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Abstract

Missing data is a common issue in real-world datasets. This paper studies the perfor-
mance of impute-then-regress pipelines by contrasting theoretical and empirical evidence.
We establish the asymptotic consistency of such pipelines for a broad family of imputation
methods. While common sense suggests that a ‘good’ imputation method produces datasets
that are plausible, we show, on the contrary, that, as far as prediction is concerned, crude
can be good. Among others, we find that mode-impute is asymptotically sub-optimal, while
mean-impute is asymptotically optimal. We then exhaustively assess the validity of these
theoretical conclusions on a large corpus of synthetic, semi-real, and real datasets. While
the empirical evidence we collect mostly supports our theoretical findings, it also highlights
gaps between theory and practice and opportunities for future research, regarding the rele-
vance of the MAR assumption, the complex interdependency between the imputation and
regression tasks, and the need for realistic synthetic data generation models.

1 Introduction

Real-world datasets are plagued with missing values. For inference purposes, the key assumption is that
data entries are missing at random (MAR)—i.e., the fact that a feature is missing and its (unobserved)
value are independent, conditional on the observed features (Rubin, 1976). Under the MAR assumption,
valid inference can be performed by using tailored EM algorithms that can handle missing values (e.g.,
Dempster et al., 1977; Ibrahim et al., 2005; Jiang et al., 2020). Alternatively, one can impute the missing
values, estimate the parameter of interest on the imputed dataset, and obtain valid confidence intervals by
accounting for imputation errors (e.g., via multiple imputations as in Rubin, 1987). A myriad of imputation
techniques have been proposed based on mean and mode imputation (Little & Rubin, 2019), k-nearest
neighbors (Troyanskaya et al., 2001; Brás & Menezes, 2007), least square regression (Bø et al., 2004; Kim
et al., 2005; Cai et al., 2006; Zhang et al., 2008), support vector machine/regression (Wang et al., 2006;
Bertsimas et al., 2018), decision trees (Bertsimas et al., 2018), neural networks (Yoon et al., 2018), or factor
analysis and other dimension reduction techniques (Mohamed et al., 2009; Husson et al., 2019). All these
methods assume that the MAR assumption holds, hence missing values can be guessed accurately from non-
missing values. However, without any further assumptions about the data, the MAR assumption cannot be
tested nor refuted from the data (see Little, 1988; Jaeger, 2006, for some additional assumptions amenable to
statistical testing). In addition, most inference guarantees become invalid as soon as the data is not missing
at random (NMAR).
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Prediction, however, is a different task from inference (Shmueli, 2010) that requires a different treatment
for missing data. Besides tree-based methods that can natively handle missing values (see Josse et al.,
2019, Section 6 and references therein), prediction with missing data is usually performed following a similar
approach as the one for inference, namely an impute-then-regress approach in which one first imputes missing
values, and then trains a model on the imputed dataset. Accordingly, the MAR assumption, which is
required for the imputation step to be unbiased, is often perceived as a requirement for impute-then-regress
approaches.

Our paper contributes to the recent literature on the analysis of impute-then-regress pipelines and the rele-
vance of the MAR assumption. Our analysis starts by a theoretical guarantee on the asymptotic consistency
of impute-then-regress pipelines for a broad class of imputation methods, which generalizes (Josse et al.,
2019) and complements (Le Morvan et al., 2020b; 2021) the existing literature. To the best of our knowl-
edge, our result is the first to cover the imputation of categorical features, and not only continuous ones.
In particular, our result characterizes the (asymptotically) “optimal” imputation methods as those that en-
code for missingness as obviously as possible. For simple imputation rules, conclusions from the theory are
thus clear: mode imputation (though often used in practice, see Jäger et al., 2021) is sub-optimal, while
mean-imputation is asymptotically optimal. We then exhaustively assess the validity of these conclusions on
synthetic, semi-real, and real datasets, with the double objective of supporting our theoretical findings with
empirical evidence as well as eliciting gaps between theory and practice that could motivate future research
in the area.

The rest of the paper is organized as follows:

• We study the consistency of generic imputation rules in the infinite-data regime in Section 2. While
inference requires the imputed values to be unbiased estimates of the missing entries (a property
usually satisfied under MAR), we show that, for prediction, impute-then-regress works if the imputed
value codifies missingness, i.e., if the imputed values are as conspicuous as possible. Our analysis
applies to continuous as well as categorical missing features and to a broad family of imputation
rules, including mode and mean imputation.

• For mode and mean imputation, we contrast these theoretical consistency results with their empirical
performance on a large corpus of synthetic, semi-real (i.e., real-world design matrix and missingness
patterns but synthetic signals), and real-world datasets.

– For discrete variables (Section 3.2), our theoretical analysis suggests that mode imputation
cannot lead to consistent predictions and that encoding missingness as its own category should
be preferred. Empirical evidence on synthetic and semi-real datasets strongly supports the
validity of these findings, although the evidence on real data is not conclusive.

– For continuous variables (Section 3.3), rules as simple as mean imputation are theoretically
consistent. We compare the performance of mean imputation with non-linear iterative imputa-
tion methods (van Buuren & Groothuis-Oudshoorn, 2010). As suggested by theory, we observe
no clear downside from using mean imputation on average. However, we observe that the
missingness mechanism, the fraction of missing entries, and the complexity of the downstream
predictive model have a significant impact on which imputation model performs best.

• Finally, we discuss the limitations of our theoretical and empirical findings in Section 4 with the
hope to guide future research. In particular, the contrast between theory and practice highlights
interesting directions related with the relevance of the MAR assumption in predictive setting; the
complex interactions between the imputation and the predictive models and its impact on finite-
sample performance; and the need for realistic generative models.

Notation. We denote scalars by lowercase characters (x) and random variables by uppercase characters
(X). Boldfaced characters denote vectors (e.g., x is a vector and X is a random vector). The symbol ⊥⊥
designates independent random variables. For any positive integer n, let [n] = {1, . . . , n}.
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Code. All code used to implement and evaluate imputation strategies is available on Github.1

2 Theoretical Consistency with Generic Imputation Rules

2.1 Setting

Generalities and notation. We consider the task of predicting a target or dependent variable, modeled
as a random variable Y , from a set of features, modeled as a random vector X. For each feature Xi, the
binary random variable Mi indicates whether it is missing (1) or observed (0). Our predictive model is
trained using data: n i.i.d. samples (xi,mi, yi), i ∈ [n], where xi ∈ Rd is the vector of covariates and
mi ∈ {0, 1}d is a vector indicating the missing covariates—mij = 1 if xij is missing, 0, otherwise— and
yi ∈ R is the output of interest. For every data point i, ∥mi∥0 :=

∑
j mij covariates are missing. We refer

to mi as the missingness indicator or missingness pattern of sample i. We further denote o(xi,mi) the
(d− ∥mi∥0)-dimensional vector of observed covariates (Seaman et al., 2013).

For the task of predicting Y given covariates X, a predictor f̂n trained on a dataset of n observations is
called (asymptotically) consistent if limn→∞ f̂n(x) = E[Y |X = x]. Moreover, f̂n is universally consistent if
the previous statement holds for any distribution of (X, Y ).

Objective. Our goal in this section is to investigate the asymptotic consistency of impute-then-regress
strategies for a broad family of imputation rules.

For ease of exposition, we consider a simplified setting in d dimensions where only the first covariate X1 is
missing. The optimal (consistent) predictor for the target variable Y is{

E[Y |X = x,M1 = 0], if m1 = 0,
E[Y |X2:d = x2:d,M1 = 1], if m1 = 1.

(1)

However, like in Josse et al. (2019), our analysis could be extended to the case with more than one missing
covariate. Here, we concisely denote x2:d the (d− 1)-dimensional vector (x2, . . . , xd).

We study the common practice of imputing a deterministic value for X1 whenever it is missing. In particular,
we allow for the imputed value to be a deterministic function of the other covariates, denoted µ(x2:d). This
model captures mean and mode imputation, as well as conditional mean and mode imputation. For clarity,
we will denote Xµ the random variable obtained from (X,M) after µ-imputation, i.e., Xµ

1 = X1 if M1 = 0,
Xµ

1 = µ(X2:d) if M1 = 1, and Xµ
2:d = X2:d.

2.2 Asymptotic prediction function

We now introduce the main result of this section, which characterizes the asymptotic performance of impute-
then-regress strategies based on deterministic imputation rules.
Theorem 2.1. Consider a universally consistent learning algorithm when trained on any fully observed
dataset. Imputing µ(x2:d) for X1|X2:d = x2:d when X1 is missing (M1 = 1) on the training set and training
a predictor on the imputed dataset leads, in the limit with infinite data, to the following prediction rule,
denoted fµ-impute(x) and equal almost everywhere to

fµ-impute(x) =


E[Y |X = x,M1 = 0], if x1 ̸= µ(x2:d),
α(x) E[Y |X2:d = x2:d,M1 = 1]

+ (1 − α(x))E[Y |X1 = µ(x2:d),X2:d = x2:d,M1 = 0], otherwise.

where

• η(x) = P(M1 = 1|X2:d = x2:d) is the probability that X1 is missing given X2:d,
1https://github.com/adelarue/PMD
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• pµ(x) = P(X1 = µ(x2:d),M1 = 0| X2:d = x2:d) is the probability for the true X1 to take the imputed
value µ(x2:d) and not be missing, given the other covariates,

• and α(x) = η(x)
η(x) + pµ(x) is the posterior probability that X1 was missing before imputation, given

that it takes the value µ(x2:d) after imputation, i.e., P(M1 = 1|Xµ
1 = µ(x2:d),X2:d = x2:d).

Theorem 2.1 characterizes the effect of an arbitrary deterministic imputation rule on the downstream predic-
tion rule in the infinite-data setting. Consider applying fµ-impute to a new observation x. Either x1 ̸= µ(x2:d)
or x1 = µ(x2:d). Recall that in the infinite-data regime, only the training data in the neighborhood of x
affects the prediction. In the first case, x is almost surely surrounded by points with no missing entries, so
fµ-impute predicts the conditional expectation E[Y |X = x,M1 = 0]. In the second case, however, the points
in the neighborhood of x come from a mixture of two distributions, depending on whether x1 = µ(x2:d)
occurs artificially due to imputation, or naturally in the data: some points have a missing first feature im-
puted by µ(·), and therefore are sampled from (µ(x2:d),X2:d)|M1 = 1; other points are sampled from the
original distribution (X1,X2:d)|M1 = 0. The predicted outcome is a weighted average of both conditional
expectations, with α(x) being the proper weighting factor. We defer the detailed proof to Appendix A.

Interestingly, we observe that α(x) ̸= η(x) = P(M1 = 1|X2:d = x2:d) in general. Even when X1 and M1 are
conditionally independent (i.e., MAR assumption), imputation induces correlation between Xµ

1 and M1.

We note that Theorem 2.1 generalizes Josse et al. (2019, Theorem 4), which only applies to constant im-
putation for continuous features and requires the MAR assumption. Theorem 2.1 (or its implications for
asymptotic consistency in Corollary 2.2) can also be viewed as a weaker version of Le Morvan et al. (2021,
Theorem 3.1) since it applies to a more restrictive setting with only a single missing covariate. However,
Le Morvan et al. (2021, Theorem 3.1) applies to continuous features, while our result equally applies to
discrete features. Theorem 2.1 elicits an explicit condition on the imputation function (through the quantity
α(x)) that drives asymptotic consistency, hence providing further intuition on what permits an impute-then-
regress pipeline to learn the Bayes-optimal predictor.

2.3 Implications of Theorem 2.1

We now apply Theorem 2.1, to study the out-of-sample predictions from a learner trained on µ-imputed data.
For a new observation (o(x,m1),m1), we apply µ-imputation and then predict according to fµ-impute(xµ).
For the sake of the discussion, we assume that E[Y |X2:d = x2:d,M1 = 1] ̸= E[Y |X1 = µ(x2:d),X2:d =
x2:d,M1 = 0], otherwise the imputation is obviously harmless.

If, on one hand, x1 is not originally missing (m1 = 0), then xµ
1 = x1 and the impute-then-predict rule agrees

with the Bayes-optimal predictor, E[Y |X = x,M1 = 0], almost everywhere, if either x1 ̸= µ(x2:d) almost
surely (pµ(x) = 0 ⇔ α(x) = 1) or α(x) = 0. On the other hand, if m1 = 1, then xµ

1 = µ(x2:d), so the
impute-then-predict rule agrees with the Bayes-optimal estimator E[Y |X2:d = x2:d,M1 = 1] if and only if
α(x) = 1.

Again, α(x) corresponds to the posterior probability that X1 was missing in the original observation given
that Xµ

1 = µ(x2:d). In other words, Theorem 2.1 indicates that consistency is achieved as long as the
predictor can almost surely de-impute, that is properly guess after imputation whether X1 was originally
missing or not. This discussion can be summarized by the following corollary:
Corollary 2.2. Under the assumptions and notations of Theorem 2.1, µ-imputation-then-regress asymptot-
ically (i.e., in the infinite-data regime) leads to Bayes-optimal estimates at x if and only if α(x) = 1 or
E[Y |X2:d = x2:d,M1 = 1] = E[Y |X1 = µ,X2:d = x2:d,M1 = 0].

Despite the simplicity of the underlying intuition, Theorem 2.1 challenges common practice. Indeed, one
could think that a ‘good’ imputation method should produce datasets that are plausible, i.e., where imputed
and non-imputed observations are indistinguishable (α(x) = 0). On the contrary, as far as predictive power
is concerned, Theorem 2.1 speaks in favor of imputation methods that can be almost surely de-imputed
(α(x) = 1), because they can be used as an encoding for missingness. In short, as far as prediction is
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concerned, crude is good. This conclusion also supports the common practice of adding m as part of the
predictive features, a simple but powerful idea which is gaining traction in the deep learning community
(Van Ness et al., 2023; Van Ness & Udell, 2023).

3 Empirical Validation

3.1 Setting

Much of the literature on missing data relies on synthetic data for validation, mostly because it grants the
experimenter full knowledge of the missing values themselves. However, as a result, missing data patterns
may not match those found in the real world. In this paper, we try to bridge the gap between real and
synthetic data by creating a diverse corpus of synthetic, semi-real, and real datasets. We briefly summarize
our methodology here; more details can be found in Appendix C. For the synthetic datasets, we generate
the design matrix X with n observations (ranging from 40 to 1,000) and synthetic signals of the form
Y = f(X) + ϵ, where the function f is either linear or the output of a two-layer neural network (NN). We
ampute (i.e., drop) data either completely at random (MCAR) or by censoring extreme values (which is a
special case of NMAR), and consider 8 different proportions of missing entries. In total, we generate 49
datasets for each of the 2 × 2 × 8 = 32 configurations. For the semi-real and real datasets, we assemble
a corpus of 63 publicly available datasets with missing data, from the UCI Machine Learning Repository
and the RDatasets Repository. We consider the design matrix and the missingness patterns from the real
datasets. For semi-real instances, we generate synthetic response variables Y (again, according to a linear
or neural network model). We control how Y depends X and M , and consider relationships corresponding
to missing at random (MAR), not missing at random (NMAR) or adversially missing (AM). Experiments
on each dataset are replicated 10 times, with different training/test splits.

3.2 Categorical variables: mode imputation is inconsistent

Theory. For discrete features, choosing µ as the mode of the distribution of X1|M1 = 0 (a.k.a. mode
imputation) is one of the advised methods in practice. However, with this choice of µ, for any x, we have
pµ(x) > 0 so α(x) < 1 and mode impute-then-regress cannot be asymptotically consistent by Corollary
2.2. Conversely, choosing µ outside of the original support of X1, i.e., encoding missingness as a new
category/value, provides consistency.

The practical implications of Corollary 2.2 for categorical variables are thus clear: We should encode missing-
ness as a new category instead of imputing the mode. Accordingly, we numerically compare the out-of-sample
performance of these two approaches.

Experimental setting. We evaluate the performance of mode imputation on our synthetic, semi-real,
and real datasets. For the semi-real and real instances, we consider the 41 datasets with at least one missing
categorical feature described in Tables C.1 and C.3 in Appendix C.2. Real signals Y are available for 34 out
of the 41 datasets. For training predictive models, missing numerical features are mean-imputed and missing
categorical are either encoded as their own category or mode-imputed. The downstream predictive model
is chosen among a regularized linear, a tree, a random forest, a two-layer neural network, and an XGBoost
model (using 5-fold cross-validation on the training data).

Results. To quantitatively assess the effect of mode imputation, we compare the out-of-sample accuracy
(measured in R2 or AUC) with mode imputation with that obtained when encoding missingness as its
own category, using a paired t-test (difference in means) and paired Wilcoxon test (difference in pseudo-
medians). Results are reported in Table 1. We observe that mode imputation has a significant and negative
(detrimental) effect on predictive power on instances with synthetic signals (for both synthetic and real
design matrix and across missingness mechanisms), hence corroborating the insights from Theorem 2.1. In
terms of magnitude, the average reduction in R2/AUC mostly occurs at the second decimal. Yet, we do
not observe a significant effect when we predict the real signal Y , which suggests that other factors beyond
missing data might impact the validity of Theorem 2.1 in practice (e.g., finite amount of samples, limited
class of predictors).

5



Published in Transactions on Machine Learning Research (06/2024)

Table 1: Difference in means and in pseudo-medians (with two-sided p-values) in out-of-sample accuracy
from a t and Wilcoxon test applied to assess the impact of mode imputation on downstream accuracy. A
negative value means that mode imputation reduces accuracy.

Design Signal Y Missingness # comp. ∆ mean (p-value) ∆ pseudo-median (p-value)matrix X

Syn.
Syn. - Linear MCAR 3,920 -0.0758 (***) -0.0762 (***)

Censoring 3,920 -0.1270 (***) -0.1248 (***)

Syn. - NN MCAR 3,920 -0.0697 (***) -0.0722 (***)
Censoring 3,920 -0.1214 (***) -0.1153 (***)

Real

Syn. - Linear
MAR 1,760 -0.0303 (**) -0.0079 (***)
NMAR 1,760 -0.0277 (**) -0.0083 (***)
AM 1,760 -0.0303 (**) -0.0071 (***)

Syn. - NN
MAR 1,760 -0.0320 (**) -0.0057 (***)
NMAR 1,760 -0.0357 (**) -0.0070 (***)
AM 1,760 -0.0321 (***) -0.0064 (***)

Real Real Real 340 0.0073 (0.29) -0.001 (0.19)
Note: p-values ***:< 10−20; **:< 10−10; *:< 10−5;

3.3 Continuous variables: mean imputation is consistent

Theory. For continuous features, one of the simplest and most widely used imputation rule is mean
imputation, namely using µ = E[X1|M1 = 0]. Further assume that X1|X2:d = x2:d,M1 = 0 is continuous
(i.e., if the ‘observed’ X1 is continuous, conditioned on the other covariates), then, conditioned on X2:d = x2:d
and M1 = 0, the probability that X1 takes any specific value is 0 so pµ(x) = 0 and α(x) = 1. Consequently,
Corollary 2.2 guarantees that mean imputation-then-regress is asymptotically consistent, as already proved
by Josse et al. (2019, Theorem 4). Intuitively, systematically imputing µ for X1 creates a discontinuity in
the distribution of Xµ

1 and the events {Xµ
1 = µ} and {M1 = 1} are equal almost surely. A universally

consistent downstream predictive model is then able to learn this pattern and view Xµ
1 = µ as an encoding

for missingness. Observe that any constant imputation rule (e.g., 0-imputation or out-of-range imputation)
satisfies this property, because it creates a mass in an otherwise-continuous distribution.

In practice, this result suggests that sophisticated imputation methods for continuous variables are not
needed, and may indeed be counter-productive. We now empirically evaluate the validity of this finding.

Experimental setting. Our analysis comprises the same synthetic, semi-real, and real datasets. For
the semi-real and real instances, we consider the 52 datasets with at least one missing numerical feature
described in Tables C.3 and C.2 in Appendix C.2. Real signals Y are available for 36 out of the 52 datasets.
Missing categorical features are encoded as their own category and missing numerical features are either
mean-imputed or imputed using the complex iterative method mice (van Buuren & Groothuis-Oudshoorn,
2010). The downstream predictive model is chosen among a regularized linear, a tree, a random forest, a
two-layer neural network, and an XGBoost model (using 5-fold cross-validation on the training data).

For mean-imputation, we compute the empirical mean on the training data and use it to impute the missing
values on both the training and testing data, in order to have the same imputation rule for the training and
test set. For mice, we first impute the training set alone, and then impute the test set with the imputed
training data. We discuss alternative implementations in Appendix D.

Results. Table 2 reports the output from paired t and Wilcoxon tests to compare out-of-sample accuracy
obtained when using mean-impute vs. mice (a negative value indicates that mice performs worse). We pri-
marily comment on the differences in average accuracy (t-test), the difference in median accuracy supporting
similar conclusions.
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Table 2: Difference in means and in pseudo-medians (with two-sided p-values) in out-of-sample accuracy
from a t and Wilcoxon test applied to assess the impact of mice imputation on downstream accuracy. A
negative value means that mice reduces accuracy compared with mean impute.

Design Signal Y Missingness # comp. ∆ mean (p-value) ∆ pseudo-median (p-value)matrix X

Syn.
Syn. - Linear MCAR 3,920 0.0043 (0.001) 0.0112 (***)

Censoring 3,920 -0.1047 (***) -0.0908 (***)

Syn. - NN MCAR 3,920 0.0318 (***) 0.0339 (***)
Censoring 3,920 -0.1275 (***) -0.1193 (***)

Real

Syn. - Linear
MAR 2,180 -0.0256 (*) -0.0115 (***)
NMAR 2,390 -0.1890 (**) -0.0106 (***)
AM 2,390 -0.0020 (0.31) -0.0029 (**)

Syn. - NN
MAR 2,390 -0.0168 (*) -0.0088 (***)
NMAR 2,390 -0.0196 (**) -0.0134 (***)
AM 2,390 -0.0110 (*) -0.0069 (***)

Real Real Real 360 -0.0043 (0.38) -0.0028 (0.008)
Note: p-values ***:< 10−20; **:< 10−10; *:< 10−5;

On the fully synthetic datasets, mice imputation leads to more accurate predictions when the data is MCAR,
but is less accurate than mean impute when the data is censored. Both observations are highly statistically
significant. To elicit the mechanisms at play, we report in Figure 1 the average out-of-sample R2 obtained by
each method as a function of the fraction of missing entries in the data (which is one of the parameters we
control), for the four design settings. Across all settings, mice imputation is preferable when the proportion
of missing entries is low and mean-impute-then-regress is stronger when the proportion of missing entries is
larger. The only difference between the MCAR and Censoring settings is the value of the break-even point
that makes both approaches comparable. This behavior can be explained by the fact that the proportion of
missing entries is directly related to the number of observations available to calibrate the imputation model:
As the fraction of missing entries increases, there are fewer observations available to learn how to impute so
complex models like mice are likely to overfit and perform poorly. However, we do not observe such a clear
pattern for the impact of the sample size directly (Figure E.3).

On the semi-real and real instances, we observe that the impact of mice-then-regress is negative and signifi-
cant (p-value < 10−5) in five cases out of 7, and not statistically significant in the remaining 2 cases. These
mixed results are consistent with our theoretical findings: According to Corollary 2.2, both mean impute and
mice could be asymptotically consistent so there is no reason to expect one to be systematically better than
the other. Nonetheless, the strong performance of mean-impute, despite its simplicity, is remarkable. Yet,
we should note that the magnitude of the effect in average accuracy is smaller than for mode imputation in
the previous section.

4 Discussion

We now discuss the implications and limitations of our findings. We first discuss how our analysis calls
into question the relevance of the MAR assumption for prediction. We then highlight two limitations of our
approach: the infinite-data assumption in Theorem 2.1, and the discrepancy in numerical results between
real and synthetic data. We propose simple ways to alleviate these limitations, and identify avenues for
further research on these topics.

Relevance of the MAR assumption. A striking feature of the theoretical consistency guarantee for
impute-then-regress pipelines (Theorem 2.1) is the absence of the MAR assumption (the same observation
holds for Theorem 3.1 in Le Morvan et al., 2021). Empirically, however, we observe that the relative per-
formance of mice vs. mean imputation on synthetic data depends strongly on the missingness mechanisms.
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(a) Y linear - MCAR (b) Y linear - Censoring

(c) Y NN - MCAR (d) Y NN - Censoring

Figure 1: Average out-of-sample R2 of mice-then-regress and mean-impute-then-regress on fully synthetic
data, as the proportion of missing entries increases. Results are averaged over 50 different sample size and
10 training/test splits.
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Thus, one might wonder what the true role of the missingness mechanism is. Given a generative model for
(X, Y ), the missingness mechanisms impact the shape and regularity of the function E[Y |o(X,M),M ],
hence its learnability. Since Theorem 2.1 considers a universally consistent predictive model, we can always
guarantee consistency with infinite data. For a finite amount of data, however, the shape and regularity
of the function—and so, indirectly, the missingness mechanism—will impact the performance of a method.
Based on this observation, one might wonder whether alternative assumptions would be more relevant to
study and develop methods for prediction with missing data.

In particular, influenced by the insights from inference, practitioners tend to consider MAR as a favorable
situation compared with NMAR. Indeed, textbooks in the field, such as Hastie et al. (2001, Chapter 9.6) or
Kuhn et al. (2013, Chapter 3.4), tend to present MAR favorably. However, one should emphasize that, as
far as prediction is concerned, NMAR can be a blessing and not a curse, because missingness can sometimes
be used as a powerful predictor of the outcome of interest (i.e., predictive missingness). We formalize this
observation in the setting of Theorem 2.1 (proof in Appendix B):
Theorem 4.1. Consider two missingness mechanisms M1 and M ′

1 leading to the same proportion of missing
entries P(M1 = 1) = P(M ′

1 = 1) = p. Further assume that, conditioned on X2:d, M ′
1 is independent of Y

and X1 (MAR). Then the optimal prediction rule achieves a lower prediction error under M1 than under
M ′

1 if and only if the following condition holds:

(1 − p)2ψ0 (X,X) + p2ψ1(X2:d,X2:d) + p(1 − p)ψ0(X2:d,X) − p(1 − p)ψ1(X,X2:d) ≥ 0,

where
ψi(A,B) = E

[
(E [Y |A] − E [Y |B,M1])2 |M1 = i

]
≥ 0.

We now provide simple examples of each situation.
Example 4.2 (Prediction benefits from NMAR). Let X1 be a Bernoulli random variable with parameter
1/2, and Y = X1. We compare two missingness patterns: M1 = X1, and M ′

1 ⊥⊥ X1, another Bernoulli
random variable with parameter 1/2. Then, the optimal predictor under M1 is Y = X1 when M1 = 0 and
Y = M1 = 1 when M1 = 1, with empirical risk R = 0. Meanwhile, the Bayes-optimal predictor under M ′

1 is
Y = X1 when M ′

1 = 0 and Y = 1/2 when M ′
1 = 1, with empirical risk R′ = 1/8.

Example 4.3 (Prediction benefits from MAR). Let d = 2, and let X2, U , V be three independent Bernoulli
random variables with parameter 1/2. Define X1 = X211(U = 0)+V 11(U = 1) and let Y = X1. We compare
two missingness patterns: M1 = U , and M ′

1 an independent Bernoulli random variable with parameter 1/2.
Then the Bayes-optimal learner under M1 is X1 when M1 = 0 and 1/2 when M1 = 1, with empirical risk
R = 1/8. In contrast, the Bayes-optimal learner under M ′

1 is X1 when M ′
1 = 0, and X2/2 + 1/4 when

M ′
1 = 1, with empirical risk R′ = 3/32.

Such a result highlights the fact that the MAR/NMAR distinction does not correctly classify missing data
into “good”/“bad” cases and that a better taxonomy is needed. This insight is valuable because missing data
mechanisms are inherently unobservable and because the MAR assumption is obviously violated in many
industrial applications, e.g., in pricing and revenue management (Alles et al., 2000; Wang, 2022; Pauphilet,
2022).

Finite-sample and parametric models. One limitation of Theorem 2.1 is that it relies on two restrictive
assumptions, namely that the number of observations grows to infinity and that the downstream predictive
model is universally consistent. Universally consistent models, however, require large datasets, while real-
world data is often limited. Hence, in practice, one might favor parametric classes of predictors (instead
of universally consistent learning algorithms), for which Theorem 2.1 does not apply. More work is needed
to design tailored classes of parametric models for prediction with missing data (such as Le Morvan et al.,
2020a) or to understand the finite-sample performance of impute-then-regress pipelines.

In the latter case, we believe that the interactions between the model complexity of the imputation rule
and that of the downstream regression are not yet well-understood and provide exciting grounds for future
research. Figure 2 illustrates this phenomenon by representing the out-of-sample R2 of four impute-then-
regress pipelines (using mice/mean imputation and a linear/random forest regressor), as the number of
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Figure 2: Out-of-sample R2 on mice-regress and mean-impute-then-regress on synthetic data with non-
linear signal, NMAR data, and 40% of missing entries, as the number of samples n increases. We report the
performance of two different downstream predictors: Linear (LASSO) regression and random forest. Results
are averaged over 10 training/test splits.

(a) Y non-linear - MCAR (b) Y non-linear - Censoring

Figure 3: Average out-of-sample R2 of XGBoost with mean impute, mice, or no imputation method, on
synthetic data with non-linear signal, NMAR missing data, and 40% of missing entries, as the number of
samples n increases. Results are averaged over 10 training/test splits.

observations increases, for our synthetically generated datasets, with censored data and non-linear synthetic
signal Y . When a linear regression model is used, we find that mice consistently outperforms mean impute
(across all values of n) and is strictly more accurate asymptotically. When using a random forest regressor,
however, we observe the exact opposite. These empirical observations complement some theoretical findings
from Le Morvan et al. (Section 4 2021) and demonstrate the complexity of the inter-dependencies between
the classes of models used for imputation and regression.

This observation holds also for models that can handle missing data natively such as tree-based methods.
For XGBoost, for example, we compare how the out-of-sample accuracy increases with the number n of
training samples, for mean impute followed by XGBoost, mice impute followed by XGBoost, and XGBoost
applied on missing data directly in Figure 3. We observe that the relative performance of the no-imputation
strategy (especially compared with an imputation method like mice) varies drastically with the missingness
pattern. We can make a similar observation for random forest (Figure E.4). These observations highlight
that, although ‘hassle-free’, methods which can handle missing data directly come at a cost in terms of
predictive power.

10
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Realistic synthetic data. A second limitation is that, while our empirical experiments largely confirm
the theoretical findings when synthetic data is used, the conclusions on real data (and to a lesser extent on
semi-real data) are noticeably less obvious. This observation raises the question of the validity of analysis
conducted with synthetic data in the literature, especially for research related with missing data. Algorithms
for missing data imputation are almost always validated on synthetically generated data or at least synthet-
ically amputed data, in settings where the gains (both in imputation error and downstream accuracy) can
be significant (e.g., Bertsimas et al., 2018; 2021). On the contrary, we observe on real-world design matrices
and missingness patterns (both for synthetic and real signals Y ) that an imputation method as sophisticated
as mice leads, on average, to less accurate predictions than simple mean imputation. Synthetic data are
useful to researchers because they often allow for more extensive numerical validation — but this is only
true if they accurately represent how data go missing in practice. Our findings thus highlight the need for
more realistic and accessible models for missingness to allow researchers to benchmark and develop models
that are better suited to real-world data with missing entries.
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A Proof of Theorem 2.1

Proof. Since the downstream predictive model is trained after µ-imputation, the learner is trained not on
(o(X,M1),M1) but on its imputed version Xµ. Accordingly, asymptotically, fµ-impute(x) = E[Y |Xµ = x].
We now relate the conditional expectation of Y |Xµ

1 = xµ
1 ,X2:d = x2:d with those of Y |M1 = 1,X2:d = x2:d

and Y |M1 = 0, X1 = xµ
1 ,X2:d = x2:d.

For random variables Z1, Z2, we denote gZ1(z1)dz1 the distribution function of Z1 and gZ1(z1|Z2 = z2)dz1
the distribution function of Z1|Z2 = z2.

We condition on the event {X2:d = x2:d} for some x2:d such that gX2:d(x2:d) > 0. All our reasoning is
conditioned on {X2:d = x2:d}, e.g., all distributions/probabilities are conditional distributions/probabilities,
but we omit the dependency on x2:d for simplicity. We also denote µ := µ(x2:d).

The joint density for (X1,M1, X
µ
1 ) is

(
1m1=11xµ

1 =µ + 1m1=01xµ
1 =x1

)
g(X1,M1)(x1,m1)dxµ

1dx1dm1. By inte-
grating over (X1,M1), we obtain the density of Xµ

1 :

h(xµ
1 )dxµ

1 := P(M1 = 1)1xµ
1 =µdx

µ
1 + g(X1,M1)(xµ

1 , 0)dxµ
1 .

Note that

h(xµ
1 )dxµ

1 =
{
g(X1,M1)(xµ

1 , 0)dxµ
1 if xµ

1 ̸= µ,

P(M1 = 1)dxµ
1 + g(X1,M1)(µ, 0)dxµ

1 if xµ
1 = µ.

Furthermore, let us denote h(y, xµ
1 ) the joint density of (Y,Xµ

1 ). Since the joint density for (Y,X1,M1, X
µ
1 )

is gY (y|X1 = x1,M1 = m1)
(

1m1=11xµ
1 =µ + 1m1=01xµ

1 =x1

)
g(X1,M1)(x1,m1)dydxµ

1dx1dm1, we have

h(y, xµ
1 )dydxµ

1 = 1xµ
1 =µgY (y|M1 = 1)P(M1 = 1)dydxµ

1 + gY (y|X1 = xµ
1 ,M1 = 0)g(X1,M1)(xµ

1 , 0)dydxµ
1 .

Accordingly,∫
yh(y, xµ

1 )dy = 1xµ
1 =µP(M1 = 1)

∫
ygY (y|M1 = 1)dy + g(X1,M1)(xµ

1 , 0)
∫
ygY (y|X1 = xµ

1 ,M1 = 0)dy

= 1xµ
1 =µP(M1 = 1)E[Y |M1 = 1] + g(X1,M1)(xµ

1 , 0)E[Y |M1 = 0, X1 = xµ
1 ].

All together, distinguishing the case where (X1,M1) is continuous/discrete and denoting

α := P(M1 = 1)
P(M1 = 1) + P(X1 = µ,M1 = 0) ,

we obtain

E[Y |Xµ
1 = xµ

1 ] =
{
E[Y |X1 = xµ

1 ,M1 = 0] if xµ
1 ̸= µ,

αE[Y |M1 = 1] + (1 − α)E[Y |X1 = µ,M1 = 0] if xµ
1 = µ.

B Proof of Theorem 4.1 and Examples

The quantities ψi(A,B) in Theorem 4.1 measure the distance between E [Y |A] and E [Y |B,M1] conditional
on M1 = i. In other words, these quantities compare the predictive power (on Y ) of feature set A and feature
set {B,M1}. We note from the signs in the condition in Theorem 4.1 that a sufficient condition for the NMAR
setting to yield higher predictive power is E

[
(E [Y |X] − E [Y |X2:d,M1])2 |M1 = i

]
= 0, corresponding to

the case where M1 is a perfect substitute for X1. This condition is not necessary since the first three terms
can be strictly positive: in this case, NMAR can lead to higher predictive power as long as replacing the
value X1 with the fact that it is missing preserves enough information about the value of Y .
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Proof. Proof of Theorem 4.1 Let R (R′) designate the optimal empirical risk under missingness M1 (M ′
1).

R = (1 − p)E
[
(Y − E [Y |X,M1])2|M1 = 0

]
+ pE

[
(Y − E [Y |X2:d,M1])2|M1 = 1

]
,

R′ = (1 − p)E
[
(Y − E [Y |X,M ′

1])2|M ′
1 = 0

]
+ pE

[
(Y − E [Y |X2:d,M

′
1])2|M ′

1 = 1
]
.

Because M ′
1 is independent of Y given X2:d, we can write:

R′ = (1 − p)E
[
(Y − E [Y |X])2|M ′

1 = 0
]

+ pE
[
(Y − E [Y |X2:d])2|M ′

1 = 1
]

= (1 − p)E
[
(Y − E [Y |X])2]

+ pE
[
(Y − E [Y |X2:d])2]

,

where the last equality follows from the MAR assumption. Then we can apply the tower rule, conditioning
on M1:

R′ = (1 − p)E
[
E

[
(Y − E [Y |X])2|M1

]]
+ pE

[
E

[
(Y − E [Y |X2:d])2|M1

]]
= (1 − p)2E

[
(Y − E [Y |X])2|M1 = 0

]
+ p(1 − p)E

[
(Y − E [Y |X])2|M1 = 1

]
+ p(1 − p)E

[
(Y − E [Y |X2:d])2|M1 = 0

]
+ p2E

[
(Y − E [Y |X2:d])2|M1 = 1

]
=: (1 − p)2A+ p(1 − p)(B + C) + p2D.

Then, we can modify the terms A, B, C, and D as follows:

A = E
[
(Y − E [Y |X])2|M1 = 0

]
= E

[
(Y − E [Y |X,M1] + E [Y |X,M1] − E [Y |X])2|M1 = 0

]
= E

[
(Y − E [Y |X,M1])2|M1 = 0

]
+ E

[
(E [Y |X,M1] − E [Y |X])2|M1 = 0

]
+ 2E [(Y − E [Y |X,M1])(E [Y |X,M1] − E [Y |X])|M1 = 0]
= E

[
(Y − E [Y |X,M1])2|M1 = 0

]
+ ψ0(X,X),

since E [Y |X,M1] − E [Y |X] is constant when conditioning on X and M1, and
E [(Y − E [Y |X,M1])|X,M1] = 0. Similarly, we can show that

B = E
[
(Y − E [Y |X2:d,M1])2|M1 = 1

]
− ψ1(X,X2:d),

C = E
[
(Y − E [Y |X,M1])2|M1 = 0

]
+ ψ0(X2:d,X),

D = E
[
(Y − E [Y |X2:d,M1])2|M1 = 1

]
+ ψ1(X2:d,X2:d).

Putting it all together yields:

R′ = (1 − p)E
[
(Y − E [Y |X,M1])2|M1 = 0

]
+ pE

[
(Y − E [Y |X2:d,M1])2|M1 = 1

]
+ (1 − p)2ψ0 (X,X) + p2ψ1(X2:d,X2:d) + p(1 − p)ψ0(X2:d,X) − p(1 − p)ψ1(X,X2:d).

Recognizing that the first two terms in the above expression are equal to R completes the proof.

C Description of the Data and Evaluation Methodology

In this section, we describe the datasets we used in our numerical experiments, as well as various implemen-
tation details. In line with other works in the literature, we conduct some of our experiments on synthetic
data, where we have full control over the design matrix X, the missingness pattern M , and the signal Y .
We also contrast the results obtained on these synthetic instances with real world instances from the UCI
Machine Learning Repository and the RDatasets Repository2.

Note that all experiments were performed on a Intel Xeon E5—2690 v4 2.6GHz CPU core using 8 GB RAM.

2https://archive.ics.uci.edu and https://github.com/vincentarelbundock/Rdatasets
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C.1 Synthetic data generation

As in Le Morvan et al. (2020b, Section 7), we generate a multivariate vector X from a multivariate Gaussian
with mean 0 and covariance matrix Σ := BB⊤ + ϵI where B ∈ Rd×r with i.i.d. standard Gaussian entries
and ϵ > 0 is chosen small enough so that Σ ≻ 0. We fix d = 10 and r = 5 in our experiments. For
experiments requiring discrete/categorical features (Section 3.2), we convert the entries of X into {0, 1} by
sampling each entry according to Ber(logit(Xij)). We generate a n observations, n ∈ {40, 60, . . . , 1000}, for
the training data and 5, 000 observations for the test data.

We then generate signals Y = f(X)+ε, where f(·) is a predefined function and ε is a centered normal random
noise whose variance is calibrated to achieve a target signal-to-noise ratio SNR. We choose SNR = 2 in our
experiments. We use functions f(·) of the following forms:

• Linear model: f(x) = b+ w⊤x where b ∼ N (0, 1) and wj ∼ U([−1, 1]).

• Neural Network (NN) model: f(x) corresponds to the output function of a 2-layer neural
network with 10 hidden nodes, ReLU activation functions, and random weights and intercept for
each node.

We compute f(x) using a random subset of k out of the d features only, with k = 5.

Finally, for a given fraction of missing entries p, we generate missing entries according to mechanisms

• Missing Completely At Random (MCAR): For each observation and for each feature j ∈
{1, . . . , d}, we sample Mj ∼ Bern(p) independently (for each feature and each observation).

• Not Missing At Random (NMAR) - Censoring: We set Mj = 1 whenever the value of Xj

is above the (1 − p)th percentile.

For the fraction of missing entries, we consider the different values p ∈ {0.1, 0.2, . . . , 0.8}.

With this methodology, we generate a total of 49 training sets, with 2 categories of signal Y , 2 missingness
mechanisms, and 8 proportion of missing entries, i.e., 1, 568 different instances.

We measure the predictive power of a method in terms of average out-of-sample R2. We use R2, which is a
scaled version of the mean squared error, to allow for a fair comparison and aggregation of the results across
datasets and generative models.

C.2 Real-world design matrix

In addition to synthetic data, we also assemble a corpus of 63 publicly available datasets with missing
data, from the UCI Machine Learning Repository and the RDatasets Repository. Tables C.1, C.2, and C.3
present summary statistics for the datasets with only categorical features missing, only continuous features
missing, and both categorical and continuous features missing respectively. We use the datasets presented in
Tables C.1 and C.3 in Section 3.2, to empirically validate that, for categorical features, missingness should
be encoded as a category instead of using mode imputation. Then, we use the datasets from Tables C.2 and
C.3 in Section 3.3, to compare the performance of different impute-then-regress strategies and our adaptive
regression models.

For these datasets, we consider two categories of signal Y , real-world and synthetic signals.
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Dataset n #features #missing cont. #missing cat. |M| d Y

Ecdat-Males 4360 37 0 4 2 38 cont.
mushroom 8124 116 0 4 2 117 bin.
post-operative-patient 90 23 0 4 2 24 bin.
breast-cancer 286 41 0 7 3 43 bin.
heart-disease-cleveland 303 28 0 8 3 30 bin.
COUNT-loomis 384 9 0 9 4 12 cont.
Zelig-coalition2 314 24 0 14 2 25 NA
shuttle-landing-control 15 16 0 16 6 21 bin.
congressional-voting-records 435 32 0 32 60 48 bin.
lung-cancer 32 157 0 33 3 159 bin.
soybean-large 307 98 0 98 8 132 bin.

Table C.1: Description of the 11 datasets in our library where the features affected by missingness are
categorical features only. n denotes the number of observations. The columns ‘#features’, ‘#missing cont.’,
and ‘#missing cat.’ report the total number of features, the number of continuous features affected by
missingness, and the number of categorical features affected by missingness, respectively. |M| correspond
to the number of unique missingness patterns m ∈ {0, 1}d observed, where d is the total number of features
after one-hot-encoding of the categorical features. The final column Y indicates whether the dependent
variable is binary or continuous (if available).

Dataset n #features #missing cont. #missing cat. |M| d Y

auto-mpg 398 13 1 0 2 13 cont.
breast-cancer-wisconsin-original 699 9 1 0 2 9 bin.
breast-cancer-wisconsin-prognostic 198 32 1 0 2 32 bin.
dermatology 366 130 1 0 2 130 cont.
ggplot2-movies 58788 34 1 0 2 34 NA
indian-liver-patient 583 11 1 0 2 11 bin.
rpart-car.test.frame 60 81 1 0 2 81 bin.
Ecdat-MCAS 180 13 2 0 3 13 cont.
MASS-Cars93 93 64 2 0 3 64 cont.
car-Davis 200 6 2 0 4 6 NA
car-Freedman 110 4 2 0 2 4 NA
car-Hartnagel 37 8 2 0 2 8 NA
datasets-airquality 153 4 2 0 4 4 NA
mlmRev-Gcsemv 1905 77 2 0 3 77 NA
MASS-Pima.tr2 300 7 3 0 6 7 bin.
Ecdat-RetSchool 3078 37 4 0 8 37 cont.
arrhythmia 452 391 5 0 7 391 cont.
boot-neuro 469 6 5 0 9 6 NA
reshape2-french_fries 696 9 5 0 4 9 NA
survival-mgus 241 15 5 0 11 15 bin.
sem-Tests 32 6 6 0 8 6 NA
robustbase-ambientNOxCH 366 13 13 0 45 13 NA

Table C.2: Description of the 22 datasets in our library where the features affected by missingness are
numerical features only. n denotes the number of observations. The columns ‘#features’, ‘#missing cont.’,
and ‘#missing cat.’ report the total number of features, the number of continuous features affected by
missingness, and the number of categorical features affected by missingness, respectively. |M| correspond
to the number of unique missingness patterns m ∈ {0, 1}d observed, where d is the total number of features
after one-hot-encoding of the categorical features. The final column Y indicates whether the dependent
variable is binary or continuous (if available).
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Dataset n #features #missing cont. #missing cat. |M| d Y

pscl-politicalInformation 1800 1440 1 1431 3 1441 bin.
car-SLID 7425 8 2 3 8 9 NA
rpart-stagec 146 15 2 3 4 16 NA
Ecdat-Schooling 3010 51 2 8 9 53 cont.
mammographic-mass 961 15 2 13 9 18 bin.
cluster-plantTraits 136 68 2 37 16 85 NA
mlmRev-star 24613 122 2 72 19 128 cont.
car-Chile 2532 14 3 3 7 15 bin.
heart-disease-hungarian 294 25 3 17 16 31 bin.
heart-disease-switzerland 123 26 3 18 12 32 bin.
ggplot2-msleep 83 35 3 29 15 37 NA
survival-cancer 228 13 4 4 8 14 cont.
heart-disease-va 200 25 4 13 18 30 bin.
MASS-survey 237 24 4 19 8 29 NA
hepatitis 155 32 5 20 21 42 bin.
automobile 205 69 6 2 7 70 cont.
echocardiogram 132 8 6 2 13 9 bin.
thyroid-disease-allbp 2800 52 6 46 25 54 bin.
thyroid-disease-allhyper 2800 52 6 46 25 54 bin.
thyroid-disease-allhypo 2800 52 6 46 25 54 bin.
thyroid-disease-allrep 2800 52 6 46 25 54 bin.
thyroid-disease-dis 2800 52 6 46 25 54 bin.
thyroid-disease-sick 2800 52 6 46 25 54 bin.
survival-pbc 418 27 7 17 8 32 bin.
thyroid-disease-sick-euthyroid 3163 43 7 36 23 44 bin.
horse-colic 300 60 7 52 171 73 bin.
plyr-baseball 21699 296 9 14 18 297 NA
communities-and-crime 1994 126 22 3 4 127 cont.
communities-and-crime-2 2215 129 22 3 4 130 cont.
wiki4he 913 73 44 24 236 78 cont.

Table C.3: Description of the 30 datasets in our library where the features affected by missingness are
numerical and categorical. n denotes the number of observations. The columns ‘#features’, ‘#missing
cont.’, and ‘#missing cat.’ report the total number of features, the number of continuous features affected
by missingness, and the number of categorical features affected by missingness, respectively. |M| correspond
to the number of unique missingness patterns m ∈ {0, 1}d observed, where d is the total number of features
after one-hot-encoding of the categorical features. The final column Y indicates whether the dependent
variable is binary or continuous (if available).
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C.2.1 Real signal Y

46 out of the 63 datasets had an identified target variable Y , which could be continuous or binary. If Y is
categorical with more than 1 category, we considered the binary one-vs-all classification task using the first
(alphabetical order) category. For regression (resp. classification) tasks, we use the mean squared error (resp.
logistic log-likelihood) as the training loss and measure predictive power in terms of R2 (resp. 2×AUC−1).
Again, we choose this measure over mean square error (resp. accuracy or AUC) because it is normalized
between 0 and 1, and can be more safely compared and aggregated across datasets.

C.2.2 Synthetic signal Y

To generate synthetic signals Y , we use the same three generative models as with synthetic data in Section
C.1. However, this requires knowledge of the fully observed input matrix, while we only have access to obser-
vations with missing entries, (o(x(i),m(i)),m(i)), i = 1, . . . , n. Therefore, we first generate a fully observed
version of the data by performing missing data imputation using the R package missForest (Stekhoven &
Bühlmann, 2012), obtaining a new dataset {(x(i)

full,m
(i))}i∈[n]. We use this dataset to generate synthetic

signals Y , using the three types of signals described in Section C.1: linear, tree, and neural network.

Regarding the relationship between the missingness pattern M and the signal Y , we consider three mecha-
nisms:

• MAR: In this setting, we pass k = min(10, d) coordinates of xfull as input to the function f(·). Out
of these k features, we explicitly control kmissing ∈ {0, . . . , k}, the number of features contributing
to the signal that are affected by missingness. Hence, in this setting, the resulting response Y
depends directly on the covariates X but not on the missingness pattern M . However, we do not
control the correlation between X and M for two reasons: First, they both come from a real-world
dataset which might not satisfy the MAR assumption. Second, as previously observed (Section 2.2),
imputation does induce some correlation between the imputed dataset Xfull and M .

• NMAR: In the second setting, in addition to k = 10 coordinates of xfull, we also pass kmissing

coordinates of m, so that Y is now a function of both X and M .

• Adversarially Missing (AM): The third setting generates Y in the same way as the MAR
setting. After Y is generated, however, we reallocate the missingness patterns across observations so
as to ensure the data is NMAR. Formally, we consider the observations (o(x(i)

full,m
(σi)),m(σi), y(σi)),

i ∈ [n], where σ is the permutation maximizing the total sum of missing values
∑n

i=1 x
(i)
full

⊤
m(σi).

For each real-world dataset, this methodology generates up to 3 × 3 × 11 = 66 different instances.

All together, we obtain four experimental settings, with both synthetic and real signals Y . They differ in
the relationships between the missingness pattern M , the design matrix X and the signal Y as summarized
on Figure C.1.

C.3 Evaluation pipeline

In our numerical experiments, we compare a series of impute-then-regress methods where the imputation
step is performed either via mode/mean imputation or using the chained equation method mice (van Buuren
& Groothuis-Oudshoorn, 2010). We implement these approaches with a linear, tree, or random forest model
for the downstream predictive model. We treat the type of model as an hyper-parameter. We used the
default parameter values for number of imputations and number of iterations in mice.

For linear predictors, the hyper-parameters are the Lasso penalty λ and the amount of ridge regularization
α (ElasticNet). For tree predictors, the hyper-parameter is the maximum depth. For the random forest
predictors, the hyper-parameters are the maximum depth of each tree and the number of trees in the forest.

All hyper-parameters are cross-validated using a 5-fold cross-validation procedure on the training set.
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Figure C.1: Graphical representation of the 4 experimental designs implemented in our benchmark simula-
tions with real-world design matrix X. Solid (resp. dashed) lines correspond to correlations explicitly (resp.
not explicitly) controlled in our experiments.

We report out-of-sample predictive power on the test set. For synthetic data, the test set consists of 5, 000
observations. For real data, we hold out 30% of the observations as a test set.

All experiments are replicated 10 times, with different (random) split into training/test sets between repli-
cations.

D Implementation of Impute-then-Regress Pipelines with MICE

To achieve the best achievable predictive power, Theorem 2.1 requires the imputation rule to be the same
on the training set (on which the downstream predictive model is then trained) as on the test set. However,
many imputation models (especially the best performing ones) do not impute missing values as a simple
function of the observed features (µ(x2:d) in the statement of Theorem 2.1) but rely on an iterative process
where, at each iteration, current imputed values are used to train a new imputation model and then updated.
Consequently, in practice, we cannot guarantee that the exact same imputation rule is used in training and
testing.

We consider three implementations of impute-then-regress:

(V1) In the first variant, we simultaneously impute the train and test set, before training the model.

(V2) Secondly, we impute the training set alone, and then impute the test set with the imputed training
data.

(V3) As a third option, we impute the training set alone and then the test set with the original training
set.

Intuitively, (V1) should lead to the most consistent imputation across the training and test set but is not
practical for predictive models that are meant to be used in production. Indeed, the behavior of the model
on the test set should mimic its behavior on future observations, which, by definition, are unavailable (hence
should not be used) at any stage of the calibration process. (V2) is the variant we compared mean-imputation
against in Section 3.3. We intuit that (V3) will be less powerful than (V2) because the rules learned for
imputing the test set might differ from the ones used for the training set.

We conduct a regression analysis (Table D.1), to assess the relative benefit of using (V1) and (V3) over (V2).

As expected, we observe that (V1) leads to higher accuracy than (V2) on the synthetic instances. On the
semi-real and real data instances, however, we observe no strong statistically significant difference between
the two variants. Regarding (V3) vs. (V2), when statistically significant (7 out of 11 cases), we find that
the comparison is in favor of (V2). Henceforth, we recommend in practice to use (V2) since it mimics more
closely the production pipeline and the theoretical requirements from Theorem 2.1.
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Table D.1: Regression output for predicting the out-of-accuracy (R2 or AUC) based on the implementation
of the impute-then-regress method. We include dataset and kmisssing fixed effects. We report regression
coefficient values (and clustered standard errors).

Design matrix X Signal Y Missingness V1 vs. V2 coeff. V3 vs. V2 coeff. Adjusted R2

Syn.
Syn. - Linear MCAR 0.0049 (0.0017)** -0.0002 (0.0002) 0.3483

Censoring 0.0047 (0.0014)*** -0.0013 (0.0004)*** 0.3484

Syn. - NN MCAR 0.0038 (0.0010)*** 0.0 (0.0002) 0.4289
Censoring 0.0052 (0.0023)*** -0.0024 (0.0002)*** 0.4920

Real

Syn. - Linear
MAR 0.0076 (0.0066) -0.0067 (0.0024)** 0.2325
NMAR 0.0020 (0.0030) -0.0076 (0.0027)** 0.3982
AM -0.0021 (0.0027) -0.0017 (0.0025)*** 0.3468

Syn. - NN
MAR 0.0067 (0.0060) -0.0028 (0.0012)* 0.2805
NMAR 0.0030 (0.0036) -0.0037 (0.0017)* 0.3146
AM 0.0008 (0.0020) -0.0005 (0.0015) 0.3362

Real Real Real 0.0104 (0.0070) -0.0016 (0.0020) 0.8496

Controls: Dataset, kmissing (if available); p-value: *:< 0.1, **:< 0.01, ***:< 0.001

E Additional Numerical Results

In this section, we report complementary numerical results to Sections 3-4.

In Table 1, we evaluate the benefit of mode imputation (vs. encoding missingness as a new category)
for missing categorical variables on a collection of synthetic, semi-real, and real datasets. For the 34 real
datasets, we consider 10 different training/test splits and compute the difference in accuracy between the two
imputation strategies and conduct a paired t- and Wilcoxon test across all datasets to assess which method is
more accurate (on average and more often). Aggregating differences in accuracy across all datasets might be
fallacious because they cannot be considered as identically distributed. Actually, both tests were inconclusive
on these datasets. Alternatively, we can do this analysis at a dataset level. For each dataset, we can compute
the average difference in means across the 10 training/test splits and compute the associated t-statistics (or
equivalently the associated z-score). Figure E.1 reports the distribution of the difference in mean accuracy
(left panel) and of the z-scores across the 34 datasets. First, we observe that despite our best effort to
aggregate accuracy metrics that are on the same scale (2 ×AUC − 1 for classification and R2 for regression
tasks), the difference in means are more concentrated for regression problems than for classification ones.
Second, these distributions confirm the absence of a clear conclusion in these settings with almost as many
datasets where mode imputation is clearly beneficial (difference in means strongly positive, z-score close to
0) as those where it is detrimental (difference in means strongly negative, z-score close to 1). On this regard,
we should note that the mode imputation seems more detrimental for regression tasks than classification
ones, although the limited number of datasets involve prevents us from drawing a strong conclusion (see
Table E.1).

Table E.1: Difference in means and in pseudo-medians (with two-sided p-values) in out-of-sample accuracy
from a t and Wilcoxon test applied to assess the impact of mode imputation on downstream accuracy, on
real datasets only. A negative value means that mode impute reduces accuracy compared with encoding
missingn as a new category.

Task # comp. ∆ mean (p-value) ∆ pseudo-median (p-value)
Classification 250 0.0118 (0.210) 0.0000 (0.98)
Regression 90 -0.0049 (0.092) -0.0002 (0.015)

Figure E.2 reports the result of the same analysis for the comparison between mice and mean impute.
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Figure E.1: Distribution of average difference in out-of-sample accuracy (left panel) and of the z-scores (right
panel) across the 34 real datasets used to evaluate the effect of mode impute over encoding missingness as a
new category. On the left panel, a negative value implies that mode imputation performs worse on average.
On the right panel, a z-score close to 1 (resp. 0) implies that mode imputation has a detrimental (resp.
beneficial) effect with strong confidence.
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Figure E.2: Distribution of average difference in out-of-sample accuracy (left panel) and of the z-scores (right
panel) across the 36 real datasets used to evaluate the effect of mice impute over mean impute. On the left
panel, a negative value implies that mice performs worse on average. On the right panel, a z-score close to
1 (resp. 0) implies that mice has a detrimental (resp. beneficial) effect with strong confidence.

Figure E.3 complements Figure 1 by displaying the difference in accuracy between mice-then-regress and
mean-impute-then-regress as both the number of observations and the proportion of missing entries vary.
Unlike the proportion of missing entries, we do not observe a clear pattern in how sample size affects the
relative performance of each approach.
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(a) Y linear - MCAR (b) Y linear - Censoring

(c) Y NN - MCAR (d) Y NN - Censoring

Figure E.3: Difference in out-of-sample R2 between mice- and mean-impute-then-regress on fully synthetic
data, as the proportion of missing entries and the sample size vary. A green/positive value indicates that
mean impute is more accurate than mice.

Figure E.4 replicates Figure 3 for a random forest regressor instead. It reports the out-of-sample accuracy
achieved by random forest as the number of observations n increases, for three different treatment of missing
data: no treatment, mean impute, and mice.

(a) Y non-linear - MCAR (b) Y non-linear - Censoring

Figure E.4: Average out-of-sample R2 of XGBoost with mean impute, mice, or no imputation method, on
synthetic data with non-linear signal, NMAR missing data, and 40% of missing entries, as the number of
samples n increases. Results are averaged over 10 training/test splits.
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