑𝟎

Generated
w/o Dual-guide

Real

Generated
w/ Dual-guide

Real

Figure 3. The visualization of an extreme case about generated
trajectories and real trajectories rollout according to actions within
generated trajectories in Hopper-Param, as an environment with
dramatic dynamics changes. With dual-guide, the generated trajec-
tories are less aggressive in expected rewards and more dynamics
consistent to enhance the reachability between adjacent states.

in the sampling process of diffusion model, to encourage
the generated trajectories to achieve high return. However,
during meta-testing for unseen tasks, as shown in the top
part of Figure 3, the conditional generated trajectories may
not always obey dynamics constraints due to the aggressive
guidance aim for high return, making it difficult for the plan-
ner to follow the expected trajectories during the interaction
with the environment. Therefore, we propose a dual-guide to
enhance the dynamics consistency of generated trajectories
while encouraging the high return J simultaneously.

For this, we utilize the previously pretrained dynamics
model, to predict the future state of the generated trajec-
tory based on its planned actions, then compared it to the
states in the generated trajectory. The dynamics discrepancy
ζ serves as an important metric to evaluate the consistency
and reachability of the generated trajectory. Then the gradi-
ent from dual-guide can be formulated as:

g = ∇J (xk(τ)) + λ∇ζ(xk(τ))

J (xk(τ)) =

T∑
t=0

Rψ (st, at, zt)

ζ (xk(τ)) =

T∑
t=0

∥st+1 − Pω (ŝt+1 | st, at, zt)∥2

(7)

where λ denotes the relative scaling coefficient between the
dynamics guide and reward guide to balance off the high
reward and low discrepancy. The detailed ablation study
about the scaling effect can be found in Section 5.6.1. The
visualization of an intuitive example is shown in Figure 3.

In this way, incorporate MetaDiffuser not only conducts
the classifier-free manner by injecting the context as label
y into the conditional noise model ϵθ(xk,y, k), achieving
more precise conditional generation, but also incorporate
the classifier-guide fashion in Diffuser where the single
reward guide is expanded to designed dual-guide for more

5

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

complex environment change in meta-RL setting. Formally,
the denoising process in Equation (6) can be extended as:

ϵ̂ := ωϵθ(xk(τ), Eϕ(τ), k) + (1− ω)ϵθ(xk(τ),∅, k)︸ ︷︷ ︸
classifier-free

−
√
1− ᾱt∇xk(τ)

[
J (xk(τ)) + λζ(xk(τ))

]
︸ ︷︷ ︸

classifier-guided

(8)

The details about the relationship between two different
conditional fashions can be found in Appendix A.

5. Experiments
We conduct experiments on various tasks to evaluate the few-
shot generalization performance of the proposed MetaDif-
fuser. We aim to empirically answer the following questions:
1) Can MetaDiffuser achieve performance gain on few-shot
policy generalization compared to other strong baselines?
2) Can MetaDiffuser show robustness to the quality of
warm-start data? 3) Can MetaDiffuser be a flexible frame-
work to incorporate with any context representation method?

5.1. Environments Settings

We adopt a 2D navigation environment Point-Robot and
multi-task MuJoCo control tasks to make comparisons, as
classical benchmarks commonly used in meta-RL (Mitchell
et al., 2021b; Li et al., 2020; 2021a). More details about
environments are available in Appendix E. For each envi-
ronment, different tasks are randomly sampled from the task
distribution, divided into a training set T train and testing
set T test. On each task, we use SAC (Haarnoja et al., 2018)
to train a single-task policy independently. The trajectories
of expert policy for each task are collected to be the offline
datasets. See more details in Appendix G.

5.2. Baselines

FOCAL (Li et al., 2021b) proposes a novel negative-power
distance metric learning method to train the context encoder
for task inference, as an end-to-end offline meta-RL algo-
rithm with high efficiency.

CORRO (Yuan & Lu, 2022) proposes a contrastive learning
framework for task representations that are robust to the
distribution mismatch of behavior policies in training and
testing. CORRO demonstrates superior performance than
prior context-conditioned policy-based methods.

Prompt-DT (Xu et al., 2022) leverages the sequential mod-
eling ability of the Transformer architecture and the prompt
framework to achieve few-shot adaptation in offline RL, as
a strong meta-RL baseline in sequence modeling fashion.

CVAE-Planner To investigate the influence of different gen-
erative architectures, we substitute the conditioned diffusion

to conditioned VAE, serving the same role as a trajectory
generator to guide the planning across tasks.

5.3. The Generalization Ability on Task Adaptation

To evaluate the performance on task adaptation, we sam-
ple tasks from the test set with warm-start data, which is
pre-collected by a random policy or an expert policy. Then
we measure the few-shot generalization ability of differ-
ent methods with the average episode accumulated reward.
For fairness, all methods are trained with the same expert
dataset in each environment to investigate whether the dif-
fusion model facilitates few-shot generalization and the
performance of MetaDiffuser.

The testing curves and converged performance are sum-
marized in Figure 4 and Table 1 respectively, which con-
tain six environments varying in dynamics and rewards. In
relatively simple environments such as Point-Robot and
Cheetah-Dir, MetaDiffuser and Prompt-DT significantly
outperforms other baselines to a large extent. In Ant-Dir
MetaDiffuser outperforms other baselines by a large margin,
which show the strong generalization ability in unseen task
with different reward functions. Moreover, in Cheetah-Vel,
MetaDiffuser is more data-efficient to achieve better asymp-
totic performance than others, with the benefit of the strong
generative capacity of the diffusion model. In dynamics
change environments, such as Hopper-Param and Walker-
Param, CORRO, as a context-based method, can have a
more stable improvement than Prompt-DT. The potential
reason may be that the complex environment varying in
dynamics is more challenging for Prompt-DT to implicitly
capture the dynamics information within a prompt.

MetaDiffuser can outperform CORRO benefiting from the
stability of the sequence-modeling framework instead of TD-
learning. The detailed analysis of the context representation
method can be found in Section 5.5.The CVAE-Planner
struggles to generalize to different tasks, illustrating the
strong modeling capability of the diffusion model against
CVAE, when meeting with the extreme multi-modal distribu-
tion. We will illustrate the detailed analysis in Section 5.6.2.

5.4. The Robustness of Warm-start Data Quality

Benefiting from the context encoder and the manner of in-
jecting the explicit context as a label into the diffusion model
to conduct the conditional generation, MetaDiffuser is ro-
bust to the quality of warm-start data, similar to traditional
context-based methods like CORRO. Prompt-DT is sensi-
tive to the quality of prompt and the performance can drop a
lot with the middle or random prompt, also mentioned in the
original paper (Xu et al., 2022). We conduct a more detailed
experiment to investigate the robustness of two algorithms.

The results in Table 2 show that when the quality of prompt

6

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

Table 1. Average test returns of MetaDiffuser against other baselines with a few-shot manner.
Environment FOCAL CVAE-Planner CORRO Prompt-DT MetaDiffuser Oracle

Point-Robot -5.99±0.26 -6.11±0.71 -5.59±0.57 -5.04 ±0.35 -4.48±0.28 -3.97±0.12

Ant-Dir 151.3±24.6 130.6±41.3 193.3±32.1 213.2±29.1 247.7±16.8 314.4±9.2

Cheetah-Dir 680.9±46.6 759.4±47.2 823.5±37.0 931.7±21.3 936.2±17.9 943.4±15.4

Cheetah-Vel -82.5±7.0 -87.1±13.1 -56.2±9.4 -51.3±4.9 -45.9±4.1 -32.4±1.8

Walker-Param 245.6±37.8 187.9±49.7 300.5±34.2 287.7 ±32.1 368.3±30.6 447.2 ±9.7

Hopper-Param 203.6±46.6 157.3±54.5 289.3±24.7 265.2±37.1 356.4±16.9 429.6±13.1

Table 2. The comparisons of the performance of Prompt-DT and MetaDiffuser with different qualities of provided warm-start data during
the meta-testing phase. The ↓ denotes the performance drop with other quality of data.

Environment MetaDiffuser Prompt-DT
Expert Medium Random Expert Medium Random

Point-Robot -4.48±0.28 -4.54±0.31 (↓ 1.5%) -4.61±0.21 (↓ 3.2%) -5.04±0.35 -5.17±0.29 (↓ 3.8%) -5.85±0.32 (↓ 23.4%)
Ant-Dir 247.7±16.8 238.9±18.1 (↓ 3.6%) 213.8±26.5 (↓ 13.7%) 213.2±29.1 154.7±39.5 (↓ 27.4%) 40.1±16.3 (↓ 81.2%)

Cheetah-Dir 936.2±17.9 930.3±18.5 (↓ 0.6%) 916.7±21.8 (↓ 1.9%) 931.7±21.3 922.6±28.2 (↓ 1.0%) 913.9±30.8 (↓ 1.9%)
Cheetah-Vel -45.9±4.1 -50.2±5.2 (↓ 1.9%) -55.8±2.3 (↓ 4.4%) -51.3±4.9 -125.6±7.5 (↓ 33.2%) -208.4±1.9 (↓ 76.1%)

Walker-Param 368.3±30.6 357.9±33.7 (↓ 2.8%) 341.6±38.4 (↓ 7.2%) 287.7±32.1 200.1±26.3 (↓ 30.4%) 64.7±8.1 (↓ 77.5%)
Hopper-Param 356.4±16.9 337.0±21.2 (↓ 5.4%) 319.6±14.2 (↓ 10.3%) 265.2±37.1 159.6±35.7 (↓ 39.8%) 82.6±15.3 (↓ 68.9%)

0.0 0.2 0.4 0.6 0.8 1.0
9

8

7

6

5

4

Av
er

ag
e

Re
tu

rn

Point Robot

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350 Ant Dir

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000 Cheetah Dir

0.0 0.2 0.4 0.6 0.8 1.0
250

200

150

100

50

0 Cheetah Vel

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

100

200

300

400

Walker Param

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

Hopper Param

MetaDiffuser CORRO Prompt-DT FOCAL CVAE-Planner

Figure 4. Meta-testing average performance of MetaDiffuser
against baselines run over five random seeds in unseen tasks. The
dashed lines denote the oracle performance of expert policy trained
separately for each test task.

data is not high enough, the performance of Prompt-DT
will drop by a large extent except for Cheetah-Dir. This
environment contains just two tasks forward and backward,
both concluded in the training set and testing set, poten-
tially decreasing the reliance on expert warm-start data. The
performance of MetaDiffuser may also experience a slight
drop, but still superior to Prompt-DT. The slight drop may
be caused by the distribution shift exhibited by poor quality
warm-start data during meta-testing and expert data during
the pre-trained stage of context encoder, resulting in the
inferred context being less accurate. For Prompt-DT, the
prompt as the prefix to guide the subsequent sequence gener-
ation should contain enough valuable knowledge about how
to solve the current task, not just information about what the
current task is. But MetaDiffuser has no strict demand with
the quality of warm-start data and even can be rollout with

any arbitrary policy. The role of warm-start data is just to
provide the task-oriented information to the context encoder
can infer the task context as the label and then be injected
in the conditional denoising process to generate the desired
trajectories for planning to fast adaption.

5.5. The Flexibility in Context Representation Method

The generalization ability of MetaDiffuser arises from cap-
turing task information as context to guide the diffusion
model to conditional generation. We argue that our frame-
work can flexibly integrate different task representation algo-
rithm, and the improvement of context accuracy can enhance
the generalization performance. We conduct experiments to
investigate the effect of different context representations on
the few-shot generalization capability of MetaDiffuser.

Table 3. The comparisons of the influences of different context
representation methods on generalization ability to unseen task.

Environment CORRO Ours Ours+CORRO Ours+GT

Point-Robot -5.59±0.57 -4.48±0.28 -4.43±0.26 -4.02±0.13

Ant-Dir 193.3±32.1 247.7±16.8 251.3±17.2 282.9±13.6

Cheetah-Dir 823.5±37.0 936.2±17.9 936.9±18.1 939.7±15.7

Cheetah-Vel -56.2±9.4 -45.9±4.1 -44.6±3.9 -41.1±3.2

Walker-Param 300.5±34.2 368.3±30.6 377.0±29.6 394.1±17.5

Hopper-Param 289.3±24.7 356.4±16.9 361.3±19.2 382.5±12.0

To this end, we borrowed the representation module of
CORRO and integrated it into MetaDiffuser, shown as
Ours+CORRO in Table 3, resulting in a slight improve-
ment. The performance gain demonstrates that the power-
ful generalization ability of MetaDiffuser is not achieved
by improving context representation capability. The sim-
ple representation method we design is not better than the

7

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

fine-grained representation trained in contrastive learning
manner used in CORRO. Considering the combination of
CORRO representation with MetaDiffuser can earn a large
performance gain than the original conditioned policy man-
ner, conditional sequence modeling shows great potential as
a promising paradigm for generalization tasks.

Although we do not seek improvement in generalization
performance through a more complicated context represen-
tation design in this paper, the incorporation of a more ac-
curate context representation method is always encouraged.
The significant improvement in incorporating ground truth
parameters of tasks as context into MetaDiffuser demon-
strates that there is still rich room for improvement in the
integration of context method, shown as Ours+GT.

5.6. Ablation Study

5.6.1. THE EFFECT OF DUAL-GUIDE

For meta-testing for unseen tasks, the real trajectory rollout
with actions in generated trajectory often deviates greatly
from the expected trajectory, especially when meeting with a
dynamics change environment. Here we conduct a detailed
ablation study to demonstrate the importance of dual-guide
for meta-RL setting and gain performance improvements of
different relative scaling coefficients between reward guide
and dynamics guide in all environments. The visualization
in Hopper-Param is shown in Figure 3 and the results are il-
lustrated in Table 4. The utilization of dual-guide can greatly
enhance the feasibility and also encourage the high value of
generated trajectories when the tasks shift dramatically. In
relatively simple environments such as Point-Robot or en-
vironments with limited task numbers such as Cheetah-Dir,
overly large dynamics guides can cause diffusion models
to generate trajectories that are too conservative and lack a
high value to guide. We also tried to omit the value guide
and solely utilize the dynamics guide, and found that it
yielded relatively poor performance for the same reason.

Table 4. Ablation of dual-guide and relative scaling coefficient.
Environment λ = 0λ = 0λ = 0 λ = 0.5λ = 0.5λ = 0.5 λ = 1λ = 1λ = 1 λ = 2λ = 2λ = 2

Point-Robot -4.57±0.33 -4.48±0.28 -4.74±0.26 -4.89±0.27

Ant-Dir 210.3±10.7 214.6±19.8 247.7±16.8 238.3±18.1

Cheetah-Dir 924.2±19.6 936.2±17.9 929.7±15.1 916.0±19.8

Cheetah-Vel -52.9±4.72 -49.9±2.95 -45.9±4.1 -48.6±3.75

Walker-Param 326.5±24.9 330.6 ±23.4 347.2 ±19.3 368.3±30.6

Hopper-Param 293.3±13.8 307.2±18.6 328.1±16.7 356.8±16.9

5.6.2. THE COMPARISONS OF GENERATIVE MODELS

To investigate the importance of the conditional diffusion
model in MetaDiffuser, we substitute the conditioned dif-
fusion model to conditioned VAE as the same role of tra-
jectory generator to guide the planning across tasks, named
as CVAE-Planner. For fairness, the length of generated tra-
jectories and the planning procedure with samples keep the

Table 5. The comparisons between different generative models on
generalization ability to unseen task.

Environment CVAE-Planner UDiffuser MetaDiffuser

Point-Robot -6.11±0.71 -7.48±0.89 -4.48±0.28
Ant-Dir 130.6±41.3 53.2±51.1 247.7±16.8

Cheetah-Dir 759.4±47.2 614.7±63.5 936.2±17.9
Cheetah-Vel -87.1±13.1 -121.7±36.2 -45.9±4.1

Walker-Param 187.9±49.7 135.2±78.1 368.3±30.6
Hopper-Param 157.3±54.5 103.5±64.0 356.4±16.9

same with MetaDiffuser. The results of the experiment are
shown in Table 5, demonstrating that the fitting capability
of CVAE is significantly inferior to the conditional diffusion
model, struggling to generate reasonable trajectories for
unseen tasks. Moreover, compared to the end-to-end gen-
erative paradigm of CVAE, MetaDiffuser can fully utilize
the gradient from dual-guide during the step-wise iterative
denoising process. Additionally, we also trained an uncon-
ditional diffusion model over mixed expert data on all the
training tasks, named as UDiffuser. UDiffuser, which is the
same as vanilla Diffuser in (Janner et al., 2022a), struggles
to model such a diverse distribution of data and fails to gen-
erate the desired trajectories for specific tasks for the lack
of ability to infer what the testing task is.

5.6.3. THE DISTRIBUTION SHIFT OF DATA QUALITY

The data distribution shift in meta-RL stems from the warm-
start data and training data quality, which may potentially
cause reward or transition shift and the inaccurate guidance
from the dual guide during meta-test phase. The distribution
shift caused by warm-start data has already been studied in
Section 5.4, we now take further investigation into the dis-
tribution shift of the training data. Specifically, we replaced
the expert dataset used for training the context encoder with
mixed data and random data and the training and sampling
parts of the conditioned diffusion model remain unchanged.
The results in Table 6 show that a completely random dataset
performs the worst, while the performance of a dataset that
mixes random and expert data surpasses that of the expert
dataset in most environments.

Table 6. The comparisons of context encoders trained on datasets
of different quality.

Environment Random Dataset Mixed Dataset Expert Dataset

Point-Robot -4.51± 0.25 -4.49± 0.26 -4.48± 0.28
Ant-Dir 240.2± 17.1 258.4± 19.3 247.7± 16.8

Cheetah-Dir 936.3± 17.2 936.4± 17.6 936.2± 17.9
Cheetah-Vel -46.8± 4.5 -43.4± 4.2 -45.9± 4.1

Walker-Param 359.4± 33.0 381.5± 28.2 368.3± 30.6
Hopper-Param 341.1± 17.3 375.2± 18.4 356.4± 16.9

The potential reason may be the diffusion model performs
M denoising steps to transform noise into a desired tra-
jectory. In the early denoising steps, the trajectory may
be closer to noise or similar to the trajectories from ran-
dom datasets. The reward guide and dynamics guide for

8

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

such trajectories with low quality need to have seen this
poor distribution during the pretrained phase to provide a
more accurate guide than the dual guide only trained on the
expert dataset. However, in the later stages of denoising,
the trajectory can be improved toward high quality and be
more similar to the expert dataset. Therefore, the dual guide
trained on a completely random dataset may also be chal-
lenging to guide. The differences are not significant in the
remaining environments, which may be because the state
space of these environments is relatively small, and distribu-
tion shift is not a very important factor. Training the context
encoder on datasets with a more diverse distribution can
provide accurate guidance for the whole denoising process
of trajectories gradually denoising from low-quality noise
to high-quality desired trajectories.

5.6.4. THE EFFECT OF CONTEXT DROP PROBABILITY

The proper context drop probability can balance off the
diversity and the relevance of the conditional label of gen-
erated samples (Ho & Salimans, 2022). We conduct an
ablation study with the aim to investigate the effect of con-
text drop probability in the training of the conditional dif-
fusion model. When β reaches 1, MetaDiffuser devolves
into the unconditional version previously mentioned as UD-
iffuser in Table 5. The results in Table 7 show that removing
conditional context with a proper probability can improve
generalization ability, but the best probability differs from
environments. One possible explanation for this could be
the varying levels of information sharing among tasks in
different environments. Complex or diverse environments
may have higher requirements for conditional generation.

Table 7. Ablation of context drop probability.
Environment β = 0β = 0β = 0 β = 0.1β = 0.1β = 0.1 β = 0.2β = 0.2β = 0.2 β = 0.3β = 0.3β = 0.3

Point-Robot -4.86±0.22 -4.61±0.34 -4.71±0.30 -4.48±0.28

Ant-Dir 234.9±12.8 241.3±16.6 247.7±16.8 224.8±25.3

Cheetah-Dir 936.2±17.9 915.4±19.8 909.6±23.1 873.8±28.6

Cheetah-Vel -48.3±2.7 -49.8±3.5 -47.4±3.7 -45.9±4.1

Walker-Param 346.5±31.4 349.6 ±35.7 368.3±30.6 357.8 ±29.0

Hopper-Param 347.1±17.3 356.8±16.9 336.9±12.4 343.3±18.6

5.6.5. THE COMPARISONS OF DENOISING STEPS

Additionally, we also compared the effects of different de-
noising steps on trajectory generation. The experimental
results in Table 8 show that relatively longer denoising steps
can better denoise desired trajectories from noise, which
can slightly improve the quality of generated trajectories.
Increasing denoising steps provide more chances for the
dual guide to precisely manipulate the direction and inten-
sity of denoising, further emphasizing the effectiveness of
the dual guide. Overall, MetaDiffuser is relatively robust
to the choice of denoising steps k, and its performance
still outperforms all baselines. Due to the fact that more
denoising steps mean longer generation time, we can con-

Table 8. The comparisons between different denoising steps k.
Environment k = 20k = 20k = 20 k = 50k = 50k = 50 k = 100k = 100k = 100

Point-Robot -4.41± 0.30 -4.52± 0.31 -4.48± 0.28
Ant-Dir 243.1± 15.1 248.0± 17.2 247.7± 16.8

Cheetah-Dir 927.2± 21.4 935.2± 16.4 936.2± 17.9
Cheetah-Vel -47.6± 5.2 -45.4± 4.3 -45.9± 4.1

Walker-Param 360.3± 28.7 364.8± 31.3 368.3± 30.6
Hopper-Param 351.5± 15.0 356.4± 16.9 360.2± 16.2

sider replacing DDPM (Ho et al., 2020) used in this paper
with DDIM (Song et al., 2021) or DPM solver (Lu et al.,
2022) for reducing the number of denoising steps to meet
the requirement of real-time control.

6. Conclusion
We propose MetaDiffuser, a novel framework for offline
meta-RL, which leverages the diffusion model to conduct
conditional trajectory generation to achieve the generaliza-
tion ability across unseen tasks. By combining the context
representation module with a task-oriented conditional dif-
fusion model to generate the desired trajectories for unseen
tasks, MetaDiffuser demonstrates that the conditional diffu-
sion model can be a promising backbone for offline meta-RL.
Moreover, we design the dual-guide to improve the quality
of generated trajectories in the sampling process, ensuring
dynamics transition consistency with the real world while
encouraging the generated trajectories to achieve high re-
turns. The experiments on various benchmarks empirically
show that MetaDiffuser much better generalizes to unseen
tasks than prior methods, while also enjoying both the flexi-
bility to incorporate with other task representation methods
and the robustness to the quality of collected warm-start
data at the testing task.

Limitation. Although MetaDiffuser enjoys the robustness
of warm-start data, the framework still faces the limitation
of the need for expert training data in meta-training phase,
which is the common dilemma in offline meta-RL. Besides,
MetaDiffuser has not been evaluated in real robots and the
requirements of real-time control may be challenging.

Future Work. Further improving the speed of real-time
trajectory generation in planning and supporting high-
dimensional image inputs are directions for future work.
Additionally, the combination of a large language model
(LLM) with the reasoning ability in complex control tasks
with MetaDiffuser is an interesting research direction.

Acknowledgements
This work is supported by the National Key R&D Program
of China (Grant No. 2022ZD0116402), the National Nat-
ural Science Foundation of China (Grant No. 62106172),
and the Natural Science Foundation of Tianjin (No. 22JC-
QNJC00250).

9

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

References
Ajay, A., Du, Y., Gupta, A., Tenenbaum, J., Jaakkola,

T., and Agrawal, P. Is conditional generative model-
ing all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Dorfman, R., Shenfeld, I., and Tamar, A. Of-
fline Meta Learning of Exploration. arXiv preprint
arXiv:2008.02598, 2020.

Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A., and Levine,
S. Visual foresight: Model-based deep reinforcement
learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with A Stochastic Actor. In Interna-
tional Conference on Machine Learning, 2018.

Hao, X., Peng, Z., Ma, Y., Wang, G., Jin, J., Hao, J., Chen,
S., Bai, R., Xie, M., Xu, M., et al. Dynamic knapsack
optimization towards efficient multi-channel sequential
advertising. In International Conference on Machine
Learning, pp. 4060–4070. PMLR, 2020.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. In Advances in Neural Information
Processing Systems, 2020.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. Ad-
vances in neural information processing systems, 34:
1273–1286, 2021.

Janner, M., Du, Y., Tenenbaum, J., and Levine, S. Plan-
ning with diffusion for flexible behavior synthesis. In
International Conference on Machine Learning, 2022a.

Janner, M., Du, Y., Tenenbaum, J. B., and Levine, S. Plan-
ning with diffusion for flexible behavior synthesis. arXiv
preprint arXiv:2205.09991, 2022b.

Kenton, J. D. M.-W. C. and Toutanova, L. K. Bert: Pre-
training of deep bidirectional transformers for language
understanding. Proceedings of NAACL-HLT, 2019.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. MOReL: Model-based offline reinforcement learning.
In Advances in Neural Information Processing Systems,
2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative Q-learning for offline reinforcement learning.
In Advances in Neural Information Processing Systems,
2020.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, J., Vuong, Q., Liu, S., Liu, M., Ciosek, K., Ross, K.,
Christensen, H. I., and Su, H. Multi-Task Batch Rein-
forcement Learning with Metric Learning. In Interna-
tional Conference on Learning Representations, 2020.

Li, L., Huang, Y., Chen, M., Luo, S., Luo, D., and Huang,
J. Provably Improved Context-Based Offline Meta-RL
with Attention and Contrastive Learning. arXiv preprint
arXiv:2102.10774, 2021a.

Li, L., Yang, R., and Luo, D. FOCAL: Efficient Fully-
Offline Meta-Reinforcement Learning Via Distance Met-
ric Learning and Behavior Regularization. In Interna-
tional Conference on Learning Representations, 2021b.

Li, P., Tang, H., Yang, T., Hao, X., Sang, T., Zheng,
Y., Hao, J., Taylor, M. E., and Wang, Z. Pmic: Im-
proving multi-agent reinforcement learning with progres-
sive mutual information collaboration. arXiv preprint
arXiv:2203.08553, 2022.

Liu, Z. et al. Swin transformer: Hierarchical vision
transformer using shifted windows. Proceedings of the
IEEE/CVF ICCV, 2021.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilis-
tic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

10

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

Misra, D. Mish: A self regularized non-monotonic neural
activation function. In British Machine Vision Conference,
2019.

Mitchell, E., Rafailov, R., Peng, X. B., Levine, S., and Finn,
C. Offline Meta-Reinforcement Learning with Advan-
tage Weighting. In International Conference on Machine
Learning, 2021a.

Mitchell, E., Rafailov, R., Peng, X. B., Levine, S., and
Finn, C. Offline meta-reinforcement learning with advan-
tage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021b.

Mu, Y., Zhuang, Y., Ni, F., Wang, B., Chen, J., Hao, J., and
Luo, P. Domino: Decomposed mutual information opti-
mization for generalized context in meta-reinforcement
learning. Advances in Neural Information Processing
Systems, 35:27563–27575, 2022.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion
probabilistic models. In International Conference on
Machine Learning, 2021.

Rakelly, K., Zhou, A., Quillen, D., Finn, C., and Levine, S.
Efficient Off-Policy Meta-Reinforcement Learning Via
Probabilistic Context Variables. In International Confer-
ence on Machine Learning, 2019.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi, S. S.,
Lopes, R. G., et al. Photorealistic text-to-image diffusion
models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2021.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine Learning, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Wang, K., Zhao, H., Luo, X., Ren, K., Zhang, W., and Li,
D. Bootstrapped transformer for offline reinforcement
learning. arXiv preprint arXiv:2206.08569, 2022a.

Wang, Z., Hunt, J. J., and Zhou, M. Diffusion policies as an
expressive policy class for offline reinforcement learning.
arXiv preprint arXiv:2208.06193, 2022b.

Wen, M., Kuba, J. G., Lin, R., Zhang, W., Wen, Y., Wang,
J., and Yang, Y. Multi-agent reinforcement learning is a
sequence modeling problem. Advances in Neural Infor-
mation Processing Systems, 2022.

Wu, Y. and He, K. Group normalization. In European
Conference on Computer Vision, 2018.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,
J., and Gan, C. Prompting decision transformer for few-
shot policy generalization. In International Conference
on Machine Learning, pp. 24631–24645. PMLR, 2022.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on Robot Learning, pp. 1094–1100. PMLR,
2020.

Yuan, H. and Lu, Z. Robust task representations for of-
fline meta-reinforcement learning via contrastive learning.
In International Conference on Machine Learning, pp.
25747–25759. PMLR, 2022.

Yuan, Y., HAO, J., Ni, F., Mu, Y., ZHENG, Y., Hu, Y., Liu,
J., Chen, Y., and Fan, C. EUCLID: Towards efficient
unsupervised reinforcement learning with multi-choice
dynamics model. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=xQAjSr64PTc.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling
vision transformers. CoRR, abs/2106.04560, 2021.

11

https://openreview.net/forum?id=xQAjSr64PTc
https://openreview.net/forum?id=xQAjSr64PTc

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

A. Classifier-Free and Classifier-Guided Diffusion Model
In this section, we introduce the details of the theoretical analysis of the conditional diffusion model. The equivalence
between diffusion models and score-matching (Song et al., 2021), which shows ϵθ(xk, k) ∝ ∇xk

log p(xk), naturally leads
to two kinds of methods for conditioning: classifier-guided (Nichol & Dhariwal, 2021) and classifier-free (Ho & Salimans,
2022).The classifier-guided improves sample quality while reducing diversity in conditional diffusion models using gradients
from a pre-trained classifier pϕ(y|xk) during sampling. The classifier-free is an alternate technique that avoids this pre-
trained classifier by instead jointly training a single diffusion model on conditional ϵθ(xk,y, k) and unconditional ϵθ(xk, k)
noise model via randomly dropping conditional label y.

A.1. Classifier-Guided Fashion

First, let us start with classifier-guided fashion. The initial conditional distribution that conditions on the respective label y
can be formulated by Bayes rule as:

p (xk−1 | y) =
p (xk−1) p (y | xk−1)

p(y)
(9)

where k denotes the timestep of the denoising process.The most important advantage of the classifier guide is that it can
reuse previously trained unconditional generation models p (xk−1 | xk). By training an additional classifier p (y | xk−1) on
the generated samples, its evaluation about the generated samples can be used as a gradient to guide the noise model during
denoising process. Now we consider how to incorporate the unconditional diffusion model into the conditional diffusion
model. With the additional condition of the current noisy sample xk, Eq.(9) can be rewritten as:

p (xk−1 | xk,y) =
p (xk−1 | xk) p (y | xk−1,xk)

p (y | xk)

=
p (xk−1 | xk) p (y | xk−1)

p (y | xk)
= p (xt−1 | xk) elog p(y|xk−1)−log p(y|xk)

(10)

It is worth noting that xk are obtained by diffusing over xk−1 with noise, which is not helpful for classifier evaluation. So
we can assume p (y | xk−1,xk) = p (y | xk−1). When the diffusing steps are large enough, the difference between xk and
xk−1 is tiny. So we apply Taylor’s Formula to the exponent term in Eq.(10) and can get:

log p (y | xk−1)− log p (y | xk) ≈ (xk−1 − xk) · ∇xk
log p (y | xk) (11)

For another term, p (xk−1 | xk), also as the unconditional diffusion model, can be rewritten in form of distribution:

p (xk−1 | xk) = N
(
xk−1;µ (xk) , σ

2
kI

)
∝ e−∥xk−1−µ(xk)∥2/2σ2

k (12)

where the mean µ and variance σ denotes the mean and variance of the Gaussian distribution respectively. With the above
Eq.(11) and Eq.(12), we have:

p (xk−1 | xk,y) ∝ e−∥xk−1−µ(xk)∥2/2σ2
k+(xk−1−xk)·∇xk

log p(y|xk)

∝ e−∥xk−1−µ(xk)−σ2
k∇xk

log p(y|xk))∥2/2σ2
k

(13)

Based on this proportional property, now we can obtain the classifier-guided conditioned diffusion model p (xk−1 | xk,y):

p (xk−1 | xk,y) ≈ N
(
xk−1;µ (xk) + σ2

k∇xk
log p (y | xk)

)
, σ2
kI

)
⇒ xk−1 = µ (xk) + σ2

k∇xk
log p (y | xk) + σkε, ε ∼ N (0, I)

(14)

This can also be formulated as the denoising version with noise model ϵ̂ (xk):

ϵ̂ (xk) := ϵθ (xk)−
√
1− ᾱk∇xk

log pϕ (y | xk) (15)

12

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

A.2. Classifier-Free Fashion

Classifier-free fashion is relatively easy to understand compared with classifier-guided fashion. This manner does not sepa-
rately train a classifier but modifies the original training setup to learn both a conditional ϵθ(xk,y, k) and an unconditional
ϵθ(xk, k) model for the noise.

Without extra classifier p (y | xk−1) to reuse, we can directly define the conditional data distribution p (xk−1 | xk,y) with
conditional label y:

p (xk−1 | xk,y) = N
(
xk−1;µ (xk,y) , σ

2
kI

)
µ (xk,y) =

1

αk

(
xk −

β2
k

β̄k
ϵθ (xk,y, k)

) (16)

where αk, β̄k ∈ R are carefully chosen for the variance schedule during the diffuse process. The noise model ϵθ in the
denoising process can be trained by minimizing the reconstruction error about noise, following as:

Ex0,y∼p̃(x0,y),ε∼N (0,I)

[∥∥ε− ϵθ
(
ᾱkx0 + β̄kε,y, k

)∥∥2] (17)

It is worth noting that the conditional label is randomly dropped with probability β, following the classifier-free conditioned
diffusion model (Ho & Salimans, 2022). The potential reason is the proper context drop probability can balance off the
diversity and the relevance of the conditional label of generated samples. At testing-time, the perturbed noise is generated as:

ϵ̂θ (xk | y) = ϵθ(xk, k) + ω(ϵθ(xk,y, k)− ϵθ(xk, k)) (18)

where ω is referred to as the guidance scaling, similar to classifier-guided fashion. Setting ω = 1 enables classifier-free
guidance while increasing ω > 1 strengthens the effect of guidance.

B. Further Introduce of Sequence Modeling Fashion
Recently, much attention has been focused on the use of large, pre-trained big models on unsupervised datasets to improve
results on downstream tasks through fine-tuning. In the field of natural language processing, transformer-based models
such as BERT(Kenton & Toutanova, 2019) and GPT-3(Brown et al., 2020) have overcome the limitations of RNNs and
improved the ability to use long sequence information, resulting in state-of-the-art performance on tasks such as translation
and question answering systems. The field of computer vision has also been inspired by these developments, with models
like the Swin Transformer(Liu et al., 2021) and Scaling ViT(Zhai et al., 2021) being proposed to address problems as
sequence modeling problems.

Traditional offline RL approaches require fitting value functions or computing policy gradients, which are challenging
due to limited offline data (Kumar et al., 2020; Wu et al., 2019; Kidambi et al., 2020). Inspired by the exciting progress
of large generative models in vision and language tasks, researchers turn to model the trajectories in offline RL datasets
through transformer-like structures. Recent advances in generative sequence modeling (Chen et al., 2021; Janner et al.,
2021; 2022b) provide effective alternatives to conventional RL problems by modeling the joint distribution of sequences
of states, actions, rewards, and values. For example, Decision Transformer (Chen et al., 2021) casts offline RL as a form
of conditional sequence modeling, which allows more efficient and stable learning without the need to train policies via
traditional RL algorithms like temporal difference learning (Sutton, 1988). Trajectory Transformer (Janner et al., 2021) is
proposed to utilize transformer architecture to model distributions over trajectories, repurposes beam search as a planning
algorithm, and shows great flexibility across long-horizon dynamics prediction, imitation learning, goal-conditioned RL,
and offline RL. Bootstrapped Transformer (Wang et al., 2022a) further incorporates the idea of bootstrapping and uses
the learned model to self-generate more offline data to further improve sequence model training. MAT(Wen et al., 2022)
introduces sequence modeling into the online MARL setting and demonstrates high data efficiency in transfer. By treating
RL as a sequence modeling problem, it bypasses the need for bootstrapping for long-term credit assignment, avoiding one of
the ”deadly triad” (Sutton & Barto, 2018) challenges in reinforcement learning.

The above methods mostly focus on Transformer-like architecture, and recent works begin to adopt the diffusion model as
the backbone of sequence modeling. Diffuser (Janner et al., 2022b) applies a diffusion model as a trajectory generator, which
is trained by diffusing over the full trajectory of state-action pairs from the noises. A separate reward model is trained to
predict the cumulative rewards of each trajectory sample, then the gradient guidance from the reward model is injected into
the reverse sampling stage. Then the first action in the generated trajectories will be applied to execute in the environment to

13

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

step into the next state, which repeats in a loop until the terminal. The consequent work Decision Diffuser (Ajay et al., 2022)
frames offline sequential decision-making as conditional generative modeling based on returns, constraints, and skills to
eliminate the complexities in traditional offline RL.

C. Additional Discussion of Offline Meta-RL
One of the inherent difficulties of offline RL is the challenge to generalize to unseen tasks. Recent work in offline meta-RL
(Mitchell et al., 2021b; Li et al., 2020; 2021a;b) aims to solve this problem by training a meta-policy from multi-task offline
datasets that can efficiently adapt to unseen tasks with small amounts of warm-start data.

The context-based offline meta RL methods pre-train a context encoder to learn task representation from the collected offline
data and augment the state-action pair with latent representation to generalize across tasks. MACAW (Mitchell et al., 2021a)
adopts the advantage weighting loss based on an optimization-based method and learns the initialization of both the value
function and the policy. FOCAL (Li et al., 2021b) proposes a novel negative-power distance metric learning method to train
the context encoder for task inference, as an end-to-end offline meta-RL algorithm with high efficiency. CORRO (Yuan &
Lu, 2022) proposes a contrastive learning framework for task representations that are robust to the distribution mismatch
of behavior policies in training and testing. CORRO demonstrates superior performance than prior context-conditioned
policy-based methods.

The context-based methods can infer the current task from the pre-collected offline data as long as it contains enough
information about the current task, regardless of the quality of data. But one of the limitations of these methods is the high
requirements for the representation ability of the context. If the context is not sufficiently accurate, it will negatively impact
the generalization performance of policy across tasks, which severely relies on the representation ability of context. Although
many recent works (Li et al., 2020; Dorfman et al., 2020; Li et al., 2021a;b) focused on improving the representation
accuracy of context, the methods still rely on TD-learning, which may potentially cause instability in context learning.

Table 9. A comparison on algorithmic properties of existing methods for offline meta-RL.

Algorithm Robustness Flexibility Sequence Modeling

MACAW (Mitchell et al., 2021a) ! ! %

FOCAL (Li et al., 2021b) ! ! %

CORRO (Yuan & Lu, 2022) ! ! %

Prompt-DT (Xu et al., 2022) % % !

MetaDiffuser (Ours) ! ! !

A more recent work Prompt-DT (Xu et al., 2022) turns to solve the generalization problem from the sequence modeling
perspective, which joint models state-action trajectories to avoid TD-learning. This approach does not require a pre-trained
context encoder to extract the task representation from the prompt and the contained task-oriented information of the prompt
is implicitly learned inside the generative model architecture based on powerful ability transformer-style models. The
prompt as the prefix to guide the subsequent sequence generation should not only contain rich task information to allow the
model to implicitly infer the current task but also has to conclude the expert trajectories as valuable knowledge to utilize.
Therefore, the core limitation of the method is the quality of the pre-collected demonstration or prompt has to be high
enough to guide the sequence generation or the performance will drop a lot with random or medium prompts. It is worth
noting that we can not easily obtain expert trajectories on all tasks, which is challenging and computationally high in many
scenarios. A more clear comparison of algorithmic properties of existing methods for offline meta-RL is shown in Table 9.

14

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

D. Pesudocodes of Framework

Algorithm 1 Task-Oriented Conditioned Diffusion Planner for Offline Meta-RL (MetaDiffuser)

Input: Training tasks set T train and corresponding offline datasets Dtrain, testing tasks set T test and corresponding
warm-start datasets Dtest, noise model ϵθ, guidance scale s, historical trajectory length h, planning horizon H , context
drop probability β, context encoder Eϕ, reward predictor Rψ , dynamics model Pw.

Pre-training Context Encoder
for each iteration do

Sample a task M ∼ T train and corresponding trajectories τM from Dtrain.
Sample several historical transitions τMt = {(st+i, at+i, rt+i, st+i+1)}hi=0 started from random selected t
Predict the context from the historical transitions: zt = Eϕ(τ

M
t)

Update ϕ, ψ, ω on τM according the following loss:
Lϕ,ψ,ω = −E(st,at,rt,st+1)∼τM

t ;M∼T train

[
Ezt=Eϕ(zt|τM

t) [logPω(ŝt+1|st, at, zt) + logRψ(r̂t|st, at, zt)]
]

end for

Training Task-Oriented Diffusion Model
for each iteration do

Sample trajectories with planning horizon H as mini-batch B = {τM;M∼ T train} from mixed Dtrain.
Predict the context zτ from context encoder for each τ in B
Random sample a denosing timestep k and omit the context with probability β
Update the task-oriented conditioned diffusion model according the following loss:
L(θ) := Ek,τ∈D,p∼Bern(β)

[
∥ϵ− ϵθ (xk (τ) , (1− p)Eϕ (τ) + p∅, k)∥2

]
end for

Testing on Unseen Tasks
for each iteration do

Sample a task M ∼ T test and corresponding warm-start data τM from Dtest.
Random sample a sub-segment of trajectories from τM

Infer the context for the current test task from context encoder capturing task-oriented information
while not done do

Observe state s ; Initialize xT (τ) ∼ N (0, αI)
for t = T . . . 1 do
ϵ̂ := ωϵθ(xk(τ), Eϕ(τ), k) + (1− ω)ϵθ(xk(τ),∅, k)︸ ︷︷ ︸

classifier-free

−
√
1− ᾱt∇xk(τ)

[
J (xk(τ)) + λζ(xk(τ))

]
︸ ︷︷ ︸

classifier-guided

(µt−1,Σt−1)← Denoise (xt(τ), ϵ̂)
xt−1 ∼ N (µt−1, αΣt−1)

end for
Execute first action from x0 as the current action to interact with environments.

end while
end for

E. The Details of Environments
We adopt a 2D navigation environment Point-Robot and multi-task MuJoCo control tasks to make comparisons, as classical
benchmarks commonly used in meta-RL (Mitchell et al., 2021b; Li et al., 2020; 2021a). The environments conclude 4 tasks
with reward function changes and 2 tasks with transition dynamics changes.

• Point-Robot is a 2D navigation environment introduced in Rakelly et al. (2019). Starting from the initial point, the
agent should navigate to the goal location. Tasks differ in reward functions, which describe the goal position. The goal

15

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

positions are uniformly distributed in a square. The maximal episode step is set to 20.

• Cheetah-Vel, Cheetah-Dir, Ant-Dir are multi-task MuJoCo benchmarks where tasks differ in reward functions. In
Cheetah-Vel, the task is specified by the target velocity of the agent. The distribution of target velocity is U [0, vmax].
In Cheetah-Dir, the goal directions are limited to forward and backward. In Ant-Dir, the task is specified by the goal
direction of the agent’s motion. The distribution of goal direction is U [0, 2π].The maximal episode step is set to 200.

• Walker-Param, Hopper-Param are multi-task MuJoCo benchmarks where tasks differ in transition dynamics. For
each task, the physical parameters of body mass, inertia, damping, and friction are randomized. The agent should adapt
to the varying environment dynamics to accomplish the task. The maximal episode step is set to 200.

For all environments except for Cheetah-Dir, 40 tasks are randomly sampled with different goal velocities, locomotion,
directions, or different physical parameters. we sample 10 tasks for meta-testing and leave the rest for meta-training. For
Cheetah-Dir, with only two tasks limited in forward and backward, we keep the training set the same as the testing set, both
containing the two tasks.

F. Additional Experiment Results
F.1. The Results on MetaWorld

We additionally choose a more realistic robotic manipulation benchmark Meta-World (Yu et al., 2020). We have currently
added three typical tasks: reach, push, and pick-place for evaluation. The results with 5 runs for each task are as follows:

Table 10. The comparisons of the performance of Prompt-DT and MetaDiffuser in typical tasks from MetaWorld.

Environment Prompt-DT MetaDiffuser

Random Expert Random Expert

Reach-v2 3686.4 ± 208.3 4358.5± 234.4 4671.3± 113.6 4708.7± 68.4
Push-v2 3638.1± 203.6 4010.2± 140.7 4226.3± 160.5 4352.4± 107.7

Pick-and-Place-v2 3524.1± 337.4 3994.6± 290.5 4161.3± 243.0 4205.8± 217.3

The results show that MetaDiffuser still performs better than Prompt-DT in this more challenging and realistic environment.
To demonstrate our robustness, we also conducted an experiment on the influence of warm-start data quality, and verify the
robustness of MetaDiffuser with the benefit of task representation.

F.2. The Effect of Guidance Scaling ω

Table 11. The comparisons between different guidance scaling ω.
Environment ω = 1.2ω = 1.2ω = 1.2 ω = 1.4ω = 1.4ω = 1.4 ω = 1.6ω = 1.6ω = 1.6 ω = 1.8ω = 1.8ω = 1.8 ω = 2.0ω = 2.0ω = 2.0

Point-Robot -4.48± 0.28 -4.51± 0.23 -4.55± 0.18 -4.52± 0.31 -4.49± 0.30
Ant-Dir 244.9± 20.1 247.7± 16.8 243.2± 19.2 241.1± 12.6 246.0± 16.3

Cheetah-Dir 935.9± 19.5 933.1± 20.2 935.7± 18.8 932.2± 19.1 936.2± 17.9
Cheetah-Vel -45.5± 3.7 -45.3± 3.9 -45.9± 4.1 -46.7± 5.0 -46.1± 5.2

Walker-Param 367.1± 24.9 362.6± 24.5 369.1± 27.7 368.3± 30.6 375.0± 29.9
Hopper-Param 355.4± 16.8 353.7± 16.2 362.1± 18.0 358.1± 19.2 356.4± 16.9

The scalar ω denotes the guidance weight in the classifier-free conditioned diffusion model. Setting ω = 1 disables
classifier-free guidance while increasing ω > 1 strengthens the effect of guidance. The relationship between performance
and ω does not show a clear trend, and the choice of different ω values does not have a significant impact.

F.3. The Effect of Historical Length h

The longer historical trajectories can bring a slight improvement with the benefit of more task-oriented information contained.
In the submitted version, we choose the historical trajectories length h of 4 in Point-Robot tasks, 10 in Ant-Dir, Cheetah-vel,
and Cheetah-Dir tasks with reward change, 20 in Hopper-Param and Walker-Param tasks with dynamics change. Note that
the maximum length within the Point environment is 20, so we skip this environment for testing longer h. In a cheetah-dir

16

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

environment with only two tasks(forward and backward), 10 transitions are enough for the context encoder to infer the
current task and the longer transitions make no more benefit. In a complex environment with dynamics change, longer
transitions can conclude more task information to help for quick adaptation.

Table 12. The comparisons between different historical length h.
Environment h = 10h = 10h = 10 h = 20h = 20h = 20 h = 40h = 40h = 40

Ant-Dir 247.7± 16.8 248.3± 17.2 249.2± 15.5
Cheetah-Dir 936.2± 17.9 936.9± 17.0 936.7± 17.6
Cheetah-Vel -45.9± 4.1 -44.6± 5.2 -45.7± 3.9

Walker-Param 360.9± 32.3 368.3± 30.6 371.9± 28.6
Hopper-Param 349.4± 18.7 356.4± 16.9 362.0± 15.3

G. Details of Implementations
For pre-training expert policy for each task, we borrow the provided scripts in the official code repositories from CORRO1.
All baselines are trained with the same offline dataset collected with the pre-trained expert policy.

For FOCAL and CORRO, we run with the open-source implementations2 for fair comparisons. For Prompt-DT, note
that the open-source implementation of Prompt-DT3 specializes in different hyper-parameter configurations for different
environments, such as target rewards and prompt length. In this paper, we conduct three environments, Point-Robot,
Walker-Param, and Hopper-Param, without official hyper-parameter configuration since Prompt-DT does not evaluate them.
We select the best target rewards and prompt length for each task from the set of hyper-parameters used in the original
paper. Moreover, the prompts with medium and random quality are not provided in the official code repositories, so we
collect demonstrations during the policy pre-training process as prompts. The slight difference is that we strictly use the
accumulated rewards of the trajectories as the metric to distinguish the quality of the prompt. Prompt-DT divides the prompt
into three qualities based on the training epochs, which may result in the quality of medium prompts approaching that of
expert prompts when training converged fast for some tasks, which could bring a confusing conclusion.

For CVAE-Planner, we substitute the conditioned diffusion to conditioned VAE, which serves the same role as a trajectory
generator to guide the planning across tasks. The generated trajectories conclude the state and actions, similar to MetaDiffuser.
The planning horizon stays the same with MetaDiffuser for fairness to investigate the difference between CVAE and
conditional diffusion model.

H. Hyperparameter and Architectural details
In this section, we describe various architectural and hyperparameter details:

• We represent the noise model ϵθ with a temporal U-Net (Janner et al., 2022a), consisting of a U-Net structure with 6
repeated residual blocks. Each block consisted of two temporal convolutions, each followed by group norm (Wu & He,
2018), and a final Mish nonlinearity (Misra, 2019).

• We choose the historical trajectories length h of 4 in Point-Robot tasks, 10 in Ant-Dir, Cheetah-vel, and Cheetah-Dir tasks
with reward change, 20 in Hopper-Param and Walker-Param tasks with dynamics change.

• The context encoder is modeled as multi-layer perceptrons(MLPs) with 3 hidden layers with the final liner layer to produce
a context embedding in 64 dimensions. The generalized reward model Rψ and dynamics model Pω both shared with the
structure of the first half of the U-Net used for the diffusion model, with a final linear layer to produce a scalar output.

• We jointly train the context encoder and corresponding reward model and dynamics model using the Adam opti-
mizer (Kingma & Ba, 2015) with a learning rate of 2× 10−4 and batch size of 64 for 1000 epochs.

• Timestep and context embeddings, both 64-dimensional vectors, are produced by separate 2-layered MLP (with 256
hidden units and Mish nonlinearity) and are concatenated together before getting added to the activations of the first

1
https://github.com/PKU-AI-Edge/CORRO

2
https://github.com/LanqingLi1993/FOCAL-ICLR

3
https://github.com/mxu34/prompt-dt

17

https://github.com/PKU-AI-Edge/CORRO
https://github.com/LanqingLi1993/FOCAL-ICLR
https://github.com/mxu34/prompt-dt

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

temporal convolution within each block. We borrow the code for temporal U-Net from the official implementation of
Diffuser4.

• We train noise model ϵθ using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 2× 10−4 and batch size
of 32 for 1× 106 train steps.

• We choose the proper probability β of removing the conditioning information for each task, the detailed choice, and the
results can be found in Section 5.6.4.

• We use k ∈ {20, 50, 100} diffusion steps.

• We use a planning horizon H of 4 in Point-Robot task, 16 in Cheetah-Vel and Cheetah-Dir tasks, 32 in Ant-Dir, Hopper-
Param and Walker-Param tasks.

• We use a guidance scale ω ∈ {1.2, 1.4, 1.6, 1.8, 2.0} but the exact choice varies by task.

I. Details about Pseudocode for Implementation
Here, we provide pseudocode for our implementation.

Algorithm 2 MetaDiffuser Training Pytorch-like Pseudocode

def training(trajectory, context_drop_prob):
"""
trajectory: expert trajectory from offline data in training set
context_drop_prob: the probability to drop conditional context
"""

Capture task information
sub_trajs = random_sample(trajectory, len=h)
extract sub-segement from whole trajectory to infer context, h denotes historical length
latent_embeds = []
for sub_traj in sub_trajs:

latent_embed = context_encoder(sub_traj)
latent_embeds.append(latent_embed)

context_embed = aggreate(latent_embeds) # arbitrary aggreation technique

mask_dist = Bernoulli(probs=context_drop_prob)
mask = mask_dist.sample()
masked_context_embed = context_embed * mask

sample sub-traj for diffuison model to estimate
traj = random_sample(trajectory, len=H) # H denotes planning horizon

Diffuse process on traj
t = randint(0, T) # time step
eps = normal(mean=0, std=1)
nosiy_traj = sqrt(alpha_cumprod(t)) * traj + sqrt(1 - alpha_cumprod(t)) * eps

Denoise process to reconstruct traj
pred_traj = denoise_model(noisy_traj, masked_context_embed, t)

Set prediction loss
loss = set_prediction_loss(pred_traj, noisy_traj)
return loss

4
https://github.com/jannerm/diffuser

18

https://github.com/jannerm/diffuser

MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL

Algorithm 3 MetaDiffuser Sampling Pytorch-like Pseudocode

def Sampling(warm_start_data, steps, T):
"""
warm_start_data: the provided trajectories collected in the test task
steps: number of sample steps
T: number of time steps
"""

Capture task information
sub_trajs = random_sample(warm_start_data, len=h)
extract sub-segement from warm_start_data to infer context, h denotes historical length
latent_embeds = []
for sub_traj in sub_trajs:

latent_embed = context_encoder(sub_traj)
latent_embeds.append(latent_embed)

context_embed = aggreate(latent_embeds)

noisy traj to be denoised, length set as planning horizon H
traj_t = normal(mean=0, std=1)

uniform sample step size
times = reversed(linespace(-1, T, steps))

[(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
time_pairs = list(zip(times[:-1], times[1:])

for t_now, t_next in zip(time_pairs):
Predict traj from pb_t
pred_traj = denoise_model(traj_t, context_embd, t_now)

Estimate pb_t at t_next
traj_t = denoise_step(traj_t, pred_traj, t_now, t_next)

return pred_traj

19

