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ABSTRACT

The impact of different multilingual data mixtures in pretraining large language
models (LLMs) has been a topic of ongoing debate, often raising concerns about
potential trade-offs between language coverage and model performance (i.e., the
curse of multilinguality). In this work, we investigate these assumptions by training
1B and 3B parameter LLMs on diverse multilingual corpora, varying the number
of languages from 25 to 400. Our study challenges common beliefs surrounding
multilingual training. First, we find that combining English and multilingual data
does not necessarily degrade the in-language performance of either group, provided
that languages have a sufficient number of tokens included in the pretraining corpus.
Second, we observe that using English as a pivot language (i.e., the language with
the highest data proportion) yields benefits across language groups, and contrary
to expectations, selecting a pivot language from within a specific group does
not consistently improve performance for languages within that language branch.
Lastly, we do not observe a significant “curse of multilinguality” as the number
of training languages increases in models at this scale. Our findings suggest
that multilingual data, when balanced appropriately, can enhance language model
capabilities without compromising performance, even in low-resource settings.1

1 INTRODUCTION

Recent advances in large language models (LLMs) have demonstrated impressive performance across
a wide range of non-English languages, including many that are considered low-resource (Yang
et al., 2025; Team et al., 2025; Grattafiori et al., 2024; Üstün et al., 2024; OpenAI et al., 2024).
These models are typically pretrained on data from over 100 high- and mid-resource languages,
leveraging the broad availability of multilingual content on the web. Despite this progress, the impact
of multilingual data composition on model training remains a subject of active debate, particularly
regarding potential trade-offs between total language coverage and model performance in different
languages (Alastruey et al., 2025). Practitioners often face difficult trade-offs: Should they include
more languages in the pretraining data mixture or concentrate resources to prioritize performance
in fewer languages? For greater multilingual generalization, should they include pivot languages
from different language families or merely from high-resource global languages? Could curriculum
learning among pivot languages also lead to greater multilingual generalization?

While previous studies tried to address these questions, they have generally been limited in scope,
either by the number of languages considered or by the scale of the models used. For instance, one
study investigates the so-called curse of multilinguality using relatively small models with 45M
parameters (Chang et al., 2024). Another recent work explores scaling laws for multilingual language
models and proposes an optimal sampling ratio for multilingual data (He et al., 2024). However, this
work focuses on only 23 languages and similarly small models (85M parameters). Other studies have
discussed multilingual data mixtures for task training (Wang et al., 2020) or instruction-tuning (Üstün
et al., 2024), but it is unknown to what extent their intuitions would extend to pretraining.

In this work, we study the impact of multilingual data composition in training large-scale LLMs.
Specifically, we train a series of 1B and 3B parameter models on corpora of 100B tokens containing
up to 400 languages, allowing us to systematically explore the effects of language count, diversity,

1We will make our code available upon publication.
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and token distribution. Our experiments challenge several prevailing propositions about multilingual
training. We summarize our key findings as follows:

Findings #1: More English data does not necessarily hurt multilingual performance. We show
that varying the proportion and absolute amount of English data in the training mix does not harm
multilingual performance, as long as a sufficient number of multilingual tokens are included in the
pretraining mixture. The reverse is also true, as increasing the number of multilingual tokens does not
harm English performance as long as there are sufficient English tokens in the pretraining mixture.

Findings #2: Typological boundaries are not barriers to transfer. Contrary to the prevailing
wisdom that family-specific pivots are most effective (He et al., 2024; Bagheri Nezhad & Agrawal,
2024), we find that using English as a pivot language2 provides benefits across distinct linguistic
groups. Selecting a high-resource pivot language from within a specific language branch (e.g.,
Russian for Slavic languages) does not consistently enhance performance across languages in that
branch. Given that English has the most diverse and highest quality data on the web, this evidence
shows the unique advantage of leveraging a high-resource language to improve performance in other
languages, regardless of their specific linguistic branch or structural typology.

Findings #3: Curriculum learning fails to mitigate negative interference. Prior work has shown
training on multiple languages simultaneously can degrade performance in both high- and low-
resource languages, a phenomenon coined as negative interference (Wang et al., 2020). Although
curriculum learning has been proposed as a potential solution to this problem (Zhang et al., 2021;
Kumar et al., 2021; Choi et al., 2023), our results show that staging the introduction of languages
during training neither reduces negative interference nor improves performance on non-English
languages.

Findings #4: Increasing the number of training languages does not always lead to performance
degradation. The curse of multilinguality suggests that expanding language coverage reduces model
performance in both monolingual and cross-lingual settings (Chang et al., 2024; Blevins et al., 2024;
Pfeiffer et al., 2022; Conneau et al., 2020). We find the curse of multilinguality arises not from simply
adding more languages, but from the finite capacity of models and data distributions that amplify the
impact of noisy, low-resource languages.

Collectively, our findings offer practical guidance for designing more effective multilingual pretraining
strategies and contribute to the development of stronger, more inclusive multilingual LLMs.

2 EXPERIMENTAL SETUP

Model. We train decoder-only Transformer models (Vaswani, 2017) based on the LLaMA architec-
ture (Touvron et al., 2023), in two sizes: 1.1 and 3 billion parameters (1.1B and 3B). The model sizes
are determined by varying the number of layers, hidden dimensions, and attention heads. Detailed
configuration and training parameters are provided in Appendix A.

Pretraining Data. We use two corpora in our experiments. For experiments involving 30 languages,
we use the multilingual version of the C4 corpus (mC4; Xue et al., 2021; Raffel et al., 2019).3 For
experiments involving a larger set of up to 1,834 languages, we use the FineWeb2 corpus (Penedo
et al., 2025). All data are tokenized using the Mistral-Nemo-Base-2407 tokenizer,4 which has a
vocabulary size of |V| = 131,000 tokens. Models are trained on D = 100 to D = 225 billion
tokens. We selected the Mistral-Nemo-Base-2407 tokenizer because it is a state-of-the-art tokenizer
designed specifically for multilingual pretraining, covering a wide range of scripts and languages
(over 100), and representing them more fairly than other publicly available tokenizers (Apertus Project
et al., 2025).

Evaluation. We evaluate our models by measuring their language modeling loss on a held-out
validation set that is distinct from the pretraining data. In addition, we perform downstream task
evaluations using a suite of multilingual benchmarks. For each model, we aggregate results by

2Historically, pivot languages are used as intermediary languages for many-to-many translation. In the
context of this work we refer to pivot languages as those that are highly represented in pretraining data and
whose presence serves as a catalyst for multilingual generalization.

3https://huggingface.co/datasets/allenai/c4
4https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
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(a) Fixed Total Budget (b) Fixed Multilingual Budget

Figure 1: Validation LM loss for English and weighted average LM loss of non-English languages
(Multilingual) across different proportions of English in the pretraining data for 1.1B models. (a)
In a Fixed Total Budget, increasing English data (≥50%) leads to a performance drop in other
languages. (b) In a Fixed Multilingual Budget, increasing English data (up to 60%) does not have a
negative effect on other languages.

(a) Fixed Total Budget (b) Fixed Multilingual Budget

Figure 2: Aggregated benchmark performance for English and weighted average of non-English
(Multilingual) across different proportions of English in the training data for 1.1B models. The
dashed lines represent the random baselines for each language group. (a) In a Fixed Total Budget,
increasing English data (≥50%), does not hurt downstream performance on the Multilingual group.
(b) In a Fixed Multilingual Budget, we see that increasing English data has a negligible impact on
the Multilingual group’s performance.

language to obtain a comprehensive score for every model-language pair. Details of the benchmark
suite and the aggregation procedure are provided in Appendix B.

3 ASSUMPTION #1: ENGLISH HURTS MULTILINGUALITY

English serves as the dominant pivot language for LLMs due to the abundance, diversity, and quality
of English data available on the web. Simultaneously, due to the prevalence of LLM applications
in English, maintaining English performance is often prioritized when training multilingual mod-
els by increasing the total proportion of English data, potentially at the expense of multilingual
performance (Chung et al., 2023; Xue et al., 2021; 2022).

Assumption 1: More English data comes at the cost of performance in other languages.

In this experiment, we investigate how the amount of English pretraining data influences performance
in non-English languages. We train models of 1.1B and 3B parameters using data in 30 languages
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from the mC4 corpus, systematically varying the proportion of English data from 0% to 100%. The
selected languages represent diverse language families and data resource levels (Table 3). We use
temperature sampling with τ = 3.3 (details in Appendix A.3). When deciding on the data budget for
these experiments, we consider two settings to disentangle the impact of data composition from the
total amount of data seen during training:

Fixed Total Budget: The total pretraining budget is held constant at 100B tokens. Increasing the
proportion of English reduces the amount of non-English (multilingual) data. This setup explores the
trade-off between English and multilingual data under a constrained data regime.

Fixed Multilingual Budget: The amount of non-English data is fixed at 90B tokens with English data
added on top, leading to a growing total data size (up to 225B tokens). This setup explores the effect
of increasing English data without reducing multilingual coverage, simulating an unconstrained data
regime (where multilingual data may be available in smaller quantities in web data than English data).

Results. Figure 1a shows the final validation loss for English and non-English languages for the
1.1B model for the Fixed Total Budget setting. As expected, increasing the proportion of English
data leads to a lower validation loss for English. For non-English languages, validation loss remains
relatively stable up to approximately 40% English data. Beyond this point, performance begins
to degrade, indicating that allocating more capacity to English at the expense of other languages
negatively impacts multilingual learning.

In contrast, under the Fixed Multilingual Budget setting (Figure 1b), we observe that multilingual
performance remains largely unaffected—even when English comprises up to 60% of the dataset.
These results suggest that, provided there is sufficient data to support learning robust multilingual
representations, adding more English data does not interfere with performance on other languages. A
similar pattern holds for the 3B models, as shown by the results in Appendix Figure 7.

Figure 2b presents the benchmark results for this experiment. In both the Fixed Total Budget and Fixed
Multilingual Budget settings, we observe that increasing the proportion of English data consistently
improves downstream task a in English. Mirroring the same patterns as for the loss, this increase
does not degrade performance on other languages. Furthermore, Figure 8 shows results for the 3B
models (see Appendix C), which exhibit a similar trend.

Takeaway: Contrary to common belief, increasing the amount of English data in the training of
LLMs does not necessarily degrade their multilingual capabilities, provided that the training set
also contains a sufficient quantity of multilingual tokens. In other words, it is possible to support
additional languages while still maintaining strong performance in English.

4 ASSUMPTION 2: “STAY IN THE LANGUAGE BRANCH”

Previous research suggests that cross-lingual transfer is generally more effective between languages
that belong to the same language family (Muller et al., 2023; He et al., 2024; Bagheri Nezhad &
Agrawal, 2024; Xu et al., 2025). This implies that, if the pattern holds consistently, selecting a pivot
language from within the same family is likely to yield greater transfer benefits than choosing one
from a different family.

Assumption 2: Languages within the same linguistic branch offer the strongest boost to
multilingual generalization.

In this experiment, we investigate the impact of using various types of pivot languages in a training
corpus with multiple language families. A pivot language is defined as an intermediary language in a
pretraining set for more effectively learning languages with less available data.

We compare using English as a pivot language for all languages, and selecting a pivot language from
within the same language family for certain languages. Specifically, we train a 1.1B model on a
subset of Slavic and Cyrillic-script languages under three different conditions: (1) English as the pivot
language, (2) Russian as the pivot language, and (3) a uniform combination of English and Russian as
pivots. The Slavic set includes Belarusian, Ukrainian, Macedonian, Bulgarian, Mongolian, Serbian,
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(a) Slavic Languages (b) Cyrillic-Script Languages

Figure 3: Weighted average of validation LM loss for (a) Slavic and (b) Cyrillic-script languages
when we have English, Russian, or English+Russian as a pivot language in the training data mix.
Having a combination of Russian and English as pivots leads to the best performance for both groups
of languages (Model size = 1.1B).

Polish, Czech, and Slovak. The Cyrillic-script set comprises Belarusian, Ukrainian, Macedonian,
Bulgarian, Kyrgyz, Tajik, Kazakh, Mongolian, Serbian, and Uzbek (see Table 4 for details).

Results. Figure 3 presents the weighted average loss across both language groups. We observe
that as the proportion of training data assigned to the pivot language increases (and the complement
proportion for non-pivot languages decreases), the loss for non-pivot languages remains relatively
stable at first. However, as less data is allocated to them, their loss eventually rises, as expected.
Up to a 50% allocation to the pivot language, English and Russian perform comparably. However,
beyond this threshold—particularly at 60% or more, Russian proves slightly more effective as a
pivot, yielding lower loss for the remaining languages. One possible explanation is that when
pivot allocation is relatively low, non-pivot languages still benefit from having access to their own
training data. But in extremely low-resource conditions, these languages gain more from leveraging
similarities with a strong pivot language. Another factor is that English training data is often more
diverse and standardized, with broad domain coverage. This richness may make English a strong
pivot up to a certain point, after which typological proximity favors Russian. Notably, combining
both English and Russian as joint pivots yields the lowest overall loss, suggesting a complementary
effect: English contributes wide coverage, while Russian offers closer linguistic ties to many of the
target languages. The detailed per-language loss values are provided in Figure 9 in Appendix C.

Takeaway: English can serve as a broadly effective pivot language, but in very low-resource settings,
typological similarity becomes increasingly important. Using multiple pivots that balance breadth
and proximity provides the most consistent benefits across language families.

5 ASSUMPTION 3: MULTILINGUAL CURRICULUM LEARNING REDUCES
NEGATIVE INTERFERENCE

Prior research has explored using curriculum learning (a “general-to-specific” data scheduling
approach) to improve pretraining (Dubey et al., 2024; DataBricks, 2024; Apertus Project et al.,
2025; Martins et al., 2025). In multilingual training, previous work suggests that the order in which
languages are introduced during training can influence model performance and potentially reduce
competition between languages (Choi et al., 2023; Ranaldi et al., 2024; Allemann et al., 2025).

Assumption 3: Curriculum-based language introduction mitigates negative interference.

To investigate the dynamics of cross-lingual competition and knowledge transfer in multilingual
language models, we designed a series of controlled curriculum learning experiments. Our goal
is to understand how the timing and order of language inclusion during training influence model
performance. We design four experimental setups:

5
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(a) Loss on English-language vali-
dation data.

(b) Weighted average loss for non-
pivot languages.

(c) Weighted average Loss for Ara-
bic, Chinese, and Russian.

Figure 4: LM loss on the validation set for 3B models as a function of consumed training tokens,
shown separately for (a) English, (b) non-English, and (c) pivot languages under different curriculum
strategies.

All-at-once baseline: The model is trained on the full multilingual dataset from the outset. This
setup, common in many multilingual LLMs (e.g., Apertus Project et al., 2025) serves as a control to
benchmark the effects of curriculum-based training strategies.

English-all: For the first 25% of training, the model is exposed only to English. After this phase,
training proceeds on the full multilingual dataset. This allows us to isolate the impact of early
single-language pretraining on subsequent multilingual generalization and interference.

English-Pivots-all: Training is divided into three phases (1) 0–25%: Only English data is used. (2)
25–50%: We introduce three additional high—resource languages—Arabic, Chinese, and Russian—
alongside English as pivot languages. These four languages were chosen to represent four distinct
scripts: Latin, Arabic, Han, and Cyrillic, respectively. This intermediate stage allows us to explore
early competition between strong languages with differing orthographic and typological properties.
(3) 50–100%: The model is trained on the full multilingual dataset. This progressive inclusion
strategy enables a controlled examination of cross-lingual interactions and competition under varying
degrees of language diversity.

Pivots-all: For the first 25% of training, the model is trained using our 4 pivot languages. After this
phase, training continues on the full multilingual dataset. This allows us to isolate the impact of early
high-resource pretraining on subsequent multilingual generalization and interference.

Results. Figure 4 presents the results of our curriculum learning experiments. When examining
English loss, we find that introducing English early in training—either alone (English-all) or alongside
pivot languages (English-pivots-all)—leads to lower final loss for English. Notably, transitioning
between curriculum stages (i.e., adding new languages in successive phases) temporarily increases
the loss for previously seen languages. This suggests a short-term “forgetting” effect, where the
model learns new languages at the cost of temporarily degrading performance on earlier ones, before
eventually recovering and integrating all knowledge across the languages.

For the other three pivot languages (Figure 4c), the curriculum that begins with English and subse-
quently introduces the pivots (Pivots-all) achieves the lowest average loss midway through training.
However, as additional languages are introduced, the loss increases, ultimately converging to the
same level as other runs. As with English, we observe a forgetting effect at each transition.

When analyzing the average loss across other non-English languages (Figure 4b), we observe that
while different curriculum regimes begin at different starting points and follow distinct learning
trajectories, they all converge to a similar final loss by the end of training. This consistency indicates
that curriculum order primarily affects learning dynamics, but not final multilingual performance.

Although curriculum learning appears to benefit English, further analysis reveals that this improve-
ment is largely attributable to data quantity. Specifically, we find a strong correlation between the
number of English tokens in the training mix and the model’s performance on English. In other words,
models exposed to more English data achieve lower loss. Consequently, the English-pivots-all setup
attains the lowest English loss primarily because it includes the largest proportion of English data in
its curriculum. Validation loss for each language is depicted in Figures 11 and 12 in Appendix E.
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Takeaway: Curriculum learning shapes the trajectory of multilingual training but does not reduce
interference or improve final performance. Observed gains for English under certain curricula are
explained by the data distribution rather than curriculum structure.

6 ASSUMPTION 4: THE “CURSE OF MULTILIGUALITY”

Prior work has shown that, for a fixed model capacity, adding more languages during pretraining
initially improves cross-lingual transfer, particularly for low-resource languages. However, beyond
a certain point, both monolingual and cross-lingual performance begin to degrade. This trade-off
is commonly referred to as the curse of multilinguality (Conneau et al., 2020; Pfeiffer et al., 2022;
Blevins et al., 2024; Chang et al., 2024).

Assumption 4: Adding more languages to a pretraining mixture reduces performance.

We revisit this assumption by training language models with varying numbers of languages and
analyzing the impact on both high- and low-resource languages.

# Languages LM Loss ↓ Benchmark Performance ↑
Natural Dist. Temp. Sampling Natural Dist. Temp. Sampling

25 2.678 2.675 50.13 ± 1.868 43.24 ± 1.874

50 2.678 2.681 49.41 ± 1.868 43.80 ± 1.878

100 2.682 2.687 49.29 ± 1.865 43.76 ± 1.872

200 2.680 2.696 49.11 ± 1.864 42.38 ± 1.870

400 2.678 2.707 49.64 ± 1.871 42.12 ± 1.854

Table 1: English validation loss and benchmark performance (%) when increasing languages cov-
erage from 25 to 400 (3B model). English represents 40% of the training data in all runs (40B
tokens). Increasing the number of languages, while keeping English data fixed, does not hurt English
performance. Per-benchmark values are provided in Table 9.

Practically, we train 3B parameter models on 100B tokens from the FineWeb-2 corpus. In all
settings, English accounts for 40% of the training data, while the number of non-English languages is
systematically increased—from 25 to 400. We experiment with the top-25, 50, 100, 200, and 400
most frequent languages in FineWeb-2 under two distributions: (1) the natural distribution and (2)
temperature sampling with τ = 3.3. We then evaluate how increasing linguistic diversity in the
non-English data subset affects English and non-English performance. Details of the training data
distribution are provided in Table 8.

Results. Table 1 summarizes English validation loss and average downstream performance across
these configurations. Two main observations emerge. First, for a fixed number of languages and
a fixed English share, English performance is consistently stronger under the natural distribution
than under temperature sampling. In this case, English benefits from cross-lingual transfer with
high-resource, typologically related languages (e.g., German, French), which receive more data under
the natural distribution (we further investigate this effect in Appendix D). Second, even when scaling
up to 400 languages, English performance remains largely stable—particularly under the natural
distribution, suggesting that English performance is not determined by the sheer number of languages
included in the training process. In other words, the key factor is not how many languages are present,
but how the training data is distributed among them.

Building on this insight, we show in Figures 5a and 5c the weighted average LM validation loss for
the top-25, 50, 100, and 200 language groups (excluding English) under the two distributions. The
x-axis denotes language groups used for evaluation, while the y-axis indicates language groups used
for training. Because the total data budget is fixed at 100B tokens, adding more languages necessarily
reduces the relative share of data for previously included ones. Under the natural distribution, however,
performance remains stable as languages are added. In contrast, under temperature sampling we
observe up to a ∼0.1 increase in loss when expanding from 25 to 400 languages. This effect is
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(a) Fixed Total Budget (Natural Distribution) (b) Controlled Growth Setting (Natural Distribution)

(c) Fixed Total Budget (Temperature Sampling) (d) Controlled Growth Setting (Temperature Sampling)

Figure 5: Average validation LM loss for different language groups (x-axis) across various curse
of multilinguality experiments that include more languages in the pretraining mixture (y-axis).
Increasing the number of languages does not necessarily degrade the performance of languages
included in previous experiments, provided that the amount of training data (in tokens) for those
languages remains the same. (English is excluded from these evaluations)

expected, since temperature sampling reduces the allocation of mid- and high-resource languages
more aggressively, amplifying the effect of including low-resource ones.

To disentangle the effect of adding new languages from the effect of reducing data for existing ones,
we also run a controlled setting where the data for the original set of languages remains fixed across
two consecutive runs. For example, when increasing from 25 to 50 languages, the first 25 languages
receive the same amount of training data as before; the same approach is applied when scaling from
50 to 100, 100 to 200, and 200 to 400 languages. Figures 5b and 5d report the results. Once again,
under the natural distribution, performance remains stable, and we also observe a smaller relative
degradation for the temperature sampling setting.

Taken together, these results suggest that the curse of multilinguality is not primarily about the number
of languages added, but instead reflects limitations in model capacity and the quality and distribution
of multilingual data. Under the natural distribution, the phenomenon is better described as a curse of
capacity: models have a finite ability to absorb tokens, and beyond a certain point, additional data
yields diminishing or even negative returns, a constraint not unique to multilingual models. Under
temperature sampling, the issue more closely resembles a curse of data quality: oversampling very
low-resource languages introduces more noisy data into training, which hurts performance.
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Takeaway: The curse of multilinguality, while measurable, likely arises not from simply adding
more languages, but from (1) the finite capacity of models and (2) data distributions that too strongly
amplify the impact of languages represented by lower-quality data.

7 RELATED WORK

Pretraining Data Mixture. Prior work has explored the impact of pretraining data composition
on the performance of large language models (LLMs) (Gu et al., 2024; Zhao et al., 2024b; Xie
et al., 2023; Albalak et al., 2023; Held et al., 2025; Apertus Project et al., 2025). Several studies
have proposed algorithms to optimize domain weights using proxy models, thereby improving the
generalization ability of LLMs (Xie et al., 2024; Fan et al., 2023). Another approach formulates the
identification of high-performing data mixtures as a regression problem (Liu et al., 2024).

In the multilingual setting, temperature-based sampling has traditionally been used to balance
representation across languages (Devlin et al., 2019; Xue et al., 2021). However, this heuristic method
can lead to overfitting on low-resource (tail) languages. To address this, Chung et al. (2023) proposes
a sampling method that ensures more uniform coverage of high-resource (head) languages while
capping repetition on low-resource languages. Additionally, He et al. (2024) investigates scaling
laws specific to multilingual LLMs, providing further insight into optimal data mixture strategies.
Additionally, several approaches address data mixture optimization within the context of multilingual
continual pretraining (Ji et al., 2024; Li et al., 2025).

Curse of Multilinguality & Negative Interference. The curse of multilinguality, introduced
by Conneau et al. (2020), describes the phenomenon where, under a fixed model capacity, adding more
languages initially improves cross-lingual performance—especially for low-resource languages—but
eventually leads to degradation in both monolingual and cross-lingual performance. Most previous
investigations into this phenomenon have been limited in scale, in terms of both model size and
language coverage. For instance, Pfeiffer et al. (2022) studies this trade-off using a 270M parameter
bidirectional model trained on 75 languages, proposing a modular architecture to mitigate interference.
Recently, Chuang et al. (2025) shows that the curse of multilinguality breaks with larger count of
parameters for multimodal embedding tasks.

Blevins et al. (2024) introduces a cross-lingual expert language model, in which separate models
are trained on subsets of the multilingual corpus to reduce competition among languages. Similarly,
Chang et al. (2024) explores this effect using monolingual and multilingual models (up to 45M
parameters) trained across 250 languages and derives optimal sampling ratios. Wang et al. (2020)
examines the phenomenon of negative interference in multilingual LMs and introduces a meta-
learning algorithm that improves cross-lingual transfer and alleviates interference effects. Alastruey
et al. (2025) challenge the prevailing assumption that cross-lingual interference depends on language
family, showing instead that it is primarily related to script.

Impact of Pivot Languages. The role of pivot languages in improving monolingual and cross-
lingual performance of multilingual LLMs has been studied before. Several works have demonstrated
the benefits of using a pivot language for machine translation (Kim et al., 2019; Zou et al., 2022;
Gaikwad et al., 2024; Mohammadshahi et al., 2024). Zhang et al. (2024) shows that using English
as a pivot for cross-lingual instruction tuning, by first interpreting instructions in English before
generating responses in the target language, can be highly effective. Pivot languages have also been
used to improve alignment in multilingual representation spaces (Zhao et al., 2024a). Investigating
the mechanics of this transfer, Wendler et al. (2024) show that models leverage the pivot language’s
internal circuits to process other languages. The efficacy of this cross-lingual transfer is tied to data
distribution: it is more pronounced when models are trained using imbalanced language mixtures,
rather than in a balanced setting (Schäfer et al., 2024).

Curriculum Learning (CL) for LLMs. Curriculum Learning (CL), a data-centric training strategy
inspired by human learning processes, has been studied for improving the performance of LLMs (Naïr
et al., 2024; Kim & Lee, 2024; Li et al., 2021). Several studies have demonstrated the effectiveness
of CL in multilingual machine translation (Zhang et al., 2021; Kumar et al., 2021; Zhou et al., 2021;
Choi et al., 2023). Ranaldi et al. (2024) applies the CL paradigm during the instruction-tuning phase
of multilingual LLMs and reports notable improvements. Additionally, Yoo et al. (2024) proposes a
code-switching-based CL strategy to enhance cross-lingual transfer capabilities in LLMs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 DISCUSSION & CONCLUSION

Our study investigates the influence of data mixture composition on multilingual large language model
(LLM) pretraining, leveraging 1.1B and 3B models across up to 400 languages. Our findings challenge
prevailing assumptions about multilingual pretraining, offering direct guidance for multilingual data
mixture design. First, we demonstrated that the quantity and proportion of high-resource English
data do not inherently compromise multilingual performance, provided a sufficient number of non-
English tokens are present. This finding suggests practitioners should prioritize ensuring an adequate
absolute volume of diverse, high-quality multilingual content over strictly reducing the high-resource
component. Second, and contrary to suggestions that family-specific pivots are most effective, we
established that English consistently serves as a high-quality pivot language, providing cross-lingual
transfer benefits across linguistic groups.

We also provided new insights into core challenges of multilingual scaling: negative interference
and the “curse of multilinguality.” Our results showed that staging the introduction of languages
through curriculum learning does not mitigate negative interference (Wang et al., 2020) or improve
non-English performance, suggesting that interference is a fundamental problem related to the
fixed capacity of models, and not merely one that can be fixed through different data curricula.
Furthermore, our findings refine the understanding of the “curse of multilinguality”(Chang et al.,
2024), demonstrating that performance degradation arises not from the simple count of languages
added, but from the finite capacity of models and data distributions that amplify the impact of noisy,
low-resource languages. Although prior studies (Conneau et al., 2020) mentioned the capacity
limitation in multilingual modeling, this work distinguishes itself by conducting a comprehensive
and integrated analysis of the phenomenon across its various facets.

Collectively, these findings translate into the following practices for training multilingual LLMs.
First, adopting regimes taking into account the order of languages such as curriculum learning offer
no demonstrable benefit over a well-mixed approach. Second, given the resilience to high English
proportions, focus resource investment on scaling and cleaning low-resource data rather than on
costly data balancing operations. Third, do not limit language coverage arbitrarily, as the curse
is primarily a function of quality and quantity of the multilingual data, not language count. Our
evidence implies that future efforts to break the curse should focus on including adequate high-quality
data for each language. While these principles were established on 1.1B and 3B parameter models,
future work must validate these trade-offs on larger models models to explore how increased model
capacity potentially alters the non-linear relationship between data composition, interference, and
performance.

LIMITATIONS

Despite employing larger models and more data than prior work, our study remains far below the
scale of frontier models such as Meta AI (2025); Guo et al. (2025), as operating at that scale would
have prevented us from running the number of experiments necessary to draw reasonable conclusions
within our computational constraints. Furthermore, we were unable to explore the impact of post-
training and the effects of various data sampling strategies for the same reason. Lastly, the choice
of our tokenizer may limit performance on lower-resource languages. We selected a pre-existing
tokenizer that supported the greatest number of languages in our study, as training a tokenizer
to support 1,834 languages is practically infeasible without substantially increasing the model’s
vocabulary size and the associated GPU memory requirements.
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A LANGUAGE MODEL TRAINING

Here we provide details about training the language models used in our experiments.

Model Arch. Layers Hidden Attn. Heads RoPE θ Vocab
1.1B LLaMA 24 1536 16 500,000 131,000
3B LLaMA 28 2496 24 500,000 131,000

Table 2: Overview of the architectural configurations for different model sizes.

Our experiments focus on models with 1.1 and 3 billion parameters (1.1 and 3B). All models follow
the LLaMA architecture Touvron et al. (2023). The model size is determined by adjusting the number
of layers, hidden sizes, and the number of attention heads (Details in Table 2).

A.1 TRAINING HYPERPARAMETERS

We train our models using HuggingFace’s Nanotron trainer.5 The key training hyperparameters are as
follows:

• Learning Rate. We use a learning rate of 8× 10−4 with linear warmup over the first 4% of
training. A “1-sqrt” decay schedule (Hägele et al., 2024) is applied during the final 20%, as
shown in Figure 6.

• Optimizer. All experiments use AdamW with β = (0.9, 0.95) (Loshchilov, 2017).

• Weight Decay. We set the weight decay parameter to λ = 0.1 for regularization.

• Batch Size. The micro-batch size is fixed at 5 across all runs.
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Figure 6: Learning rate schedule over tokens with warmup and decay.

5https://github.com/huggingface/nanotron
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A.2 HARDWARE SETUP

Training is performed on a large-scale cluster. Each node is equipped with 4 NVIDIA Grace-Hopper
H100 GPUs (96 GB memory each).

• 1B models. We train our 1B models on 22 nodes (or 88 GPUs) over around 15h per 100B
tokens. This gives a global batch size of 440 examples.

• 3B models. We train our 3B models on 64 nodes (or 256 GPUs) for around 18h per 100B
tokens. Therefore our runs have a global batch size of 640 examples.

A.3 SAMPLING METHODS

Let L be the set of languages in the dataset, and let πnatural ∈ ∆|L| represent the natural distribution
of these languages, defined as:

πnatural
l =

ωl∑
l′∈L ωl′

where ωl denotes the number of words (or tokens) for language l in the dataset. In this work, we
use the number of words as a proxy for language frequency, a common practice when presenting
statistics for highly multilingual datasets Penedo et al. (2025). We implement the following sampling
strategies:

• Natural Sampling. This method samples according to the natural distribution πnatural,
directly reflecting language frequencies in the dataset. Typically, this distribution is highly
imbalanced, with a few languages dominating the cumulative share of data.

• Temperature Sampling. This method adjusts the natural distribution using a temperature
parameter τ to create a less skewed distribution:

πtemp,τ
l =

ω
1/τ
l∑

l′∈L ω
1/τ
l′

By tuning τ , the distribution can be shifted towards uniformity, thereby reducing imbalance
among languages.

Figures 10 and 11 present the training data distribution for experiments described in Section 3.

B BENCHMARK SETUP

We evaluate our models using HuggingFace’s Lighteval codebase (Habib et al., 2023).6

B.1 BENCHMARKS

We select 10 standard multilingual benchmarks to evaluate our models on various downstream tasks.

• Belebele: A multilingual reading comprehension dataset containing passages and corre-
sponding questions in many languages. It evaluates models’ ability to understand text and
answer related questions (Bandarkar et al., 2024).

• XCodah: A multilingual adaptation of CODAH for adversarially-authored commonsense
reasoning tasks, testing robustness in natural language understanding (Lin et al., 2021a;
Chen et al., 2019).

• XCSQA: A multilingual version of CommonsenseQA, consisting of multiple-choice ques-
tions that require reasoning about everyday concepts and their relations (Lin et al., 2021a;
Talmor et al., 2019).

• XCOPA: A multilingual adaptation of the COPA dataset for evaluating cross-lingual causal
commonsense reasoning, covering multiple languages to test reasoning transfer across
linguistic boundaries (Ponti et al., 2020).

6https://huggingface.co/docs/lighteval/en/index
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• XStoryCloze: A multilingual extension of the StoryCloze Test, where models must choose
the most coherent ending to short narratives, testing story comprehension and commonsense
reasoning (Mostafazadeh et al., 2017; Lin et al., 2021b).

• XWinogrande: A multilingual version of WinoGrande, containing sentences with ambigu-
ous pronouns. It measures models’ ability to resolve coreference using contextual and
commonsense cues (Sakaguchi et al., 2021; Muennighoff et al., 2022; Tikhonov & Ryabinin,
2021).

• MMMLU: A multilingual adaptation of MMLU, evaluating model performance across a
wide spectrum of tasks and domains (Hendrycks et al., 2021; Dac Lai et al., 2023).

• INCLUDE: A large-scale benchmark covering 44 languages, designed to evaluate multi-
lingual LLMs in realistic language environments with a focus on knowledge and reason-
ing (Romanou et al., 2024).

• Exams: A benchmark of standardized test questions across subjects and educational levels,
used to assess reasoning and problem-solving abilities in exam-like conditions (Hardalov
et al., 2020).

• M3Exams: A multilingual exam-style benchmark that extends Exams across different
languages, subjects, and difficulty levels (Zhang et al., 2023).

B.2 AGGREGATIONS

We aggregate benchmark results to compute a language-specific score for each model. Let Tl be the
set of benchmarks (or tasks) containing a split for language l. The aggregated score for a model m
per language l is defined as:

sml =
1

|Tl|
∑
t∈Tl

smt,l

where sml is the score of a model m on the split l of a task t. To mitigate biases arising from varying
numbers of benchmarks per language, we compute a language-specific random baseline ζl. This
baseline helps assess whether a given aggregated score significantly outperforms random predictions.
Specifically, we calculate the random baseline for each language as the average of the individual
random baselines across all tasks that include language l:

ζl =
1

|Tl|
∑
t∈Tl

ζt

C PIVOT ABLATION

Table 3 presents the languages included in the experiments described in Section 3. The set of
languages analyzed in the experiments of Section 4 is listed in Table 4.

Figures 7 and 8 present the validation loss and average benchmark scores for English and non-English
(“Multilingual”) languages for 3B models. Consistent with our observations for the 1.1B models, we
find that under the Fixed Total Budget setting, increasing the proportion of English data (≥ 50%),
leads to a decline in performance for other languages. In contrast, under the Fixed Multilingual Budget
setting, increasing the share of English data (up to 60%) does not adversely affect the performance of
non-English languages.

D CROSS-LINGUAL TRANSFER

To examine how non-English languages influence English performance under the Fixed Total Budget
setting, we train models on data spanning 1,834 languages while systematically varying the share of
data allocated to each. Specifically, we partition the languages from the FineWeb-2 dataset into two
groups:

Target Languages. A set of 45 high- and mid-resource languages that we aim for the model to
perform well on.
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Language Language Family Script
Arabic Afro-Asiatic (Semitic) Perso-Arabic
Bulgarian Indo-European (Slavic) Cyrillic
Bengali Indo-European (Indo-Aryan) Bengali
Catalan Indo-European (Romance) Latin
German Indo-European (Germanic) Latin
Greek Indo-European (Hellenic) Greek
English Indo-European (Germanic) Latin
Spanish Indo-European (Romance) Latin
Estonian Uralic (Finnic) Latin
Basque Language Isolate Latin
Persian (Farsi) Indo-European (Iranian) Perso-Arabic
Finnish Uralic (Finnic) Latin
French Indo-European (Romance) Latin
Hindi Indo-European (Indo-Aryan) Devanagari
Haitian Creole Creole (French-based) Latin
Indonesian Austronesian Latin
Italian Indo-European (Romance) Latin
Japanese Japonic Kanji & Kana (CJK)
Korean Koreanic Hangugeo (CJK)
Burmese Sino-Tibetan Burmese
Portuguese Indo-European (Romance) Latin
Russian Indo-European (Slavic) Cyrillic
Swahili Niger-Congo (Bantu) Latin
Tamil Dravidian Tamil
Telugu Dravidian Telugu (Brahmic)
Thai Kra–Dai (Tai) Thai
Turkish Turkic Latin
Urdu Indo-European (Indo-Aryan) Perso-Arabic
Vietnamese Austroasiatic Vietnamese (Latin-based)
Chinese (Mandarin) Sino-Tibetan Hanzi (CJK)

Table 3: Languages used in experiments discussed in Section 3.
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Language Language Family Script
English Indo-European (Germanic) Latin
Russian Indo-European (Slavic) Cyrillic
Ukrainian Indo-European (Slavic) Cyrillic
Belarusian Indo-European (Slavic) Cyrillic
Serbian Indo-European (Slavic) Cyrillic
Macedonian Indo-European (Slavic) Cyrillic
Bulgarian Indo-European (Slavic) Cyrillic
Polish Indo-European (Slavic) Latin
Czech Indo-European (Slavic) Latin
Slovak Indo-European (Slavic) Latin
Tajik Indo-European (Iranian) Cyrillic
Uzbek Turkic Cyrillic
Kyrgyz Turkic Cyrillic
Kazakh Turkic Cyrillic
Mongolian Mongolic Cyrillic

Table 4: Languages used in experiments discussed in Section 4.

(a) Fixed Total Budget (b) Fixed Multilingual Budget

Figure 7: Validation LM loss for English and weighted average LM loss of non-English
(Multilingual) across different proportions of English in the training data for 3B models. (a)
In a Fixed Total Budget, increasing English data (≥50%), leads to a performance drop in other
languages. (b) In a Fixed Multilingual Budget, increasing English data (up to 60%) does not have a
negative effect on other languages.

Tail Languages. The remaining 1,789 low-resource languages, which the model is expected to
support only as a secondary objective.

The full lists of target and tail languages are provided in Appendix D.1. Importantly, we exclude
English from the training data to neutralize its dominant influence and allow for a clearer analysis of
cross-linguistic interactions. We train 3B-parameter models by varying the proportion of tail-language
data in the training mix, ranging from 6% to 33%, and evaluate the impact on performance across the
target language set.

Figure 10a presents the effect of adjusting the balance between the top-25 high-resource languages
(in FineWeb-2) and the remaining languages on English validation loss. Although English is not
part of the training data, we observe that its validation loss decreases as more tokens from high-
resource languages are included, and increases when more tokens from lower-resource languages
are introduced. This effect is likely due to the close linguistic proximity of several high-resource
languages (e.g., German, French) to English, which provides beneficial transfer.
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(a) Fixed Total Budget (b) Fixed Multilingual Budget

Figure 8: Aggregated benchmark performance for English and weighted average of non-English
(Multilingual) across different proportions of English in the training data for 3B models. The
dashed lines represents the random baselines for each language group. (a) In a Fixed Total Budget,
increasing English data (≥50%), does not hurt downstream performance on other group. (b) In a
Fixed Multilingual Budget, we see that increasing English data has a negligible impact on the other
group’s performance.

Supporting this interpretation, we find that English performance is most strongly correlated with
Romance, Slavic, and Germanic languages, with Pearson correlation coefficients of 0.78, 0.85, and
0.80, respectively (Table 5). Figure 10b shows the same pattern in benchmark results: English
benefits from the presence of related high-resource languages. Together, these findings highlight
a positive interaction between English and typologically related high-resource languages, which
enhances English performance even when it is excluded from training.

D.1 TARGET AND TAIL LANGUAGES

The target languages used in the Curse of Multilinguality experiments are as follows: German,
Russian, French, Japanese, Spanish, Mandarin Chinese, Italian, Dutch, Polish, Portuguese, Czech,
Vietnamese, Indonesian, Turkish, Swedish, Persian (Farsi), Korean, Hungarian, Arabic, Greek,
Romanian, Danish, Finnish, Thai, Ukrainian, Slovak, Norwegian Bokmål, Bulgarian, Catalan,
Croatian, Latin, Serbian, Hindi, Slovenian, Lithuanian, Estonian, Hebrew, Latvian, Tosk Albanian,
Icelandic, Macedonian, Galician, Basque, Malayalam, Romansh, Swiss German. Tail languages
contain the rest of the languages from the FineWeb-2 corpus.

Tables 6 and 7 present detailed information about the language families and scripts included in the
FineWeb-2 dataset.

E CURRICULUM LEARNING

Figures 11 and 12 show the validation loss for each language for the experiments described in
Section 5.

F CURSE OF MULTILINGUALITY

Using a fixed total data budget, Table 15 reports the validation loss for 50 languages trained under
natural distribution and temperature sampling conditions. The models used for this analysis are
detailed in Section 6.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 9: Validation LM loss for each language in the experiments described in Section 4, using
English, Russian, or a combination of English and Russian as the pivot language in the training mix.
The combination of English and Russian yields the best performance for most languages (model size:
1.1B).

(a) English validation loss (b) English average benchmark score

Figure 10: English (a) validation LM loss and (b) average benchmark score across different propor-
tions of the top 25 languages (model size: 3B). Increasing token allocation for tail languages reduces
validation loss in English and improves English accuracy.
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Language Family Pearson Correlation
Slavic 0.853
Germanic 0.808
Romance 0.785
Malayo-Sumbawan 0.683
Semitic 0.521
Creoles and Pidgins –0.578
Kuki-Chin –0.759
Bantu –0.776
Greater Central Philippine –0.827
Mixtec –0.832
Celebic –0.872
Cariban –0.895
Panoan –0.897
Oti-Volta –0.899
Western Mande –0.915
Zapotecan –0.919
Mayan –0.925
Brahmaputran –0.939
Northern Luzon –0.945
Chinantecan –0.952
Oceanic –0.962
Algonquian –0.963
Quechuan –0.980
Central Malayo-Polynesian –0.985
Maweti-Guarani –0.985
Tucanoan –0.992

Table 5: Pearson correlation (r) between English validation loss and each language family, retaining
only results with p<0.05 and sorted in descending order of r.
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Script # Languages
Latn 1639
Cyrl 56
Arab 30
Deva 29
Ethi 9
Thai 7
Cans 6
Beng 5
Mymr 5
Hani 5
Telu 3
Hebr 3
Grek 3
Tibt 3
Tfng 2
Armn 2
Orya 2
Geor 2
Syrc 2
Laoo 2
Knda 2

Table 6: Scripts and the number of languages
each one supports. Sixteen other scripts are
present in the FineWeb-2 dataset, each support-
ing one language.

Language Family # Languages
Bantu 73
Oceanic 67
Mayan 24
Turkic 22
Indic 22
Creoles and Pidgins 20
Germanic 17
Tucanoan 16
Greater Central Philippine 15
Romance 15
Semitic 14
Mixtec 13
Slavic 13
Zapotecan 12
Central Malayo-Polynesian 12
Iranian 11
Oti-Volta 11
Malayo-Sumbawan 11
Kuki-Chin 10
Northern Luzon 10
Celebic 9
Quechuan 9
Maweti-Guarani 9
Dravidian 8
Brahmaputran 8
Panoan 8
Western Mande 8
Cariban 8
Algonquian 8
Chinantecan 7

Table 7: Top language sub-families in FineWeb-
2 and their number of associated languages. The
classification is according to Dryer & Haspel-
math (2013). Labels for 768 languages in
FineWeb-2 were not available.
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Num PT
Langs Variant Top 25 lang

B Tokens (Prop.)
Top 50 lang

B Tokens (Prop.)
Top 100 lang

B Tokens (Prop.)
Top 200 lang

B Tokens (Prop.)

50

Natural 55.77 (0.56) - - -
Temp. 40.15 (0.40) - - -
Natural – C 60.08 (0.56) - - -
Temp. – C 60.08 (0.40) - - -

100

Natural 55.07 (0.55) 59.33 (0.59) - -
Temp. 30.51 (0.30) 45.65 (0.46) - -
Natural – C 55.77 (0.55) 60.08 (0.59) - -
Temp. – C 40.15 (0.30) 60.08 (0.46) - -

200

Natural 54.98 (0.55) 59.23 (0.59) 59.99 (0.60) -
Temp. 25.28 (0.25) 37.83 (0.38) 49.79 (0.50) -
Natural – C 55.07 (0.55) 59.33 (0.59) 60.08 (0.60) -
Temp. – C 30.51 (0.25) 45.65 (0.38) 60.08 (0.50) -

400

Natural 54.97 (0.55) 59.22 (0.59) 59.98 (0.60) 60.07 (0.60)
Temp. 22.07 (0.22) 33.03 (0.33) 43.47 (0.43) 52.46 (0.52)
Natural – C 54.98 (0.55) 59.23 (0.59) 59.99 (0.60) 60.08 (0.60)
Temp. – C 25.28 (0.22) 37.83 (0.33) 49.79 (0.43) 60.08 (0.52)

Table 8: Total number of tokens (in billions) and the corresponding proportions contributed by the
top-25, 50, 100, and 200 languages. Num PT Langs refers to the total number of languages included
during pretraining. Natural and Temp. represent natural sampling and temperature-based sampling,
respectively, both conducted with a fixed token budget of 100B tokens. Natural-C and Temp.-C
denote the same sampling strategies applied under the Controlled Growth setting, which uses a total
of 90B tokens. English is excluded from the token counts and proportions.

Num PT
Langs Variant BB M3E MMMLU PAWS-X XCSQA XCodah XCopa XSC XWG

25 Natural 38.22 38.70 30.75 49.60 35.70 51.67 66.80 75.10 65.60
Temp. 33.67 33.20 27.52 45.70 31.20 37.33 62.00 63.60 54.90

50 Natural 37.44 38.60 30.91 49.00 33.00 51.67 67.00 73.60 66.50
Temp. 32.33 33.50 27.51 55.90 31.60 38.00 61.80 65.30 55.80

100 Natural 37.67 37.60 30.72 50.40 34.10 51.67 69.40 74.80 65.10
Temp. 32.22 33.90 26.75 55.20 30.90 38.67 61.20 63.20 54.60

200 Natural 37.44 37.20 30.54 54.00 31.80 52.33 66.20 75.00 65.40
Temp. 31.67 32.80 27.07 43.70 28.80 37.33 62.00 62.40 55.40

400 Natural 37.33 38.60 30.61 55.20 35.30 53.33 68.60 73.80 64.20
Temp. 31.22 29.70 26.78 55.40 24.70 34.67 57.20 62.30 56.50

Table 9: Benchmark scores (%) for English with varying number and sampling of 25–400 languages
during pretraining. Num PT Langs refers to the total number of languages included during pretraining.
Natural and Temp. represent natural sampling and temperature-based sampling, respectively, both
conducted with a fixed token budget of 100B tokens. BB, M3E, XSC, and XWG denote the results for
BeleBele, M3Exams, XStoryCloze, and XWinogrande respectively.
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Figure 11: Validation LM loss (model size: 3B) for each language in the “Curriculum Learning”
experiments described in Section 5 (Part 1).
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Figure 12: Validation LM loss (model size: 3B) for each language in the “Curriculum Learning”
experiments described in Section 5 (Part 2).
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Language en=00% en=10% en=20% en=30% en=40% en=50% en=60% en=70% en=80% en=90% en=100%

ar 3810.73 (3.8%) 3360.93 (3.4%) 2987.49 (3.0%) 2614.06 (2.6%) 2286.44 (2.3%) 1867.18 (1.9%) 1434.00 (1.5%) 1143.22 (1.1%) 762.15 (0.8%) 381.07 (0.4%) 0.00 (0.0%)
bg 2855.74 (2.9%) 2609.73 (2.6%) 2319.76 (2.3%) 2029.79 (2.0%) 1713.45 (1.7%) 1449.85 (1.4%) 1113.49 (1.2%) 856.72 (0.9%) 571.15 (0.6%) 285.57 (0.3%) 0.00 (0.0%)
bn 2044.27 (2.0%) 1850.78 (1.9%) 1645.14 (1.6%) 1439.50 (1.4%) 1226.56 (1.2%) 1028.21 (1.0%) 789.67 (0.8%) 613.28 (0.6%) 408.85 (0.4%) 204.43 (0.2%) 0.00 (0.0%)
ca 2434.91 (2.4%) 2245.24 (2.2%) 1995.77 (2.0%) 1746.30 (1.7%) 1460.95 (1.5%) 1247.36 (1.2%) 957.97 (1.0%) 730.47 (0.7%) 486.98 (0.5%) 243.49 (0.2%) 0.00 (0.0%)
de 6587.51 (6.6%) 6186.77 (6.2%) 5499.35 (5.5%) 4811.93 (4.8%) 3952.51 (4.0%) 3437.09 (3.4%) 2639.69 (2.7%) 1976.25 (2.0%) 1317.50 (1.3%) 658.75 (0.7%) 0.00 (0.0%)
el 3498.77 (3.5%) 3132.17 (3.1%) 2784.15 (2.8%) 2436.13 (2.4%) 2099.26 (2.1%) 1740.09 (1.7%) 1336.39 (1.4%) 1049.63 (1.0%) 699.75 (0.7%) 349.88 (0.3%) 0.00 (0.0%)
en 0.00 (0.0%) 10002.43 (10.0%) 20004.86 (20.0%) 30007.30 (30.0%) 40009.73 (40.0%) 50012.16 (50.0%) 57614.01 (60.0%) 70017.02 (70.0%) 80019.46 (80.0%) 90021.89 (90.0%) 100024.32 (100.0%)
es 7044.66 (7.0%) 6275.04 (6.3%) 5577.81 (5.6%) 4880.58 (4.9%) 4226.80 (4.2%) 3486.13 (3.5%) 2677.35 (2.8%) 2113.40 (2.1%) 1408.93 (1.4%) 704.47 (0.7%) 0.00 (0.0%)
et 2009.65 (2.0%) 1811.96 (1.8%) 1610.63 (1.6%) 1409.30 (1.4%) 1205.79 (1.2%) 1006.64 (1.0%) 773.10 (0.8%) 602.90 (0.6%) 401.93 (0.4%) 200.97 (0.2%) 0.00 (0.0%)
eu 1239.38 (1.2%) 1163.61 (1.2%) 1034.32 (1.0%) 905.03 (0.9%) 743.63 (0.7%) 646.45 (0.6%) 496.47 (0.5%) 371.82 (0.4%) 247.88 (0.2%) 123.94 (0.1%) 0.00 (0.0%)
fa 3706.17 (3.7%) 3380.02 (3.4%) 3004.46 (3.0%) 2628.91 (2.6%) 2223.70 (2.2%) 1877.79 (1.9%) 1442.14 (1.5%) 1111.85 (1.1%) 741.23 (0.7%) 370.62 (0.4%) 0.00 (0.0%)
fi 2968.54 (3.0%) 2739.67 (2.7%) 2435.26 (2.4%) 2130.85 (2.1%) 1781.12 (1.8%) 1522.04 (1.5%) 1168.93 (1.2%) 890.56 (0.9%) 593.71 (0.6%) 296.85 (0.3%) 0.00 (0.0%)
fr 6415.58 (6.4%) 5865.82 (5.9%) 5214.06 (5.2%) 4562.30 (4.6%) 3849.35 (3.8%) 3258.79 (3.3%) 2502.75 (2.6%) 1924.67 (1.9%) 1283.12 (1.3%) 641.56 (0.6%) 0.00 (0.0%)
hi 2932.04 (2.9%) 2462.93 (2.5%) 2189.27 (2.2%) 1915.61 (1.9%) 1759.23 (1.8%) 1368.30 (1.4%) 1050.85 (1.1%) 879.61 (0.9%) 586.41 (0.6%) 293.20 (0.3%) 0.00 (0.0%)
ht 687.25 (0.7%) 700.65 (0.7%) 622.80 (0.6%) 544.95 (0.5%) 412.35 (0.4%) 389.25 (0.4%) 298.95 (0.3%) 206.18 (0.2%) 137.45 (0.1%) 68.73 (0.1%) 0.00 (0.0%)
id 4037.86 (4.0%) 3656.56 (3.7%) 3250.27 (3.2%) 2843.99 (2.8%) 2422.72 (2.4%) 2031.42 (2.0%) 1560.13 (1.6%) 1211.36 (1.2%) 807.57 (0.8%) 403.79 (0.4%) 0.00 (0.0%)
it 5229.67 (5.2%) 4916.80 (4.9%) 4370.49 (4.4%) 3824.18 (3.8%) 3137.80 (3.1%) 2731.56 (2.7%) 2097.84 (2.2%) 1568.90 (1.6%) 1045.93 (1.0%) 522.97 (0.5%) 0.00 (0.0%)
ja 5249.15 (5.2%) 3905.57 (3.9%) 3471.62 (3.5%) 3037.67 (3.0%) 3149.49 (3.1%) 2169.76 (2.2%) 1666.38 (1.7%) 1574.75 (1.6%) 1049.83 (1.0%) 524.92 (0.5%) 0.00 (0.0%)
ko 3004.03 (3.0%) 2337.96 (2.3%) 2078.18 (2.1%) 1818.41 (1.8%) 1802.42 (1.8%) 1298.86 (1.3%) 997.53 (1.0%) 901.21 (0.9%) 600.81 (0.6%) 300.40 (0.3%) 0.00 (0.0%)
my 1084.07 (1.1%) 943.16 (0.9%) 838.36 (0.8%) 733.57 (0.7%) 650.44 (0.7%) 523.98 (0.5%) 402.41 (0.4%) 325.22 (0.3%) 216.81 (0.2%) 108.41 (0.1%) 0.00 (0.0%)
pt 5067.45 (5.1%) 4776.05 (4.8%) 4245.38 (4.2%) 3714.70 (3.7%) 3040.47 (3.0%) 2653.36 (2.7%) 2037.78 (2.1%) 1520.23 (1.5%) 1013.49 (1.0%) 506.74 (0.5%) 0.00 (0.0%)
ru 8194.02 (8.2%) 7520.23 (7.5%) 6684.65 (6.7%) 5849.07 (5.8%) 4916.41 (4.9%) 4177.90 (4.2%) 3208.63 (3.3%) 2458.21 (2.5%) 1638.80 (1.6%) 819.40 (0.8%) 0.00 (0.0%)
sw 1119.24 (1.1%) 1009.14 (1.0%) 897.01 (0.9%) 784.89 (0.8%) 671.55 (0.7%) 560.63 (0.6%) 430.57 (0.4%) 335.77 (0.3%) 223.85 (0.2%) 111.92 (0.1%) 0.00 (0.0%)
ta 1621.73 (1.6%) 1475.10 (1.5%) 1311.20 (1.3%) 1147.30 (1.1%) 973.04 (1.0%) 819.50 (0.8%) 629.37 (0.7%) 486.52 (0.5%) 324.35 (0.3%) 162.17 (0.2%) 0.00 (0.0%)
te 1211.86 (1.2%) 1066.46 (1.1%) 947.97 (0.9%) 829.47 (0.8%) 727.12 (0.7%) 592.48 (0.6%) 455.02 (0.5%) 363.56 (0.4%) 242.37 (0.2%) 121.19 (0.1%) 0.00 (0.0%)
th 2314.72 (2.3%) 2292.68 (2.3%) 2037.94 (2.0%) 1783.19 (1.8%) 1388.83 (1.4%) 1273.71 (1.3%) 978.21 (1.0%) 694.42 (0.7%) 462.94 (0.5%) 231.47 (0.2%) 0.00 (0.0%)
tr 4072.98 (4.1%) 3919.12 (3.9%) 3483.66 (3.5%) 3048.21 (3.0%) 2443.79 (2.4%) 2177.29 (2.2%) 1672.16 (1.7%) 1221.89 (1.2%) 814.60 (0.8%) 407.30 (0.4%) 0.00 (0.0%)
ur 1459.28 (1.5%) 1225.81 (1.2%) 1089.61 (1.1%) 953.41 (1.0%) 875.57 (0.9%) 681.00 (0.7%) 523.01 (0.5%) 437.79 (0.4%) 291.86 (0.3%) 145.93 (0.1%) 0.00 (0.0%)
vi 4726.26 (4.7%) 3793.06 (3.8%) 3371.61 (3.4%) 2950.16 (2.9%) 2835.76 (2.8%) 2107.26 (2.1%) 1618.37 (1.7%) 1417.88 (1.4%) 945.25 (0.9%) 472.63 (0.5%) 0.00 (0.0%)
zh 3396.76 (3.4%) 3398.87 (3.4%) 3021.22 (3.0%) 2643.56 (2.6%) 2038.06 (2.0%) 1888.26 (1.9%) 1450.18 (1.5%) 1019.03 (1.0%) 679.35 (0.7%) 339.68 (0.3%) 0.00 (0.0%)

Table 10: Token counts (in millions) and their total proportions (%) for the Fixed Total Budget
experiments described in Section 3. Total number of tokens is 100B.

Language en=20% en=30% en=40% en=50% en=60%

ar 3345.99 (3.0%) 3345.99 (2.6%) 3316.12 (2.2%) 3286.24 (1.9%) 3345.99 (1.5%)
bg 2598.14 (2.3%) 2598.14 (2.0%) 2574.94 (1.7%) 2551.74 (1.4%) 2598.14 (1.2%)
bn 1842.56 (1.6%) 1842.56 (1.4%) 1826.10 (1.2%) 1809.65 (1.0%) 1842.56 (0.8%)
ca 2235.26 (2.0%) 2235.26 (1.7%) 2215.31 (1.5%) 2195.35 (1.2%) 2235.26 (1.0%)
de 6159.27 (5.5%) 6159.27 (4.8%) 6104.28 (4.1%) 6049.28 (3.4%) 6159.27 (2.7%)
el 3118.25 (2.8%) 3118.25 (2.4%) 3090.41 (2.1%) 3062.57 (1.7%) 3118.25 (1.4%)
en 22405.45 (20.0%) 38409.34 (30.0%) 59214.40 (40.0%) 88021.40 (50.0%) 134432.69 (60.0%)
es 6247.15 (5.6%) 6247.15 (4.9%) 6191.37 (4.2%) 6135.59 (3.5%) 6247.15 (2.8%)
et 1803.91 (1.6%) 1803.91 (1.4%) 1787.80 (1.2%) 1771.69 (1.0%) 1803.91 (0.8%)
eu 1158.43 (1.0%) 1158.43 (0.9%) 1148.09 (0.8%) 1137.75 (0.6%) 1158.43 (0.5%)
fa 3365.00 (3.0%) 3365.00 (2.6%) 3334.95 (2.3%) 3304.91 (1.9%) 3365.00 (1.5%)
fi 2727.49 (2.4%) 2727.49 (2.1%) 2703.14 (1.8%) 2678.79 (1.5%) 2727.49 (1.2%)
fr 5839.75 (5.2%) 5839.75 (4.6%) 5787.61 (3.9%) 5735.47 (3.3%) 5839.75 (2.6%)
hi 2451.99 (2.2%) 2451.99 (1.9%) 2430.09 (1.6%) 2408.20 (1.4%) 2451.99 (1.1%)
ht 697.54 (0.6%) 697.54 (0.5%) 691.31 (0.5%) 685.08 (0.4%) 697.54 (0.3%)
id 3640.30 (3.2%) 3640.30 (2.8%) 3607.80 (2.4%) 3575.30 (2.0%) 3640.30 (1.6%)
it 4894.95 (4.4%) 4894.95 (3.8%) 4851.25 (3.3%) 4807.54 (2.7%) 4894.95 (2.2%)
ja 3888.21 (3.5%) 3888.21 (3.0%) 3853.50 (2.6%) 3818.78 (2.2%) 3888.21 (1.7%)
ko 2327.57 (2.1%) 2327.57 (1.8%) 2306.78 (1.6%) 2286.00 (1.3%) 2327.57 (1.0%)
my 938.97 (0.8%) 938.97 (0.7%) 930.58 (0.6%) 922.20 (0.5%) 938.97 (0.4%)
pt 4754.82 (4.2%) 4754.82 (3.7%) 4712.37 (3.2%) 4669.91 (2.7%) 4754.82 (2.1%)
ru 7486.80 (6.7%) 7486.80 (5.8%) 7419.96 (5.0%) 7353.11 (4.2%) 7486.80 (3.3%)
sw 1004.66 (0.9%) 1004.66 (0.8%) 995.69 (0.7%) 986.72 (0.6%) 1004.66 (0.4%)
ta 1468.54 (1.3%) 1468.54 (1.1%) 1455.43 (1.0%) 1442.32 (0.8%) 1468.54 (0.7%)
te 1061.72 (0.9%) 1061.72 (0.8%) 1052.24 (0.7%) 1042.76 (0.6%) 1061.72 (0.5%)
th 2282.49 (2.0%) 2282.49 (1.8%) 2262.11 (1.5%) 2241.73 (1.3%) 2282.49 (1.0%)
tr 3901.70 (3.5%) 3901.70 (3.0%) 3866.87 (2.6%) 3832.03 (2.2%) 3901.70 (1.7%)
ur 1220.36 (1.1%) 1220.36 (1.0%) 1209.46 (0.8%) 1198.57 (0.7%) 1220.36 (0.5%)
vi 3776.21 (3.4%) 3776.21 (2.9%) 3742.49 (2.5%) 3708.77 (2.1%) 3776.21 (1.7%)
zh 3383.76 (3.0%) 3383.76 (2.6%) 3353.55 (2.3%) 3323.34 (1.9%) 3383.76 (1.5%)

Total 112027.20 (100.0%) 128031.99 (100.0%) 148037.75 (100.0%) 176043.52 (100.0%) 224054.06 (100.0%)

Table 11: Token counts (in millions) and their total proportions (%) for the Fixed Multilingual Budget
experiments described in Section 3.

Language en=00% en=10% en=20% en=30% en=40% en=50% en=60% en=70% en=80% en=90% en=100%

be 3733.16 (3.7%) 3359.85 (3.4%) 2986.53 (3.0%) 2613.21 (2.6%) 2239.90 (2.2%) 1866.58 (1.9%) 1493.27 (1.5%) 1119.95 (1.1%) 746.63 (0.7%) 373.32 (0.4%) 0.00 (0.0%)
bg 7720.59 (7.7%) 6948.53 (6.9%) 6176.47 (6.2%) 5404.41 (5.4%) 4632.36 (4.6%) 3860.30 (3.9%) 3088.24 (3.1%) 2316.18 (2.3%) 1544.12 (1.5%) 772.06 (0.8%) 0.00 (0.0%)
cs 10619.66 (10.6%) 9557.69 (9.6%) 8495.73 (8.5%) 7433.76 (7.4%) 6371.80 (6.4%) 5309.83 (5.3%) 4247.86 (4.2%) 3185.90 (3.2%) 2123.93 (2.1%) 1061.97 (1.1%) 0.00 (0.0%)
en 0.00 (0.0%) 10002.43 (10.0%) 20004.86 (20.0%) 30007.30 (30.0%) 40009.73 (40.0%) 50012.16 (50.0%) 60014.59 (60.0%) 70017.02 (70.0%) 80019.46 (80.0%) 90021.89 (90.0%) 100024.32 (100.0%)
kk 4263.37 (4.3%) 3837.04 (3.8%) 3410.70 (3.4%) 2984.36 (3.0%) 2558.02 (2.6%) 2131.69 (2.1%) 1705.35 (1.7%) 1279.01 (1.3%) 852.67 (0.9%) 426.34 (0.4%) 0.00 (0.0%)
ky 3025.91 (3.0%) 2723.32 (2.7%) 2420.73 (2.4%) 2118.14 (2.1%) 1815.55 (1.8%) 1512.95 (1.5%) 1210.36 (1.2%) 907.77 (0.9%) 605.18 (0.6%) 302.59 (0.3%) 0.00 (0.0%)
mk 3615.86 (3.6%) 3254.27 (3.3%) 2892.69 (2.9%) 2531.10 (2.5%) 2169.51 (2.2%) 1807.93 (1.8%) 1446.34 (1.4%) 1084.76 (1.1%) 723.17 (0.7%) 361.59 (0.4%) 0.00 (0.0%)
mn 4088.58 (4.1%) 3679.72 (3.7%) 3270.86 (3.3%) 2862.00 (2.9%) 2453.15 (2.5%) 2044.29 (2.0%) 1635.43 (1.6%) 1226.57 (1.2%) 817.72 (0.8%) 408.86 (0.4%) 0.00 (0.0%)
pl 13226.50 (13.2%) 11903.85 (11.9%) 10581.20 (10.6%) 9258.55 (9.3%) 7935.90 (7.9%) 6613.25 (6.6%) 5290.60 (5.3%) 3967.95 (4.0%) 2645.30 (2.6%) 1322.65 (1.3%) 0.00 (0.0%)
ru 22152.79 (22.1%) 19937.51 (19.9%) 17722.23 (17.7%) 15506.95 (15.5%) 13291.68 (13.3%) 11076.40 (11.1%) 8861.12 (8.9%) 6645.84 (6.6%) 4430.56 (4.4%) 2215.28 (2.2%) 0.00 (0.0%)
sk 7265.10 (7.3%) 6538.59 (6.5%) 5812.08 (5.8%) 5085.57 (5.1%) 4359.06 (4.4%) 3632.55 (3.6%) 2906.04 (2.9%) 2179.53 (2.2%) 1453.02 (1.5%) 726.51 (0.7%) 0.00 (0.0%)
sr 4707.78 (4.7%) 4237.00 (4.2%) 3766.22 (3.8%) 3295.44 (3.3%) 2824.67 (2.8%) 2353.89 (2.4%) 1883.11 (1.9%) 1412.33 (1.4%) 941.56 (0.9%) 470.78 (0.5%) 0.00 (0.0%)
tg 3350.71 (3.3%) 3015.64 (3.0%) 2680.57 (2.7%) 2345.50 (2.3%) 2010.43 (2.0%) 1675.36 (1.7%) 1340.28 (1.3%) 1005.21 (1.0%) 670.14 (0.7%) 335.07 (0.3%) 0.00 (0.0%)
uk 9323.48 (9.3%) 8391.14 (8.4%) 7458.79 (7.5%) 6526.44 (6.5%) 5594.09 (5.6%) 4661.74 (4.7%) 3729.39 (3.7%) 2797.05 (2.8%) 1864.70 (1.9%) 932.35 (0.9%) 0.00 (0.0%)
uz 2930.83 (2.9%) 2637.74 (2.6%) 2344.66 (2.3%) 2051.58 (2.1%) 1758.50 (1.8%) 1465.41 (1.5%) 1172.33 (1.2%) 879.25 (0.9%) 586.17 (0.6%) 293.08 (0.3%) 0.00 (0.0%)

Table 12: Token counts (in millions) and their total proportions (%) for the english as pivot runs
described in Section 4. Total number of tokens is 100B.
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Language ru=00% ru=10% ru=20% ru=30% ru=40% ru=50% ru=60% ru=70% ru=80% ru=90% ru=100%

be 3359.26 (3.4%) 3023.33 (3.0%) 2687.41 (2.7%) 2351.48 (2.4%) 2015.56 (2.0%) 1679.63 (1.7%) 1343.70 (1.3%) 1007.78 (1.0%) 671.85 (0.7%) 335.93 (0.3%) 0.00 (0.0%)
bg 6947.32 (6.9%) 6252.59 (6.3%) 5557.86 (5.6%) 4863.12 (4.9%) 4168.39 (4.2%) 3473.66 (3.5%) 2778.93 (2.8%) 2084.20 (2.1%) 1389.46 (1.4%) 694.73 (0.7%) 0.00 (0.0%)
cs 9556.02 (9.6%) 8600.42 (8.6%) 7644.82 (7.6%) 6689.22 (6.7%) 5733.61 (5.7%) 4778.01 (4.8%) 3822.41 (3.8%) 2866.81 (2.9%) 1911.20 (1.9%) 955.60 (1.0%) 0.00 (0.0%)
en 29952.18 (29.9%) 26956.97 (27.0%) 23961.75 (24.0%) 20966.53 (21.0%) 17971.31 (18.0%) 14976.09 (15.0%) 11980.87 (12.0%) 8985.66 (9.0%) 5990.44 (6.0%) 2995.22 (3.0%) 0.00 (0.0%)
kk 3836.37 (3.8%) 3452.73 (3.5%) 3069.09 (3.1%) 2685.46 (2.7%) 2301.82 (2.3%) 1918.18 (1.9%) 1534.55 (1.5%) 1150.91 (1.2%) 767.27 (0.8%) 383.64 (0.4%) 0.00 (0.0%)
ky 2722.84 (2.7%) 2450.56 (2.4%) 2178.27 (2.2%) 1905.99 (1.9%) 1633.71 (1.6%) 1361.42 (1.4%) 1089.14 (1.1%) 816.85 (0.8%) 544.57 (0.5%) 272.28 (0.3%) 0.00 (0.0%)
mk 3253.70 (3.3%) 2928.33 (2.9%) 2602.96 (2.6%) 2277.59 (2.3%) 1952.22 (2.0%) 1626.85 (1.6%) 1301.48 (1.3%) 976.11 (1.0%) 650.74 (0.7%) 325.37 (0.3%) 0.00 (0.0%)
mn 3679.08 (3.7%) 3311.17 (3.3%) 2943.26 (2.9%) 2575.35 (2.6%) 2207.45 (2.2%) 1839.54 (1.8%) 1471.63 (1.5%) 1103.72 (1.1%) 735.82 (0.7%) 367.91 (0.4%) 0.00 (0.0%)
pl 11901.77 (11.9%) 10711.59 (10.7%) 9521.41 (9.5%) 8331.24 (8.3%) 7141.06 (7.1%) 5950.88 (5.9%) 4760.71 (4.8%) 3570.53 (3.6%) 2380.35 (2.4%) 1190.18 (1.2%) 0.00 (0.0%)
ru 0.00 (0.0%) 10002.43 (10.0%) 20004.86 (20.0%) 30007.30 (30.0%) 40009.73 (40.0%) 50012.16 (50.0%) 60014.59 (60.0%) 70017.02 (70.0%) 80019.46 (80.0%) 90021.89 (90.0%) 100024.32 (100.0%)
sk 6537.45 (6.5%) 5883.70 (5.9%) 5229.96 (5.2%) 4576.21 (4.6%) 3922.47 (3.9%) 3268.72 (3.3%) 2614.98 (2.6%) 1961.23 (2.0%) 1307.49 (1.3%) 653.74 (0.7%) 0.00 (0.0%)
sr 4236.26 (4.2%) 3812.63 (3.8%) 3389.01 (3.4%) 2965.38 (3.0%) 2541.76 (2.5%) 2118.13 (2.1%) 1694.50 (1.7%) 1270.88 (1.3%) 847.25 (0.8%) 423.63 (0.4%) 0.00 (0.0%)
tg 3015.11 (3.0%) 2713.60 (2.7%) 2412.09 (2.4%) 2110.58 (2.1%) 1809.07 (1.8%) 1507.56 (1.5%) 1206.05 (1.2%) 904.53 (0.9%) 603.02 (0.6%) 301.51 (0.3%) 0.00 (0.0%)
uk 8389.67 (8.4%) 7550.70 (7.5%) 6711.74 (6.7%) 5872.77 (5.9%) 5033.80 (5.0%) 4194.84 (4.2%) 3355.87 (3.4%) 2516.90 (2.5%) 1677.93 (1.7%) 838.97 (0.8%) 0.00 (0.0%)
uz 2637.28 (2.6%) 2373.55 (2.4%) 2109.83 (2.1%) 1846.10 (1.8%) 1582.37 (1.6%) 1318.64 (1.3%) 1054.91 (1.1%) 791.18 (0.8%) 527.46 (0.5%) 263.73 (0.3%) 0.00 (0.0%)

Table 13: Token counts (in millions) and their total proportions (%) for the russian as pivot runs
described in Section 4. Total number of tokens is 100B.

Language en=00%,ru=00% en=05%,ru=05% en=10%,ru=10% en=15%,ru=15% en=20%,ru=20% en=25%,ru=25% en=30%,ru=30% en=35%,ru=35% en=40%,ru=40% en=45%,ru=45% en=50%,ru=50%

be 4795.17 (4.8%) 4315.65 (4.3%) 3836.14 (3.8%) 3356.62 (3.4%) 2877.10 (2.9%) 2301.68 (2.4%) 1918.07 (1.9%) 1438.55 (1.4%) 920.67 (1.0%) 479.52 (0.5%) 0.00 (0.0%)
bg 9916.94 (9.9%) 8925.24 (8.9%) 7933.55 (7.9%) 6941.86 (6.9%) 5950.16 (5.9%) 4760.13 (5.0%) 3966.77 (4.0%) 2975.08 (3.0%) 1904.05 (2.0%) 991.69 (1.0%) 0.00 (0.0%)
cs 13640.73 (13.6%) 12276.65 (12.3%) 10912.58 (10.9%) 9548.51 (9.5%) 8184.44 (8.2%) 6547.55 (6.8%) 5456.29 (5.5%) 4092.22 (4.1%) 2619.02 (2.7%) 1364.07 (1.4%) 0.00 (0.0%)
en 0.00 (0.0%) 5001.22 (5.0%) 10002.43 (10.0%) 15003.65 (15.0%) 20004.86 (20.0%) 24005.84 (25.0%) 30007.30 (30.0%) 35008.51 (35.0%) 38409.34 (40.0%) 45010.94 (45.0%) 50012.16 (50.0%)
kk 5476.21 (5.5%) 4928.59 (4.9%) 4380.97 (4.4%) 3833.35 (3.8%) 3285.73 (3.3%) 2628.58 (2.7%) 2190.48 (2.2%) 1642.86 (1.6%) 1051.43 (1.1%) 547.62 (0.5%) 0.00 (0.0%)
ky 3886.72 (3.9%) 3498.04 (3.5%) 3109.37 (3.1%) 2720.70 (2.7%) 2332.03 (2.3%) 1865.62 (1.9%) 1554.69 (1.6%) 1166.01 (1.2%) 746.25 (0.8%) 388.67 (0.4%) 0.00 (0.0%)
mk 4644.49 (4.6%) 4180.04 (4.2%) 3715.59 (3.7%) 3251.14 (3.3%) 2786.69 (2.8%) 2229.36 (2.3%) 1857.80 (1.9%) 1393.35 (1.4%) 891.74 (0.9%) 464.45 (0.5%) 0.00 (0.0%)
mn 5251.69 (5.3%) 4726.52 (4.7%) 4201.35 (4.2%) 3676.18 (3.7%) 3151.01 (3.2%) 2520.81 (2.6%) 2100.68 (2.1%) 1575.51 (1.6%) 1008.32 (1.1%) 525.17 (0.5%) 0.00 (0.0%)
pl 16989.15 (17.0%) 15290.24 (15.3%) 13591.32 (13.6%) 11892.41 (11.9%) 10193.49 (10.2%) 8154.79 (8.5%) 6795.66 (6.8%) 5096.75 (5.1%) 3261.92 (3.4%) 1698.92 (1.7%) 0.00 (0.0%)
ru 0.00 (0.0%) 5001.22 (5.0%) 10002.43 (10.0%) 15003.65 (15.0%) 20004.86 (20.0%) 24005.84 (25.0%) 30007.30 (30.0%) 35008.51 (35.0%) 38409.34 (40.0%) 45010.94 (45.0%) 50012.16 (50.0%)
sk 9331.86 (9.3%) 8398.68 (8.4%) 7465.49 (7.5%) 6532.30 (6.5%) 5599.12 (5.6%) 4479.29 (4.7%) 3732.75 (3.7%) 2799.56 (2.8%) 1791.72 (1.9%) 933.19 (0.9%) 0.00 (0.0%)
sr 6047.04 (6.0%) 5442.34 (5.4%) 4837.63 (4.8%) 4232.93 (4.2%) 3628.22 (3.6%) 2902.58 (3.0%) 2418.82 (2.4%) 1814.11 (1.8%) 1161.03 (1.2%) 604.70 (0.6%) 0.00 (0.0%)
tg 4303.92 (4.3%) 3873.53 (3.9%) 3443.13 (3.4%) 3012.74 (3.0%) 2582.35 (2.6%) 2065.88 (2.2%) 1721.57 (1.7%) 1291.18 (1.3%) 826.35 (0.9%) 430.39 (0.4%) 0.00 (0.0%)
uk 11975.82 (12.0%) 10778.24 (10.8%) 9580.65 (9.6%) 8383.07 (8.4%) 7185.49 (7.2%) 5748.39 (6.0%) 4790.33 (4.8%) 3592.75 (3.6%) 2299.36 (2.4%) 1197.58 (1.2%) 0.00 (0.0%)
uz 3764.58 (3.8%) 3388.12 (3.4%) 3011.67 (3.0%) 2635.21 (2.6%) 2258.75 (2.3%) 1807.00 (1.9%) 1505.83 (1.5%) 1129.37 (1.1%) 722.80 (0.8%) 376.46 (0.4%) 0.00 (0.0%)

Table 14: Token counts (in millions) and their total proportions (%) for the english and russian as
pivots runs described in Section 4. Total number of tokens is 100B.
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Natural Distribution Temperature Sampling
Language 25 50 100 200 400 25 50 100 200 400
arb 1.95 1.95 1.95 1.94 1.94 1.83 1.85 1.87 1.90 1.93
ces 1.53 1.53 1.53 1.51 1.52 1.45 1.47 1.50 1.54 1.57
cmn 1.67 1.68 1.68 1.69 1.69 1.78 1.86 1.92 1.96 2.00
dan 1.49 1.48 1.49 1.49 1.49 1.39 1.42 1.44 1.47 1.49
deu 1.53 1.53 1.54 1.54 1.53 1.57 1.61 1.64 1.69 1.72
ell 1.20 1.20 1.20 1.20 1.20 1.12 1.15 1.17 1.19 1.22
eng 2.67 2.67 2.68 2.68 2.67 2.67 2.68 2.68 2.69 2.70
fas 1.61 1.62 1.62 1.62 1.62 1.52 1.56 1.59 1.61 1.63
fra 1.51 1.52 1.52 1.52 1.52 1.54 1.57 1.59 1.61 1.64
hun 1.70 1.70 1.71 1.70 1.70 1.58 1.61 1.65 1.69 1.72
ind 1.43 1.43 1.43 1.42 1.42 1.38 1.41 1.42 1.44 1.46
ita 1.52 1.52 1.53 1.52 1.52 1.52 1.56 1.58 1.61 1.64
jpn 1.34 1.35 1.35 1.35 1.35 1.38 1.42 1.46 1.49 1.52
kor 1.74 1.75 1.76 1.74 1.73 1.64 1.69 1.74 1.77 1.80
nld 1.35 1.36 1.36 1.36 1.36 1.33 1.36 1.39 1.40 1.43
pol 1.34 1.35 1.35 1.35 1.36 1.32 1.35 1.38 1.41 1.44
por 1.48 1.49 1.50 1.49 1.49 1.48 1.52 1.54 1.56 1.58
ron 1.47 1.48 1.48 1.48 1.48 1.39 1.43 1.46 1.49 1.51
rus 1.52 1.53 1.54 1.54 1.55 1.59 1.63 1.66 1.69 1.72
spa 1.46 1.46 1.47 1.47 1.46 1.48 1.51 1.53 1.55 1.57
swe 1.59 1.59 1.59 1.59 1.59 1.49 1.52 1.55 1.58 1.60
tha 1.27 1.28 1.28 1.28 1.28 1.16 1.20 1.23 1.25 1.27
tur 1.40 1.41 1.41 1.40 1.40 1.33 1.36 1.39 1.42 1.44
ukr 1.30 1.31 1.31 1.31 1.31 1.25 1.28 1.31 1.33 1.36
vie 1.55 1.56 1.56 1.56 1.56 1.45 1.49 1.52 1.55 1.57
als - 1.50 1.50 1.50 1.50 - 1.29 1.32 1.34 1.36
ary - 1.83 1.82 1.83 1.82 - 1.62 1.62 1.65 1.68
azj - 1.47 1.47 1.48 1.48 - 1.07 1.10 1.12 1.15
ben - 1.32 1.32 1.32 1.32 - 1.16 1.18 1.21 1.23
bos - 1.44 1.45 1.45 1.45 - 1.31 1.35 1.38 1.40
bul - 1.46 1.47 1.47 1.47 - 1.36 1.39 1.42 1.45
cat - 1.36 1.36 1.36 1.36 - 1.28 1.31 1.33 1.35
ekk - 1.83 1.83 1.83 1.83 - 1.56 1.61 1.64 1.68
fin - 1.65 1.66 1.66 1.66 - 1.53 1.57 1.60 1.63
heb - 1.70 1.71 1.71 1.71 - 1.52 1.55 1.58 1.62
hin - 1.42 1.42 1.42 1.42 - 1.28 1.28 1.30 1.33
hrv - 1.61 1.62 1.62 1.62 - 1.48 1.52 1.55 1.58
kat - 1.40 1.41 1.41 1.40 - 1.11 1.14 1.16 1.19
lit - 1.58 1.59 1.59 1.59 - 1.39 1.42 1.46 1.49
lvs - 1.59 1.59 1.59 1.59 - 1.35 1.38 1.42 1.45
mar - 1.52 1.53 1.52 1.53 - 1.23 1.25 1.27 1.30
mkd - 1.43 1.44 1.44 1.44 - 1.20 1.23 1.26 1.28
nob - 1.92 1.92 1.92 1.92 - 1.82 1.85 1.88 1.91
npi - 1.32 1.33 1.32 1.32 - 1.08 1.10 1.12 1.14
slk - 1.46 1.46 1.46 1.46 - 1.36 1.40 1.43 1.46
slv - 1.65 1.66 1.66 1.66 - 1.46 1.50 1.54 1.57
srp - 1.79 1.79 1.79 1.79 - 1.49 1.53 1.56 1.59
tam - 1.52 1.52 1.52 1.52 - 1.28 1.29 1.32 1.34
urd - 1.77 1.78 1.78 1.78 - 1.46 1.48 1.50 1.53
zsm - 1.62 1.62 1.63 1.62 - 1.46 1.48 1.51 1.53

Table 15: Comparison of the final validation loss for 50 languages in the curse of multilinguality
experiments. The results are presented for a fixed total data budget under two conditions: natural
distribution and temperature sampling.
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