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Abstract

Large Language Models (LLMs) show impressive capacity to synthesize scientific
knowledge but struggle with basic arithmetic, raising concerns about reliability.
As materials science increasingly leverages LLMs for hypothesis generation, it
is essential to understand how they encode specialized knowledge. Here, we
investigate how the open-source Llama series of LLMs represent the periodic table
of elements. We identify a 3D spiral structure in the hidden states of LLMs that
aligns with the conceptual structure of the periodic table, suggesting that LLMs
can reflect the geometric organization of scientific concepts learned from text.
Linear probing reveals that middle layers encode continuous, overlapping attributes
that enable indirect recall, while deeper layers sharpen categorical distinctions
and incorporate linguistic context. These findings suggest that LLMs represent
symbolic knowledge not as isolated facts, but as structured geometric manifolds
that intertwine semantic information across layers. We hope this inspires further
exploration into the interpretability mechanisms of LLMs within chemistry and
materials science, enhancing trust of model reliability, guiding model optimization
and tool design, and promoting mutual innovation between science and Al.

1 Introduction

Large Language Models (LLMs) have demonstrated a notable capacity to synthesize and generate
insights from vast amounts of expert knowledge, drawing attention across multiple scientific domains
[Wysocki et al., 2024, |Lei et al.| 2024]]. Yet, despite their impressive capabilities, researchers have
observed their surprising inability to reliably perform seemingly straightforward tasks, such as basic
arithmetic operations [Qian et al., [2022| Baeumel et al. 2025, |Gambardella et al., [2024]. This
phenomenon highlights an important aspect of LLMs: their fundamental reliance on learned patterns
and probabilistic predictions based on token embeddings, rather than explicit arithmetic operations.
Consequently, simple numerical tasks, effortlessly handled by even the most rudimentary calculators
with orders of magnitude less computation, remain challenging and error-prone for these sophisticated
LLMs.

In parallel, interest is rapidly growing in leveraging LLMs within the materials sciences community.
Recent research has proposed intriguing applications such as laboratory orchestration [Sim et al.,
2024, |Darvish et al.| 2025| |(Olowe and Chitnis} [2025]], hypothesis generation [Liu et al., [2025a),
Kumbhar et al.| 2025 Bazgir et al.,[2025alb]], and complex materials property prediction [Liu et al.,
2025b}, Rubungo et al.l |2025]]. However, skepticism remains about their reliability in scientific
research. Since large language models are trained to align with user expectations, they may produce
authoritative-sounding but incorrect or fabricated answers, giving users a false sense of confidence
[Steyvers et al., 2025].
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This skepticism prompts a critical question: Can we trust LLMs to accurately represent specialized
chemical information? In this work, we investigate whether the prominent open-source LLMs,
Llamas [Grattafiori et al.l [2024]], store chemical knowledge in a structured and rational manner,
whether fragmented into isolated clusters of disconnected facts, or interconnected through rational
webs of structured knowledge. We delve into how LLMs encode and recall such knowledge through
layer-wise, geometry-aware representations. The contributions of our study are:

1. We report the first observation of a 3D spiral structure in LLM hidden states that organizes chemical
elements in alignment with the structure of the periodic table (Sec [3).

2. To our knowledge, this is the first to compare regression and classification probing, showing
that middle layers encode continuous attribute structure, while later layers sharpen boundaries for
fine-grained decisions (Sec [.1).

3. We show that linguistic structure increasingly shapes knowledge representations in later layers
(Secfd2).

4. We find that LLMs recall related attributes through strong linear associations in middle layers,
which weaken in deeper layers (Sec 3).

2 Preliminaries

Our study only focuses on how reliably acquired knowledge (i.e. things we’re confident the model
knows) is represented within LLMs, and excludes hallucinations or information not in the training
set. We use the properties of chemical elements in the periodic table as a case study due to their
frequent occurrence in training data, well-defined attributes, quantifiable properties, and making
them an ideal subject for this investigation. We adopt Llama series models [Touvron et al.| 2023
Grattafior1 et al., 2024] in this study. To study how LLMs represent attributes across layers, we
construct a prompt dataset based on a set of attributes (A = {4; }jj‘il, such as ‘atomic number’
or ‘group’) and a set of elements (X = {X;}X,, constituting the first 50 elements, such as ‘Mg’
or ‘Al’). For linguistic diversity, we incorporate predefined template sets: 7™ = {7} | for
continuation-style prompts and 79 = {T,**}11 | for question-style prompts, with 11 templates
in each. In the continuation-style templates, the next output token would be the factual knowledge
directly such as:

T (A, X;) = “X;’s Aj is’
In question-style templates, the next output token is typically a syntactic word like ‘The’, which
ensures the grammatical structure is correct, such as:
TP (A, X;) = ‘What is the A; of X;?°
T3"*(A;, X;) = ‘Which value represents X;’s A;?’
By substituting each element and attribute (X;, A;) into these templates, we generate prompts:

Pijk = Tu(Xs, Aj)

Each prompt p; ; 1. can then be fed into LLMs to study the corresponding residual streams at different
layers. Last-token residual streams capture the full prompt context in decoder-only models with
masked attention, as they integrate information from all preceding tokens. For each layer [, we
collect last-token residual streams hz(l]) «, from prompts p; ; 5 across all elements and templates (see
Appendix [A] for details).

3 Geometric relationships among attributes

In materials science, a spiral trend emerges from the periodic variation in valence electron configura-
tions as atomic number increases. By arranging elements sequentially and mapping their properties
in a polar coordinate system, this periodicity becomes visually apparent as a spiral. We investigate
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whether LLMs (that have all been exposed to extensive data on the properties of elements during
training), inherently capture these physical periodicities and reflect similar spiral structures in their
learned embeddings. We hypothesize that attributes in LLMs exist in a high-dimensional space,
manifesting as linear, circular, or spiral patterns based on their structure, and then proceed to validate

these geometries.
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Figure 1: Residual Stream Patching Results for Layer 20 in Meta-Llama-3.1-70B. The model’s
predictions are evaluated after replacing the residual stream of the ‘element’ token at the last token

position with the predicted residual stream h™® (%)

Inspired by [Engels et al.| [2024], we map the last-token residual streams h() € R¥ at layer [ to a
geometric space f(r, g, p), which encodes atomic number r, group g, and period p. To learn this
mapping, we first reduce the dimensionality of the residual streams to 30 using PCA, denoted as
P(h("), and fit a linear projection using all 50 elements except one held-out target:

2
2

O B _ ~ H Pp(hH® s
w® b argvr&,{g/; W'P(h{’) +b — f;

where W) e R¥*30 b() ¢ RY and fi = f(ri,gi,pi)
denotes the mapping of the i-th element in the geometric space.

To perform the intervention, we compute the centroid of the
PCA-reduced residual streams for the remaining N = K — 1
elements:

o1
B0 = > P(h{)
i#0

then map it to the geometric space: z = W h® + b®) Let
fo = f(ro,90,p0) denote the target element’s embedding in
the geometric space. The deviation fy — z is projected back
to the residual stream space using the pseudo-inverse of W),
giving the predicted (intervened) residual stream:

@ Predictions
—— Ground Truth

rw

s 3
Predicted Atomic Number

N
<)
N
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—40

reodd
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Figure 2: Predicted atomic num-
bers after intervention in 3D spiral
space (rcos,rsiné,r). Colored
points indicate the tokens with high-
est logits.

e - +
iy d.0) _ p-1 <h(l) + (W(z)) (fo — Z)>

Importantly, the model never accesses the original residual stream of the target element; the predicted
residual stream is computed solely from its geometric representation and the residual streams of other
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elements. During inference, we replace the residual stream of ‘element’ (last token position) in the

20th laye with flgred’(m), using the prompt ‘In the periodic table, the atomic number of element’.
We then evaluate whether the model can correctly output the target token without ever seeing its
original residual stream.

We evaluate the effectiveness of different geometric spaces for interventions, including linear, 2D
spiral, and 3D spiral (i.e. conical helix) geometries, as shown in Figure. Angular variables § = 21”—89
are used to capture periodic relationships. To test the impact of disrupted geometry, two random
spaces are introduced: in Space 8, atomic numbers r are shuffled; in Space 9, 6 is randomly permuted.
Additionally, in Space 10, the prompt ‘In numbers, the Arabic numeral for number’ generates numbers
1-50, testing whether periodic patterns emerge without explicit element references. We designed this
control to examine whether the observed geometric shapes arise from element-related knowledge or
simply from numerical sequences.

Effective residual stream patching suggests that the target space
f(r,g,p): 1) retains sufficient information for accurate recon-
struction during transformations with the residual stream space,
and 2) preserves geometric structures similar to those in the
residual stream space to ensure valid adjustments in the high-
dimensional space.

Patching results for Meta-Llama-3.1-70B are shown in Fig. [I]
with detailed values in Table [B.I] (Appendix). Results show
that intervention can be applied in various geometric spaces,
with some performing significantly better. Spaces such as
(cos8,sin6,r) and (rcosd,rsinf,r) over 70% predictions
of the atomic number have an absolute error within 2, sug-
gesting the potential existence of latent 3D structures in LLMs
resembling 3D spirals. Fig. [2]illustrates the LLM’s output Figure 3: Euclidean distance
post-intervention in 3D spiral geometry. Additional geometric heatmap of approximated vector
analyses are in Appendix [B.2] Randomly generated prompts representations for numeric tokens
perform very poorly, which is expected given their lack of coher- (1-50) in the hidden space of the
ent semantic structure and context, but even element unrelated last layer in Meta-Llama-3.1-70B.
prompts with clear linguistic form also yield poor performance.

This suggests that the geometry of the embedding space is not

merely tied to numerical correlations or surface-level semantics, but is inherently aligned with the
background knowledge invoked by the prompt, reflecting real-world knowledge structures.

In a concurrent study, [Kantamneni and Tegmark! [2025]] observed spiral-like structures in number
space with periods of 2, 5, 10, and 100, likely reflecting common human conventions in numerical
representation. In contrast, our model exhibits a distinct 18-period spiral aligned with the periodic
structure of chemical elements. This representation performs notably worse for ordinary numbers
without elemental context (which aligns with their observation that the 18-period does not prominently
emerge), indicating that such geometric patterns emerge from underlying physical or semantic
regularities rather than arbitrary structures.

In the intervention experiments, it is actually not obvious whether a smaller numerical difference
between the output token and the true value always implies smaller error. To investigate this,
we project token IDs for numbers 1-50 into the last hidden layer using the pseudoinverse of the
vocabulary projection matrix ngcab. This operation reconstructs an approximation of the hidden
representations that would produce these token IDs as logits. Fig. [3] shows that smaller numerical
differences generally correspond to closer representations, while larger differences often result in
inconsistent distances, reflecting the model’s difficulty with numerical consistency over larger gaps.
For instance, the vector for ‘1’ is closer to ‘2’ than to ‘5°, while the distances between ‘10° and
‘40’ is closer than between ‘10’ and ‘21°. In the intervention, when the predicted value is close to
the true value, hidden logits align well with true logits, suggesting higher accuracy. However, large
numerical deviations cannot fully capture prediction errors, so we evaluate results using an absolute
error threshold (< 2) in Fig. [T} representing a small distance.

!See Appendix for details on intervention performance. Interventions become effective from layer 20
onward.
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4 Direct attribute recall

In the previous section, we observed that elemental knowledge in LLMs forms a 3D spiral structure.
Interestingly, although prompts mentioned only atomic numbers, the embeddings also reflected
elemental groups, suggesting that LLMs retrieve both explicitly requested and implicitly related
attributes. To better understand these mechanisms, this section investigates direct attribute knowledge
recall and Sec. [5| will explores how LLMs access related but unprompted knowledge.

4.1 From continuity to boundary sharpening

Some elemental attributes, such as group and period, naturally exist in both categorical and numerical
forms. This duality enables both classification and regression probing, allowing for direct comparisons
that have been underexplored in prior work, which often focused exclusively on a single type.

To examine how LLMs access explicitly mentioned knowledge, we use the last-token residual stream

from the continuation style prompt h;l) € R* as the representation of attribute Aj, and fit a linear
probe to predict its corresponding values via:

l l l l
£ (b)) = W b

For categorical attribute forms (e.g., Category, Group, Period), W§-Z) € }R‘Cﬂ"x’“, bg-l) € RIG,
Predictions are made by:

. 1 1

g = argmax[f; )(hg. ))]C.

ceCy

For continuous attributes, we perform scalar regression by setting Wy) = Wy)‘r’ Wy) € RF,
bl € R, yielding:

5O = W§Z)Th§l) n b;l)
Probes are trained using 5-fold cross-validation on last-token residual streams. We use a linear
Support Vector Machine (SVM) for categorical tasks and Support Vector Regression (SVR) with a
linear kernel for continuous tasks. The resulting classification accuracies and regression R? scores
are shown in Fig.[4] with best-layer results provided in appendix [F.5]

Regression probes reveal that continuous numerical features are effectively represented in intermediate
layers, as indicated by high R? values (while not reaching 1, see Appendix . These intermediate
layers sometimes even outperform the final layers, suggesting that numerical knowledge is already
encoded before the final output stage. This aligns with findings by [Meng et al.| [2022]], which show
that factual knowledge recall is already mediated by intermediate MLP layers.

In classification probes, intermediate layers perform similarly or even better than final layers for
clearly distinct non-numerical categories (e.g., metal vs. non-metal), aligning with prior work [Nanda
et al.| 2023]]. However, they significantly underperform in fine-grained numerical classification, e.g.,
Period accuracy drops from ~ 1.0 (final) to ~0.7, and Group from ~ 1.0 to ~0.6.

This suggests that while intermediate layers already encode meaningful numerical structure, addi-
tional processing in later layers is required to sharpen boundaries and support accurate fine-grained
classification. This aligns with intuition: later layers prepare for discrete token outputs, where
clearer classification boundaries must emerge. As shown in Appendix Fig.[F1] the confusion matrix
from Layer 40 (70B middle layer) is not perfectly accurate, but most misclassifications fall near the
diagonal, further demonstrating that intermediate layers encode coherent numerical structure, albeit
with blurred categorical boundaries. These observations may provide useful insights for choosing
between intermediate and later-layer embeddings in downstream tasks.

Notably, Llama2 7B shows low accuracy (<0.4) on Group classification compared to Llama3.1 8B
(>0.8) (but similar performance in Group regression probing) potentially due to its single number
tokenization (splitting numbers like ‘12’ into ‘1’ and ‘2’), which may cause confusion between the
representations of output tokens like ‘12° and ‘1’. In contrast, Llama 3 uses separate tokens for
numbers below 1000.

4.2 Higher Language Sensitivity in Later Layers
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Figure 4: Linear probing results on last token across layers. (a) Regression (R?) for numerical
attributes and a random baseline. (b) Classification (accuracy) for categorical attributes. All results

use 5-fold cross-validation on last-token residual streams.

The sharpening of numerical representations into categor-
ical boundaries in later layers suggests that these layers
might be shaped by the expected output tokens. This
raises a question: does the linguistic structure influence
the factual representations across layers?

We compared question-style and continuation-style
prompts using linear regression probes. Continuation
prompts generally lead to direct generation of fact-related
tokens, whereas question-style prompts tend to introduce
syntactic fillers (e.g., “The’) and are more influenced by
superficial language patterns.

Fig reports the average delta R? across five attributes,
with per-attribute results shown in Fig. [F.2] (Appendix).
As analyses in earlier sections show stronger semantic
signals and higher R? in mid-to-late layers, we focus on
depths 0.6-1.0. AR? increases in the mid-to-late layers,
indicating a growing gap between prompt types. Among

0.4

0.2

ol

-0.2

AR?2 (continuation - question)

—— Llama-2-7b-hf
—— Llama-3.1-88
—— Meta-Llama-3.1-70B

0.0 0.2 0.4 0.6 0.8 1.0
Layer depth (proportion)

Figure 5: Average AR? across five at-
tributes, with 95% confidence interval
shaded. AR? = R2 — R2

ques*

the 15 attribute—-model combinations (3 models x 5 attributes), 12 show a significant increasing trend
(FDR-corrected p < 0.05), with a median Mann—Kendall 7 of 0.55 (Appendix [F3).

The results indicate that, as depth increases, question prompts become progressively less effective
than continuation prompts at encoding factual attributes, hinting that the prompt’s linguistic structure
exerts a stronger influence on representations in deeper layers. Interestingly, the larger models show
a slower increase in AR? across layers than the smaller models, suggesting they maintain more
stable factual representations across prompt types and thus exhibit a smaller distinction between

continuation and question prompts.
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The rising A R? suggests that deeper layers increasingly blend factual content with linguistic structure
to prepare the final tokens. To further test this, we applied the logit lens [nostalgebraist, [2020]] and
tuned-lens [Belrose et al.,|[2023]]. These analyses estimate the token distribution each layer would
produce if decoding were halted at that depth, and show that the correct numerical token becomes
highly ranked only in the later layers (Appendix [D). Complementary attention statistics (Appendix [C)
reveal that mid-layers focus tightly on the factual token, whereas later layers spread attention over a
wider context patterns consistent with increased syntactic and contextual integration.

5 Indirect attribute recall

In the previous section, we analyzed direct recall of explicitly mentioned attributes across layers. Our
earlier geometric analysis showed that LLMs can also recall related attributes that are not explicitly
mentioned. In this section, we explore how related but unmentioned attributes are recalled.

5.1 Middle Layers excel at indirect recall

We conducted experiments using linear probing to examine the relationships between distinct at-
tributes. Specifically, we extracted last-token residual streams from continuation prompts that mention
attribute A;, (matching) or a different attribute A;, (non-matching), i.e. seeing if we can extract
information that was not explicitly requested in the prompt. We also extracted the residual stream
at the element token position, before any attribute is introduced (no mention). Separate probes
were trained for each residual stream dataset, always using labels of attribute A;, as targets. To
avoid confounding factors, we selected six attribute pairs without direct linear relationships for non
matching probe (see Appendix . Average R? curves for all attributes are shown in Fig. E];
detailed case-wise linear probing results appear in Appendix Figs. [F-3]and [F4]

1o Llama-2-7b-hf Llama-3.1-8B Meta-Llama-3.1-70B
0.8
'& 0.6
c
©
Q
s 0.4
0.2
00 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0
Layer depth (proportion) Layer depth (proportion) Layer depth (proportion)
—— Matching attribute —— Non-matching attribute —— No mention of attribute

Figure 6: Average R? scores from regression probing across layers for three prompt types: matching,
non-matching, and no-mention. All probes predict a fixed target attribute A;, ; no-mention uses
element token residual streams before any attribute appears. Shaded areas show 95% confidence
intervals.

Attribute information was detectable across all prompt styles. Intuitively, matching prompts should
perform best by providing explicit cues, no-mention comes next as it relies on inference, and
non-matching prompts perform worst due to misleading signals. Surprisingly, at intermediate
layers (around 0.5 depth), non-matching prompts yielded higher linear R? scores than no-mention
prompts, suggesting stronger inter-attribute interactions at these depths. This may reflect entangled
representations between related attributes, which we analyze further in Sec. @

Beyond 60% depth, performance follows the expected trend: matching > no-mention > non-matching.
The gap between matching and non-matching prompts increases steadily from 0.6 to 1.0 depth.
Across 15 model-attribute tests, 14 exhibited statistically significant divergence (FDR corrected
p < 0.05), with a median Mann—Kendall © of 0.77 (Appendix Fig[F.5] Table[F.3). It suggests that
attribute representations become more specialized and context-sensitive in deeper layers. Further
analyses in Sec. [5.2] provide a more direct explanation, examining how structural relationships
between attributes contribute to this layered specialization.

The fact that the ‘no-mention’ prompts perform best in the early layers may seem counterintuitive;
however, this is likely because, unlike the other two scenarios, in the ‘no-mention’ case, the last token
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is the element itself, which may aid recall. In contrast, matching prompts extract residual streams
at the final token (such as ‘is’), requiring holistic semantic understanding. As layer depth increases,
semantic clarity improves, enhancing explicitly mentioned attributes and reversing this initial trend.

5.2 Stronger linear correlations in middle layers

To explicitly capture relationships between attribute rep-
resentation, we train a linear mapping from the represen- 10
tation of attribute A;; to attribute A;o at each model layer.
Specifically, we utilize the final residual streams from a
fixed prompt template (after applying PCA to reduce the
dimensionality to 20). The mapping performance is evalu-
ated using R? scores obtained via 5-fold cross-validation.

0.6

R? Score

0.4

0.2

Fig. illustrates the variation of R? scores across layers 00 1Le I Al

0 . . 2 0 10 20 30 40 50 60 70 80
for different attribute pairs. In early layers, R* scores are Layer
high; however, this observation alone does not necessarily o e o e PO omeastty
indicate meaningful attribute-level relationships, as initial e~ period - group atomic mass - electronegativity

—e— atomic mass - group —e— atomic mass - atomic number

representations are predominantly sensitive to token-level
similarity. Due to the use of a fixed input template, the

L o . Figure 7: Ry scores across layers in
resulting inputs exhibit substantial token-level overlap. g 2 Y

Meta-Llama-3.1-70B for linear map-
In the intermediate layers, where concept-level understand- pings between attribute pairs using the fi-
ing is evident (as shown by t-SNE and linear probing), we nal residual stream from a fixed prompt.
observe a peak in R? scores. This indicates that even

simple linear models can effectively capture relationships

between different attributes, reflecting their connection in the learned representation space. This also
explains why prompts with non-matching attributes outperform those with no attribute mention at
these layers in the last section Sec In deeper layers, R? scores decline, suggesting a shift toward
specialized representations. Similar conclusions from the linear probing weight analysis further
support this, as shown in Appendix [E.]

6 Discussion and conclusions

This study highlights that despite their exclusive reliance on textual training data, LLMs internally
develop structured representations aligning closely with scientific knowledge. Specifically, we identify
a 3D spiral structure within the hidden states of LLMs that mirrors the conceptual organization of the
periodic table, indicating the models’ implicit grasp of domain-specific regularities without explicit
supervision.

Probing experiments reveal that the encoding of chemical knowledge evolves across model depth:
middle layers encode continuous, overlapping attribute subspaces suitable for coarse categorization,
while deeper layers sharpen decision boundaries and integrate linguistic structure. Moreover, we find
that related attributes are strongly linearly associated in middle layers, enabling indirect recall.

Our results demonstrate that symbolic scientific knowledge, particularly in chemistry, is represented
within LLMs as coherent, geometry-aware manifolds where conceptual information is systematically
intertwined across model layers. Furthermore, this geometric structure aligns with the laws observed
in the physical world, indicating that knowledge within LLMs is not arbitrary, but rather organized
and reflective of inherent natural order. Moreover, it is unsurprising that these large models discover
meaningful relationships between concepts and these must often represent efficient compression.

We hope this work inspires further investigation into how LLMs represent and reason about scientific
knowledge, such as materials property prediction, and informs the design of downstream embedding-
based tasks. We believe interpretability in LLMs is essential for Al safety, reducing unintended
behaviors and building trust. Understanding how knowledge is stored and recalled across layers can
inspire more interpretable, efficient models, advance knowledge editing and scientific discovery.

Limitations. Our prompts have specifically targeted chemical elements in the periodic table; future
studies could expand this to include other chemical structures and properties. The hypothesis-driven
validation of geometric structures may oversimplify LLMs’ non-linear interactions.
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Appendix

A Last token residual stream collection

O]

For each layer [, we collect last-token residual streams h; J

and templates:

, from prompts p; ; . across all elements

b, = O (pi k) € RT,

where f() denotes the layer-I transformation, 7" is the token length, and d is the hidden dimension.

The initial residual stream hgojz «. 18 obtained by embedding the prompt through an embedding layer
Ey, followed by processing through L Transformer layers. Each layer applies multi-head attention
and a feedforward network with residual connections and layer normalization:

hgf;’/k = hg’l;,i) + Attention(LayerNorm(hgf;,i)))

l l l
(" =h{"’ + FFN(LayerNorm(h{",))

Here, Q, K, and V represent the query, key, and value matrices used in multi-head attention to
compute token-to-token interactions. Finally, hl(?k is mapped to the vocabulary space using the
vocabulary head W yocap to produce logits:

. L
logltsi’jyk = h§7j3kwvocab

By analyzing last-token residual streams h'")

i.j.k across layers, we investigate how attributes are
represented in the model’s hidden states.

B Intervention outcomes in geometric recall

B.1 Layer-wise performance evaluation

Fig. [B-T]illustrates the prediction error across layers when the residual stream of the last token across
layers is replaced with the predicted residual stream derived from the geometric space f(r, g,p) =
(rcos@,rsind,r). In the early layers, errors gradually decrease because the model has not yet
captured semantic information, and the geometric space is still being constructed. The continuous
decline in error reflects the model’s growing ability to capture semantic information and progressively
build a coherent geometric representation. By layer 20, the error stabilizes, indicating that these
layers effectively encode the periodic and geometric relationships between atomic properties such as
atomic number, group, and period.

Error Variation Across Layers (Absolute Values, Missing Data Filled with 50)

50 1 —e— Mean Absolute Error
Error Range (Min-Max)

Absolute Error

1 6 1 16 21 26 31 36 46 51 56 61 66 7 76

41
Layer

Figure B.1: Variation of Absolute Prediction Errors Across Layers with Intervention. The plot shows
the mean absolute error (MAE) for each layer, along with the minimum and maximum error range
represented by the shaded region. Missing data points were replaced with a value of 50 before
computing the absolute errors.
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However, beyond layer 30, the error increases sharply as the model begins outputting non-numeric
tokens (replaced with an error value of 50 in the plot, corresponding to the maximum possible error
given the 50 elements and atomic numbers). This can be attributed to two factors. First, if the
numeric token is not the first output, generating the correct answer requires residual streams across
all token positions. But only the last residual stream was replaced. Intervening too late disrupts the
established flow of residual streams at other positions, which have already determined the output
content. Second, it is also likely due to the model shifting its focus from geometric relationships
to higher-level abstractions or context-dependent reasoning in the later layers. Therefore, for the
intervention experiments on geometric relationships, we selected layer 20 as it balances effective
encoding of geometric relationships and minimizes disruption to the model’s output process.

B.2 Detailed evaluation of geometric spaces

The primary evaluation criterion used in the main text is the absolute error threshold (< 2), as
discussed in detail in Sec[3] This metric was chosen because it better captures the accuracy of residual
stream interventions. However, other metrics, such as R?, Pearson correlation, and qualitative
mapping fidelity, also provide valuable insights. These complementary results are summarized in

Table B.11

Pearson Percentage of

#  Space Description R? Correlation  Abs. err <2  Mapping Fidelity
1 Linear structure along atomic number. 0.8863 0.9591 38.00% Moderate
2 (r,g,p) 3D cartesian grid. 0.8060 0.9191 48.00% Moderate
3 (rcos6,rsind,r) 3D radial spiral structure. 0.8162 0.9035 72.00% High

4 (cos6,sin@,r) 3D spiral structure. 0.7596 0.8813 70.00% High

5  (cos6,sinb,p) 3D periodic wave-like structure. 0.5106 0.7174 60.00% Moderate
6 (rcosf,rsinf,p) 3D periodic lattice with radial dependencies. ~ 0.6719 0.8240 62.00% Moderate
7 (rcosf,rsinf) 2D radial structure. -0.1391 0.1481 40.00% Low

8 Trandom Random linear structure. 0.0075 0.1503 10.00% Low

9 (cos(Brandom ), SIn(Brandom ), ) Randomized spiral. 0.6358 0.8465 20.00% Low
10 (rcos@,rsinf,r) Element unrelated prompts -0.4910 0.7215 48.00% Low

Table B.1: Performance of different low-dimensional spaces for residual stream intervention. Each
space represents a unique pattern, with results assessed using R2, Pearson correlation, and percentage
of predictions within absolute error < 2.

In the main paper, we demonstrate two geometric space intervention results; however, other shapes
can also be extracted. Fig. [B.2]shows the extracted linear structure from interventions. While the
alignment of points along a straight path indicates the presence of a linear structure, the overlapping
points suggest its limitations in distinguishing atomic number. Compared to more expressive shapes
like spirals, linear structures may struggle to effectively capture periodic or distinct features.

@ Predictions l“5
—— Ground Truth

Atomic Number

Figure B.2: Helix and Linear Structure in the Geometric Space from Intervention Experiments. The
figure shows predictions (colored points) and their alignment with the ground truth (gray line).

C Attention map detailed results
To investigate how the model prioritizes different parts of the input text, we conducted a preliminary

analysis using the 32-layer Meta-Llama-3-8B model. We adopted the attribute A, Period and Group,
and iterated over X, consisting of 50 elements, using the prompt template: ‘In the periodic table of
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elements, the A; of X; is.” These prompts were input into the language model, and we analyzed the
average attention across all attention heads in each transformer layer from the token ‘is’ to all other
tokens. The averaged results across different prompts are presented in Fig[C.1]

The results indicate that in the intermediate layers, where entropy is relatively high, there is a
noticeable concentration of attention from the token ‘is’ to attribute and element tokens. This suggests
that these intermediate layers focus more on tokens within the sequence that have a significant impact
on the output. In contrast, the later layers, which exhibit lower entropy (with the exception of the
final layer), show a more evenly distributed attention pattern. This pattern implies that the model
transitions from focusing on specific token relationships to integrating broader context, thereby
finalizing its interpretation for a cohesive output.

Attention Heatmap: "is" to All Tokens Attention from "is" to Attributes vs. Others
14 =
2- < 0.10 —e— Attention to Attributes
31 2 Attention to Other Tokens
41 0.175 € v
5 2005
91 g .
2! 000 L i
] 1 X
9- 0.150 0 5 10 15 20 25 30
ig ] Layer
12- 0.125 Attention from "is" to Elements vs. Others
13- -
14- | ] . c 015 —e— Attention to Elements
6; igi 0,100 -g 0.10 +— Attention to Other Tokens
17- ’ 2
- ig 1 £ 005
1 oottt 00000, 7 .
201 -0.075 0.00 = =
2 1 0 5 10 15 20 25 30
23 Layer
24- Attention Entropy by Layer
25- -0.050 25650 Py Dy Lay
26-
gg . 225645
1 L o
gg' 0025 £ 25640
i w
31- N 2.5635 —e— Attention Entropy
2 [ | : Y
RO SRS T T 0 5 10 15 20 25 30
& écb (5“60 ¢ \z@& & (\V\')@ ¢ @é\‘ © Layer
&'
R & & &

Tokens

Figure C.1: Average attention distribution analysis of the 32-layer Meta-Llama-3-8B model across
transformer layers, based on prompts, ‘In the periodic table of elements, the A; of X is,” where A; is
an attribute (period or group) and X; is an element. The heatmap (left) shows average attention from
‘is’ to all tokens, while line plots (right) depict attention to target tokens (e.g., element and attribute),
average attention to other tokens, and attention entropy. Intermediate layers focus on significant
token relationships with higher entropy, while later layers (excluding the final layer) show evenly
distributed attention and lower entropy, reflecting a shift to broader context integration.

D Logit lens and tuned lens

We input the prompt ‘“The atomic number of Mg is * and analyzed the token probabilities at each
layer using logit-len. By normalizing the final token’s hidden state with LayerNorm and applying the
vocabulary head followed by softmax, we obtained the top-ranked tokens directly output by each
layer. In each layer, we extracted the probability of the target token, it — the output token from
the last layer, and checked if it ranked within the top 50 most probable tokens for that layer. The
results are shown in Fig. [D.1]

In the early layers, the probability of the target token has not shown an upward trend, indicating these
layers neither strongly predict the target tokens nor significantly refine their probabilities. In contrast,
probabilities gradually increase in the later layers, highlighting their role in refining and finalizing
predictions. Although crucially, there don’t appear to be any hard boundaries between these distinct
activities and the model smoothly transition from one to the next. The markers, concentrated in later
layers, suggest that while intermediate layers store factual knowledge, they are not yet attempting to
articulate it in language form.

Notably, the distribution of “Top 50’ markers varies by token type. Tokens with lower contextual
complexity, such as spaces, ‘and,” or ‘since,” have their markers in earlier layers. In contrast,
knowledge-based tokens, like ‘12, require deeper processing and appear in much later layers. This
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suggests that while intermediate layers encode factual concepts, they are likely focused on tasks other
than linguistic articulation, which primarily develops in the later layers.

S Token 1: "12" ~—— Token 6: "12"
107 4 Token 2: " and" Token 7: " electrons”
—— Token 3: " it" —— Token 8:","
1024 Token 4: " has" Token 9: " and" »
3 — Tokens: " —— Token 10: " since" e
>1073
=z
8 104
S 10
[
10-°
10°°
0 5 10 15 20 25 30

Layer

Figure D.1: Probability of the target token #yge; across layers in Meta-Llama-3-8B for the prompt
“The atomic number of Mg is”. Following the logit lens framework, each line shows Ziyge;’s probability
derived from intermediate layer logits. Probabilities are computed by iteratively re-running the model
with the next token added. Markers indicate layers where e ranks in the top 50 most probable
tokens.

We also performed additional experiments using tuned lens in Fig The results consistently show
a similar trend: tokens such as “of” and “is” achieve high prediction accuracy at intermediate or
earlier layers, while more factual or critical token (e.g., blue line “5” only becomes the top prediction
at layer 29)—require deeper processing.

Lo f—=
Dty
11— !
08 —— 'The' y’
— ‘atomic"
—— 'number’
2064 ‘of!
= —
3
Qo
0 0.4
o
021 \
LSS
0.0

0 5 10 15 20 25 30
Layer Index

Figure D.2: Probability of the target token #i,roe; across layers in Meta-Llama-3-8B for the prompt
“The atomic number of Mg is”. Each line shows g’ probability computed using a tuned lens—a
learned linear probe trained to decode intermediate hidden states. Probabilities are obtained by
iteratively re-running the model with the next token appended. Markers indicate layers where ?iget
ranks among the top prediction.

E Attribute representations overlap in intermediate layers

E.1 Probing weights analysis

As outlined in Sec. we trained a linear model for each attribute A; at each layer [, yielding a

weight vector wi" that represents how attribute A; is stored in the residual stream space of layer [.
To analyze attribute relationships across layers, we computed the cosine similarity between weight
vectors of different attributes using continuation-style residual stream sets to minimize language
pattern influence.

Fig. [EJ]illustrates the cosine similarity across 80 layers of Meta-Llama-3.1-70B. Notably, in high-
dimensional spaces, random vector pairs typically approach orthogonality due to the ‘blessing of
dimensionality’. To illustrate this, we randomly sampled vector pairs in an 8129-dimensional space
(the residual stream vector size of Meta-Llama-3.1-70B) and calculated their cosine similarity, with
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Figure E.1: Cosine similarity between weight vectors of linear probes for attribute pairs across layers
in Meta-Llama-3.1-70B. The shaded area (99.9% CI) represents unrelated boundaries.

the 99.9% confidence interval (CI) shown in gray. Cosine similarity outside this interval indicates
meaningful relationships between attributes. See Appendix [E-2|for more details.

In the early layers, high similarity reflects token-level processing rather than semantic understanding.
As layers deepen, similarity decreases as the model begins capturing semantics. In the intermediate
layers, similarity rises, indicating shared representation of correlated attributes. Finally, in the later
layers, similarity drops again as the model separates features for refined decision-making.

E.2 Blessing of dimensionality

When the dimensionality is very high, the most of random vector pairs approach orthogonality.
We illustrate this by sampling pairs of vectors in an 8129-dimensional space (corresponding to the
residual stream vector dimension of Meta-Llama-3.1-70B) and computing their cosine similarities.
The 99.9% confidence interval (CI) provides an estimate of the expected cosine similarity range at
each dimensionality:

g g
Clog.on = (11— 2-2 7
99.9% <,LL Z\/E7M+Z\/ﬁ>

where p is the sample mean, o is the sample standard deviation, n is the number of sampled pairs,
and z ~ 3.29 for a 99.9% confidence level.

9000 T T
~—- 99.9% Cl Lower (-0.0364)
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Figure E.2: Cosine similarity distribution of random vector pairs in an 8129-dimensional space, with
2 99.9% confidence interval (—0.0364, 0.0364) shown by the dashed lines.

The specific distribution is shown in Fig. [EI]} where the confidence interval is extremely narrow
(£0.036), indicating that random vector pairs exhibit highly consistent cosine similarities. This
suggests that the learned weights of the linear probe across different feature pairs are effectively
uncorrelated, exhibiting only random alignment. In Fig. [3] the shaded region represents the 99.9%
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confidence interval for the cosine similarities of high-dimensional random vectors, further supporting
this observation.

F Linear probing detailed results

In SecH.1] we applied linear probing to train linear-kernel Support Vector Regression (SVR) models
for each layer [ and attribute A, using the residual stream dataset H;(l). The ground truth values
¥i,; correspond to the attribute values of each element .X;.

F.1 Why R? cannot reach 1

Even with a perfectly trained model and a sufficiently large dataset, achieving an R? of 1 in linear
probing is impossible. The model’s output token 1’ indicates that the residual stream at the last token
position in the final layer leads to the highest logit for token 1’s ID after the final linear transformation.
However, do token residual stream in the final layer of numbers exhibit a perfect linear relationship
with their real numerical values? Token embeddings are learned representations that capture semantic
relationships between tokens, but they are not guaranteed to align linearly with numerical values.

To further investigate this, we fit a linear model to map approximated numerical token representations
in the last layer to their actual values. Specifically, we extract token IDs for numbers 1-50 from the
tokenizer, multiply them by the pseudoinverse of the vocabulary projection matrix W::mb, and obtain
their corresponding vector representations in the hidden space of the last layer:

h; =W -t

vocab

where t; is the encoded token ID for the number ¢, and h; represents its corresponding hidden space
representation.

We then fit a linear regression model to map these representations to their true numerical values. The
linear correlation turned out to be quite strong, with an R? of 0.98. However, this is not 1—possibly
because the embedding space is not perfectly linearly aligned with numerical values, or because it is
influenced by semantic noise, or simply due to limitations in the fitting method.

For LLMs, even if the logits were identical to the embeddings h; (which is theoretically impossi-
ble—at best, they can only approximate them), the R? would still be limited to 0.98. Therefore, it is
unsurprising that linear probing does not achieve an R? of 1.

F.2 Confusion matrix

Confusion Matrix - Meta-Llama-3.1-70B Layer 40

~J800000000000001000 0
~-0fJoo0oo00000000100000
m-00@BJ000000000100000 a0
<-000FJ00000000000000
w-00010@000000000000 »
©-00001101100000000000
~-00000FJ000000000000 o
©-0000002011000090000
$®-00000001101100000 000 25
£9-00000000Fl000000000 o
=-0000000000111100 000 0
N-00000000001152 40000 s
m-00000000000O0EJ110000
%-0000000000013EJ1000o0 0
n-2000000000001020100 0
©-000000000000O00I10FF1 0
N-000000000000000O0F o 3
& HEDIEDIETIET LN B,
12345678 9101112131415161718
Predicted

Figure F.1: Confusion Matrix on categorical linear probing of attribute ‘Group’ on the middle layer.
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511 .3 Question prompts

stz We applied the Mann—Kendall test to AR? in the upper 50% of layers for each model-attribute pair
513 (15 in total). Benjamini—-Hochberg adjustment (FDR = 0.05) retained significance in 12 pairs, with t
st4  ranging from 0.36 to 0.94 (median 0.79; Table[F3).
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Figure F.2: R2 scores for linear probes trained on target properties and evaluated on representations
from question and continuation prompts.
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Table F.1: Mann—Kendall trend test on AR? (difference between continuation and question prompt
R?) within depth layer depths 0.5-1.0. 7: Kendall’s tau (trend strength). (*) indicates significance
after Benjamini—-Hochberg FDR correction (o = 0.05).

Model Attribute T P
Group 095 < 0.001*
Period 0.84 < 0.001*
Meta-Llama-3.1-70B  Electronegativity =~ 0.73 < 0.001*
Atomic Mass 0.53 < 0.001*

Atomic Number 041 < 0.001*
Electronegativity  0.80 < 0.001*

Atomic Mass 0.80 < 0.001*
Llama—2—7b-hf Group 0.75 < 0.001*
Atomic Number 0.55 0.003*
Period 0.40 0.034*
Group 0.57 0.003*
Electronegativity  0.52 0.006*
Llama-3.1-8B Atomic Number 0.20 0.300
Atomic Mass 0.20 0.300
Period -0.05 0.822
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F.4 ‘Non-matching’ and ‘no mention’ prompts

F.4.1 Non-matching attribute pairs

To contrast explicit and implicit attribute cues, we selected a set of non-matching attribute pairs
with minimal direct statistical dependency. Each pair was chosen to lack strong linear or monotonic
relationships, and we verified on our 50-element subset that all selected pairs satisfy |Pearson r| <
0.30, |[Spearman p| < 0.30, and R? < 0.15 (Table . These thresholds ensure that no pair can be
trivially recovered through simple linear or monotonic mappings.

Table F.2: Linear and monotonic correlations for non-matching attribute pairs (50-element subset).

Pair [Pearson 1l  ISpearman gl Linear R?
Group—Atomic Number 0.044 0.070 0.002
Group—Period 0.255 0.300 0.065
Group—Mass 0.037 0.066 0.001
Electronegativity—Atomic Number 0.154 0.038 0.024
Electronegativity—Mass 0.147 0.039 0.022

F.4.2 Detailed results
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Figure F.3: R? score trends for ‘no mention’ cases. Regression linear probing on the element token
residual stream with 5-fold cross-validation was performed on residual streams, and R2 scores on the
test set are shown for each attribute.
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Figure F.4: R? and AR? scores for linear probes trained on target properties and evaluated on
representations from matching and non-matching prompts. AR is defined as R%(matching prompt)
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Table F.3: Mann—Kendall trend test on AR? (difference between matching and non-matching prompt
R?) within layer depths 0.6-1.0. 7: Kendall’s tau (trend strength). “*” indicates significance after
Benjamini-Hochberg FDR correction (o = 0.05).

Model Attribute Pair T P
Electronegativity — Atomic Number 0.923 < 0.001*

Group — Atomic Number 0.911 < 0.001*

Electronegativity — Atomic Mass 0.895 < 0.001*

Meta-Llama-3.1-70B 0 " period 0.625 < 0.001%
Group — Atomic Mass 0.452 < 0.001*

Group — Atomic Number 0.872 < 0.001*

Group — Atomic Mass 0.846 < 0.001*

Electronegativity — Atomic Mass 0.795 < 0.001*

Llama-2-7b-ht Group — Period 0.769 < 0.001*
Electronegativity — Atomic Number 0.769 < 0.001*

Electronegativity — Atomic Mass 0.821 < 0.001*

Group — Period 0.769 < 0.001*

Llama—3.1-8B Group — Atomic Mass 0.744 < 0.001%*
) Electronegativity — Atomic Number 0.641 0.003*

Group — Atomic Number —0.154 0.502
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F.5 Detailed results of the best layer

In the main text Sec. 1] we used SVR for linear regression probing. Figures [F.6] [F.7] [F-8] [F.9] and
10| present the detailed R? performance of the best layer for each attribute—atomic number, atomic
mass, electronegativity, period, and group—across three different models.
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Figure F.6: Evaluation of SVR performance for Layer best_layer on the atomic mass. The left plot
shows true vs. predicted values with alignment to the diagonal indicating accuracy. The center plot
displays residuals, highlighting error distribution centered around zero. The right plot visualizes true
and predicted values across samples, with shaded areas representing error magnitudes.
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Figure F.7: Evaluation of SVR performance for Layer best_layer on the atomic number. The left plot
shows true vs. predicted values with alignment to the diagonal indicating accuracy. The center plot
displays residuals, highlighting error distribution centered around zero. The right plot visualizes true
and predicted values across samples, with shaded areas representing error magnitudes.

23



SVR (Layer 15): True vs Predicted - Model: Llama-2-7b-hf Residual Distribution (Layer 15) - Model: Llama-2-7b-hf True vs Predicted Values (Layer 15) - Model: Llama-2-7b-h

® SVR Predictions ® True Values
. @ Predicted Values
20 — 20
il o N
4 J
P —4
. N S/I H 0 .
! ] °,% o 15 o
g | e e 60 e
H H > %
I} o L] 9
El 3 el ' o f|f 8 3
3 e e . g 2 o =
.0 K e 2| 8 " ERY S -
ler g bt S ¢ -
« s B2 !, o, - L ®le
Lot .
- . -
H L) % : i
e 20
8. l
2
4 . :
° [ -
L] ]
o ol == H [—1 °
25 5.0 75 10.0 12,5 15.0 17.5 -10 -5 5 10 o 100 200 300 400
True Values Residuals Sample Index
SVR (Layer 30): True vs Predicted - Model: Llama-3.1-8B Residual Distribution (Layer 30) - Model: Llama-3.1-8B True vs Predicted Values (Layer 30) - Model: Llama-3.1-8I
®  SVR Predictions 120 —— ‘
A ol ® 2
- -

-
d

v S 4
M .| ¢

i ,4|
wol © i My

('

L] °

-
-
Frequency
3
Values
=
&e 0
% ®
o
L &
e ?
do

Predicted Values

© True Values

Y 1T EIY:

‘ [ ‘ - - o Predicted Values
o
25 5.0 75 10.0 125 15.0 17.5 -125 -100 -7.5 -5.0 -25 0.0 25 5.0 75 o 100 200 300 400
True Values Residuals Sample Index
SVR (Layer 76): True vs Predicted - Model: Meta-Llama-3.1-70 i Distribution (Layer 76) - Model: Meta-Llama-3.1-70Bue vs Predicted Values (Layer 76) - Model: Meta-Llama-3.1

®  SVR Predictions

-
140 175

l' m > j’ 3
15.0 /’1 . 120 5o ® ? .'..

12,5 ' ‘s ' 100 25 . $ .1 y

e "1/'1 l l . e ¢ [ 4 .? j
AT f Yoy
AL 4 L fF
. 'R I

1 0.0 e Predicted Values
I | 1

25 50 75 100 125 150 175 -100 75 50 25 00 25 50 75 0 100 200 300 400
True Values Residuals Sample Index

Frequency
Values

75

Predicted Values
»»

"l.q‘

o ampm—e 00

Figure F.8: Evaluation of SVR performance for Layer best_layer on the group. The left plot shows
true vs. predicted values with alignment to the diagonal indicating accuracy. The center plot displays
residuals, highlighting error distribution centered around zero. The right plot visualizes true and
predicted values across samples, with shaded areas representing error magnitudes.
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Figure F.9: Evaluation of SVR performance for Layer best_layer on the period. The left plot shows
true vs. predicted values with alignment to the diagonal indicating accuracy. The center plot displays
residuals, highlighting error distribution centered around zero. The right plot visualizes true and
predicted values across samples, with shaded areas representing error magnitudes.
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Figure F.10: Evaluation of SVR performance for Layer best_layer on the electronegativity. The left
plot shows true vs. predicted values with alignment to the diagonal indicating accuracy. The center
plot displays residuals, highlighting error distribution centered around zero. The right plot visualizes
true and predicted values across samples, with shaded areas representing error magnitudes.

26



	Introduction
	Preliminaries
	Geometric relationships among attributes
	Direct attribute recall
	From continuity to boundary sharpening
	Higher Language Sensitivity in Later Layers

	Indirect attribute recall
	Middle Layers excel at indirect recall
	Stronger linear correlations in middle layers

	Discussion and conclusions
	Last token residual stream collection
	Intervention outcomes in geometric recall
	Layer-wise performance evaluation
	Detailed evaluation of geometric spaces

	Attention map detailed results
	Logit lens and tuned lens
	Attribute representations overlap in intermediate layers
	Probing weights analysis
	Blessing of dimensionality

	Linear probing detailed results
	Why  R2  cannot reach 1
	Confusion matrix
	Question prompts
	`Non-matching' and `no mention' prompts
	Non-matching attribute pairs
	Detailed results

	Detailed results of the best layer


