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Abstract

Large Language Models (LLMs) show impressive capacity to synthesize scientific1

knowledge but struggle with basic arithmetic, raising concerns about reliability.2

As materials science increasingly leverages LLMs for hypothesis generation, it3

is essential to understand how they encode specialized knowledge. Here, we4

investigate how the open-source Llama series of LLMs represent the periodic table5

of elements. We identify a 3D spiral structure in the hidden states of LLMs that6

aligns with the conceptual structure of the periodic table, suggesting that LLMs7

can reflect the geometric organization of scientific concepts learned from text.8

Linear probing reveals that middle layers encode continuous, overlapping attributes9

that enable indirect recall, while deeper layers sharpen categorical distinctions10

and incorporate linguistic context. These findings suggest that LLMs represent11

symbolic knowledge not as isolated facts, but as structured geometric manifolds12

that intertwine semantic information across layers. We hope this inspires further13

exploration into the interpretability mechanisms of LLMs within chemistry and14

materials science, enhancing trust of model reliability, guiding model optimization15

and tool design, and promoting mutual innovation between science and AI.16

1 Introduction17

Large Language Models (LLMs) have demonstrated a notable capacity to synthesize and generate18

insights from vast amounts of expert knowledge, drawing attention across multiple scientific domains19

[Wysocki et al., 2024, Lei et al., 2024]. Yet, despite their impressive capabilities, researchers have20

observed their surprising inability to reliably perform seemingly straightforward tasks, such as basic21

arithmetic operations [Qian et al., 2022, Baeumel et al., 2025, Gambardella et al., 2024]. This22

phenomenon highlights an important aspect of LLMs: their fundamental reliance on learned patterns23

and probabilistic predictions based on token embeddings, rather than explicit arithmetic operations.24

Consequently, simple numerical tasks, effortlessly handled by even the most rudimentary calculators25

with orders of magnitude less computation, remain challenging and error-prone for these sophisticated26

LLMs.27

In parallel, interest is rapidly growing in leveraging LLMs within the materials sciences community.28

Recent research has proposed intriguing applications such as laboratory orchestration [Sim et al.,29

2024, Darvish et al., 2025, Olowe and Chitnis, 2025], hypothesis generation [Liu et al., 2025a,30

Kumbhar et al., 2025, Bazgir et al., 2025a,b], and complex materials property prediction [Liu et al.,31

2025b, Rubungo et al., 2025]. However, skepticism remains about their reliability in scientific32

research. Since large language models are trained to align with user expectations, they may produce33

authoritative-sounding but incorrect or fabricated answers, giving users a false sense of confidence34

[Steyvers et al., 2025].35
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This skepticism prompts a critical question: Can we trust LLMs to accurately represent specialized36

chemical information? In this work, we investigate whether the prominent open-source LLMs,37

Llamas [Grattafiori et al., 2024], store chemical knowledge in a structured and rational manner,38

whether fragmented into isolated clusters of disconnected facts, or interconnected through rational39

webs of structured knowledge. We delve into how LLMs encode and recall such knowledge through40

layer-wise, geometry-aware representations. The contributions of our study are:41

1. We report the first observation of a 3D spiral structure in LLM hidden states that organizes chemical42

elements in alignment with the structure of the periodic table (Sec 3).43

2. To our knowledge, this is the first to compare regression and classification probing, showing44

that middle layers encode continuous attribute structure, while later layers sharpen boundaries for45

fine-grained decisions (Sec 4.1).46

3. We show that linguistic structure increasingly shapes knowledge representations in later layers47

(Sec 4.2).48

4. We find that LLMs recall related attributes through strong linear associations in middle layers,49

which weaken in deeper layers (Sec 5).50

2 Preliminaries51

Our study only focuses on how reliably acquired knowledge (i.e. things we’re confident the model52

knows) is represented within LLMs, and excludes hallucinations or information not in the training53

set. We use the properties of chemical elements in the periodic table as a case study due to their54

frequent occurrence in training data, well-defined attributes, quantifiable properties, and making55

them an ideal subject for this investigation. We adopt Llama series models [Touvron et al., 2023,56

Grattafiori et al., 2024] in this study. To study how LLMs represent attributes across layers, we57

construct a prompt dataset based on a set of attributes (A = {Aj}Mj=1, such as ‘atomic number’58

or ‘group’) and a set of elements (X = {Xi}Ni=1, constituting the first 50 elements, such as ‘Mg’59

or ‘Al’). For linguistic diversity, we incorporate predefined template sets: T cont = {T cont
k }11k=1 for60

continuation-style prompts and T ques = {T ques
k }11k=1 for question-style prompts, with 11 templates61

in each. In the continuation-style templates, the next output token would be the factual knowledge62

directly such as:63

T cont
2 (Aj , Xi) = ‘Xi’s Aj is’

In question-style templates, the next output token is typically a syntactic word like ‘The’, which64

ensures the grammatical structure is correct, such as:65

T ques
1 (Aj , Xi) = ‘What is the Aj of Xi?’

66
T ques
2 (Aj , Xi) = ‘Which value represents Xi’s Aj?’

By substituting each element and attribute (Xi, Aj) into these templates, we generate prompts:67

pi,j,k = Tk(Xi, Aj)

Each prompt pi,j,k can then be fed into LLMs to study the corresponding residual streams at different68

layers. Last-token residual streams capture the full prompt context in decoder-only models with69

masked attention, as they integrate information from all preceding tokens. For each layer l, we70

collect last-token residual streams h(l)
i,j,k from prompts pi,j,k across all elements and templates (see71

Appendix A for details).72

3 Geometric relationships among attributes73

In materials science, a spiral trend emerges from the periodic variation in valence electron configura-74

tions as atomic number increases. By arranging elements sequentially and mapping their properties75

in a polar coordinate system, this periodicity becomes visually apparent as a spiral. We investigate76
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whether LLMs (that have all been exposed to extensive data on the properties of elements during77

training), inherently capture these physical periodicities and reflect similar spiral structures in their78

learned embeddings. We hypothesize that attributes in LLMs exist in a high-dimensional space,79

manifesting as linear, circular, or spiral patterns based on their structure, and then proceed to validate80

these geometries.81

Figure 1: Residual Stream Patching Results for Layer 20 in Meta-Llama-3.1-70B. The model’s
predictions are evaluated after replacing the residual stream of the ‘element’ token at the last token
position with the predicted residual stream ĥ

pred,(20)
0 .

Inspired by Engels et al. [2024], we map the last-token residual streams h(l) ∈ Rk at layer l to a82

geometric space f(r, g, p), which encodes atomic number r, group g, and period p. To learn this83

mapping, we first reduce the dimensionality of the residual streams to 30 using PCA, denoted as84

P(h(l)), and fit a linear projection using all 50 elements except one held-out target:85

Figure 2: Predicted atomic num-
bers after intervention in 3D spiral
space (r cos θ, r sin θ, r). Colored
points indicate the tokens with high-
est logits.

W(l),b(l) = arg min
W′,b′

∑
i̸=0

∥∥∥W′P(h
(l)
i ) + b′ − fi

∥∥∥2
2

where W(l) ∈ Rd′×30, b(l) ∈ Rd′
, and fi = f(ri, gi, pi)86

denotes the mapping of the i-th element in the geometric space.87

To perform the intervention, we compute the centroid of the88

PCA-reduced residual streams for the remaining N = K − 189

elements:90

h̄(l) =
1

N

∑
i ̸=0

P(h
(l)
i )

then map it to the geometric space: z = W(l)h̄(l) + b(l). Let91

f0 = f(r0, g0, p0) denote the target element’s embedding in92

the geometric space. The deviation f0 − z is projected back93

to the residual stream space using the pseudo-inverse of W(l),94

giving the predicted (intervened) residual stream:95

ĥ
pred,(l)
0 = P−1

(
h̄(l) +

(
W(l)

)+

(f0 − z)

)
Importantly, the model never accesses the original residual stream of the target element; the predicted96

residual stream is computed solely from its geometric representation and the residual streams of other97
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elements. During inference, we replace the residual stream of ‘element’ (last token position) in the98

20th layer1 with ĥ
pred,(20)
0 , using the prompt ‘In the periodic table, the atomic number of element’.99

We then evaluate whether the model can correctly output the target token without ever seeing its100

original residual stream.101

We evaluate the effectiveness of different geometric spaces for interventions, including linear, 2D102

spiral, and 3D spiral (i.e. conical helix) geometries, as shown in Figure 2 . Angular variables θ = 2πg
18103

are used to capture periodic relationships. To test the impact of disrupted geometry, two random104

spaces are introduced: in Space 8, atomic numbers r are shuffled; in Space 9, θ is randomly permuted.105

Additionally, in Space 10, the prompt ‘In numbers, the Arabic numeral for number’ generates numbers106

1–50, testing whether periodic patterns emerge without explicit element references. We designed this107

control to examine whether the observed geometric shapes arise from element-related knowledge or108

simply from numerical sequences.109

Figure 3: Euclidean distance
heatmap of approximated vector
representations for numeric tokens
(1-50) in the hidden space of the
last layer in Meta-Llama-3.1-70B.

Effective residual stream patching suggests that the target space110

f(r, g, p): 1) retains sufficient information for accurate recon-111

struction during transformations with the residual stream space,112

and 2) preserves geometric structures similar to those in the113

residual stream space to ensure valid adjustments in the high-114

dimensional space.115

Patching results for Meta-Llama-3.1-70B are shown in Fig. 1,116

with detailed values in Table B.1 (Appendix). Results show117

that intervention can be applied in various geometric spaces,118

with some performing significantly better. Spaces such as119

(cos θ, sin θ, r) and (r cos θ, r sin θ, r) over 70% predictions120

of the atomic number have an absolute error within 2, sug-121

gesting the potential existence of latent 3D structures in LLMs122

resembling 3D spirals. Fig. 2 illustrates the LLM’s output123

post-intervention in 3D spiral geometry. Additional geometric124

analyses are in Appendix B.2. Randomly generated prompts125

perform very poorly, which is expected given their lack of coher-126

ent semantic structure and context, but even element unrelated127

prompts with clear linguistic form also yield poor performance.128

This suggests that the geometry of the embedding space is not129

merely tied to numerical correlations or surface-level semantics, but is inherently aligned with the130

background knowledge invoked by the prompt, reflecting real-world knowledge structures.131

In a concurrent study, Kantamneni and Tegmark [2025] observed spiral-like structures in number132

space with periods of 2, 5, 10, and 100, likely reflecting common human conventions in numerical133

representation. In contrast, our model exhibits a distinct 18-period spiral aligned with the periodic134

structure of chemical elements. This representation performs notably worse for ordinary numbers135

without elemental context (which aligns with their observation that the 18-period does not prominently136

emerge), indicating that such geometric patterns emerge from underlying physical or semantic137

regularities rather than arbitrary structures.138

In the intervention experiments, it is actually not obvious whether a smaller numerical difference139

between the output token and the true value always implies smaller error. To investigate this,140

we project token IDs for numbers 1–50 into the last hidden layer using the pseudoinverse of the141

vocabulary projection matrix W+
vocab. This operation reconstructs an approximation of the hidden142

representations that would produce these token IDs as logits. Fig. 3 shows that smaller numerical143

differences generally correspond to closer representations, while larger differences often result in144

inconsistent distances, reflecting the model’s difficulty with numerical consistency over larger gaps.145

For instance, the vector for ‘1’ is closer to ‘2’ than to ‘5’, while the distances between ‘10’ and146

‘40’ is closer than between ‘10’ and ‘21’. In the intervention, when the predicted value is close to147

the true value, hidden logits align well with true logits, suggesting higher accuracy. However, large148

numerical deviations cannot fully capture prediction errors, so we evaluate results using an absolute149

error threshold (≤ 2) in Fig. 1, representing a small distance.150

1See Appendix B.1 for details on intervention performance. Interventions become effective from layer 20
onward.
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4 Direct attribute recall151

In the previous section, we observed that elemental knowledge in LLMs forms a 3D spiral structure.152

Interestingly, although prompts mentioned only atomic numbers, the embeddings also reflected153

elemental groups, suggesting that LLMs retrieve both explicitly requested and implicitly related154

attributes. To better understand these mechanisms, this section investigates direct attribute knowledge155

recall and Sec. 5 will explores how LLMs access related but unprompted knowledge.156

4.1 From continuity to boundary sharpening157

Some elemental attributes, such as group and period, naturally exist in both categorical and numerical158

forms. This duality enables both classification and regression probing, allowing for direct comparisons159

that have been underexplored in prior work, which often focused exclusively on a single type.160

To examine how LLMs access explicitly mentioned knowledge, we use the last-token residual stream161

from the continuation style prompt h(l)
j ∈ Rk as the representation of attribute Aj , and fit a linear162

probe to predict its corresponding values via:163

f
(l)
j (hj) = W

(l)
j h

(l)
j + b

(l)
j

For categorical attribute forms (e.g., Category, Group, Period), W(l)
j ∈ R|Cj |×k, b(l)

j ∈ R|Cj |.164

Predictions are made by:165

ŷ(l) = argmax
c∈Cj

[f
(l)
j (h

(l)
j )]c.

For continuous attributes, we perform scalar regression by setting W
(l)
j = w

(l)⊤
j , w(l)

j ∈ Rk,166

b
(l)
j ∈ R, yielding:167

ŷ(l) = w
(l)⊤
j h

(l)
j + b

(l)
j

Probes are trained using 5-fold cross-validation on last-token residual streams. We use a linear168

Support Vector Machine (SVM) for categorical tasks and Support Vector Regression (SVR) with a169

linear kernel for continuous tasks. The resulting classification accuracies and regression R2 scores170

are shown in Fig. 4, with best-layer results provided in appendix F.5.171

Regression probes reveal that continuous numerical features are effectively represented in intermediate172

layers, as indicated by high R2 values (while not reaching 1, see Appendix F.1). These intermediate173

layers sometimes even outperform the final layers, suggesting that numerical knowledge is already174

encoded before the final output stage. This aligns with findings by [Meng et al., 2022], which show175

that factual knowledge recall is already mediated by intermediate MLP layers.176

In classification probes, intermediate layers perform similarly or even better than final layers for177

clearly distinct non-numerical categories (e.g., metal vs. non-metal), aligning with prior work [Nanda178

et al., 2023]. However, they significantly underperform in fine-grained numerical classification, e.g.,179

Period accuracy drops from ∼1.0 (final) to ∼0.7, and Group from ∼1.0 to ∼0.6.180

This suggests that while intermediate layers already encode meaningful numerical structure, addi-181

tional processing in later layers is required to sharpen boundaries and support accurate fine-grained182

classification. This aligns with intuition: later layers prepare for discrete token outputs, where183

clearer classification boundaries must emerge. As shown in Appendix Fig. F.1, the confusion matrix184

from Layer 40 (70B middle layer) is not perfectly accurate, but most misclassifications fall near the185

diagonal, further demonstrating that intermediate layers encode coherent numerical structure, albeit186

with blurred categorical boundaries. These observations may provide useful insights for choosing187

between intermediate and later-layer embeddings in downstream tasks.188

Notably, Llama2 7B shows low accuracy (<0.4) on Group classification compared to Llama3.1 8B189

(>0.8) (but similar performance in Group regression probing) potentially due to its single number190

tokenization (splitting numbers like ‘12’ into ‘1’ and ‘2’), which may cause confusion between the191

representations of output tokens like ‘12’ and ‘1’. In contrast, Llama 3 uses separate tokens for192

numbers below 1000.193

4.2 Higher Language Sensitivity in Later Layers194
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Figure 4: Linear probing results on last token across layers. (a) Regression (R2) for numerical
attributes and a random baseline. (b) Classification (accuracy) for categorical attributes. All results
use 5-fold cross-validation on last-token residual streams.

Figure 5: Average ∆R2 across five at-
tributes, with 95% confidence interval
shaded. ∆R2 = R2

cont −R2
ques.

The sharpening of numerical representations into categor-195

ical boundaries in later layers suggests that these layers196

might be shaped by the expected output tokens. This197

raises a question: does the linguistic structure influence198

the factual representations across layers?199

We compared question-style and continuation-style200

prompts using linear regression probes. Continuation201

prompts generally lead to direct generation of fact-related202

tokens, whereas question-style prompts tend to introduce203

syntactic fillers (e.g., ‘The’) and are more influenced by204

superficial language patterns.205

Fig.5 reports the average delta R2 across five attributes,206

with per-attribute results shown in Fig. F.2 (Appendix).207

As analyses in earlier sections show stronger semantic208

signals and higher R2 in mid-to-late layers, we focus on209

depths 0.6–1.0. ∆R2 increases in the mid-to-late layers,210

indicating a growing gap between prompt types. Among211

the 15 attribute–model combinations (3 models × 5 attributes), 12 show a significant increasing trend212

(FDR-corrected p < 0.05), with a median Mann–Kendall τ of 0.55 (Appendix F.3).213

The results indicate that, as depth increases, question prompts become progressively less effective214

than continuation prompts at encoding factual attributes, hinting that the prompt’s linguistic structure215

exerts a stronger influence on representations in deeper layers. Interestingly, the larger models show216

a slower increase in ∆R2 across layers than the smaller models, suggesting they maintain more217

stable factual representations across prompt types and thus exhibit a smaller distinction between218

continuation and question prompts.219
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The rising ∆R2 suggests that deeper layers increasingly blend factual content with linguistic structure220

to prepare the final tokens. To further test this, we applied the logit lens [nostalgebraist, 2020] and221

tuned-lens [Belrose et al., 2023]. These analyses estimate the token distribution each layer would222

produce if decoding were halted at that depth, and show that the correct numerical token becomes223

highly ranked only in the later layers (Appendix D). Complementary attention statistics (Appendix C)224

reveal that mid-layers focus tightly on the factual token, whereas later layers spread attention over a225

wider context patterns consistent with increased syntactic and contextual integration.226

5 Indirect attribute recall227

In the previous section, we analyzed direct recall of explicitly mentioned attributes across layers. Our228

earlier geometric analysis showed that LLMs can also recall related attributes that are not explicitly229

mentioned. In this section, we explore how related but unmentioned attributes are recalled.230

5.1 Middle Layers excel at indirect recall231

We conducted experiments using linear probing to examine the relationships between distinct at-232

tributes. Specifically, we extracted last-token residual streams from continuation prompts that mention233

attribute Aj1 (matching) or a different attribute Aj2 (non-matching), i.e. seeing if we can extract234

information that was not explicitly requested in the prompt. We also extracted the residual stream235

at the element token position, before any attribute is introduced (no mention). Separate probes236

were trained for each residual stream dataset, always using labels of attribute Aj1 as targets. To237

avoid confounding factors, we selected six attribute pairs without direct linear relationships for non238

matching probe (see Appendix F.4.1). Average R2 curves for all attributes are shown in Fig. 6;239

detailed case-wise linear probing results appear in Appendix Figs. F.3 and F.4.240

Figure 6: Average R2 scores from regression probing across layers for three prompt types: matching,
non-matching, and no-mention. All probes predict a fixed target attribute Aj1 ; no-mention uses
element token residual streams before any attribute appears. Shaded areas show 95% confidence
intervals.

Attribute information was detectable across all prompt styles. Intuitively, matching prompts should241

perform best by providing explicit cues, no-mention comes next as it relies on inference, and242

non-matching prompts perform worst due to misleading signals. Surprisingly, at intermediate243

layers (around 0.5 depth), non-matching prompts yielded higher linear R2 scores than no-mention244

prompts, suggesting stronger inter-attribute interactions at these depths. This may reflect entangled245

representations between related attributes, which we analyze further in Sec. 5.2.246

Beyond 60% depth, performance follows the expected trend: matching > no-mention > non-matching.247

The gap between matching and non-matching prompts increases steadily from 0.6 to 1.0 depth.248

Across 15 model–attribute tests, 14 exhibited statistically significant divergence (FDR corrected249

p < 0.05), with a median Mann–Kendall τ of 0.77 (Appendix Fig.F.5, Table F.3). It suggests that250

attribute representations become more specialized and context-sensitive in deeper layers. Further251

analyses in Sec. 5.2 provide a more direct explanation, examining how structural relationships252

between attributes contribute to this layered specialization.253

The fact that the ‘no-mention’ prompts perform best in the early layers may seem counterintuitive;254

however, this is likely because, unlike the other two scenarios, in the ‘no-mention’ case, the last token255
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is the element itself, which may aid recall. In contrast, matching prompts extract residual streams256

at the final token (such as ‘is’), requiring holistic semantic understanding. As layer depth increases,257

semantic clarity improves, enhancing explicitly mentioned attributes and reversing this initial trend.258

5.2 Stronger linear correlations in middle layers259

Figure 7: R2 scores across layers in
Meta-Llama-3.1-70B for linear map-
pings between attribute pairs using the fi-
nal residual stream from a fixed prompt.

To explicitly capture relationships between attribute rep-260

resentation, we train a linear mapping from the represen-261

tation of attribute Aj1 to attribute Aj2 at each model layer.262

Specifically, we utilize the final residual streams from a263

fixed prompt template (after applying PCA to reduce the264

dimensionality to 20). The mapping performance is evalu-265

ated using R2 scores obtained via 5-fold cross-validation.266

Fig. 7 illustrates the variation of R2 scores across layers267

for different attribute pairs. In early layers, R2 scores are268

high; however, this observation alone does not necessarily269

indicate meaningful attribute-level relationships, as initial270

representations are predominantly sensitive to token-level271

similarity. Due to the use of a fixed input template, the272

resulting inputs exhibit substantial token-level overlap.273

In the intermediate layers, where concept-level understand-274

ing is evident (as shown by t-SNE and linear probing), we275

observe a peak in R2 scores. This indicates that even276

simple linear models can effectively capture relationships277

between different attributes, reflecting their connection in the learned representation space. This also278

explains why prompts with non-matching attributes outperform those with no attribute mention at279

these layers in the last section Sec 5.1. In deeper layers, R2 scores decline, suggesting a shift toward280

specialized representations. Similar conclusions from the linear probing weight analysis further281

support this, as shown in Appendix E.1.282

6 Discussion and conclusions283

This study highlights that despite their exclusive reliance on textual training data, LLMs internally284

develop structured representations aligning closely with scientific knowledge. Specifically, we identify285

a 3D spiral structure within the hidden states of LLMs that mirrors the conceptual organization of the286

periodic table, indicating the models’ implicit grasp of domain-specific regularities without explicit287

supervision.288

Probing experiments reveal that the encoding of chemical knowledge evolves across model depth:289

middle layers encode continuous, overlapping attribute subspaces suitable for coarse categorization,290

while deeper layers sharpen decision boundaries and integrate linguistic structure. Moreover, we find291

that related attributes are strongly linearly associated in middle layers, enabling indirect recall.292

Our results demonstrate that symbolic scientific knowledge, particularly in chemistry, is represented293

within LLMs as coherent, geometry-aware manifolds where conceptual information is systematically294

intertwined across model layers. Furthermore, this geometric structure aligns with the laws observed295

in the physical world, indicating that knowledge within LLMs is not arbitrary, but rather organized296

and reflective of inherent natural order. Moreover, it is unsurprising that these large models discover297

meaningful relationships between concepts and these must often represent efficient compression.298

We hope this work inspires further investigation into how LLMs represent and reason about scientific299

knowledge, such as materials property prediction, and informs the design of downstream embedding-300

based tasks. We believe interpretability in LLMs is essential for AI safety, reducing unintended301

behaviors and building trust. Understanding how knowledge is stored and recalled across layers can302

inspire more interpretable, efficient models, advance knowledge editing and scientific discovery.303

Limitations. Our prompts have specifically targeted chemical elements in the periodic table; future304

studies could expand this to include other chemical structures and properties. The hypothesis-driven305

validation of geometric structures may oversimplify LLMs’ non-linear interactions.306
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Appendix374

A Last token residual stream collection375

For each layer l, we collect last-token residual streams h(l)
i,j,k from prompts pi,j,k across all elements376

and templates:377

h
(l)
i,j,k = f (l)

(
pi,j,k

)
∈ RT×d,

where f (l) denotes the layer-l transformation, T is the token length, and d is the hidden dimension.378

The initial residual stream h
(0)
i,j,k is obtained by embedding the prompt through an embedding layer379

E0, followed by processing through L Transformer layers. Each layer applies multi-head attention380

and a feedforward network with residual connections and layer normalization:381

h
(l)′
i,j,k = h

(l−1)
i,j,k +Attention

(
LayerNorm(h

(l−1)
i,j,k )

)
h
(l)
i,j,k = h

(l)′
i,j,k + FFN

(
LayerNorm(h

(l)′
i,j,k)

)
Here, Q, K, and V represent the query, key, and value matrices used in multi-head attention to382

compute token-to-token interactions. Finally, h(L)
i,j,k is mapped to the vocabulary space using the383

vocabulary head Wvocab to produce logits:384

logitsi,j,k = h
(L)
i,j,kWvocab

By analyzing last-token residual streams h
(l)
i,j,k across layers, we investigate how attributes are385

represented in the model’s hidden states.386

B Intervention outcomes in geometric recall387

B.1 Layer-wise performance evaluation388

Fig. B.1 illustrates the prediction error across layers when the residual stream of the last token across389

layers is replaced with the predicted residual stream derived from the geometric space f(r, g, p) =390

(r cos θ, r sin θ, r). In the early layers, errors gradually decrease because the model has not yet391

captured semantic information, and the geometric space is still being constructed. The continuous392

decline in error reflects the model’s growing ability to capture semantic information and progressively393

build a coherent geometric representation. By layer 20, the error stabilizes, indicating that these394

layers effectively encode the periodic and geometric relationships between atomic properties such as395

atomic number, group, and period.396

Figure B.1: Variation of Absolute Prediction Errors Across Layers with Intervention. The plot shows
the mean absolute error (MAE) for each layer, along with the minimum and maximum error range
represented by the shaded region. Missing data points were replaced with a value of 50 before
computing the absolute errors.
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However, beyond layer 30, the error increases sharply as the model begins outputting non-numeric397

tokens (replaced with an error value of 50 in the plot, corresponding to the maximum possible error398

given the 50 elements and atomic numbers). This can be attributed to two factors. First, if the399

numeric token is not the first output, generating the correct answer requires residual streams across400

all token positions. But only the last residual stream was replaced. Intervening too late disrupts the401

established flow of residual streams at other positions, which have already determined the output402

content. Second, it is also likely due to the model shifting its focus from geometric relationships403

to higher-level abstractions or context-dependent reasoning in the later layers. Therefore, for the404

intervention experiments on geometric relationships, we selected layer 20 as it balances effective405

encoding of geometric relationships and minimizes disruption to the model’s output process.406

B.2 Detailed evaluation of geometric spaces407

The primary evaluation criterion used in the main text is the absolute error threshold (≤ 2), as408

discussed in detail in Sec.3. This metric was chosen because it better captures the accuracy of residual409

stream interventions. However, other metrics, such as R2, Pearson correlation, and qualitative410

mapping fidelity, also provide valuable insights. These complementary results are summarized in411

Table B.1.412

# Space Description R2
Pearson

Correlation
Percentage of
Abs. err ≤ 2 Mapping Fidelity

1 r Linear structure along atomic number. 0.8863 0.9591 38.00% Moderate
2 (r, g, p) 3D cartesian grid. 0.8060 0.9191 48.00% Moderate
3 (r cos θ, r sin θ, r) 3D radial spiral structure. 0.8162 0.9035 72.00% High
4 (cos θ, sin θ, r) 3D spiral structure. 0.7596 0.8813 70.00% High
5 (cos θ, sin θ, p) 3D periodic wave-like structure. 0.5106 0.7174 60.00% Moderate
6 (r cos θ, r sin θ, p) 3D periodic lattice with radial dependencies. 0.6719 0.8240 62.00% Moderate
7 (r cos θ, r sin θ) 2D radial structure. -0.1391 0.1481 40.00% Low
8 rrandom Random linear structure. 0.0075 0.1503 10.00% Low
9 (cos(θrandom), sin(θrandom), r) Randomized spiral. 0.6358 0.8465 20.00% Low
10 (r cos θ, r sin θ, r) Element unrelated prompts -0.4910 0.7215 48.00% Low

Table B.1: Performance of different low-dimensional spaces for residual stream intervention. Each
space represents a unique pattern, with results assessed using R2, Pearson correlation, and percentage
of predictions within absolute error ≤ 2.

In the main paper, we demonstrate two geometric space intervention results; however, other shapes413

can also be extracted. Fig. B.2 shows the extracted linear structure from interventions. While the414

alignment of points along a straight path indicates the presence of a linear structure, the overlapping415

points suggest its limitations in distinguishing atomic number. Compared to more expressive shapes416

like spirals, linear structures may struggle to effectively capture periodic or distinct features.417

Figure B.2: Helix and Linear Structure in the Geometric Space from Intervention Experiments. The
figure shows predictions (colored points) and their alignment with the ground truth (gray line).

C Attention map detailed results418

To investigate how the model prioritizes different parts of the input text, we conducted a preliminary419

analysis using the 32-layer Meta-Llama-3-8B model. We adopted the attribute Aj , Period and Group,420

and iterated over Xi, consisting of 50 elements, using the prompt template: ‘In the periodic table of421
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elements, the Aj of Xi is.’ These prompts were input into the language model, and we analyzed the422

average attention across all attention heads in each transformer layer from the token ‘is’ to all other423

tokens. The averaged results across different prompts are presented in Fig.C.1.424

The results indicate that in the intermediate layers, where entropy is relatively high, there is a425

noticeable concentration of attention from the token ‘is’ to attribute and element tokens. This suggests426

that these intermediate layers focus more on tokens within the sequence that have a significant impact427

on the output. In contrast, the later layers, which exhibit lower entropy (with the exception of the428

final layer), show a more evenly distributed attention pattern. This pattern implies that the model429

transitions from focusing on specific token relationships to integrating broader context, thereby430

finalizing its interpretation for a cohesive output.431

Figure C.1: Average attention distribution analysis of the 32-layer Meta-Llama-3-8B model across
transformer layers, based on prompts, ‘In the periodic table of elements, the Aj of Xi is,’ where Aj is
an attribute (period or group) and Xi is an element. The heatmap (left) shows average attention from
‘is’ to all tokens, while line plots (right) depict attention to target tokens (e.g., element and attribute),
average attention to other tokens, and attention entropy. Intermediate layers focus on significant
token relationships with higher entropy, while later layers (excluding the final layer) show evenly
distributed attention and lower entropy, reflecting a shift to broader context integration.

D Logit lens and tuned lens432

We input the prompt ‘The atomic number of Mg is ’ and analyzed the token probabilities at each433

layer using logit-len. By normalizing the final token’s hidden state with LayerNorm and applying the434

vocabulary head followed by softmax, we obtained the top-ranked tokens directly output by each435

layer. In each layer, we extracted the probability of the target token, ttarget — the output token from436

the last layer, and checked if it ranked within the top 50 most probable tokens for that layer. The437

results are shown in Fig. D.1.438

In the early layers, the probability of the target token has not shown an upward trend, indicating these439

layers neither strongly predict the target tokens nor significantly refine their probabilities. In contrast,440

probabilities gradually increase in the later layers, highlighting their role in refining and finalizing441

predictions. Although crucially, there don’t appear to be any hard boundaries between these distinct442

activities and the model smoothly transition from one to the next. The markers, concentrated in later443

layers, suggest that while intermediate layers store factual knowledge, they are not yet attempting to444

articulate it in language form.445

Notably, the distribution of ‘Top 50’ markers varies by token type. Tokens with lower contextual446

complexity, such as spaces, ‘and,’ or ‘since,’ have their markers in earlier layers. In contrast,447

knowledge-based tokens, like ‘12,’ require deeper processing and appear in much later layers. This448
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suggests that while intermediate layers encode factual concepts, they are likely focused on tasks other449

than linguistic articulation, which primarily develops in the later layers.450

Figure D.1: Probability of the target token ttarget across layers in Meta-Llama-3-8B for the prompt
“The atomic number of Mg is”. Following the logit lens framework, each line shows ttarget’s probability
derived from intermediate layer logits. Probabilities are computed by iteratively re-running the model
with the next token added. Markers indicate layers where ttarget ranks in the top 50 most probable
tokens.

We also performed additional experiments using tuned lens in Fig D.2. The results consistently show451

a similar trend: tokens such as “of” and “is” achieve high prediction accuracy at intermediate or452

earlier layers, while more factual or critical token (e.g., blue line “5” only becomes the top prediction453

at layer 29)—require deeper processing.454

Figure D.2: Probability of the target token ttarget across layers in Meta-Llama-3-8B for the prompt
“The atomic number of Mg is”. Each line shows ttarget’s probability computed using a tuned lens—a
learned linear probe trained to decode intermediate hidden states. Probabilities are obtained by
iteratively re-running the model with the next token appended. Markers indicate layers where ttarget
ranks among the top prediction.

E Attribute representations overlap in intermediate layers455

E.1 Probing weights analysis456

As outlined in Sec. 4.1, we trained a linear model for each attribute Aj at each layer l, yielding a457

weight vector w(l)
j that represents how attribute Aj is stored in the residual stream space of layer l.458

To analyze attribute relationships across layers, we computed the cosine similarity between weight459

vectors of different attributes using continuation-style residual stream sets to minimize language460

pattern influence.461

Fig. E.1 illustrates the cosine similarity across 80 layers of Meta-Llama-3.1-70B. Notably, in high-462

dimensional spaces, random vector pairs typically approach orthogonality due to the ‘blessing of463

dimensionality’. To illustrate this, we randomly sampled vector pairs in an 8129-dimensional space464

(the residual stream vector size of Meta-Llama-3.1-70B) and calculated their cosine similarity, with465
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Figure E.1: Cosine similarity between weight vectors of linear probes for attribute pairs across layers
in Meta-Llama-3.1-70B. The shaded area (99.9% CI) represents unrelated boundaries.

the 99.9% confidence interval (CI) shown in gray. Cosine similarity outside this interval indicates466

meaningful relationships between attributes. See Appendix E.2 for more details.467

In the early layers, high similarity reflects token-level processing rather than semantic understanding.468

As layers deepen, similarity decreases as the model begins capturing semantics. In the intermediate469

layers, similarity rises, indicating shared representation of correlated attributes. Finally, in the later470

layers, similarity drops again as the model separates features for refined decision-making.471

E.2 Blessing of dimensionality472

When the dimensionality is very high, the most of random vector pairs approach orthogonality.473

We illustrate this by sampling pairs of vectors in an 8129-dimensional space (corresponding to the474

residual stream vector dimension of Meta-Llama-3.1-70B) and computing their cosine similarities.475

The 99.9% confidence interval (CI) provides an estimate of the expected cosine similarity range at476

each dimensionality:477

CI99.9% =

(
µ− z

σ√
n
, µ+ z

σ√
n

)
where µ is the sample mean, σ is the sample standard deviation, n is the number of sampled pairs,478

and z ≈ 3.29 for a 99.9% confidence level.479

Figure E.2: Cosine similarity distribution of random vector pairs in an 8129-dimensional space, with
a 99.9% confidence interval (−0.0364, 0.0364) shown by the dashed lines.

The specific distribution is shown in Fig. E.1, where the confidence interval is extremely narrow480

(±0.036), indicating that random vector pairs exhibit highly consistent cosine similarities. This481

suggests that the learned weights of the linear probe across different feature pairs are effectively482

uncorrelated, exhibiting only random alignment. In Fig. 3, the shaded region represents the 99.9%483
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confidence interval for the cosine similarities of high-dimensional random vectors, further supporting484

this observation.485

F Linear probing detailed results486

In Sec.4.1, we applied linear probing to train linear-kernel Support Vector Regression (SVR) models487

for each layer l and attribute Aj , using the residual stream dataset Hj(l). The ground truth values488

yi,j correspond to the attribute values of each element Xi.489

F.1 Why R2 cannot reach 1490

Even with a perfectly trained model and a sufficiently large dataset, achieving an R2 of 1 in linear491

probing is impossible. The model’s output token ’1’ indicates that the residual stream at the last token492

position in the final layer leads to the highest logit for token 1’s ID after the final linear transformation.493

However, do token residual stream in the final layer of numbers exhibit a perfect linear relationship494

with their real numerical values? Token embeddings are learned representations that capture semantic495

relationships between tokens, but they are not guaranteed to align linearly with numerical values.496

To further investigate this, we fit a linear model to map approximated numerical token representations497

in the last layer to their actual values. Specifically, we extract token IDs for numbers 1–50 from the498

tokenizer, multiply them by the pseudoinverse of the vocabulary projection matrix W+
vocab, and obtain499

their corresponding vector representations in the hidden space of the last layer:500

hi = W+
vocab · ti

where ti is the encoded token ID for the number i, and hi represents its corresponding hidden space501

representation.502

We then fit a linear regression model to map these representations to their true numerical values. The503

linear correlation turned out to be quite strong, with an R2 of 0.98. However, this is not 1—possibly504

because the embedding space is not perfectly linearly aligned with numerical values, or because it is505

influenced by semantic noise, or simply due to limitations in the fitting method.506

For LLMs, even if the logits were identical to the embeddings hi (which is theoretically impossi-507

ble—at best, they can only approximate them), the R2 would still be limited to 0.98. Therefore, it is508

unsurprising that linear probing does not achieve an R2 of 1.509

F.2 Confusion matrix510

Figure F.1: Confusion Matrix on categorical linear probing of attribute ‘Group’ on the middle layer.
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F.3 Question prompts511

We applied the Mann–Kendall test to ∆R2 in the upper 50% of layers for each model–attribute pair512

(15 in total). Benjamini–Hochberg adjustment (FDR = 0.05) retained significance in 12 pairs, with τ513

ranging from 0.36 to 0.94 (median 0.79; Table F.3).514

Figure F.2: R² scores for linear probes trained on target properties and evaluated on representations
from question and continuation prompts.
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Table F.1: Mann–Kendall trend test on ∆R2 (difference between continuation and question prompt
R²) within depth layer depths 0.5–1.0. τ : Kendall’s tau (trend strength). (*) indicates significance
after Benjamini–Hochberg FDR correction (α = 0.05).

Model Attribute τ p

Meta–Llama–3.1–70B

Group 0.95 < 0.001*
Period 0.84 < 0.001*
Electronegativity 0.73 < 0.001*
Atomic Mass 0.53 < 0.001*
Atomic Number 0.41 < 0.001*

Llama–2–7b–hf

Electronegativity 0.80 < 0.001*
Atomic Mass 0.80 < 0.001*
Group 0.75 < 0.001*
Atomic Number 0.55 0.003*
Period 0.40 0.034*

Llama–3.1–8B

Group 0.57 0.003*
Electronegativity 0.52 0.006*
Atomic Number 0.20 0.300
Atomic Mass 0.20 0.300
Period -0.05 0.822
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F.4 ‘Non-matching’ and ‘no mention’ prompts515

F.4.1 Non-matching attribute pairs516

To contrast explicit and implicit attribute cues, we selected a set of non-matching attribute pairs517

with minimal direct statistical dependency. Each pair was chosen to lack strong linear or monotonic518

relationships, and we verified on our 50-element subset that all selected pairs satisfy |Pearson r| <519

0.30, |Spearman ρ| < 0.30, and R2 < 0.15 (Table F.2). These thresholds ensure that no pair can be520

trivially recovered through simple linear or monotonic mappings.521

Table F.2: Linear and monotonic correlations for non-matching attribute pairs (50-element subset).

Pair |Pearson r| |Spearman ρ| Linear R²

Group–Atomic Number 0.044 0.070 0.002
Group–Period 0.255 0.300 0.065
Group–Mass 0.037 0.066 0.001
Electronegativity–Atomic Number 0.154 0.038 0.024
Electronegativity–Mass 0.147 0.039 0.022

F.4.2 Detailed results522

Figure F.3: R² score trends for ‘no mention’ cases. Regression linear probing on the element token
residual stream with 5-fold cross-validation was performed on residual streams, and R2 scores on the
test set are shown for each attribute.
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Figure F.4: R² and ∆R2 scores for linear probes trained on target properties and evaluated on
representations from matching and non-matching prompts. ∆R is defined as R²(matching prompt)
minus R²(non-matching prompt).

Figure F.5: Average ∆R2 across five attributes, with with 95% confidence interval shaded. ∆R2 =
R2

match −R2
non-match.
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Table F.3: Mann–Kendall trend test on ∆R2 (difference between matching and non-matching prompt
R²) within layer depths 0.6–1.0. τ : Kendall’s tau (trend strength). “*” indicates significance after
Benjamini–Hochberg FDR correction (α = 0.05).

Model Attribute Pair τ p

Meta–Llama–3.1–70B

Electronegativity – Atomic Number 0.923 < 0.001*
Group – Atomic Number 0.911 < 0.001*
Electronegativity – Atomic Mass 0.895 < 0.001*
Group – Period 0.625 < 0.001*
Group – Atomic Mass 0.452 < 0.001*

Llama–2–7b–hf

Group – Atomic Number 0.872 < 0.001*
Group – Atomic Mass 0.846 < 0.001*
Electronegativity – Atomic Mass 0.795 < 0.001*
Group – Period 0.769 < 0.001*
Electronegativity – Atomic Number 0.769 < 0.001*

Llama–3.1–8B

Electronegativity – Atomic Mass 0.821 < 0.001*
Group – Period 0.769 < 0.001*
Group – Atomic Mass 0.744 < 0.001*
Electronegativity – Atomic Number 0.641 0.003*
Group – Atomic Number −0.154 0.502
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F.5 Detailed results of the best layer523

In the main text Sec. 4.1, we used SVR for linear regression probing. Figures F.6, F.7, F.8, F.9, and524

F.10 present the detailed R2 performance of the best layer for each attribute—atomic number, atomic525

mass, electronegativity, period, and group—across three different models.526

Figure F.6: Evaluation of SVR performance for Layer best_layer on the atomic mass. The left plot
shows true vs. predicted values with alignment to the diagonal indicating accuracy. The center plot
displays residuals, highlighting error distribution centered around zero. The right plot visualizes true
and predicted values across samples, with shaded areas representing error magnitudes.
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Figure F.7: Evaluation of SVR performance for Layer best_layer on the atomic number. The left plot
shows true vs. predicted values with alignment to the diagonal indicating accuracy. The center plot
displays residuals, highlighting error distribution centered around zero. The right plot visualizes true
and predicted values across samples, with shaded areas representing error magnitudes.
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Figure F.8: Evaluation of SVR performance for Layer best_layer on the group. The left plot shows
true vs. predicted values with alignment to the diagonal indicating accuracy. The center plot displays
residuals, highlighting error distribution centered around zero. The right plot visualizes true and
predicted values across samples, with shaded areas representing error magnitudes.
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Figure F.9: Evaluation of SVR performance for Layer best_layer on the period. The left plot shows
true vs. predicted values with alignment to the diagonal indicating accuracy. The center plot displays
residuals, highlighting error distribution centered around zero. The right plot visualizes true and
predicted values across samples, with shaded areas representing error magnitudes.
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Figure F.10: Evaluation of SVR performance for Layer best_layer on the electronegativity. The left
plot shows true vs. predicted values with alignment to the diagonal indicating accuracy. The center
plot displays residuals, highlighting error distribution centered around zero. The right plot visualizes
true and predicted values across samples, with shaded areas representing error magnitudes.
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