

# 000 001 002 003 004 005 REVISITING MULTILINGUAL DATA MIXTURES 006 IN LANGUAGE MODEL PRETRAINING 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026

## ABSTRACT

027 The impact of different multilingual data mixtures in pretraining large language  
028 models (LLMs) has been a topic of ongoing debate, often raising concerns about  
029 potential trade-offs between language coverage and model performance (*i.e.*, the  
030 curse of multilinguality). In this work, we investigate these assumptions by training  
031 1B and 3B parameter LLMs on diverse multilingual corpora, varying the number  
032 of languages from 25 to 400. Our study challenges common beliefs surrounding  
033 multilingual training. First, we find that combining English and multilingual data  
034 does not necessarily degrade the in-language performance of either group, provided  
035 that languages have a sufficient number of tokens included in the pretraining corpus.  
036 Second, we observe that using English as a pivot language (*i.e.*, the language with  
037 the highest data proportion) yields benefits across language groups, and contrary  
038 to expectations, selecting a pivot language from within a specific group does  
039 not consistently improve performance for languages within that language branch.  
040 Lastly, we do not observe a significant “*curse of multilinguality*” as the number  
041 of training languages increases in models at this scale. Our findings suggest  
042 that multilingual data, when balanced appropriately, can enhance language model  
043 capabilities without compromising performance, even in low-resource settings.<sup>1</sup>  
044

## 1 INTRODUCTION

045 Recent advances in large language models (LLMs) have demonstrated impressive performance across  
046 a wide range of non-English languages, including many that are considered low-resource (Yang  
047 et al., 2025; Team et al., 2025; Grattafiori et al., 2024; Üstün et al., 2024; OpenAI et al., 2024).  
048 These models are typically pretrained on data from over 100 high- and mid-resource languages,  
049 leveraging the broad availability of multilingual content on the web. Despite this progress, the impact  
050 of multilingual data composition on model training remains a subject of active debate, particularly  
051 regarding potential trade-offs between total language coverage and model performance in different  
052 languages (Alastruey et al., 2025). Practitioners often face difficult trade-offs: Should they include  
053 more languages in the pretraining data mixture or concentrate resources to prioritize performance  
054 in fewer languages? For greater multilingual generalization, should they include pivot languages  
055 from different language families or merely from high-resource global languages? Could curriculum  
056 learning among pivot languages also lead to greater multilingual generalization?

057 While previous studies tried to address these questions, they have generally been limited in scope,  
058 either by the number of languages considered or by the scale of the models used. For instance, one  
059 study investigates the so-called *curse of multilinguality* using relatively small models with 45M  
060 parameters (Chang et al., 2024). Another recent work explores scaling laws for multilingual language  
061 models and proposes an optimal sampling ratio for multilingual data (He et al., 2024). However, this  
062 work focuses on only 23 languages and similarly small models (85M parameters). Other studies have  
063 discussed multilingual data mixtures for task training (Wang et al., 2020) or instruction-tuning (Üstün  
064 et al., 2024), but it is unknown to what extent their intuitions would extend to pretraining.

065 In this work, we study the impact of multilingual data composition in training large-scale LLMs.  
066 Specifically, we train a series of 1B and 3B parameter models on corpora of 100B tokens containing  
067 up to 400 languages, allowing us to systematically explore the effects of language count, diversity,

068  
069  
070  
071  
072  
073  
074  
075  
076  
077  
078  
079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1330  
1331  
1332  
1333  
133

054 and token distribution. Our experiments challenge several prevailing propositions about multilingual  
 055 training. We summarize our key findings as follows:

056 **Findings #1: More English data does not necessarily hurt multilingual performance.** We show  
 057 that varying the proportion and absolute amount of English data in the training mix does not harm  
 058 multilingual performance, as long as a sufficient number of multilingual tokens are included in the  
 059 pretraining mixture. The reverse is also true, as increasing the number of multilingual tokens does not  
 060 harm English performance as long as there are sufficient English tokens in the pretraining mixture.  
 061

062 **Findings #2: Typological boundaries are not barriers to transfer.** Contrary to the prevailing  
 063 wisdom that family-specific pivots are most effective (He et al., 2024; Bagheri Nezhad & Agrawal,  
 064 2024), we find that using English as a pivot language<sup>2</sup> provides benefits across **distinct linguistic**  
 065 **groups**. Selecting a high-resource pivot language from within a specific language branch (*e.g.*,  
 066 Russian for Slavic languages) does not consistently enhance performance across languages in that  
 067 branch. Given that English has the most diverse and highest quality data on the web, this evidence  
 068 shows the unique advantage of leveraging a high-resource language to improve performance in other  
 069 languages, regardless of their **specific linguistic branch or structural typology**.

070 **Findings #3: Curriculum learning fails to mitigate negative interference.** Prior work has shown  
 071 training on multiple languages simultaneously can degrade performance in both high- and low-  
 072 resource languages, a phenomenon coined as negative interference (Wang et al., 2020). Although  
 073 curriculum learning has been proposed as a potential solution to this problem (Zhang et al., 2021;  
 074 Kumar et al., 2021; Choi et al., 2023), our results show that staging the introduction of languages  
 075 during training neither reduces negative interference nor improves performance on non-English  
 076 languages.

077 **Findings #4: Increasing the number of training languages does not always lead to performance**  
 078 **degradation.** The *curse of multilinguality* suggests that expanding language coverage reduces model  
 079 performance in both monolingual and cross-lingual settings (Chang et al., 2024; Blevins et al., 2024;  
 080 Pfeiffer et al., 2022; Conneau et al., 2020). We find the *curse of multilinguality* arises not from simply  
 081 adding more languages, but from the finite capacity of models and data distributions that amplify the  
 082 impact of noisy, low-resource languages.

083 Collectively, our findings offer practical guidance for designing more effective multilingual pretraining  
 084 strategies and contribute to the development of stronger, more inclusive multilingual LLMs.

## 085 2 EXPERIMENTAL SETUP

086 **Model.** We train decoder-only Transformer models (Vaswani, 2017) based on the LLaMA architecture  
 087 (Touvron et al., 2023), in two sizes: 1.1 and 3 billion parameters (1.1B and 3B). The model sizes  
 088 are determined by varying the number of layers, hidden dimensions, and attention heads. Detailed  
 089 configuration and training parameters are provided in Appendix A.

090 **Pretraining Data.** We use two corpora in our experiments. For experiments involving 30 languages,  
 091 we use the multilingual version of the C4 corpus (mC4; Xue et al., 2021; Raffel et al., 2019).<sup>3</sup> For  
 092 experiments involving a larger set of up to 1,834 languages, we use the FineWeb2 corpus (Penedo  
 093 et al., 2025). All data are tokenized using the Mistral-Nemo-Base-2407 tokenizer,<sup>4</sup> which has a  
 094 vocabulary size of  $|\mathcal{V}| = 131,000$  tokens. Models are trained on  $D = 100$  to  $D = 225$  billion  
 095 tokens. We selected the **Mistral-Nemo-Base-2407** tokenizer because it is a state-of-the-art tokenizer  
 096 designed specifically for multilingual pretraining, covering a wide range of scripts and languages  
 097 (over 100), and representing them more fairly than other publicly available tokenizers (Apertus Project  
 098 et al., 2025).

099 **Evaluation.** We evaluate our models by measuring their language modeling loss on a held-out  
 100 validation set that is distinct from the pretraining data. In addition, we perform *downstream task*  
 101 *evaluations* using a suite of multilingual benchmarks. For each model, we aggregate results by

102 <sup>2</sup>Historically, *pivot* languages are used as intermediary languages for *many-to-many* translation. In the  
 103 context of this work we refer to pivot languages as those that are highly represented in pretraining data and  
 104 whose presence serves as a catalyst for multilingual generalization.

105 <sup>3</sup><https://huggingface.co/datasets/allenai/c4>

106 <sup>4</sup><https://huggingface.co/mistralai/Mistral-Nemo-Base-2407>

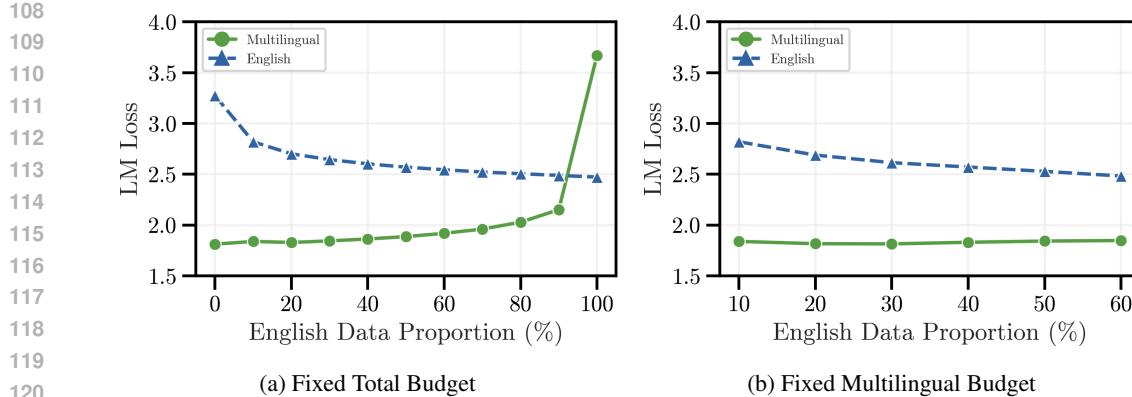


Figure 1: Validation *LM loss* for **English** and weighted average *LM loss* of non-English languages (**Multilingual**) across different proportions of English in the pretraining data for **1.1B** models. **(a)** In a **Fixed Total Budget**, increasing English data ( $\geq 50\%$ ) leads to a performance drop in other languages. **(b)** In a **Fixed Multilingual Budget**, increasing English data (up to 60%) does not have a negative effect on other languages.

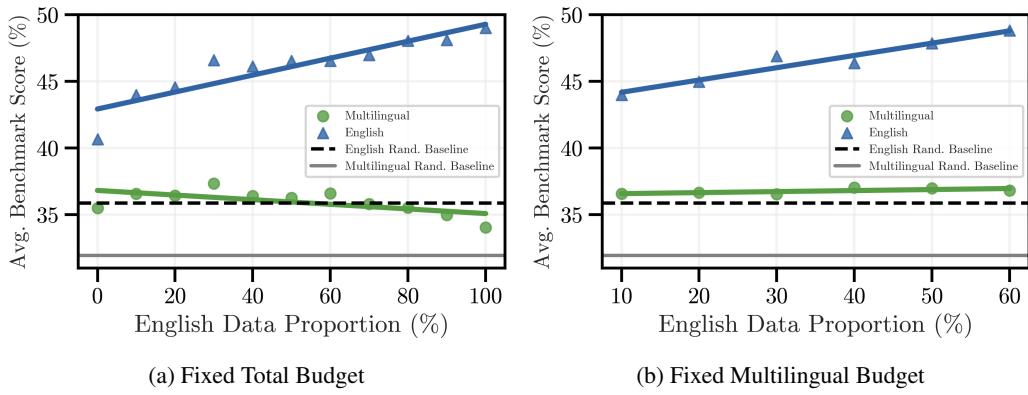


Figure 2: Aggregated *benchmark performance* for **English** and weighted average of non-English (**Multilingual**) across different proportions of English in the training data for **1.1B** models. The dashed lines represent the random baselines for each language group. **(a)** In a **Fixed Total Budget**, increasing English data ( $\geq 50\%$ ), does not hurt downstream performance on the **Multilingual** group. **(b)** In a **Fixed Multilingual Budget**, we see that increasing English data has a negligible impact on the **Multilingual** group’s performance.

language to obtain a comprehensive score for every model-language pair. Details of the benchmark suite and the aggregation procedure are provided in Appendix B.

### 3 ASSUMPTION #1: ENGLISH HURTS MULTILINGUALITY

English serves as the dominant pivot language for LLMs due to the abundance, diversity, and quality of English data available on the web. Simultaneously, due to the prevalence of LLM applications in English, maintaining English performance is often prioritized when training multilingual models by increasing the total proportion of English data, potentially at the expense of multilingual performance (Chung et al., 2023; Xue et al., 2021; 2022).

**Assumption 1:** More English data comes at the cost of performance in other languages.

In this experiment, we investigate how the amount of English pretraining data influences performance in non-English languages. We train models of 1.1B and 3B parameters using data in 30 languages

162 from the mC4 corpus, systematically varying the proportion of English data from 0% to 100%. The  
 163 selected languages represent diverse language families and data resource levels (Table 3). We use  
 164 temperature sampling with  $\tau = 3.3$  (details in Appendix A.3). When deciding on the data budget for  
 165 these experiments, we consider two settings to disentangle the impact of data composition from the  
 166 total amount of data seen during training:

167 *Fixed Total Budget*: The total pretraining budget is held constant at 100B tokens. Increasing the  
 168 proportion of English reduces the amount of non-English (multilingual) data. This setup explores the  
 169 trade-off between English and multilingual data under a constrained data regime.

170 *Fixed Multilingual Budget*: The amount of non-English data is fixed at 90B tokens with English data  
 171 added on top, leading to a growing total data size (up to 225B tokens). This setup explores the effect  
 172 of increasing English data without reducing multilingual coverage, simulating an unconstrained data  
 173 regime (where multilingual data may be available in smaller quantities in web data than English data).

174  
 175 **Results.** Figure 1a shows the final validation loss for English and non-English languages for the  
 176 **1.1B** model for the *Fixed Total Budget* setting. As expected, increasing the proportion of English  
 177 data leads to a lower validation loss for English. For non-English languages, validation loss remains  
 178 relatively stable up to approximately 40% English data. Beyond this point, performance begins  
 179 to degrade, indicating that allocating more capacity to English at the expense of other languages  
 180 negatively impacts multilingual learning.

181 In contrast, under the *Fixed Multilingual Budget* setting (Figure 1b), we observe that multilingual  
 182 performance remains largely unaffected—even when English comprises up to 60% of the dataset.  
 183 These results suggest that, provided there is sufficient data to support learning robust multilingual  
 184 representations, adding more English data does not interfere with performance on other languages. A  
 185 similar pattern holds for the 3B models, as shown by the results in Appendix Figure 7.

186 Figure 2b presents the benchmark results for this experiment. In both the *Fixed Total Budget* and *Fixed*  
 187 *Multilingual Budget* settings, we observe that increasing the proportion of English data consistently  
 188 improves downstream task a in English. Mirroring the same patterns as for the loss, this increase  
 189 does not degrade performance on other languages. Furthermore, Figure 8 shows results for the 3B  
 190 models (see Appendix C), which exhibit a similar trend.

191 **Takeaway:** Contrary to common belief, increasing the amount of English data in the training of  
 192 LLMs does not necessarily degrade their multilingual capabilities, provided that the training set  
 193 also contains a sufficient quantity of multilingual tokens. In other words, it is possible to support  
 194 additional languages while still maintaining strong performance in English.

#### 197 4 ASSUMPTION 2: “STAY IN THE LANGUAGE BRANCH”

198 Previous research suggests that cross-lingual transfer is generally more effective between languages  
 199 that belong to the same language family (Muller et al., 2023; He et al., 2024; Bagheri Nezhad &  
 200 Agrawal, 2024; Xu et al., 2025). This implies that, if the pattern holds consistently, selecting a pivot  
 201 language from within the same family is likely to yield greater transfer benefits than choosing one  
 202 from a different family.

203  
 204 **Assumption 2:** Languages within the same linguistic branch offer the strongest boost to  
 205 multilingual generalization.

206 In this experiment, we investigate the impact of using various types of pivot languages in a training  
 207 corpus with multiple language families. A pivot language is defined as an intermediary language in a  
 208 pretraining set for more effectively learning languages with less available data.

209 We compare using English as a pivot language for all languages, and selecting a pivot language from  
 210 within the same language family for certain languages. Specifically, we train a 1.1B model on a  
 211 subset of *Slavic* and *Cyrillic-script* languages under three different conditions: (1) English as the pivot  
 212 language, (2) Russian as the pivot language, and (3) a uniform combination of English and Russian as  
 213 pivots. The *Slavic* set includes Belarusian, Ukrainian, Macedonian, Bulgarian, Mongolian, Serbian,  
 214

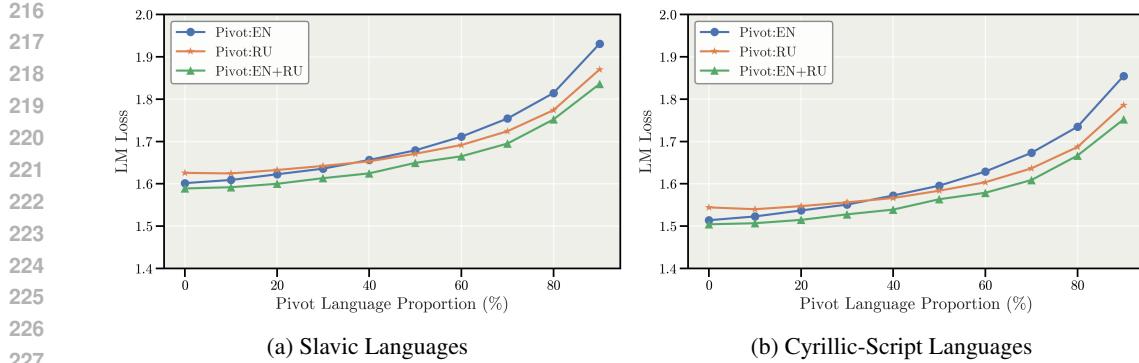


Figure 3: Weighted average of validation LM loss for (a) *Slavic* and (b) *Cyrillic-script* languages when we have English, Russian, or English+Russian as a pivot language in the training data mix. Having a combination of Russian and English as pivots leads to the best performance for both groups of languages (Model size = 1.1B).

Polish, Czech, and Slovak. The *Cyrillic-script* set comprises Belarusian, Ukrainian, Macedonian, Bulgarian, Kyrgyz, Tajik, Kazakh, Mongolian, Serbian, and Uzbek (see Table 4 for details).

**Results.** Figure 3 presents the weighted average loss across both language groups. We observe that as the proportion of training data assigned to the pivot language increases (and the complement proportion for non-pivot languages decreases), the loss for non-pivot languages remains relatively stable at first. However, as less data is allocated to them, their loss eventually rises, as expected. Up to a 50% allocation to the pivot language, English and Russian perform comparably. However, beyond this threshold—particularly at 60% or more, Russian proves slightly more effective as a pivot, yielding lower loss for the remaining languages. One possible explanation is that when pivot allocation is relatively low, non-pivot languages still benefit from having access to their own training data. But in extremely low-resource conditions, these languages gain more from leveraging similarities with a strong pivot language. Another factor is that English training data is often more diverse and standardized, with broad domain coverage. This richness may make English a strong pivot up to a certain point, after which typological proximity favors Russian. Notably, combining *both* English and Russian as joint pivots yields the lowest overall loss, suggesting a complementary effect: English contributes wide coverage, while Russian offers closer linguistic ties to many of the target languages. The detailed per-language loss values are provided in Figure 9 in Appendix C.

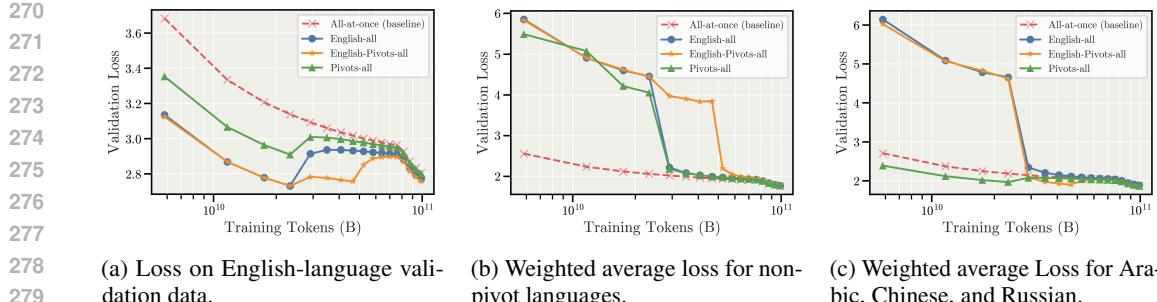
**Takeaway:** English can serve as a broadly effective pivot language, but in very low-resource settings, typological similarity becomes increasingly important. Using multiple pivots that balance breadth and proximity provides the most consistent benefits across language families.

## 5 ASSUMPTION 3: MULTILINGUAL CURRICULUM LEARNING REDUCES NEGATIVE INTERFERENCE

Prior research has explored using curriculum learning (a “general-to-specific” data scheduling approach) to improve pretraining (Dubey et al., 2024; DataBricks, 2024; Apertus Project et al., 2025; Martins et al., 2025). In multilingual training, previous work suggests that the order in which languages are introduced during training can influence model performance and potentially reduce competition between languages (Choi et al., 2023; Ranaldi et al., 2024; Allemand et al., 2025).

**Assumption 3:** Curriculum-based language introduction mitigates negative interference.

To investigate the dynamics of cross-lingual competition and knowledge transfer in multilingual language models, we designed a series of controlled *curriculum learning* experiments. Our goal is to understand how the timing and order of language inclusion during training influence model performance. We design four experimental setups:



(a) Loss on English-language validation data. (b) Weighted average loss for non-pivot languages. (c) Weighted average Loss for Arabic, Chinese, and Russian.

Figure 4: LM loss on the validation set for 3B models as a function of consumed training tokens, shown separately for (a) English, (b) non-English, and (c) pivot languages under different curriculum strategies.

*All-at-once baseline*: The model is trained on the full multilingual dataset from the outset. This setup, common in many multilingual LLMs (e.g., Apertus Project et al., 2025) serves as a control to benchmark the effects of curriculum-based training strategies.

*English-all*: For the first 25% of training, the model is exposed only to English. After this phase, training proceeds on the full multilingual dataset. This allows us to isolate the impact of early single-language pretraining on subsequent multilingual generalization and interference.

*English-Pivots-all*: Training is divided into three phases (1) 0–25%: Only English data is used. (2) 25–50%: We introduce three additional high-resource languages—Arabic, Chinese, and Russian—alongside English as pivot languages. These four languages were chosen to represent four distinct scripts: Latin, Arabic, Han, and Cyrillic, respectively. This intermediate stage allows us to explore early competition between strong languages with differing orthographic and typological properties. (3) 50–100%: The model is trained on the full multilingual dataset. This progressive inclusion strategy enables a controlled examination of cross-lingual interactions and competition under varying degrees of language diversity.

*Pivots-all*: For the first 25% of training, the model is trained using our 4 pivot languages. After this phase, training continues on the full multilingual dataset. This allows us to isolate the impact of early high-resource pretraining on subsequent multilingual generalization and interference.

**Results.** Figure 4 presents the results of our curriculum learning experiments. When examining English loss, we find that introducing English early in training—either alone (*English-all*) or alongside pivot languages (*English-pivots-all*)—leads to lower final loss for English. Notably, transitioning between curriculum stages (*i.e.*, adding new languages in successive phases) temporarily increases the loss for previously seen languages. This suggests a short-term “forgetting” effect, where the model learns new languages at the cost of temporarily degrading performance on earlier ones, before eventually recovering and integrating all knowledge across the languages.

For the other three pivot languages (Figure 4c), the curriculum that begins with English and subsequently introduces the pivots (*Pivots-all*) achieves the lowest average loss midway through training. However, as additional languages are introduced, the loss increases, ultimately converging to the same level as other runs. As with English, we observe a forgetting effect at each transition.

When analyzing the average loss across other non-English languages (Figure 4b), we observe that while different curriculum regimes begin at different starting points and follow distinct learning trajectories, they all converge to a similar final loss by the end of training. This consistency indicates that curriculum order primarily affects learning dynamics, but not final multilingual performance.

Although curriculum learning appears to benefit English, further analysis reveals that this improvement is largely attributable to data quantity. Specifically, we find a strong correlation between the number of English tokens in the training mix and the model’s performance on English. In other words, models exposed to more English data achieve lower loss. Consequently, the *English-pivots-all* setup attains the lowest English loss primarily because it includes the largest proportion of English data in its curriculum. **Validation loss for each language is depicted in Figures 11 and 12 in Appendix E.**

324 **Takeaway:** Curriculum learning shapes the trajectory of multilingual training but does not reduce  
 325 interference or improve final performance. Observed gains for English under certain curricula are  
 326 explained by the data distribution rather than curriculum structure.  
 327

## 328 6 ASSUMPTION 4: THE “CURSE OF MULTILINGUALITY” 329

331 Prior work has shown that, for a fixed model capacity, adding more languages during pretraining  
 332 initially improves cross-lingual transfer, particularly for low-resource languages. However, beyond  
 333 a certain point, both monolingual and cross-lingual performance begin to degrade. This trade-off  
 334 is commonly referred to as the *curse of multilinguality* (Conneau et al., 2020; Pfeiffer et al., 2022;  
 335 Blevins et al., 2024; Chang et al., 2024).  
 336

337 **Assumption 4:** Adding more languages to a pretraining mixture reduces performance.  
 338

339 We revisit this assumption by training language models with varying numbers of languages and  
 340 analyzing the impact on both high- and low-resource languages.  
 341

| # Languages | LM Loss ↓     |                | Benchmark Performance ↑ |                |
|-------------|---------------|----------------|-------------------------|----------------|
|             | Natural Dist. | Temp. Sampling | Natural Dist.           | Temp. Sampling |
| 25          | 2.678         | 2.675          | 50.13 ± 1.868           | 43.24 ± 1.874  |
| 50          | 2.678         | 2.681          | 49.41 ± 1.868           | 43.80 ± 1.878  |
| 100         | 2.682         | 2.687          | 49.29 ± 1.865           | 43.76 ± 1.872  |
| 200         | 2.680         | 2.696          | 49.11 ± 1.864           | 42.38 ± 1.870  |
| 400         | 2.678         | 2.707          | 49.64 ± 1.871           | 42.12 ± 1.854  |

350 Table 1: English validation loss and benchmark performance (%) when increasing languages cov-  
 351 erage from 25 to 400 (3B model). English represents 40% of the training data in all runs (40B  
 352 tokens). Increasing the number of languages, while keeping English data fixed, does not hurt English  
 353 performance. Per-benchmark values are provided in Table 9.  
 354

355 Practically, we train 3B parameter models on 100B tokens from the FineWeb-2 corpus. In all  
 356 settings, English accounts for 40% of the training data, while the number of non-English languages is  
 357 systematically increased—from 25 to 400. We experiment with the top-25, 50, 100, 200, and 400  
 358 most frequent languages in FineWeb-2 under two distributions: (1) the *natural distribution* and (2)  
 359 *temperature sampling* with  $\tau = 3.3$ . We then evaluate how increasing linguistic diversity in the  
 360 non-English data subset affects English and non-English performance. Details of the training data  
 361 distribution are provided in Table 8.  
 362

363 **Results.** Table 1 summarizes English validation loss and average downstream performance across  
 364 these configurations. Two main observations emerge. First, for a fixed number of languages and  
 365 a fixed English share, English performance is consistently stronger under the natural distribution  
 366 than under temperature sampling. In this case, English benefits from cross-lingual transfer with  
 367 high-resource, typologically related languages (e.g., German, French), which receive more data under  
 368 the natural distribution (we further investigate this effect in Appendix D). Second, even when scaling  
 369 up to 400 languages, English performance remains largely stable—particularly under the natural  
 370 distribution, suggesting that English performance is not determined by the sheer number of languages  
 371 included in the training process. In other words, the key factor is not how many languages are present,  
 372 but how the training data is distributed among them.  
 373

374 Building on this insight, we show in Figures 5a and 5c the weighted average LM validation loss for  
 375 the top-25, 50, 100, and 200 language groups (excluding English) under the two distributions. The  
 376 x-axis denotes language groups used for evaluation, while the y-axis indicates language groups used  
 377 for training. Because the total data budget is fixed at 100B tokens, adding more languages necessarily  
 378 reduces the relative share of data for previously included ones. Under the natural distribution, however,  
 379 performance remains stable as languages are added. In contrast, under temperature sampling we  
 380 observe up to a  $\sim 0.1$  increase in loss when expanding from 25 to 400 languages. This effect is  
 381

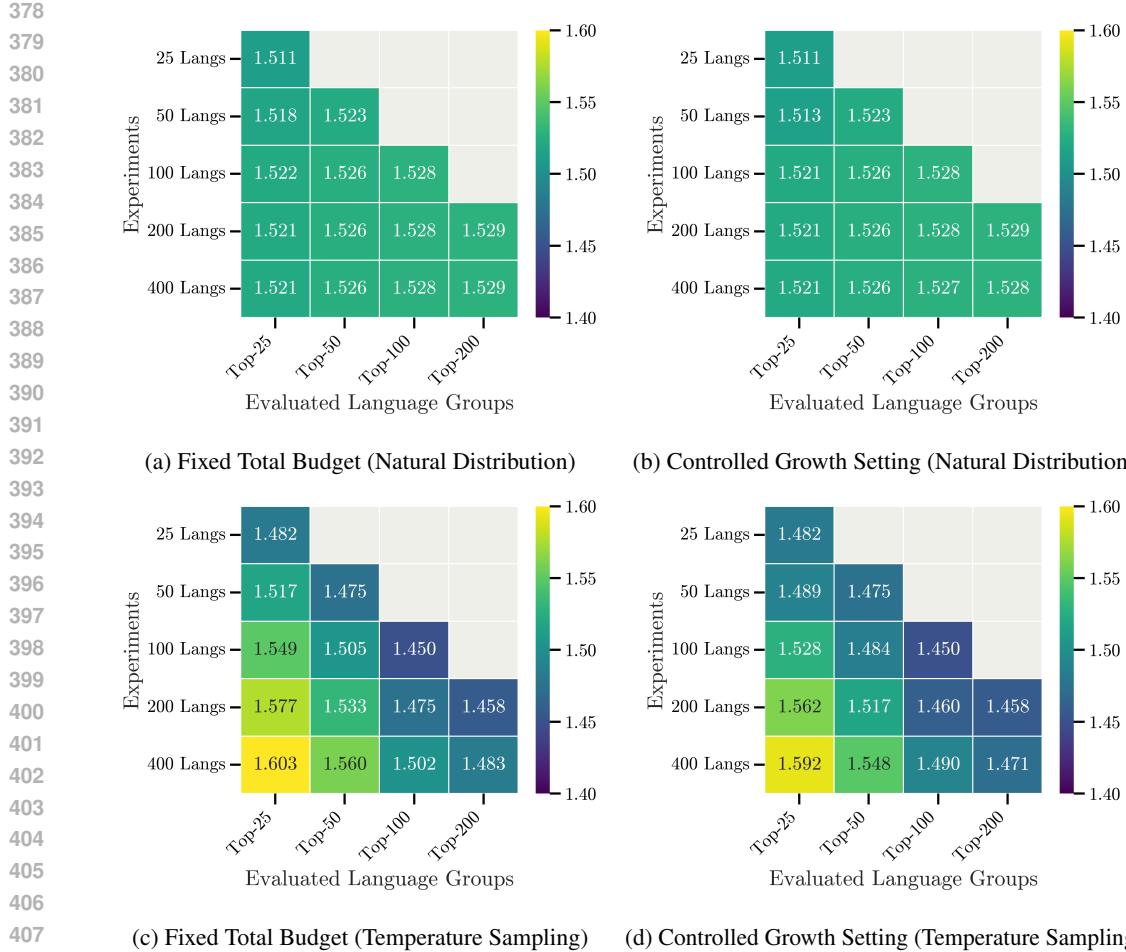


Figure 5: Average validation LM loss for different language groups ( $x$ -axis) across various *curse of multilinguality* experiments that include more languages in the pretraining mixture ( $y$ -axis). Increasing the number of languages does not necessarily degrade the performance of languages included in previous experiments, provided that the amount of training data (in tokens) for those languages remains the same. (English is excluded from these evaluations)

expected, since temperature sampling reduces the allocation of mid- and high-resource languages more aggressively, amplifying the effect of including low-resource ones.

To disentangle the effect of adding new languages from the effect of reducing data for existing ones, we also run a controlled setting where the data for the original set of languages remains fixed across two consecutive runs. For example, when increasing from 25 to 50 languages, the first 25 languages receive the same amount of training data as before; the same approach is applied when scaling from 50 to 100, 100 to 200, and 200 to 400 languages. Figures 5b and 5d report the results. Once again, under the natural distribution, performance remains stable, and we also observe a smaller relative degradation for the temperature sampling setting.

Taken together, these results suggest that the *curse of multilinguality* is not primarily about the number of languages added, but instead reflects limitations in model capacity and the quality and distribution of multilingual data. Under the natural distribution, the phenomenon is better described as a *curse of capacity*: models have a finite ability to absorb tokens, and beyond a certain point, additional data yields diminishing or even negative returns, a constraint not unique to multilingual models. Under temperature sampling, the issue more closely resembles a *curse of data quality*: oversampling very low-resource languages introduces more noisy data into training, which hurts performance.

432 **Takeaway:** The *curse of multilinguality*, while measurable, likely arises not from simply adding  
 433 more languages, but from (1) the finite capacity of models and (2) data distributions that too strongly  
 434 amplify the impact of languages represented by lower-quality data.

## 436 7 RELATED WORK

439 **Pretraining Data Mixture.** Prior work has explored the impact of pretraining data composition  
 440 on the performance of large language models (LLMs) (Gu et al., 2024; Zhao et al., 2024b; Xie  
 441 et al., 2023; Albalak et al., 2023; Held et al., 2025; Apertus Project et al., 2025). Several studies  
 442 have proposed algorithms to optimize domain weights using proxy models, thereby improving the  
 443 generalization ability of LLMs (Xie et al., 2024; Fan et al., 2023). Another approach formulates the  
 444 identification of high-performing data mixtures as a regression problem (Liu et al., 2024).

445 In the multilingual setting, temperature-based sampling has traditionally been used to balance  
 446 representation across languages (Devlin et al., 2019; Xue et al., 2021). However, this heuristic method  
 447 can lead to overfitting on low-resource (tail) languages. To address this, Chung et al. (2023) proposes  
 448 a sampling method that ensures more uniform coverage of high-resource (head) languages while  
 449 capping repetition on low-resource languages. Additionally, He et al. (2024) investigates scaling  
 450 laws specific to multilingual LLMs, providing further insight into optimal data mixture strategies.  
 451 **Additionally, several approaches address data mixture optimization within the context of multilingual**  
 452 **continual pretraining** (Ji et al., 2024; Li et al., 2025).

453 **Curse of Multilinguality & Negative Interference.** The curse of multilinguality, introduced  
 454 by Conneau et al. (2020), describes the phenomenon where, under a fixed model capacity, adding more  
 455 languages initially improves cross-lingual performance—especially for low-resource languages—but  
 456 eventually leads to degradation in both monolingual and cross-lingual performance. Most previous  
 457 investigations into this phenomenon have been limited in scale, in terms of both model size and  
 458 language coverage. For instance, Pfeiffer et al. (2022) studies this trade-off using a 270M parameter  
 459 bidirectional model trained on 75 languages, proposing a modular architecture to mitigate interference.  
 460 Recently, Chuang et al. (2025) shows that the curse of multilinguality breaks with larger count of  
 461 parameters for multimodal embedding tasks.

462 Blevins et al. (2024) introduces a cross-lingual expert language model, in which separate models  
 463 are trained on subsets of the multilingual corpus to reduce competition among languages. Similarly,  
 464 Chang et al. (2024) explores this effect using monolingual and multilingual models (up to 45M  
 465 parameters) trained across 250 languages and derives optimal sampling ratios. Wang et al. (2020)  
 466 examines the phenomenon of negative interference in multilingual LMs and introduces a meta-  
 467 learning algorithm that improves cross-lingual transfer and alleviates interference effects. Alastryuey  
 468 et al. (2025) challenge the prevailing assumption that cross-lingual interference depends on language  
 469 family, showing instead that it is primarily related to script.

470 **Impact of Pivot Languages.** The role of *pivot* languages in improving monolingual and cross-  
 471 lingual performance of multilingual LLMs has been studied before. Several works have demonstrated  
 472 the benefits of using a pivot language for machine translation (Kim et al., 2019; Zou et al., 2022;  
 473 Gaikwad et al., 2024; Mohammadshahi et al., 2024). Zhang et al. (2024) shows that using English  
 474 as a pivot for cross-lingual instruction tuning, by first interpreting instructions in English before  
 475 generating responses in the target language, can be highly effective. Pivot languages have also been  
 476 used to improve alignment in multilingual representation spaces (Zhao et al., 2024a). **Investigating**  
 477 **the mechanics of this transfer, Wendler et al. (2024) show that models leverage the pivot language’s**  
 478 **internal circuits to process other languages. The efficacy of this cross-lingual transfer is tied to data**  
 479 **distribution: it is more pronounced when models are trained using imbalanced language mixtures,**  
 rather than in a balanced setting (Schäfer et al., 2024).

480 **Curriculum Learning (CL) for LLMs.** Curriculum Learning (CL), a data-centric training strategy  
 481 inspired by human learning processes, has been studied for improving the performance of LLMs (Nair  
 482 et al., 2024; Kim & Lee, 2024; Li et al., 2021). Several studies have demonstrated the effectiveness  
 483 of CL in multilingual machine translation (Zhang et al., 2021; Kumar et al., 2021; Zhou et al., 2021;  
 484 Choi et al., 2023). Ranaldi et al. (2024) applies the CL paradigm during the instruction-tuning phase  
 485 of multilingual LLMs and reports notable improvements. Additionally, Yoo et al. (2024) proposes a  
 code-switching-based CL strategy to enhance cross-lingual transfer capabilities in LLMs.

486 

## 8 DISCUSSION & CONCLUSION

488 Our study investigates the influence of data mixture composition on multilingual large language model  
 489 (LLM) pretraining, leveraging 1.1B and 3B models across up to 400 languages. Our findings challenge  
 490 prevailing assumptions about multilingual pretraining, offering direct guidance for multilingual data  
 491 mixture design. First, we demonstrated that the quantity and proportion of high-resource English  
 492 data do not inherently compromise multilingual performance, provided a sufficient number of non-  
 493 English tokens are present. This finding suggests practitioners should prioritize ensuring an adequate  
 494 absolute volume of diverse, high-quality multilingual content over strictly reducing the high-resource  
 495 component. Second, and contrary to suggestions that family-specific pivots are most effective, we  
 496 established that English consistently serves as a high-quality pivot language, providing cross-lingual  
 497 transfer benefits across linguistic groups.  
 498

499 We also provided new insights into core challenges of multilingual scaling: negative interference  
 500 and the “*curse of multilinguality*.” Our results showed that staging the introduction of languages  
 501 through curriculum learning does not mitigate negative interference (Wang et al., 2020) or improve  
 502 non-English performance, suggesting that interference is a fundamental problem related to the  
 503 fixed capacity of models, and not merely one that can be fixed through different data curricula.  
 504 Furthermore, our findings refine the understanding of the “*curse of multilinguality*”(Chang et al.,  
 505 2024), demonstrating that performance degradation arises not from the simple count of languages  
 506 added, but from the finite capacity of models and data distributions that amplify the impact of noisy,  
 507 low-resource languages. Although prior studies (Conneau et al., 2020) mentioned the capacity  
 508 limitation in multilingual modeling, this work distinguishes itself by conducting a comprehensive  
 509 and integrated analysis of the phenomenon across its various facets.  
 510

511 Collectively, these findings translate into the following practices for training multilingual LLMs.  
 512 First, adopting regimes taking into account the order of languages such as curriculum learning offer  
 513 no demonstrable benefit over a well-mixed approach. Second, given the resilience to high English  
 514 proportions, focus resource investment on scaling and cleaning low-resource data rather than on  
 515 costly data balancing operations. Third, do not limit language coverage arbitrarily, as the curse  
 516 is primarily a function of quality and quantity of the multilingual data, not language count. Our  
 517 evidence implies that future efforts to break the curse should focus on including adequate high-quality  
 518 data for each language. While these principles were established on 1.1B and 3B parameter models,  
 519 future work must validate these trade-offs on larger models models to explore how increased model  
 520 capacity potentially alters the non-linear relationship between data composition, interference, and  
 521 performance.  
 522

523 

## LIMITATIONS

524 Despite employing larger models and more data than prior work, our study remains far below the  
 525 scale of frontier models such as Meta AI (2025); Guo et al. (2025), as operating at that scale would  
 526 have prevented us from running the number of experiments necessary to draw reasonable conclusions  
 527 within our computational constraints. Furthermore, we were unable to explore the impact of post-  
 528 training and the effects of various data sampling strategies for the same reason. Lastly, the choice  
 529 of our tokenizer may limit performance on lower-resource languages. We selected a pre-existing  
 530 tokenizer that supported the greatest number of languages in our study, as training a tokenizer  
 531 to support 1,834 languages is practically infeasible without substantially increasing the model’s  
 532 vocabulary size and the associated GPU memory requirements.  
 533

534 

## REFERENCES

535 Belen Alastrauey, João Maria Janeiro, Alexandre Allauzen, Maha Elbayad, Loïc Barrault, and Marta R  
 536 Costa-jussà. Interference matrix: Quantifying cross-lingual interference in transformer encoders.  
 537 *arXiv preprint arXiv:2508.02256*, 2025.

538 Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing  
 539 for language model pre-training. *URL https://arxiv. org/abs/2312.02406*, 2023.

Alexis Allemann, Àlex R. Atrio, and Andrei Popescu-Belis. Optimizing the training schedule of  
 multilingual NMT using reinforcement learning. In Pierrette Bouillon, Johanna Gerlach, Sabrina

540 Girletti, Lise Volkart, Raphael Rubino, Rico Sennrich, Ana C. Farinha, Marco Gaido, Joke Daems,  
 541 Dorothy Kenny, Helena Moniz, and Sara Szoc (eds.), *Proceedings of Machine Translation Summit*  
 542 *XX: Volume 1*, pp. 65–80, Geneva, Switzerland, June 2025. European Association for Machine  
 543 Translation. ISBN 978-2-9701897-0-1. URL <https://aclanthology.org/2025.mtsummit-1.6/>.

545 Alejandro Hernández-Cano Apertus Project, Alexander Hägele, Allen Hao Huang, Angelika Ro-  
 546 manou, Antoni-Joan Solergibert, Barna Pasztor, Bettina Messmer, Dhia Garbaya, Eduard Frank  
 547 Ďurech, Ido Hakimi, Juan García Giraldo, Mete Ismayilzada, Negar Foroutan, Skander Moalla,  
 548 Tiansheng Chen, Vinko Sabolčec, Yixuan Xu, Michael Aerni, Badr AlKhamissi, Ines Altemir  
 549 Marinas, Mohammad Hossein Amani, Matin Ansaripour, Ilia Badanin, Harold Benoit, Emanuela  
 550 Boros, Nicholas Browning, Fabian Bösch, Maximilian Böther, Niklas Canova, Camille Challier,  
 551 Clement Charmillot, Jonathan Coles, Jan Deriu, Arnout Devos, Lukas Drescher, Daniil Dzen-  
 552 haliov, Maud Ehrmann, Dongyang Fan, Simin Fan, Silin Gao, Miguel Gila, María Grandury, Diba  
 553 Hashemi, Alexander Hoyle, Jiaming Jiang, Mark Klein, Andrei Kucharavy, Anastasiia Kucherenko,  
 554 Frederike Lübeck, Roman Machacek, Theofilos Manitaras, Andreas Marfurt, Kyle Matoba, Simon  
 555 Matrenok, Henrique Mendonça, Fawzi Roberto Mohamed, Syrielle Montariol, Luca Mouchel,  
 556 Sven Najem-Meyer, Jingwei Ni, Gennaro Oliva, Matteo Pagliardini, Elia Palme, Andrei Panferov,  
 557 Léo Paoletti, Marco Passerini, Ivan Pavlov, Auguste Poiroux, Kaustubh Ponkshe, Nathan Ranchin,  
 558 Javi Rando, Mathieu Sausser, Jakhongir Saydaliev, Muhammad Ali Sayfiddinov, Marian Schneider,  
 559 Stefano Schuppli, Marco Scialanga, Andrei Semenov, Kumar Shridhar, Raghav Singhal, Anna  
 560 Sotnikova, Alexander Sternfeld, Ayush Kumar Tarun, Paul Teiletche, Jannis Vamvas, Xiaozhe Yao,  
 561 Hao Zhao Alexander Ilic, Ana Klimovic, Andreas Krause, Caglar Gulcehre, David Rosenthal, El-  
 562 liott Ash, Florian Tramèr, Joost VandeVondel, Livio Veraldi, Martin Rajman, Thomas Schulthess,  
 563 Torsten Hoefer, Antoine Bosselut, Martin Jaggi, and Imanol Schlag. Apertus: Democratizing open  
 564 and compliant llms for global language environments, 2025.

565 Sina Bagheri Nezhad and Ameeta Agrawal. What drives performance in multilingual language  
 566 models? In Yves Scherrer, Tommi Jauhainen, Nikola Ljubešić, Marcos Zampieri, Preslav  
 567 Nakov, and Jörg Tiedemann (eds.), *Proceedings of the Eleventh Workshop on NLP for Similar*  
*568 Languages, Varieties, and Dialects (VarDial 2024)*, pp. 16–27, Mexico City, Mexico, June 2024.  
 569 Association for Computational Linguistics. doi: 10.18653/v1/2024.var dial-1.2. URL <https://aclanthology.org/2024.var dial-1.2/>.

570 Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel Artetxe, Satya Narayan Shukla, Donald  
 571 Husa, Naman Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and Madian Khabsa. The belebele  
 572 benchmark: a parallel reading comprehension dataset in 122 language variants. In Lun-Wei  
 573 Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the*  
*574 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 749–775, Bangkok,  
 575 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.  
 576 acl-long.44. URL <https://aclanthology.org/2024.acl-long.44/>.

577 Terra Blevins, Tomasz Limisiewicz, Suchin Gururangan, Margaret Li, Hila Gonen, Noah A. Smith,  
 578 and Luke Zettlemoyer. Breaking the curse of multilinguality with cross-lingual expert language  
 579 models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024*  
*580 Conference on Empirical Methods in Natural Language Processing*, pp. 10822–10837, Miami,  
 581 Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/  
 582 2024.emnlp-main.604. URL <https://aclanthology.org/2024.emnlp-main.604/>.

583 Tyler A. Chang, Catherine Arnett, Zhuowen Tu, and Ben Bergen. When is multilinguality a  
 584 curse? language modeling for 250 high- and low-resource languages. In Yaser Al-Onaizan,  
 585 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical*  
*586 Methods in Natural Language Processing*, pp. 4074–4096, Miami, Florida, USA, November  
 587 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.236. URL  
 588 <https://aclanthology.org/2024.emnlp-main.236/>.

589 Michael Chen, Mike D’Arcy, Alisa Liu, Jared Fernandez, and Doug Downey. Codah: An  
 590 adversarially-authored question answering dataset for common sense. In *Proceedings of the*  
 591 *3rd Workshop on Evaluating Vector Space Representations for NLP*, pp. 63–69, Minneapolis,  
 592 USA, 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-2008. URL  
 593 <https://www.aclweb.org/anthology/W19-2008>.

594 Dami Choi, Derrick Xin, Hamid Dadkhahi, Justin Gilmer, Ankush Garg, Orhan Firat, Chih-Kuan  
 595 Yeh, Andrew M Dai, and Behrooz Ghorbani. Order matters in the presence of dataset imbalance  
 596 for multilingual learning. *Advances in Neural Information Processing Systems*, 36:66902–66922,  
 597 2023.

598 Yung-Sung Chuang, Yang Li, Dong Wang, Ching-Feng Yeh, Kehan Lyu, Ramya Raghavendra, James  
 599 Glass, Lifei Huang, Jason Weston, Luke Zettlemoyer, Xinlei Chen, Zhuang Liu, Saining Xie,  
 600 Wen tau Yih, Shang-Wen Li, and Hu Xu. Meta clip 2: A worldwide scaling recipe, 2025. URL  
 601 <https://arxiv.org/abs/2507.22062>.

602 Hyung Won Chung, Noah Constant, Xavier Garcia, Adam Roberts, Yi Tay, Sharan Narang, and  
 603 Orhan Firat. Unimax: Fairer and more effective language sampling for large-scale multilingual  
 604 pretraining. *arXiv preprint arXiv:2304.09151*, 2023.

605 Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Fran-  
 606 cisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised  
 607 cross-lingual representation learning at scale. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and  
 608 Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational  
 609 Linguistics*, pp. 8440–8451, Online, July 2020. Association for Computational Linguistics. doi:  
 610 10.18653/v1/2020.acl-main.747. URL <https://aclanthology.org/2020.acl-main.747/>.

611 Viet Dac Lai, Chien Van Nguyen, Nghia Trung Ngo, Thuat Nguyen, Franck Dernoncourt, Ryan A  
 612 Rossi, and Thien Huu Nguyen. Okapi: Instruction-tuned large language models in multiple  
 613 languages with reinforcement learning from human feedback. *arXiv e-prints*, pp. arXiv–2307,  
 614 2023.

615 DataBricks. Introducing dbrx: A new state-of-the-art open llm, March 2024. URL <https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm>. Accessed: 2025-11-  
 616 24.

617 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of  
 618 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and  
 619 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the  
 620 Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and  
 621 Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational  
 622 Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423/>.

623 Matthew S. Dryer and Martin Haspelmath (eds.). *WALS Online (v2020.4)*. Zenodo, 2013. doi:  
 624 10.5281/zenodo.13950591. URL <https://doi.org/10.5281/zenodo.13950591>.

625 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha  
 626 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.  
 627 *arXiv e-prints*, pp. arXiv–2407, 2024.

628 Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization  
 629 estimation. *arXiv preprint arXiv:2310.15393*, 2023.

630 Pranav Gaikwad, Meet Doshi, Raj Dabre, and Pushpak Bhattacharyya. How effective is multi-source  
 631 pivoting for translation of low resource indian languages? *arXiv preprint arXiv:2406.13332*, 2024.

632 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
 633 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,  
 634 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,  
 635 Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,  
 636 Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,  
 637 Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,  
 638 Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle  
 639 Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego  
 640 Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,  
 641 Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel  
 642 Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,  
 643 Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan  
 644

648 Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,  
 649 Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,  
 650 Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie  
 651 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua  
 652 Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,  
 653 Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley  
 654 Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yearly, Laurens van der Maaten, Lawrence  
 655 Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas  
 656 Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,  
 657 Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie  
 658 Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes  
 659 Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,  
 660 Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal  
 661 Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,  
 662 Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,  
 663 Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie  
 664 Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana  
 665 Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,  
 666 Sharan Narang, Sharath Raparthi, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon  
 667 Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,  
 668 Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas  
 669 Scialom, Tobias Speckbacher, Todor Miyaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,  
 670 Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,  
 671 Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier  
 672 Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao  
 673 Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,  
 674 Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe  
 675 Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya  
 676 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei  
 677 Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,  
 678 Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit  
 679 Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,  
 680 Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,  
 681 Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,  
 682 Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,  
 683 Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu  
 684 Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,  
 685 Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,  
 686 Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc  
 687 Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily  
 688 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,  
 689 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank  
 690 Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,  
 691 Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,  
 692 Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,  
 693 Helen Suk, Henry Aspren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,  
 694 Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James  
 695 Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny  
 696 Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,  
 697 Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai  
 698 Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik  
 699 Veeraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle  
 700 Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng  
 701 Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish  
 Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim  
 Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle  
 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,  
 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,  
 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,

702 Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia  
 703 Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro  
 704 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,  
 705 Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,  
 706 Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin  
 707 Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,  
 708 Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh  
 709 Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,  
 710 Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,  
 711 Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie  
 712 Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,  
 713 Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,  
 714 Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun  
 715 Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria  
 716 Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,  
 717 Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz,  
 718 Will Constable, Xiaocheng Tang, Xiaoqian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv  
 719 Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,  
 720 Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,  
 721 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The  
 722 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

723 Jiawei Gu, Zacc Yang, Chuanghao Ding, Rui Zhao, and Fei Tan. CMR scaling law: Predicting  
 724 critical mixture ratios for continual pre-training of language models. In Yaser Al-Onaizan, Mohit  
 725 Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods  
 726 in Natural Language Processing*, pp. 16143–16162, Miami, Florida, USA, November 2024.  
 727 Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.903. URL <https://aclanthology.org/2024.emnlp-main.903>.

728 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,  
 729 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms  
 730 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

731 Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighteval:  
 732 A lightweight framework for llm evaluation, 2023. URL <https://github.com/huggingface/lighteval>.

733 Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin  
 734 Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. *arXiv preprint  
 735 arXiv:2405.18392*, 2024.

736 Momchil Hardalov, Todor Mihaylov, Dimitrina Zlatkova, Yoan Dinkov, Ivan Koychev, and Preslav  
 737 Nakov. EXAMS: A multi-subject high school examinations dataset for cross-lingual and mul-  
 738 tilingual question answering. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),  
 739 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing  
 (EMNLP)*, pp. 5427–5444, Online, November 2020. Association for Computational Linguistics.  
 740 doi: 10.18653/v1/2020.emnlp-main.438. URL <https://aclanthology.org/2020.emnlp-main.438>.

741 Yifei He, Alon Benhaim, Barun Patra, Praneetha Vaddamanu, Sanchit Ahuja, Parul Chopra, Vishrav  
 742 Chaudhary, Han Zhao, and Xia Song. Scaling laws for multilingual language models, 2024. URL  
 743 <https://arxiv.org/abs/2410.12883>.

744 William Held, Bhargavi Paranjape, Punit Singh Koura, Mike Lewis, Frank Zhang, and Todor  
 745 Mihaylov. Optimizing pretraining data mixtures with llm-estimated utility. *arXiv preprint  
 746 arXiv:2501.11747*, 2025.

747 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob  
 748 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International  
 749 Conference on Learning Representations (ICLR)*, 2021.

756 Shaoxiong Ji, Zihao Li, Indraneil Paul, Jaakko Paavola, Peiqin Lin, Pinzhen Chen, Dayyán O'Brien,  
 757 Hengyu Luo, Hinrich Schütze, Jörg Tiedemann, et al. Emma-500: Enhancing massively multilingual  
 758 adaptation of large language models. *arXiv preprint arXiv:2409.17892*, 2024.

759

760 Jisu Kim and Juhwan Lee. Strategic data ordering: Enhancing large language model performance  
 761 through curriculum learning. *arXiv preprint arXiv:2405.07490*, 2024.

762

763 Yunsu Kim, Petre Petrov, Pavel Petrushkov, Shahram Khadivi, and Hermann Ney. Pivot-based  
 764 transfer learning for neural machine translation between non-English languages. In Kentaro  
 765 Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on  
 766 Empirical Methods in Natural Language Processing and the 9th International Joint Conference on  
 767 Natural Language Processing (EMNLP-IJCNLP)*, pp. 866–876, Hong Kong, China, November  
 768 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1080. URL <https://aclanthology.org/D19-1080/>.

769

770 Gaurav Kumar, Philipp Koehn, and Sanjeev Khudanpur. Learning policies for multilingual training  
 771 of neural machine translation systems. *arXiv preprint arXiv:2103.06964*, 2021.

772

773 Conglong Li, Minjia Zhang, and Yuxiong He. Curriculum learning: A regularization method for  
 774 efficient and stable billion-scale gpt model pre-training. *arXiv preprint arXiv:2108.06084*, 8:13,  
 2021.

775

776 Zihao Li, Shaoxiong Ji, Hengyu Luo, and Jörg Tiedemann. Rethinking multilingual continual  
 777 pretraining: Data mixing for adapting llms across languages and resources. *arXiv preprint  
 778 arXiv:2504.04152*, 2025.

779

780 Bill Yuchen Lin, Seyeon Lee, Xiaoyang Qiao, and Xiang Ren. Common sense beyond English:  
 781 Evaluating and improving multilingual language models for commonsense reasoning. In Chengqing  
 782 Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting  
 783 of the Association for Computational Linguistics and the 11th International Joint Conference  
 784 on Natural Language Processing (Volume 1: Long Papers)*, pp. 1274–1287, Online, August  
 2021a. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.102. URL  
<https://aclanthology.org/2021.acl-long.102/>.

785

786 Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuhui Chen, Daniel Simig, Myle Ott,  
 787 Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura,  
 788 Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona T.  
 789 Diab, Veselin Stoyanov, and Xian Li. Few-shot learning with multilingual language models. *CoRR*,  
 790 [abs/2112.10668](https://arxiv.org/abs/2112.10668), 2021b. URL <https://arxiv.org/abs/2112.10668>.

791

792 Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing  
 793 Jiang, and Min Lin. Regmix: Data mixture as regression for language model pre-training. *arXiv  
 794 preprint arXiv:2407.01492*, 2024.

795

I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

796

Pedro Henrique Martins, Patrick Fernandes, João Alves, Nuno M Guerreiro, Ricardo Rei, Duarte M  
 797 Alves, José Pombal, Amin Farajian, Manuel Faysse, Mateusz Klimaszewski, et al. Euollm:  
 798 Multilingual language models for europe. *Procedia Computer Science*, 255:53–62, 2025.

799

Meta AI. Introducing llama 4: Advancing multimodal intelligence, 2025. URL <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>.

800

801 Alireza Mohammadshahi, Jannis Vamvas, and Rico Sennrich. Investigating multi-pivot ensembling  
 802 with massively multilingual machine translation models. In Shabnam Tafreshi, Arjun Akula, João  
 803 Sedoc, Aleksandr Drozd, Anna Rogers, and Anna Rumshisky (eds.), *Proceedings of the Fifth  
 804 Workshop on Insights from Negative Results in NLP*, pp. 169–180, Mexico City, Mexico, June  
 805 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.insights-1.19. URL  
<https://aclanthology.org/2024.insights-1.19/>.

806

807 Nasrin Mostafazadeh, Michael Roth, Annie Louis, Nathanael Chambers, and James Allen. Lsdsem  
 808 2017 shared task: The story cloze test. In *Proceedings of the 2nd Workshop on Linking Models of  
 809 Lexical, Sentential and Discourse-level Semantics*, pp. 46–51, 2017.

810 Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven Le  
 811 Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, Xiangru Tang, Dragomir  
 812 Radev, Alham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert Webson,  
 813 Edward Raff, and Colin Raffel. Crosslingual generalization through multitask finetuning, 2022.

814 Benjamin Muller, Deepanshu Gupta, Jean-Philippe Fauconnier, Siddharth Patwardhan, David  
 815 Vandyke, and Sachin Agarwal. Languages you know influence those you learn: Impact of  
 816 language characteristics on multi-lingual text-to-text transfer. In *Transfer Learning for Natural*  
 817 *Language Processing Workshop*, pp. 88–102. PMLR, 2023.

818 Marwa Naïr, Kamel Yamani, Lynda Lhadj, and Riyadh Baghdadi. Curriculum learning for small code  
 819 language models. In Xiyan Fu and Eve Fleisig (eds.), *Proceedings of the 62nd Annual Meeting*  
 820 *of the Association for Computational Linguistics (Volume 4: Student Research Workshop)*, pp.  
 821 390–401, Bangkok, Thailand, August 2024. Association for Computational Linguistics. ISBN  
 822 979-8-89176-097-4. doi: 10.18653/v1/2024.acl-srw.44. URL <https://aclanthology.org/2024.acl-srw.44/>.

823 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni  
 824 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor  
 825 Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,  
 826 Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny  
 827 Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,  
 828 Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea  
 829 Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,  
 830 Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,  
 831 Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,  
 832 Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty  
 833 Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,  
 834 Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel  
 835 Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua  
 836 Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike  
 837 Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon  
 838 Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne  
 839 Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo  
 840 Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,  
 841 Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik  
 842 Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,  
 843 Aris Konstantinidis, Kyle Kusic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy  
 844 Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie  
 845 Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,  
 846 Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,  
 847 Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David  
 848 Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie  
 849 Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,  
 850 Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo  
 851 Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,  
 852 Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,  
 853 Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,  
 854 Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,  
 855 Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis  
 856 Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted  
 857 Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel  
 858 Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon  
 859 Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,  
 860 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie  
 861 Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,  
 862 Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun  
 863 Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,  
 Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian  
 Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren

864 Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming  
 865 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao  
 866 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL  
 867 <https://arxiv.org/abs/2303.08774>.

868  
 869 Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Amir Hos-  
 870 sein Kargaran, Colin Raffel, Martin Jaggi, Leandro Von Werra, and Thomas Wolf. Fineweb2: One  
 871 pipeline to scale them all-adapting pre-training data processing to every language. *arXiv preprint*  
 872 *arXiv:2506.20920*, 2025.

873 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, and Mikel Artetxe.  
 874 Lifting the curse of multilinguality by pre-training modular transformers. In Marine Carpuat, Marie-  
 875 Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Proceedings of the 2022 Conference of*  
 876 *the North American Chapter of the Association for Computational Linguistics: Human Language*  
 877 *Technologies*, pp. 3479–3495, Seattle, United States, July 2022. Association for Computational  
 878 Linguistics. doi: 10.18653/v1/2022.naacl-main.255. URL <https://aclanthology.org/2022.naacl-main.255/>.

879  
 880 Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić, and Anna Korhonen.  
 881 Xcpa: A multilingual dataset for causal commonsense reasoning, 2020. URL <https://arxiv.org/abs/2005.00333>.

882  
 883 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi  
 884 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text  
 885 transformer. *arXiv e-prints*, 2019.

886  
 887 Leonardo Ranaldi, Giulia Pucci, and Andrè Freitas. Does the *Order* matter? Curriculum learning over  
 888 languages. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani  
 889 Sakti, and Nianwen Xue (eds.), *Proceedings of the 2024 Joint International Conference on*  
 890 *Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pp. 5212–  
 891 5220, Torino, Italia, May 2024. ELRA and ICCL. URL <https://aclanthology.org/2024.lrec-main.464/>.

892  
 893 Angelika Romanou, Negar Foroutan, Anna Sotnikova, Zeming Chen, Sree Harsha Nelaturu, Shivalika  
 894 Singh, Rishabh Maheshwary, Micol Altomare, Mohamed A Haggag, Alfonso Amayuelas, et al.  
 895 Include: Evaluating multilingual language understanding with regional knowledge. *arXiv preprint*  
 896 *arXiv:2411.19799*, 2024.

897  
 898 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An  
 899 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,  
 900 2021.

901  
 902 Anton Schäfer, Shauli Ravfogel, Thomas Hofmann, Tiago Pimentel, and Imanol Schlag. The role of  
 903 language imbalance in cross-lingual generalisation: Insights from cloned language experiments.  
 904 *arXiv preprint arXiv:2404.07982*, 2024.

905  
 906 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question  
 907 answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Conference of*  
 908 *the North American Chapter of the Association for Computational Linguistics: Human Language*  
 909 *Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, 2019.  
 Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL <https://www.aclweb.org/anthology/N19-1421>.

910  
 911 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,  
 912 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas  
 913 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,  
 914 Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai  
 915 Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,  
 916 Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-  
 917 Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,  
 918 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe  
 919 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa

918 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András  
 919 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia  
 920 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,  
 921 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel  
 922 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar  
 923 Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene  
 924 Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-  
 925 Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne,  
 926 Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan  
 927 Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy  
 928 Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,  
 929 Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma,  
 930 Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen  
 931 Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton,  
 932 Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna,  
 933 Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome,  
 934 Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Pöder, Sijal Bhatnagar,  
 935 Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty,  
 936 Uday Kalra, Utku Evcı, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov,  
 937 Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed,  
 938 Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo,  
 939 Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris  
 940 Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia  
 941 Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff  
 942 Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste  
 943 Alayrac, Rohan Anil, Dmitry Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin,  
 944 Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report,  
 945 2025. URL <https://arxiv.org/abs/2503.19786>.

946 Alexey Tikhonov and Max Ryabinin. It's all in the heads: Using attention heads as a baseline for  
 947 cross-lingual transfer in commonsense reasoning, 2021.

948 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée  
 949 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and  
 950 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

951 Ahmet Üstün, Viraat Aryabumi, Zheng Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke Onilude,  
 952 Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Freddie Vargus, Phil Blunsom, Shayne  
 953 Longpre, Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer, and Sara Hooker. Aya model: An  
 954 instruction finetuned open-access multilingual language model. In Lun-Wei Ku, Andre Martins,  
 955 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for  
 956 Computational Linguistics (Volume 1: Long Papers)*, pp. 15894–15939, Bangkok, Thailand,  
 957 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.845.  
 958 URL <https://aclanthology.org/2024.acl-long.845>.

959 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

960 Zirui Wang, Zachary C. Lipton, and Yulia Tsvetkov. On negative interference in multilingual models:  
 961 Findings and a meta-learning treatment. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu  
 962 (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing  
 963 (EMNLP)*, pp. 4438–4450, Online, November 2020. Association for Computational Linguistics.  
 964 doi: 10.18653/v1/2020.emnlp-main.359. URL <https://aclanthology.org/2020.emnlp-main.359>.

965 /.

966 Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work in english?  
 967 on the latent language of multilingual transformers. In *Proceedings of the 62nd Annual Meeting of  
 968 the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15366–15394, 2024.

969 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language  
 970 models via importance resampling. *Advances in Neural Information Processing Systems*, 36:  
 971 34201–34227, 2023.

972 Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,  
 973 Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up  
 974 language model pretraining. *Advances in Neural Information Processing Systems*, 36, 2024.

975

976 Zixiang Xu, Yanbo Wang, Yue Huang, Xiuying Chen, Jieyu Zhao, Meng Jiang, and Xiangliang  
 977 Zhang. Cross-lingual pitfalls: Automatic probing cross-lingual weakness of multilingual large  
 978 language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher  
 979 Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational  
 980 Linguistics (Volume 1: Long Papers)*, pp. 8254–8284, Vienna, Austria, July 2025. Association for  
 981 Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.404. URL  
 982 <https://aclanthology.org/2025.acl-long.404/>.

983

984 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya  
 985 Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text transformer. In  
 986 Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven  
 987 Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021  
 988 Conference of the North American Chapter of the Association for Computational Linguistics:  
 989 Human Language Technologies*, pp. 483–498, Online, June 2021. Association for Computational  
 990 Linguistics. doi: 10.18653/v1/2021.naacl-main.41. URL <https://aclanthology.org/2021.naacl-main.41/>.

991

992 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam  
 993 Roberts, and Colin Raffel. ByT5: Towards a token-free future with pre-trained byte-to-byte  
 994 models. *Transactions of the Association for Computational Linguistics*, 10:291–306, 2022. doi:  
 10.1162/tacl\_a\_00461. URL <https://aclanthology.org/2022.tacl-1.17/>.

995

996 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang  
 997 Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,  
 998 2025.

999

1000 Haneul Yoo, Cheonbok Park, Sangdoo Yun, Alice Oh, and Hwaran Lee. Code-switching curriculum  
 learning for multilingual transfer in llms. *arXiv preprint arXiv:2411.02460*, 2024.

1001

1002 Mingliang Zhang, Fandong Meng, Yunhai Tong, and Jie Zhou. Competence-based curriculum  
 1003 learning for multilingual machine translation. In Marie-Francine Moens, Xuanjing Huang, Lucia  
 1004 Specia, and Scott Wen-tau Yih (eds.), *Findings of the Association for Computational Linguistics:  
 1005 EMNLP 2021*, pp. 2481–2493, Punta Cana, Dominican Republic, November 2021. Association  
 1006 for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.212. URL <https://aclanthology.org/2021.findings-emnlp.212/>.

1007

1008 Wenxuan Zhang, Mahani Aljunied, Chang Gao, Yew Ken Chia, and Lidong Bing. M3exam: A  
 1009 multilingual, multimodal, multilevel benchmark for examining large language models. *Advances  
 1010 in Neural Information Processing Systems*, 36:5484–5505, 2023.

1011

1012 Zhihan Zhang, Dong-Ho Lee, Yuwei Fang, Wenhao Yu, Mengzhao Jia, Meng Jiang, and Francesco  
 1013 Barbieri. PLUG: Leveraging pivot language in cross-lingual instruction tuning. In Lun-Wei  
 1014 Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the  
 1015 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7025–7046, Bangkok,  
 1016 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.  
 1017 acl-long.379. URL <https://aclanthology.org/2024.acl-long.379/>.

1018

1019 Weixiang Zhao, Yulin Hu, Jiahe Guo, Xingyu Sui, Tongtong Wu, Yang Deng, Yanyan Zhao, Bing  
 1020 Qin, Wanxiang Che, and Ting Liu. Lens: Rethinking multilingual enhancement for large language  
 1021 models. *arXiv preprint arXiv:2410.04407*, 2024a.

1022

1023 Yang Zhao, Li Du, Xiao Ding, Kai Xiong, Zhouhao Sun, Shi Jun, Ting Liu, and Bing Qin. De-  
 1024 ciphering the impact of pretraining data on large language models through machine unlearn-  
 1025 ing. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Associa-  
 1026 tion for Computational Linguistics: ACL 2024*, pp. 9386–9406, Bangkok, Thailand, August  
 1027 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.559. URL  
 1028 <https://aclanthology.org/2024.findings-acl.559/>.

1026 Lei Zhou, Liang Ding, Kevin Duh, Shinji Watanabe, Ryohei Sasano, and Koichi Takeda. Self-  
 1027 guided curriculum learning for neural machine translation. In Marcello Federico, Alex Waibel,  
 1028 Marta R. Costa-jussà, Jan Niehues, Sebastian Stuker, and Elizabeth Salesky (eds.), *Proceedings*  
 1029 *of the 18th International Conference on Spoken Language Translation (IWSLT 2021)*, pp. 206–  
 1030 214, Bangkok, Thailand (online), August 2021. Association for Computational Linguistics. doi:  
 1031 10.18653/v1/2021.iwslt-1.25. URL <https://aclanthology.org/2021.iwslt-1.25/>.

1032 Longhui Zou, Ali Saeedi, and Michael Carl. Investigating the impact of different pivot languages on  
 1033 translation quality. In *Proceedings of the 15th biennial conference of the Association for Machine*  
 1034 *Translation in the Americas (Workshop 1: Empirical Translation Process Research)*, pp. 15–28,  
 1035 2022.

## 1038 A LANGUAGE MODEL TRAINING

1041 Here we provide details about training the language models used in our experiments.

| 1043 Model | 1044 Arch. | 1045 Layers | 1046 Hidden | 1047 Attn. Heads | 1048 RoPE $\theta$ | 1049 Vocab |
|------------|------------|-------------|-------------|------------------|--------------------|------------|
| 1.1B       | LLaMA      | 24          | 1536        | 16               | 500,000            | 131,000    |
| 3B         | LLaMA      | 28          | 2496        | 24               | 500,000            | 131,000    |

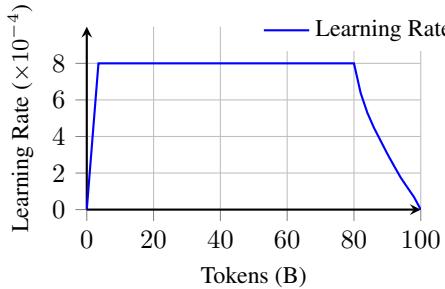
1047 Table 2: Overview of the architectural configurations for different model sizes.

1049 Our experiments focus on models with 1.1 and 3 billion parameters (1.1 and 3B). All models follow  
 1050 the LLaMA architecture Touvron et al. (2023). The model size is determined by adjusting the number  
 1051 of layers, hidden sizes, and the number of attention heads (Details in Table 2).

### 1053 A.1 TRAINING HYPERPARAMETERS

1055 We train our models using HuggingFace’s Nanotron trainer.<sup>5</sup> The key training hyperparameters are as  
 1056 follows:

- 1058 • **Learning Rate.** We use a learning rate of  $8 \times 10^{-4}$  with linear warmup over the first 4% of  
 1059 training. A “1-sqrt” decay schedule (Hägele et al., 2024) is applied during the final 20%, as  
 1060 shown in Figure 6.
- 1061 • **Optimizer.** All experiments use AdamW with  $\beta = (0.9, 0.95)$  (Loshchilov, 2017).
- 1063 • **Weight Decay.** We set the weight decay parameter to  $\lambda = 0.1$  for regularization.
- 1064 • **Batch Size.** The micro-batch size is fixed at 5 across all runs.



1077 Figure 6: Learning rate schedule over tokens with warmup and decay.

1078 <sup>5</sup><https://github.com/huggingface/nanotron>

1080  
1081

## A.2 HARDWARE SETUP

1082  
1083

Training is performed on a large-scale cluster. Each node is equipped with 4 NVIDIA Grace-Hopper H100 GPUs (96 GB memory each).

1084

- **1B models.** We train our 1B models on 22 nodes (or 88 GPUs) over around 15h per 100B tokens. This gives a global batch size of 440 examples.
- **3B models.** We train our 3B models on 64 nodes (or 256 GPUs) for around 18h per 100B tokens. Therefore our runs have a global batch size of 640 examples.

1085

## A.3 SAMPLING METHODS

1086

Let  $\mathcal{L}$  be the set of languages in the dataset, and let  $\pi^{\text{natural}} \in \Delta_{|\mathcal{L}|}$  represent the natural distribution of these languages, defined as:

1087

$$\pi_l^{\text{natural}} = \frac{\omega_l}{\sum_{l' \in \mathcal{L}} \omega_{l'}}$$

1088

where  $\omega_l$  denotes the number of words (or tokens) for language  $l$  in the dataset. In this work, we use the number of words as a proxy for language frequency, a common practice when presenting statistics for highly multilingual datasets Penedo et al. (2025). We implement the following sampling strategies:

1089

- **Natural Sampling.** This method samples according to the natural distribution  $\pi^{\text{natural}}$ , directly reflecting language frequencies in the dataset. Typically, this distribution is highly imbalanced, with a few languages dominating the cumulative share of data.
- **Temperature Sampling.** This method adjusts the natural distribution using a temperature parameter  $\tau$  to create a less skewed distribution:

1090

$$\pi_l^{\text{temp}, \tau} = \frac{\omega_l^{1/\tau}}{\sum_{l' \in \mathcal{L}} \omega_{l'}^{1/\tau}}$$

1091

1092

1093

1094

1095

1096

1097

1098

1099

By tuning  $\tau$ , the distribution can be shifted towards uniformity, thereby reducing imbalance among languages.

1100

Figures 10 and 11 present the training data distribution for experiments described in Section 3.

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

## B BENCHMARK SETUP

1115

1116

We evaluate our models using HuggingFace’s Lighteval codebase (Habib et al., 2023).<sup>6</sup>

1117

1118

## B.1 BENCHMARKS

1119

1120

We select 10 standard multilingual benchmarks to evaluate our models on various downstream tasks.

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

- **Belebele:** A multilingual reading comprehension dataset containing passages and corresponding questions in many languages. It evaluates models’ ability to understand text and answer related questions (Bandarkar et al., 2024).
- **XCodah:** A multilingual adaptation of CODAH for adversarially-authored commonsense reasoning tasks, testing robustness in natural language understanding (Lin et al., 2021a; Chen et al., 2019).
- **XCSQA:** A multilingual version of CommonsenseQA, consisting of multiple-choice questions that require reasoning about everyday concepts and their relations (Lin et al., 2021a; Talmor et al., 2019).
- **XCOPA:** A multilingual adaptation of the COPA dataset for evaluating cross-lingual causal commonsense reasoning, covering multiple languages to test reasoning transfer across linguistic boundaries (Ponti et al., 2020).

<sup>6</sup><https://huggingface.co/docs/lighteval/en/index>

- **XStoryCloze**: A multilingual extension of the StoryCloze Test, where models must choose the most coherent ending to short narratives, testing story comprehension and commonsense reasoning (Mostafazadeh et al., 2017; Lin et al., 2021b).
- **XWinogrande**: A multilingual version of WinoGrande, containing sentences with ambiguous pronouns. It measures models’ ability to resolve coreference using contextual and commonsense cues (Sakaguchi et al., 2021; Muennighoff et al., 2022; Tikhonov & Ryabinin, 2021).
- **MMLU**: A multilingual adaptation of MMLU, evaluating model performance across a wide spectrum of tasks and domains (Hendrycks et al., 2021; Dac Lai et al., 2023).
- **INCLUDE**: A large-scale benchmark covering 44 languages, designed to evaluate multilingual LLMs in realistic language environments with a focus on knowledge and reasoning (Romanou et al., 2024).
- **Exams**: A benchmark of standardized test questions across subjects and educational levels, used to assess reasoning and problem-solving abilities in exam-like conditions (Hardalov et al., 2020).
- **M3Exams**: A multilingual exam-style benchmark that extends Exams across different languages, subjects, and difficulty levels (Zhang et al., 2023).

## B.2 AGGREGATIONS

We aggregate benchmark results to compute a language-specific score for each model. Let  $\mathcal{T}_l$  be the set of benchmarks (or tasks) containing a split for language  $l$ . The aggregated score for a model  $m$  per language  $l$  is defined as:

$$s_l^m = \frac{1}{|\mathcal{T}_l|} \sum_{t \in \mathcal{T}_l} s_{t,l}^m$$

where  $s_l^m$  is the score of a model  $m$  on the split  $l$  of a task  $t$ . To mitigate biases arising from varying numbers of benchmarks per language, we compute a language-specific random baseline  $\zeta_l$ . This baseline helps assess whether a given aggregated score significantly outperforms random predictions. Specifically, we calculate the random baseline for each language as the average of the individual random baselines across all tasks that include language  $l$ :

$$\zeta_l = \frac{1}{|\mathcal{T}_l|} \sum_{t \in \mathcal{T}_l} \zeta_t$$

## C PIVOT ABLATION

Table 3 presents the languages included in the experiments described in Section 3. The set of languages analyzed in the experiments of Section 4 is listed in Table 4.

Figures 7 and 8 present the validation loss and average benchmark scores for English and non-English (“Multilingual”) languages for **3B** models. Consistent with our observations for the 1.1B models, we find that under the Fixed Total Budget setting, increasing the proportion of English data ( $\geq 50\%$ ), leads to a decline in performance for other languages. In contrast, under the Fixed Multilingual Budget setting, increasing the share of English data (up to 60%) does not adversely affect the performance of non-English languages.

## D CROSS-LINGUAL TRANSFER

To examine how non-English languages influence English performance under the *Fixed Total Budget* setting, we train models on data spanning 1,834 languages while systematically varying the share of data allocated to each. Specifically, we partition the languages from the FineWeb-2 dataset into two groups:

**Target Languages.** A set of 45 high- and mid-resource languages that we aim for the model to perform well on.

1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198

| 1199 | Language           | Language Family            | Script                   |
|------|--------------------|----------------------------|--------------------------|
| 1200 | Arabic             | Afro-Asiatic (Semitic)     | Perso-Arabic             |
| 1201 | Bulgarian          | Indo-European (Slavic)     | Cyrillic                 |
| 1202 | Bengali            | Indo-European (Indo-Aryan) | Bengali                  |
| 1203 | Catalan            | Indo-European (Romance)    | Latin                    |
| 1204 | German             | Indo-European (Germanic)   | Latin                    |
| 1205 | Greek              | Indo-European (Hellenic)   | Greek                    |
| 1206 | English            | Indo-European (Germanic)   | Latin                    |
| 1207 | Spanish            | Indo-European (Romance)    | Latin                    |
| 1208 | Estonian           | Uralic (Finnic)            | Latin                    |
| 1209 | Basque             | Language Isolate           | Latin                    |
| 1210 | Persian (Farsi)    | Indo-European (Iranian)    | Perso-Arabic             |
| 1211 | Finnish            | Uralic (Finnic)            | Latin                    |
| 1212 | French             | Indo-European (Romance)    | Latin                    |
| 1213 | Hindi              | Indo-European (Indo-Aryan) | Devanagari               |
| 1214 | Haitian Creole     | Creole (French-based)      | Latin                    |
| 1215 | Indonesian         | Austronesian               | Latin                    |
| 1216 | Italian            | Indo-European (Romance)    | Latin                    |
| 1217 | Japanese           | Japonic                    | Kanji & Kana (CJK)       |
| 1218 | Korean             | Koreanic                   | Hangul (CJK)             |
| 1219 | Burmese            | Sino-Tibetan               | Burmese                  |
| 1220 | Portuguese         | Indo-European (Romance)    | Latin                    |
| 1221 | Russian            | Indo-European (Slavic)     | Cyrillic                 |
| 1222 | Swahili            | Niger-Congo (Bantu)        | Latin                    |
| 1223 | Tamil              | Dravidian                  | Tamil                    |
| 1224 | Telugu             | Dravidian                  | Telugu (Brahmic)         |
| 1225 | Thai               | Kra–Dai (Tai)              | Thai                     |
| 1226 | Turkish            | Turkic                     | Latin                    |
| 1227 | Urdu               | Indo-European (Indo-Aryan) | Perso-Arabic             |
| 1228 | Vietnamese         | Austroasiatic              | Vietnamese (Latin-based) |
| 1229 | Chinese (Mandarin) | Sino-Tibetan               | Hanzi (CJK)              |

1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241

Table 3: Languages used in experiments discussed in Section 3.

| 1242 | Language   | Language Family          | Script   |
|------|------------|--------------------------|----------|
| 1243 | English    | Indo-European (Germanic) | Latin    |
| 1244 | Russian    | Indo-European (Slavic)   | Cyrillic |
| 1245 | Ukrainian  | Indo-European (Slavic)   | Cyrillic |
| 1246 | Belarusian | Indo-European (Slavic)   | Cyrillic |
| 1247 | Serbian    | Indo-European (Slavic)   | Cyrillic |
| 1248 | Macedonian | Indo-European (Slavic)   | Cyrillic |
| 1249 | Bulgarian  | Indo-European (Slavic)   | Cyrillic |
| 1250 | Polish     | Indo-European (Slavic)   | Latin    |
| 1251 | Czech      | Indo-European (Slavic)   | Latin    |
| 1252 | Slovak     | Indo-European (Slavic)   | Latin    |
| 1253 | Tajik      | Indo-European (Iranian)  | Cyrillic |
| 1254 | Uzbek      | Turkic                   | Cyrillic |
| 1255 | Kyrgyz     | Turkic                   | Cyrillic |
| 1256 | Kazakh     | Turkic                   | Cyrillic |
| 1257 | Mongolian  | Mongolic                 | Cyrillic |

Table 4: Languages used in experiments discussed in Section 4.

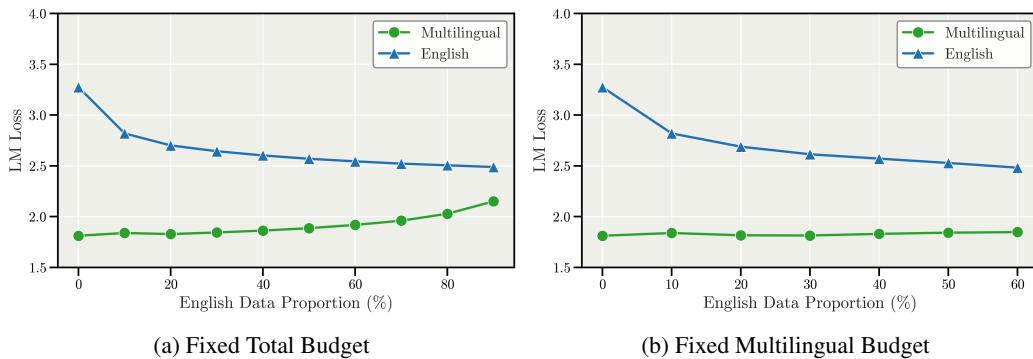


Figure 7: Validation LM loss for **English** and weighted average LM loss of non-English (**Multilingual**) across different proportions of English in the training data for **3B** models. (a) In a **Fixed Total Budget**, increasing English data ( $\geq 50\%$ ), leads to a performance drop in other languages. (b) In a **Fixed Multilingual Budget**, increasing English data (up to 60%) does not have a negative effect on other languages.

**Tail Languages.** The remaining 1,789 low-resource languages, which the model is expected to support only as a secondary objective.

The full lists of target and tail languages are provided in Appendix D.1. Importantly, we exclude English from the training data to neutralize its dominant influence and allow for a clearer analysis of cross-linguistic interactions. We train 3B-parameter models by varying the proportion of tail-language data in the training mix, ranging from 6% to 33%, and evaluate the impact on performance across the target language set.

Figure 10a presents the effect of adjusting the balance between the top-25 high-resource languages (in FineWeb-2) and the remaining languages on English validation loss. Although English is not part of the training data, we observe that its validation loss decreases as more tokens from high-resource languages are included, and increases when more tokens from lower-resource languages are introduced. This effect is likely due to the close linguistic proximity of several high-resource languages (e.g., German, French) to English, which provides beneficial transfer.

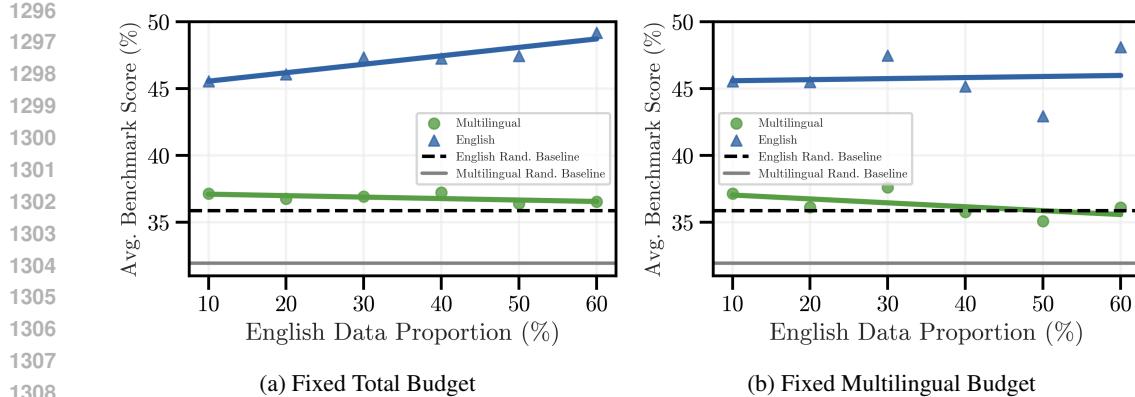


Figure 8: Aggregated benchmark performance for **English** and weighted average of non-English (**Multilingual**) across different proportions of English in the training data for 3B models. The dashed lines represents the random baselines for each language group. **(a)** In a **Fixed Total Budget**, increasing English data ( $\geq 50\%$ ), does not hurt downstream performance on *other* group. **(b)** In a **Fixed Multilingual Budget**, we see that increasing English data has a negligible impact on the *other* group's performance.

Supporting this interpretation, we find that English performance is most strongly correlated with Romance, Slavic, and Germanic languages, with Pearson correlation coefficients of 0.78, 0.85, and 0.80, respectively (Table 5). Figure 10b shows the same pattern in benchmark results: English benefits from the presence of related high-resource languages. Together, these findings highlight a positive interaction between English and typologically related high-resource languages, which enhances English performance even when it is excluded from training.

#### D.1 TARGET AND TAIL LANGUAGES

The target languages used in the Curse of Multilinguality experiments are as follows: German, Russian, French, Japanese, Spanish, Mandarin Chinese, Italian, Dutch, Polish, Portuguese, Czech, Vietnamese, Indonesian, Turkish, Swedish, Persian (Farsi), Korean, Hungarian, Arabic, Greek, Romanian, Danish, Finnish, Thai, Ukrainian, Slovak, Norwegian Bokmål, Bulgarian, Catalan, Croatian, Latin, Serbian, Hindi, Slovenian, Lithuanian, Estonian, Hebrew, Latvian, Tosk Albanian, Icelandic, Macedonian, Galician, Basque, Malayalam, Romansh, Swiss German. Tail languages contain the rest of the languages from the FineWeb-2 corpus.

Tables 6 and 7 present detailed information about the language families and scripts included in the FineWeb-2 dataset.

#### E CURRICULUM LEARNING

Figures 11 and 12 show the validation loss for each language for the experiments described in Section 5.

#### F CURSE OF MULTILINGUALITY

Using a fixed total data budget, Table 15 reports the validation loss for 50 languages trained under natural distribution and temperature sampling conditions. The models used for this analysis are detailed in Section 6.

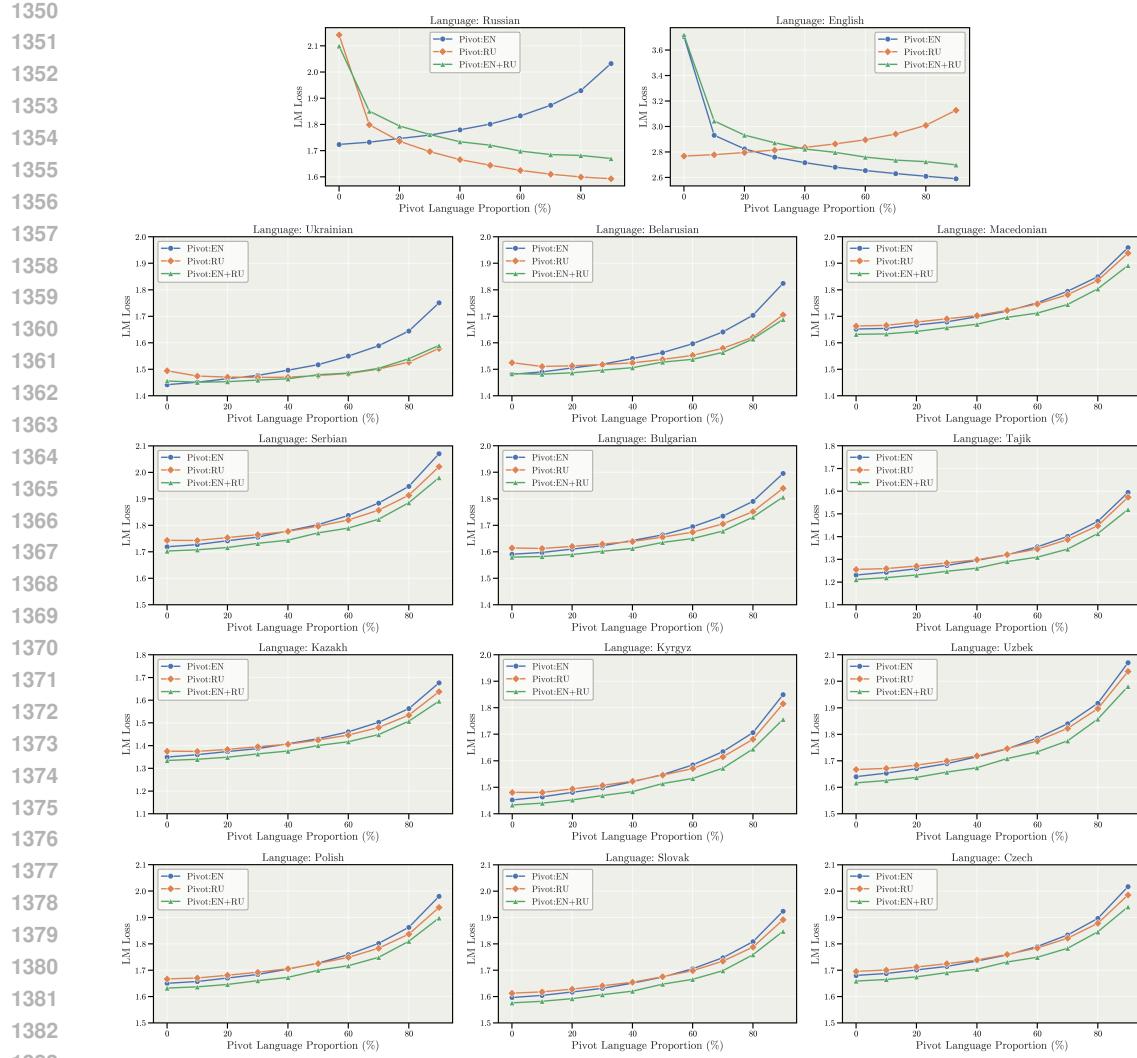


Figure 9: Validation LM loss for each language in the experiments described in Section 4, using English, Russian, or a combination of English and Russian as the pivot language in the training mix. The combination of English and Russian yields the best performance for most languages (model size: 1.1B).

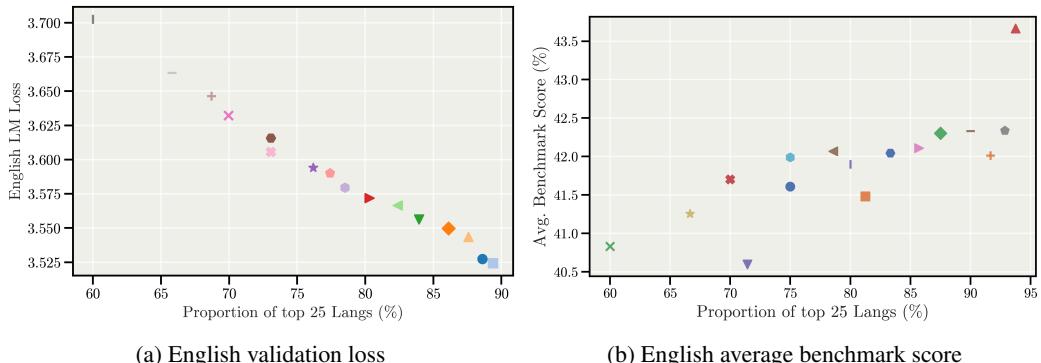


Figure 10: English (a) validation LM loss and (b) average benchmark score across different proportions of the top 25 languages (model size: 3B). Increasing token allocation for tail languages reduces validation loss in English and improves English accuracy.

1404  
1405  
1406  
1407  
1408  
1409  
1410  
1411  
1412  
1413

| Language Family            | Pearson Correlation |
|----------------------------|---------------------|
| Slavic                     | 0.853               |
| Germanic                   | 0.808               |
| Romance                    | 0.785               |
| Malayo-Sumbawan            | 0.683               |
| Semitic                    | 0.521               |
| Creoles and Pidgins        | -0.578              |
| Kuki-Chin                  | -0.759              |
| Bantu                      | -0.776              |
| Greater Central Philippine | -0.827              |
| Mixtec                     | -0.832              |
| Celebic                    | -0.872              |
| Cariban                    | -0.895              |
| Panoan                     | -0.897              |
| Oti-Volta                  | -0.899              |
| Western Mande              | -0.915              |
| Zapotecan                  | -0.919              |
| Mayan                      | -0.925              |
| Brahmaputran               | -0.939              |
| Northern Luzon             | -0.945              |
| Chinantecan                | -0.952              |
| Oceanic                    | -0.962              |
| Algonquian                 | -0.963              |
| Quechuan                   | -0.980              |
| Central Malayo-Polynesian  | -0.985              |
| Maweti-Guarani             | -0.985              |
| Tucanoan                   | -0.992              |

1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457

Table 5: Pearson correlation ( $r$ ) between English validation loss and each language family, retaining only results with  $p < 0.05$  and sorted in descending order of  $r$ .

|      | Script | # Languages |
|------|--------|-------------|
| 1458 | Latn   | 1639        |
| 1459 | Cyrl   | 56          |
| 1460 | Arab   | 30          |
| 1461 | Deva   | 29          |
| 1462 | Ethi   | 9           |
| 1463 | Thai   | 7           |
| 1464 | Cans   | 6           |
| 1465 | Beng   | 5           |
| 1466 | Mymr   | 5           |
| 1467 | Hani   | 5           |
| 1468 | Telu   | 3           |
| 1469 | Hebr   | 3           |
| 1470 | Grek   | 3           |
| 1471 | Tibt   | 3           |
| 1472 | Tfng   | 2           |
| 1473 | Armn   | 2           |
| 1474 | Orya   | 2           |
| 1475 | Geor   | 2           |
| 1476 | Syrc   | 2           |
| 1477 | Looo   | 2           |
| 1478 | Knda   | 2           |

Table 6: Scripts and the number of languages each one supports. Sixteen other scripts are present in the FineWeb-2 dataset, each supporting one language.

1494  
1495  
1496  
1497  
1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511

| Language Family            | # Languages |
|----------------------------|-------------|
| Bantu                      | 73          |
| Oceanic                    | 67          |
| Mayan                      | 24          |
| Turkic                     | 22          |
| Indic                      | 22          |
| Creoles and Pidgins        | 20          |
| Germanic                   | 17          |
| Tucanoan                   | 16          |
| Greater Central Philippine | 15          |
| Romance                    | 15          |
| Semitic                    | 14          |
| Mixtec                     | 13          |
| Slavic                     | 13          |
| Zapotecan                  | 12          |
| Central Malayo-Polynesian  | 12          |
| Iranian                    | 11          |
| Oti-Volta                  | 11          |
| Malayo-Sumbawan            | 11          |
| Kuki-Chin                  | 10          |
| Northern Luzon             | 10          |
| Celebic                    | 9           |
| Quechuan                   | 9           |
| Maweti-Guarani             | 9           |
| Dravidian                  | 8           |
| Brahmaputran               | 8           |
| Panoan                     | 8           |
| Western Mande              | 8           |
| Cariban                    | 8           |
| Algonquian                 | 8           |
| Chinantecan                | 7           |

Table 7: Top language sub-families in FineWeb-2 and their number of associated languages. The classification is according to Dryer & Haspelmath (2013). Labels for 768 languages in FineWeb-2 were not available.

1512

1513

1514

1515

| 1516<br>1517                 | Num PT<br>Langs | Variant     | Top 25 lang<br>B Tokens (Prop.) | Top 50 lang<br>B Tokens (Prop.) | Top 100 lang<br>B Tokens (Prop.) | Top 200 lang<br>B Tokens (Prop.) |
|------------------------------|-----------------|-------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|
| 1518<br>1519<br>1520<br>1521 | 50              | Natural     | 55.77 (0.56)                    | -                               | -                                | -                                |
|                              |                 | Temp.       | 40.15 (0.40)                    | -                               | -                                | -                                |
|                              |                 | Natural – C | 60.08 (0.56)                    | -                               | -                                | -                                |
|                              |                 | Temp. – C   | 60.08 (0.40)                    | -                               | -                                | -                                |
| 1522<br>1523<br>1524         | 100             | Natural     | 55.07 (0.55)                    | 59.33 (0.59)                    | -                                | -                                |
|                              |                 | Temp.       | 30.51 (0.30)                    | 45.65 (0.46)                    | -                                | -                                |
|                              |                 | Natural – C | 55.77 (0.55)                    | 60.08 (0.59)                    | -                                | -                                |
|                              |                 | Temp. – C   | 40.15 (0.30)                    | 60.08 (0.46)                    | -                                | -                                |
| 1525<br>1526<br>1527<br>1528 | 200             | Natural     | 54.98 (0.55)                    | 59.23 (0.59)                    | 59.99 (0.60)                     | -                                |
|                              |                 | Temp.       | 25.28 (0.25)                    | 37.83 (0.38)                    | 49.79 (0.50)                     | -                                |
|                              |                 | Natural – C | 55.07 (0.55)                    | 59.33 (0.59)                    | 60.08 (0.60)                     | -                                |
|                              |                 | Temp. – C   | 30.51 (0.25)                    | 45.65 (0.38)                    | 60.08 (0.50)                     | -                                |
| 1529<br>1530<br>1531         | 400             | Natural     | 54.97 (0.55)                    | 59.22 (0.59)                    | 59.98 (0.60)                     | 60.07 (0.60)                     |
|                              |                 | Temp.       | 22.07 (0.22)                    | 33.03 (0.33)                    | 43.47 (0.43)                     | 52.46 (0.52)                     |
|                              |                 | Natural – C | 54.98 (0.55)                    | 59.23 (0.59)                    | 59.99 (0.60)                     | 60.08 (0.60)                     |
|                              |                 | Temp. – C   | 25.28 (0.22)                    | 37.83 (0.33)                    | 49.79 (0.43)                     | 60.08 (0.52)                     |

1532  
1533 Table 8: Total number of tokens (in billions) and the corresponding proportions contributed by the  
1534 top-25, 50, 100, and 200 languages. *Num PT Langs* refers to the total number of languages included  
1535 during pretraining. *Natural* and *Temp.* represent natural sampling and temperature-based sampling,  
1536 respectively, both conducted with a fixed token budget of 100B tokens. *Natural-C* and *Temp.-C*  
1537 denote the same sampling strategies applied under the Controlled Growth setting, which uses a total  
1538 of 90B tokens. English is excluded from the token counts and proportions.

1539

1540

1541

1542

1543

1544

1545

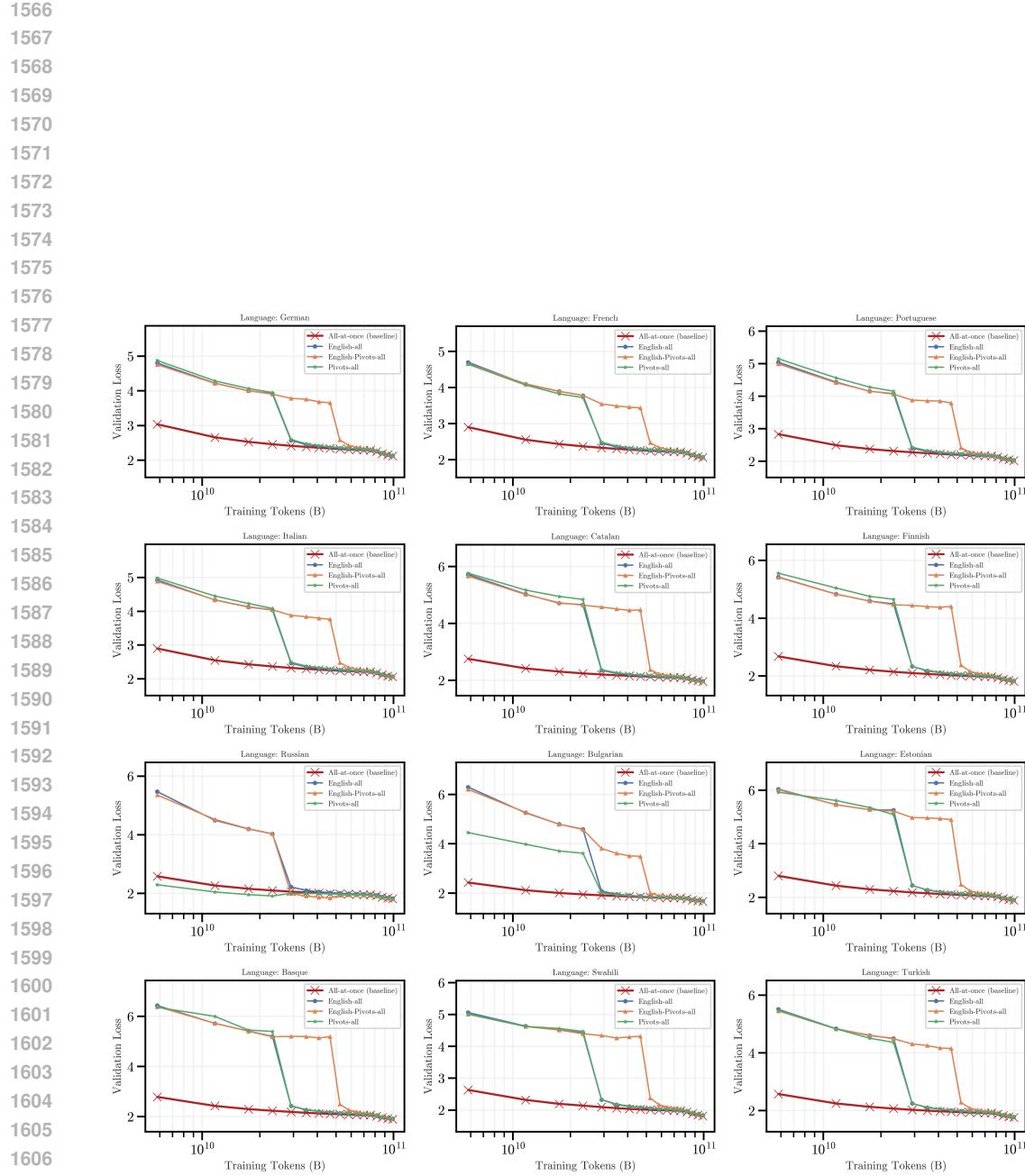
| 1546<br>1547 | Num PT<br>Langs | Variant | BB    | M3E   | MMMLU | PAWS-X | XCSQA | XCodah | XCopa | XSC   | XWG   |
|--------------|-----------------|---------|-------|-------|-------|--------|-------|--------|-------|-------|-------|
| 1548<br>1549 | 25              | Natural | 38.22 | 38.70 | 30.75 | 49.60  | 35.70 | 51.67  | 66.80 | 75.10 | 65.60 |
|              |                 | Temp.   | 33.67 | 33.20 | 27.52 | 45.70  | 31.20 | 37.33  | 62.00 | 63.60 | 54.90 |
| 1550<br>1551 | 50              | Natural | 37.44 | 38.60 | 30.91 | 49.00  | 33.00 | 51.67  | 67.00 | 73.60 | 66.50 |
|              |                 | Temp.   | 32.33 | 33.50 | 27.51 | 55.90  | 31.60 | 38.00  | 61.80 | 65.30 | 55.80 |
| 1552<br>1553 | 100             | Natural | 37.67 | 37.60 | 30.72 | 50.40  | 34.10 | 51.67  | 69.40 | 74.80 | 65.10 |
|              |                 | Temp.   | 32.22 | 33.90 | 26.75 | 55.20  | 30.90 | 38.67  | 61.20 | 63.20 | 54.60 |
| 1554<br>1555 | 200             | Natural | 37.44 | 37.20 | 30.54 | 54.00  | 31.80 | 52.33  | 66.20 | 75.00 | 65.40 |
|              |                 | Temp.   | 31.67 | 32.80 | 27.07 | 43.70  | 28.80 | 37.33  | 62.00 | 62.40 | 55.40 |
| 1556<br>1557 | 400             | Natural | 37.33 | 38.60 | 30.61 | 55.20  | 35.30 | 53.33  | 68.60 | 73.80 | 64.20 |
|              |                 | Temp.   | 31.22 | 29.70 | 26.78 | 55.40  | 24.70 | 34.67  | 57.20 | 62.30 | 56.50 |

1558 Table 9: Benchmark scores (%) for English with varying number and sampling of 25–400 languages  
1559 during pretraining. *Num PT Langs* refers to the total number of languages included during pretraining.  
1560 *Natural* and *Temp.* represent natural sampling and temperature-based sampling, respectively, both  
1561 conducted with a fixed token budget of 100B tokens. *BB*, *M3E*, *XSC*, and *XWG* denote the results for  
1562 BeleBele, M3Exams, XStoryCloze, and XWinogrande respectively.

1563

1564

1565



1608 Figure 11: Validation LM loss (model size: 3B) for each language in the “Curriculum Learning”  
1609 experiments described in Section 5 (Part 1).

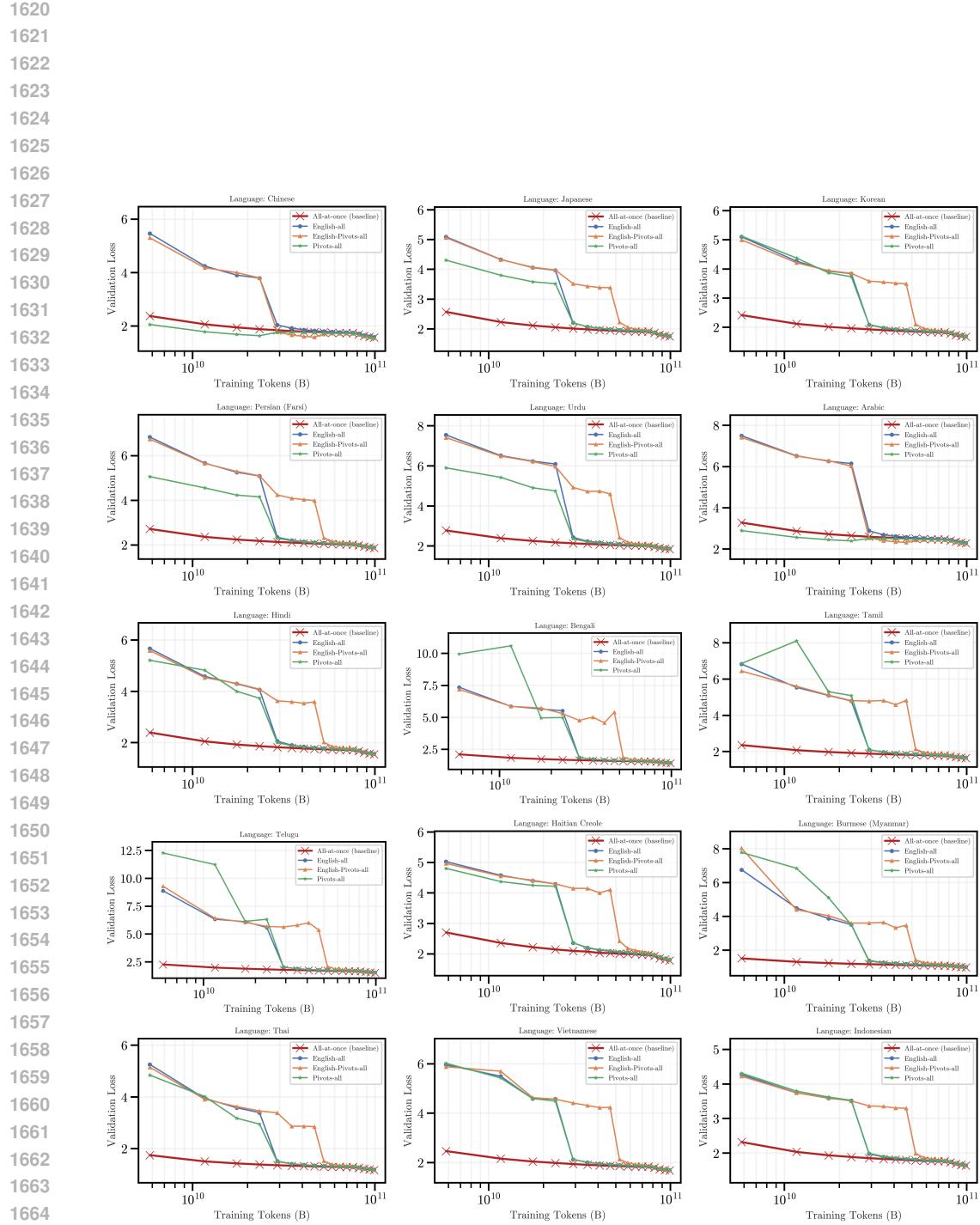


Figure 12: Validation LM loss (model size: 3B) for each language in the “Curriculum Learning” experiments described in Section 5 (Part 2).

| 1674 | Language     | en=0%              | en=10%             | en=20%             | en=30%             | en=40%             | en=50%           | en=60%           | en=70%           | en=80%           | en=90%           | en=100%            |
|------|--------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|------------------|------------------|------------------|------------------|--------------------|
| 1675 | ar           | 3810.73 (3.8%)     | 3360.93 (3.4%)     | 2987.49 (3.0%)     | 2614.06 (2.6%)     | 2286.44 (2.3%)     | 1867.18 (1.9%)   | 1434.04 (1.5%)   | 1143.22 (1.1%)   | 762.15 (0.8%)    | 381.07 (0.4%)    | 0.00 (0.0%)        |
| 1676 | bg           | 2855.74 (2.9%)     | 2669.73 (2.3%)     | 2319.76 (2.3%)     | 2029.79 (2.0%)     | 1713.45 (1.7%)     | 1449.88 (1.4%)   | 1113.49 (1.2%)   | 856.72 (0.9%)    | 571.15 (0.6%)    | 285.57 (0.3%)    | 0.00 (0.0%)        |
| 1677 | bn           | 2044.77 (2.0%)     | 1850.78 (1.9%)     | 1645.14 (1.6%)     | 1439.50 (1.4%)     | 1226.56 (1.2%)     | 1028.21 (1.0%)   | 789.67 (0.8%)    | 613.28 (0.6%)    | 408.85 (0.4%)    | 204.43 (0.2%)    | 0.00 (0.0%)        |
| 1678 | ca           | 2434.91 (2.4%)     | 2245.24 (2.2%)     | 1995.77 (2.0%)     | 1746.30 (1.7%)     | 1460.95 (1.5%)     | 1247.36 (1.2%)   | 957.97 (1.0%)    | 730.47 (0.7%)    | 486.98 (0.5%)    | 243.49 (0.2%)    | 0.00 (0.0%)        |
| 1679 | de           | 6587.51 (6.6%)     | 6186.77 (6.2%)     | 5499.35 (5.5%)     | 481.19 (4.8%)      | 3952.51 (4.0%)     | 3437.09 (3.4%)   | 2639.69 (2.7%)   | 1976.25 (2.0%)   | 1317.50 (1.3%)   | 658.75 (0.7%)    | 0.00 (0.0%)        |
| 1680 | el           | 3498.77 (3.5%)     | 3132.17 (3.1%)     | 2784.15 (2.8%)     | 2436.13 (2.4%)     | 2099.26 (2.1%)     | 1740.09 (1.7%)   | 1363.39 (1.4%)   | 1049.63 (1.0%)   | 699.75 (0.7%)    | 349.88 (0.3%)    | 0.00 (0.0%)        |
| 1681 | en           | 0.00 (0.0%)        | 10002.43 (10.0%)   | 20004.86 (20.0%)   | 30007.30 (30.0%)   | 40009.73 (40.0%)   | 50012.16 (50.0%) | 57614.35 (60.0%) | 70017.02 (70.0%) | 80019.46 (80.0%) | 90021.89 (90.0%) | 100024.32 (100.0%) |
| 1682 | es           | 7665.65 (2.0%)     | 7153.06 (1.8%)     | 5710.63 (1.6%)     | 4409.30 (1.4%)     | 1202.79 (1.2%)     | 700.79 (0.8%)    | 200.90 (0.6%)    | 40.93 (0.4%)     | 200.97 (0.2%)    | 0.00 (0.0%)      | 0.00 (0.0%)        |
| 1683 | et           | 1239.38 (1.2%)     | 1163.61 (1.1%)     | 1034.32 (1.0%)     | 905.03 (0.9%)      | 743.63 (0.7%)      | 606.64 (0.6%)    | 496.47 (0.5%)    | 371.82 (0.4%)    | 247.88 (0.3%)    | 123.94 (0.1%)    | 0.00 (0.0%)        |
| 1684 | eu           | 3706.17 (3.7%)     | 3380.02 (3.4%)     | 3004.46 (3.0%)     | 2628.91 (2.6%)     | 2223.70 (2.2%)     | 1877.79 (1.9%)   | 1442.14 (1.5%)   | 1111.85 (1.1%)   | 741.23 (0.7%)    | 370.62 (0.4%)    | 0.00 (0.0%)        |
| 1685 | fa           | 2968.54 (3.0%)     | 2739.67 (2.7%)     | 2435.26 (2.4%)     | 2130.85 (2.1%)     | 1781.12 (1.8%)     | 1522.04 (1.5%)   | 1168.93 (1.2%)   | 909.56 (0.9%)    | 593.71 (0.6%)    | 296.85 (0.3%)    | 0.00 (0.0%)        |
| 1686 | fi           | 6415.58 (6.4%)     | 5865.82 (5.9%)     | 5214.06 (5.2%)     | 4562.30 (4.6%)     | 3849.35 (3.8%)     | 3258.79 (3.3%)   | 2502.75 (2.6%)   | 1924.67 (1.9%)   | 1283.12 (1.3%)   | 641.56 (0.6%)    | 0.00 (0.0%)        |
| 1687 | fr           | 2932.04 (2.9%)     | 2462.93 (2.5%)     | 2189.27 (2.2%)     | 1915.61 (1.9%)     | 1759.23 (1.8%)     | 1368.30 (1.4%)   | 1050.85 (1.1%)   | 879.61 (0.9%)    | 586.41 (0.6%)    | 293.20 (0.3%)    | 0.00 (0.0%)        |
| 1688 | hi           | 687.25 (0.7%)      | 700.65 (0.7%)      | 622.80 (0.6%)      | 544.95 (0.5%)      | 412.35 (0.4%)      | 389.25 (0.4%)    | 260.18 (0.2%)    | 137.45 (0.1%)    | 68.73 (0.1%)     | 0.00 (0.0%)      | 0.00 (0.0%)        |
| 1689 | ht           | 4037.86 (4.0%)     | 3656.56 (3.7%)     | 3250.27 (3.2%)     | 2843.99 (2.8%)     | 2422.72 (2.4%)     | 2031.42 (2.0%)   | 1560.13 (1.6%)   | 1211.36 (1.2%)   | 807.57 (0.8%)    | 403.43 (0.4%)    | 0.00 (0.0%)        |
| 1690 | id           | 5220.15 (5.2%)     | 4911.86 (4.9%)     | 4291.42 (4.3%)     | 3894.05 (3.9%)     | 3149.49 (3.1%)     | 2160.76 (2.2%)   | 1666.38 (1.7%)   | 1574.75 (1.6%)   | 1049.83 (1.0%)   | 524.92 (0.5%)    | 0.00 (0.0%)        |
| 1691 | it           | 5249.15 (5.2%)     | 3905.57 (3.9%)     | 3471.62 (3.5%)     | 3037.67 (3.0%)     | 2449.49 (3.1%)     | 2160.76 (2.2%)   | 1666.38 (1.7%)   | 1574.75 (1.6%)   | 1049.83 (1.0%)   | 524.92 (0.5%)    | 0.00 (0.0%)        |
| 1692 | ja           | 3004.03 (3.0%)     | 2337.96 (2.3%)     | 2078.18 (2.1%)     | 1818.41 (1.8%)     | 1802.42 (1.8%)     | 1298.86 (1.3%)   | 997.53 (1.0%)    | 901.21 (0.9%)    | 600.81 (0.6%)    | 300.40 (0.3%)    | 0.00 (0.0%)        |
| 1693 | ko           | 1084.07 (1.1%)     | 943.16 (0.9%)      | 838.36 (0.8%)      | 733.57 (0.7%)      | 650.44 (0.7%)      | 523.98 (0.5%)    | 402.41 (0.4%)    | 325.22 (0.3%)    | 216.81 (0.2%)    | 108.41 (0.1%)    | 0.00 (0.0%)        |
| 1694 | pt           | 5067.45 (5.1%)     | 4776.05 (4.8%)     | 4245.38 (4.2%)     | 3714.70 (3.7%)     | 3040.47 (3.0%)     | 2653.65 (2.7%)   | 2037.78 (2.1%)   | 1520.23 (1.5%)   | 1013.49 (1.0%)   | 506.74 (0.5%)    | 0.00 (0.0%)        |
| 1695 | ru           | 8194.02 (8.2%)     | 7520.23 (7.5%)     | 6864.65 (6.7%)     | 5849.07 (5.8%)     | 4916.41 (4.9%)     | 4177.90 (4.2%)   | 3208.63 (3.3%)   | 2458.21 (2.5%)   | 1638.80 (1.6%)   | 819.40 (0.8%)    | 0.00 (0.0%)        |
| 1696 | sw           | 1119.24 (1.1%)     | 1009.14 (1.0%)     | 897.01 (0.9%)      | 784.89 (0.8%)      | 671.55 (0.7%)      | 606.63 (0.6%)    | 430.57 (0.4%)    | 357.77 (0.3%)    | 238.85 (0.2%)    | 111.92 (0.1%)    | 0.00 (0.0%)        |
| 1697 | ta           | 1621.73 (1.6%)     | 1476.01 (1.5%)     | 1347.33 (1.4%)     | 1173.47 (1.3%)     | 1029.47 (1.2%)     | 878.00 (0.7%)    | 592.00 (0.6%)    | 459.00 (0.5%)    | 322.00 (0.4%)    | 162.12 (0.2%)    | 0.00 (0.0%)        |
| 1698 | te           | 1210.73 (1.2%)     | 1066.46 (1.1%)     | 947.97 (0.9%)      | 828.00 (0.8%)      | 722.00 (0.7%)      | 607.00 (0.6%)    | 424.23 (0.5%)    | 319.23 (0.4%)    | 219.00 (0.3%)    | 109.19 (0.1%)    | 0.00 (0.0%)        |
| 1699 | tr           | 2314.72 (2.3%)     | 2292.48 (2.3%)     | 2073.04 (2.3%)     | 1783.19 (1.8%)     | 1388.82 (1.4%)     | 1271.71 (1.2%)   | 998.21 (1.0%)    | 694.42 (0.7%)    | 462.04 (0.5%)    | 231.47 (0.2%)    | 0.00 (0.0%)        |
| 1700 | tr           | 4072.98 (4.1%)     | 3919.12 (3.9%)     | 3483.66 (3.5%)     | 3048.21 (3.0%)     | 2443.79 (2.4%)     | 2177.29 (2.2%)   | 1672.16 (1.7%)   | 1221.89 (1.2%)   | 814.60 (0.8%)    | 407.30 (0.4%)    | 0.00 (0.0%)        |
| 1701 | tr           | 1459.28 (1.5%)     | 1225.81 (1.1%)     | 1089.61 (1.1%)     | 953.41 (1.0%)      | 875.57 (0.9%)      | 681.00 (0.7%)    | 523.01 (0.5%)    | 437.79 (0.4%)    | 291.88 (0.3%)    | 145.93 (0.1%)    | 0.00 (0.0%)        |
| 1702 | tr           | 3776.21 (3.4%)     | 3371.61 (3.4%)     | 2950.16 (2.9%)     | 2835.76 (2.8%)     | 2107.26 (2.1%)     | 1618.37 (1.7%)   | 1417.88 (1.4%)   | 945.25 (0.9%)    | 472.63 (0.5%)    | 0.00 (0.0%)      | 0.00 (0.0%)        |
| 1703 | zh           | 3396.76 (3.4%)     | 3398.87 (3.4%)     | 3021.22 (3.0%)     | 2643.56 (2.6%)     | 2038.06 (2.0%)     | 1888.26 (1.9%)   | 1450.18 (1.5%)   | 1019.03 (1.0%)   | 679.35 (0.7%)    | 339.68 (0.3%)    | 0.00 (0.0%)        |
| 1704 | <b>Total</b> | 112027.20 (100.0%) | 128031.99 (100.0%) | 148037.75 (100.0%) | 176043.52 (100.0%) | 224054.06 (100.0%) |                  |                  |                  |                  |                  |                    |

Table 10: Token counts (in millions) and their total proportions (%) for the *Fixed Total Budget* experiments described in Section 3. Total number of tokens is 100B.

| 1705 | Language     | en=20%             | en=30%             | en=40%             | en=50%             | en=60%             |
|------|--------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 1706 | ar           | 3345.99 (3.0%)     | 3345.99 (2.6%)     | 3316.12 (2.2%)     | 3286.24 (1.9%)     | 3345.99 (1.5%)     |
| 1707 | bg           | 2598.14 (2.3%)     | 2598.14 (2.0%)     | 2574.94 (1.7%)     | 2551.74 (1.4%)     | 2598.14 (1.2%)     |
| 1708 | bn           | 1842.56 (1.6%)     | 1842.56 (1.4%)     | 1826.10 (1.2%)     | 1809.65 (1.0%)     | 1842.56 (0.8%)     |
| 1709 | ca           | 2235.26 (2.0%)     | 2235.26 (1.7%)     | 2215.31 (1.5%)     | 2195.35 (1.2%)     | 2235.26 (1.0%)     |
| 1710 | de           | 6159.27 (5.5%)     | 6159.27 (4.8%)     | 6104.28 (4.1%)     | 6049.28 (3.4%)     | 6159.27 (2.7%)     |
| 1711 | el           | 3118.25 (2.8%)     | 3118.25 (2.4%)     | 3090.41 (2.1%)     | 3062.57 (1.7%)     | 3118.25 (1.4%)     |
| 1712 | en           | 22405.45 (20.0%)   | 38409.34 (30.0%)   | 59214.40 (40.0%)   | 88021.40 (50.0%)   | 134432.69 (60.0%)  |
| 1713 | es           | 6247.15 (5.6%)     | 6247.15 (4.9%)     | 6191.37 (4.2%)     | 6135.59 (3.5%)     | 6247.15 (2.8%)     |
| 1714 | et           | 1803.91 (1.6%)     | 1803.91 (1.4%)     | 1787.80 (1.2%)     | 1771.69 (1.0%)     | 1803.91 (0.8%)     |
| 1715 | eu           | 1158.43 (1.0%)     | 1158.43 (0.9%)     | 1148.09 (0.8%)     | 1137.75 (0.6%)     | 1158.43 (0.5%)     |
| 1716 | fa           | 3365.00 (3.0%)     | 3365.00 (2.6%)     | 3334.95 (2.3%)     | 3304.91 (1.9%)     | 3365.00 (1.5%)     |
| 1717 | fi           | 2727.49 (2.4%)     | 2727.49 (2.1%)     | 2703.14 (1.8%)     | 2678.79 (1.5%)     | 2727.49 (1.2%)     |
| 1718 | fr           | 5839.75 (5.2%)     | 5839.75 (4.6%)     | 5787.61 (3.9%)     | 5735.47 (3.3%)     | 5839.75 (2.6%)     |
| 1719 | hi           | 2451.99 (2.2%)     | 2451.99 (1.9%)     | 2430.09 (1.6%)     | 2408.20 (1.4%)     | 2451.99 (1.1%)     |
| 1720 | ht           | 697.54 (0.6%)      | 697.54 (0.5%)      | 691.31 (0.5%)      | 685.08 (0.4%)      | 697.54 (0.3%)      |
| 1721 | id           | 3640.30 (3.2%)     | 3640.30 (2.8%)     | 3607.80 (2.4%)     | 3575.30 (2.0%)     | 3640.30 (1.6%)     |
| 1722 | it           | 4894.95 (4.4%)     | 4894.95 (3.8%)     | 4851.25 (3.3%)     | 4807.54 (2.7%)     | 4894.95 (2.2%)     |
| 1723 | ja           | 3888.21 (3.5%)     | 3888.21 (3.0%)     | 3853.50 (2.6%)     | 3818.78 (2.2%)     | 3888.21 (1.7%)     |
| 1724 | ko           | 2327.57 (2.1%)     | 2327.57 (1.8%)     | 2306.78 (1.6%)     | 2286.00 (1.3%)     | 2327.57 (1.0%)     |
| 1725 | my           | 938.97 (0.8%)      | 938.97 (0.7%)      | 930.58 (0.6%)      | 922.20 (0.5%)      | 938.97 (0.4%)      |
| 1726 | pt           | 4754.82 (4.2%)     | 4754.82 (3.7%)     | 4712.37 (3.2%)     | 4669.91 (2.7%)     | 4754.82 (2.1%)     |
| 1727 | ru           | 7486.80 (6.7%)     | 7486.80 (5.8%)     | 7419.96 (5.0%)     | 7353.11 (4.2%)     | 7486.80 (3.3%)     |
| 1728 | sw           | 1004.66 (0.9%)     | 1004.66 (0.8%)     | 995.69 (0.7%)      | 986.72 (0.6%)      | 1004.66 (0.4%)     |
| 1729 | ta           | 1468.54 (1.3%)     | 1468.54 (1.1%)     | 1455.43 (1.0%)     | 1442.32 (0.8%)     | 1468.54 (0.7%)     |
| 1730 | te           | 1061.72 (0.9%)     | 1061.72 (0.8%)     | 1052.24 (0.7%)     | 1042.76 (0.6%)     | 1061.72 (0.5%)     |
| 1731 | th           | 2282.49 (2.0%)     | 2282.49 (1.8%)     | 2262.11 (1.5%)     | 2241.73 (1.3%)     | 2282.49 (1.0%)     |
| 1732 | tr           | 3901.70 (3.5%)     | 3901.70 (3.0%)     | 3866.87 (2.6%)     | 3832.03 (2.2%)     | 3901.70 (1.7%)     |
| 1733 | ur           | 1220.36 (1.1%)     | 1220.36 (1.0%)     | 1209.46 (0.8%)     | 1198.57 (0.7%)     | 1220.36 (0.5%)     |
| 1734 | vi           | 3776.21 (3.4%)     | 3776.21 (2.9%)     | 3742.49 (2.5%)     | 3708.77 (2.1%)     | 3776.21 (1.7%)     |
| 1735 | zh           | 3383.76 (3.0%)     | 3383.76 (2.6%)     | 3353.55 (2.3%)     | 3323.34 (1.9%)     | 3383.76 (1.5%)     |
| 1736 | <b>Total</b> | 112027.20 (100.0%) | 128031.99 (100.0%) | 148037.75 (100.0%) | 176043.52 (100.0%) | 224054.06 (100.0%) |

| 1737 | Language | en=0%          | en=10%         | en=20%         | en=30%         | en=40%         | en=50%         | en=60%         | en=70%         | en=80%        | en=90%        | en=100%     |
|------|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|-------------|
| 1738 | be       | 3733.16 (3.7%) | 3359.85 (3.4%) | 2986.53 (3.0%) | 2613.21 (2.6%) | 2239.90 (2.2%) | 1866.58 (1.9%) | 1493.27 (1.5%) | 1119.95 (1.1%) | 746.63 (0.7%) | 373.32 (0.4%) | 0.00 (0.0%) |
| 1739 | bg       | 2855.74 (2.9%) | 2669.73 (2.3%) | 2319.76 (2.0%) | 2029.79 (2.0%) | 1713.45 (1.7%) | 1449.88 (1.4%) | 1113.49 (1.2%) | 856.72 (0.9%)  | 571.15 (0.6%) | 285.57 (0.3%) | 0.00 (0.0%) |
| 1740 | bn       | 2044.77 (2.7%) | 1850.78 (1.9%) | 1645.14 (1.6%) | 1439.50 (1.4%) | 1226.56 (1.2%) | 1028.21 (1.0%) | 789.67 (0.8%)  | 613.28 (0.6%)  | 408.85 (0.4%) | 204.43 (0.2%) | 0.00 (0.0%) |
| 1741 | ca       | 2434.91 (2.4%) | 2245.24 (2.2%) | 1995.77 (2.0%) | 1746.30 (1.7%) | 1460.95 (1.5%) | 1247.36 (1.2%) | 957.97 (1.0%)  | 730.47 (0.7%)  | 486.98 (0.5%) | 243.49 (0.2%) |             |

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

| Language | ru=0%            | ru=10%           | ru=20%           | ru=30%           | ru=40%           | ru=50%           | ru=60%           | ru=70%          | ru=80%          | ru=90%          | ru=100%           |
|----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|-------------------|
| be       | 3359.26 (3.4%)   | 3023.33 (3.0%)   | 2687.41 (2.7%)   | 2351.48 (2.4%)   | 2015.56 (2.0%)   | 1679.63 (1.7%)   | 1343.70 (1.3%)   | 1007.78 (1.0%)  | 671.85 (0.7%)   | 335.93 (0.3%)   | 0.00 (0.0%)       |
| bg       | 699.02 (0.9%)    | 600.42 (0.6%)    | 5357.82 (7.6%)   | 4931.12 (6.7%)   | 4163.70 (5.7%)   | 3473.83 (4.9%)   | 2972.81 (4.1%)   | 1306.81 (2.9%)  | 1911.20 (1.4%)  | 694.73 (0.7%)   | 0.00 (0.0%)       |
| cs       | 9556.02 (9.4%)   | 6000.42 (6.6%)   | 7645.82 (7.6%)   | 6689.22 (6.7%)   | 5733.61 (7.7%)   | 4777.01 (4.0%)   | 3622.41 (3.8%)   | 2866.81 (2.9%)  | 1911.20 (1.4%)  | 9556.02 (1.0%)  | 0.00 (0.0%)       |
| en       | 20952.18 (27.0%) | 26059.27 (27.0%) | 23961.75 (24.0%) | 20666.53 (21.0%) | 13971.31 (18.0%) | 14976.00 (15.0%) | 11980.87 (12.0%) | 8985.66 (9.0%)  | 5990.44 (6.0%)  | 2995.22 (3.0%)  | 0.00 (0.0%)       |
| kk       | 3836.37 (3.8%)   | 3452.73 (3.5%)   | 3069.09 (3.1%)   | 2685.46 (2.7%)   | 2301.82 (2.3%)   | 1918.18 (1.9%)   | 1554.55 (1.5%)   | 1150.91 (1.2%)  | 767.27 (0.8%)   | 383.64 (0.4%)   | 0.00 (0.0%)       |
| ky       | 2722.84 (2.7%)   | 2450.56 (2.4%)   | 2178.27 (2.2%)   | 1905.99 (1.9%)   | 1633.71 (1.6%)   | 1361.42 (1.4%)   | 1089.14 (1.1%)   | 816.85 (0.8%)   | 544.57 (0.5%)   | 272.28 (0.3%)   | 0.00 (0.0%)       |
| mk       | 3253.70 (3.3%)   | 2928.33 (2.9%)   | 2602.95 (2.6%)   | 2277.59 (2.3%)   | 1957.22 (2.0%)   | 1626.85 (1.6%)   | 1301.48 (1.3%)   | 976.11 (1.0%)   | 650.74 (0.7%)   | 325.37 (0.3%)   | 0.00 (0.0%)       |
| mn       | 3679.08 (3.7%)   | 3311.17 (3.3%)   | 2943.26 (2.9%)   | 2575.35 (2.6%)   | 2207.45 (2.2%)   | 1839.54 (1.8%)   | 1471.63 (1.5%)   | 1103.72 (1.1%)  | 735.82 (0.7%)   | 367.91 (0.4%)   | 0.00 (0.0%)       |
| pl       | 1190.15 (11.9%)  | 1021.59 (10.7%)  | 9521.41 (9.5%)   | 8330.70 (8.5%)   | 7141.06 (7.1%)   | 5950.88 (5.9%)   | 4760.06 (4.8%)   | 3570.53 (3.6%)  | 2330.12 (2.4%)  | 1101.18 (1.2%)  | 0.00 (0.0%)       |
| ru       | 0.00 (0.0%)      | 2000.00 (20.0%)  | 2000.00 (20.0%)  | 2000.00 (20.0%)  | 2000.00 (20.0%)  | 2000.00 (20.0%)  | 2000.00 (20.0%)  | 2000.00 (20.0%) | 2000.00 (20.0%) | 2000.00 (20.0%) | 10000.00 (100.0%) |
| sk       | 6537.45 (6.5%)   | 5883.70 (5.9%)   | 5229.06 (5.2%)   | 4576.21 (4.6%)   | 3922.47 (3.9%)   | 3268.72 (3.3%)   | 2614.98 (2.6%)   | 1961.23 (2.0%)  | 1307.49 (1.3%)  | 653.74 (0.7%)   | 0.00 (0.0%)       |
| sr       | 4236.26 (4.2%)   | 3812.63 (3.8%)   | 3389.01 (3.4%)   | 2965.38 (3.0%)   | 2541.76 (2.5%)   | 2118.13 (2.1%)   | 1694.50 (1.7%)   | 1270.83 (1.3%)  | 847.25 (0.8%)   | 423.63 (0.4%)   | 0.00 (0.0%)       |
| tg       | 3015.11 (3.0%)   | 2713.60 (2.7%)   | 2412.09 (2.4%)   | 2110.58 (2.1%)   | 1809.07 (1.8%)   | 1507.56 (1.5%)   | 1206.05 (1.2%)   | 904.53 (0.9%)   | 603.02 (0.6%)   | 301.51 (0.3%)   | 0.00 (0.0%)       |
| uk       | 8389.67 (8.4%)   | 7550.70 (7.5%)   | 6711.74 (6.7%)   | 5872.77 (5.9%)   | 5033.80 (5.0%)   | 4194.84 (4.2%)   | 3355.87 (3.4%)   | 2516.90 (2.5%)  | 1677.93 (1.7%)  | 838.97 (0.8%)   | 0.00 (0.0%)       |
| uz       | 2637.28 (2.6%)   | 2373.55 (2.4%)   | 2109.83 (2.1%)   | 1846.10 (1.8%)   | 1582.37 (1.6%)   | 1318.64 (1.3%)   | 1054.91 (1.1%)   | 791.18 (0.8%)   | 527.46 (0.5%)   | 263.73 (0.3%)   | 0.00 (0.0%)       |

Table 13: Token counts (in millions) and their total proportions (%) for the *russian* as pivot runs described in Section 4. Total number of tokens is 100B.

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

| Language | en=0%,ru=0%      | en=0%,ru=05%     | en=0%,ru=05%     | en=10%,ru=10%    | en=15%,ru=15%    | en=20%,ru=20%    | en=25%,ru=25%    | en=30%,ru=30%    | en=35%,ru=35%    | en=40%,ru=40%    | en=45%,ru=45%    | en=50%,ru=50%   |
|----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|
| be       | 4795.17 (4.8%)   | 4315.65 (4.3%)   | 3836.14 (3.8%)   | 3356.62 (3.4%)   | 2877.10 (2.9%)   | 2301.68 (2.4%)   | 1918.07 (1.9%)   | 1438.55 (1.4%)   | 920.67 (1.0%)    | 479.52 (0.5%)    | 0.00 (0.0%)      |                 |
| bg       | 9916.03 (9.9%)   | 8925.24 (8.9%)   | 7935.55 (7.9%)   | 6941.86 (6.9%)   | 5650.16 (5.9%)   | 4760.13 (5.0%)   | 3966.77 (4.0%)   | 2975.08 (3.0%)   | 1904.05 (2.0%)   | 991.69 (1.0%)    | 0.00 (0.0%)      |                 |
| cs       | 13607.73 (13.6%) | 12052.44 (12.6%) | 10912.23 (11.6%) | 9501.23 (10.6%)  | 8002.43 (11.0%)  | 6500.84 (20.0%)  | 5005.84 (25.0%)  | 30007.30 (30.0%) | 35008.51 (35.0%) | 38409.34 (40.0%) | 45010.94 (45.0%) | 5082.16 (50.0%) |
| en       | 0.00 (0.0%)      | 5001.22 (5.0%)   | 10002.43 (11.0%) | 15003.65 (15.0%) | 20004.86 (20.0%) | 24005.84 (25.0%) | 30007.30 (30.0%) | 35008.51 (35.0%) | 38409.34 (40.0%) | 45010.94 (45.0%) | 5082.16 (50.0%)  |                 |
| kk       | 5476.21 (5.5%)   | 3928.59 (4.9%)   | 4380.97 (4.4%)   | 3833.35 (3.8%)   | 3285.73 (3.3%)   | 2628.58 (2.7%)   | 2190.48 (2.2%)   | 1642.86 (1.6%)   | 1051.43 (1.1%)   | 547.62 (0.5%)    | 0.00 (0.0%)      |                 |
| ky       | 3886.72 (3.9%)   | 3498.04 (3.5%)   | 3109.37 (3.1%)   | 2720.70 (2.7%)   | 2332.03 (2.3%)   | 1865.62 (1.9%)   | 1554.69 (1.6%)   | 1166.01 (1.2%)   | 746.25 (0.8%)    | 388.67 (0.4%)    | 0.00 (0.0%)      |                 |
| mk       | 4644.49 (4.6%)   | 4180.04 (4.2%)   | 3715.59 (3.7%)   | 3251.14 (3.3%)   | 2786.69 (2.8%)   | 2229.36 (2.3%)   | 1857.80 (1.9%)   | 1393.35 (1.4%)   | 891.74 (0.9%)    | 464.45 (0.5%)    | 0.00 (0.0%)      |                 |
| mn       | 5251.69 (5.3%)   | 4726.52 (4.7%)   | 4201.35 (4.2%)   | 3676.18 (3.7%)   | 3151.01 (3.2%)   | 2520.81 (2.6%)   | 2100.68 (2.1%)   | 1575.51 (1.6%)   | 1008.32 (1.1%)   | 525.17 (0.5%)    | 0.00 (0.0%)      |                 |
| pl       | 16989.15 (17.0%) | 15290.24 (15.3%) | 13591.32 (13.6%) | 11892.41 (11.9%) | 10193.49 (10.2%) | 8154.79 (8.5%)   | 6795.66 (6.8%)   | 5096.75 (5.1%)   | 3261.92 (3.4%)   | 1698.92 (1.7%)   | 0.00 (0.0%)      |                 |
| ru       | 0.00 (0.0%)      | 5001.22 (5.0%)   | 10002.43 (10.0%) | 15003.65 (15.0%) | 20004.86 (20.0%) | 24005.84 (25.0%) | 30007.30 (30.0%) | 35008.51 (35.0%) | 38409.34 (40.0%) | 45010.94 (45.0%) | 5082.16 (50.0%)  |                 |
| sk       | 933.04 (0.9%)    | 8442.34 (5.4%)   | 7465.63 (7.5%)   | 6552.12 (6.5%)   | 5592.12 (5.6%)   | 4927.76 (4.7%)   | 3772.50 (3.6%)   | 2710.50 (2.5%)   | 1814.51 (1.8%)   | 933.04 (0.9%)    | 0.00 (0.0%)      |                 |
| sr       | 6047.04 (6.0%)   | 4442.34 (5.4%)   | 4837.63 (5.7%)   | 4322.93 (4.2%)   | 3628.32 (3.6%)   | 2902.58 (3.0%)   | 2418.82 (2.4%)   | 1814.11 (1.8%)   | 1161.03 (1.2%)   | 604.70 (0.6%)    | 0.00 (0.0%)      |                 |
| tg       | 4303.92 (4.3%)   | 3873.53 (3.9%)   | 3443.13 (3.4%)   | 3012.74 (3.0%)   | 2582.35 (2.6%)   | 2065.88 (2.2%)   | 1721.57 (1.7%)   | 1291.18 (1.3%)   | 826.35 (0.9%)    | 430.39 (0.4%)    | 0.00 (0.0%)      |                 |
| uk       | 11975.82 (12.0%) | 10778.24 (10.8%) | 9580.65 (9.6%)   | 8383.07 (8.4%)   | 7185.49 (7.2%)   | 5748.39 (6.0%)   | 4790.33 (4.8%)   | 3592.75 (3.6%)   | 2299.36 (2.4%)   | 1197.58 (1.2%)   | 0.00 (0.0%)      |                 |
| uz       | 3764.58 (3.8%)   | 3386.12 (3.4%)   | 3011.67 (3.0%)   | 2635.21 (2.6%)   | 2258.75 (2.3%)   | 1807.00 (1.9%)   | 1505.83 (1.5%)   | 1129.37 (1.1%)   | 722.80 (0.8%)    | 376.46 (0.4%)    | 0.00 (0.0%)      |                 |

Table 14: Token counts (in millions) and their total proportions (%) for the *english and russian* as pivots runs described in Section 4. Total number of tokens is 100B.

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

| Language | Natural Distribution |      |      |      |      | Temperature Sampling |      |      |      |      |
|----------|----------------------|------|------|------|------|----------------------|------|------|------|------|
|          | 25                   | 50   | 100  | 200  | 400  | 25                   | 50   | 100  | 200  | 400  |
| arb      | 1.95                 | 1.95 | 1.95 | 1.94 | 1.94 | 1.83                 | 1.85 | 1.87 | 1.90 | 1.93 |
| ces      | 1.53                 | 1.53 | 1.53 | 1.51 | 1.52 | 1.45                 | 1.47 | 1.50 | 1.54 | 1.57 |
| cmn      | 1.67                 | 1.68 | 1.68 | 1.69 | 1.69 | 1.78                 | 1.86 | 1.92 | 1.96 | 2.00 |
| dan      | 1.49                 | 1.48 | 1.49 | 1.49 | 1.49 | 1.39                 | 1.42 | 1.44 | 1.47 | 1.49 |
| deu      | 1.53                 | 1.53 | 1.54 | 1.54 | 1.53 | 1.57                 | 1.61 | 1.64 | 1.69 | 1.72 |
| ell      | 1.20                 | 1.20 | 1.20 | 1.20 | 1.20 | 1.12                 | 1.15 | 1.17 | 1.19 | 1.22 |
| eng      | 2.67                 | 2.67 | 2.68 | 2.68 | 2.67 | 2.67                 | 2.68 | 2.68 | 2.69 | 2.70 |
| fas      | 1.61                 | 1.62 | 1.62 | 1.62 | 1.62 | 1.52                 | 1.56 | 1.59 | 1.61 | 1.63 |
| fra      | 1.51                 | 1.52 | 1.52 | 1.52 | 1.52 | 1.54                 | 1.57 | 1.59 | 1.61 | 1.64 |
| hun      | 1.70                 | 1.70 | 1.71 | 1.70 | 1.70 | 1.58                 | 1.61 | 1.65 | 1.69 | 1.72 |
| ind      | 1.43                 | 1.43 | 1.43 | 1.42 | 1.42 | 1.38                 | 1.41 | 1.42 | 1.44 | 1.46 |
| ita      | 1.52                 | 1.52 | 1.53 | 1.52 | 1.52 | 1.52                 | 1.56 | 1.58 | 1.61 | 1.64 |
| jpn      | 1.34                 | 1.35 | 1.35 | 1.35 | 1.35 | 1.38                 | 1.42 | 1.46 | 1.49 | 1.52 |
| kor      | 1.74                 | 1.75 | 1.76 | 1.74 | 1.73 | 1.64                 | 1.69 | 1.74 | 1.77 | 1.80 |
| nld      | 1.35                 | 1.36 | 1.36 | 1.36 | 1.36 | 1.33                 | 1.36 | 1.39 | 1.40 | 1.43 |
| pol      | 1.34                 | 1.35 | 1.35 | 1.35 | 1.36 | 1.32                 | 1.35 | 1.38 | 1.41 | 1.44 |
| por      | 1.48                 | 1.49 | 1.50 | 1.49 | 1.49 | 1.48                 | 1.52 | 1.54 | 1.56 | 1.58 |
| ron      | 1.47                 | 1.48 | 1.48 | 1.48 | 1.48 | 1.39                 | 1.43 | 1.46 | 1.49 | 1.51 |
| rus      | 1.52                 | 1.53 | 1.54 | 1.54 | 1.55 | 1.59                 | 1.63 | 1.66 | 1.69 | 1.72 |
| spa      | 1.46                 | 1.46 | 1.47 | 1.47 | 1.46 | 1.48                 | 1.51 | 1.53 | 1.55 | 1.57 |
| swe      | 1.59                 | 1.59 | 1.59 | 1.59 | 1.59 | 1.49                 | 1.52 | 1.55 | 1.58 | 1.60 |
| tha      | 1.27                 | 1.28 | 1.28 | 1.28 | 1.28 | 1.16                 | 1.20 | 1.23 | 1.25 | 1.27 |
| tur      | 1.40                 | 1.41 | 1.41 | 1.40 | 1.40 | 1.33                 | 1.36 | 1.39 | 1.42 | 1.44 |
| ukr      | 1.30                 | 1.31 | 1.31 | 1.31 | 1.31 | 1.25                 | 1.28 | 1.31 | 1.33 | 1.36 |
| vie      | 1.55                 | 1.56 | 1.56 | 1.56 | 1.56 | 1.45                 | 1.49 | 1.52 | 1.55 | 1.57 |
| als      | -                    | 1.50 | 1.50 | 1.50 | 1.50 | -                    | 1.29 | 1.32 | 1.34 | 1.36 |
| ary      | -                    | 1.83 | 1.82 | 1.83 | 1.82 | -                    | 1.62 | 1.62 | 1.65 | 1.68 |
| azj      | -                    | 1.47 | 1.47 | 1.48 | 1.48 | -                    | 1.07 | 1.10 | 1.12 | 1.15 |
| ben      | -                    | 1.32 | 1.32 | 1.32 | 1.32 | -                    | 1.16 | 1.18 | 1.21 | 1.23 |
| bos      | -                    | 1.44 | 1.45 | 1.45 | 1.45 | -                    | 1.31 | 1.35 | 1.38 | 1.40 |
| bul      | -                    | 1.46 | 1.47 | 1.47 | 1.47 | -                    | 1.36 | 1.39 | 1.42 | 1.45 |
| cat      | -                    | 1.36 | 1.36 | 1.36 | 1.36 | -                    | 1.28 | 1.31 | 1.33 | 1.35 |
| ekk      | -                    | 1.83 | 1.83 | 1.83 | 1.83 | -                    | 1.56 | 1.61 | 1.64 | 1.68 |
| fin      | -                    | 1.65 | 1.66 | 1.66 | 1.66 | -                    | 1.53 | 1.57 | 1.60 | 1.63 |
| heb      | -                    | 1.70 | 1.71 | 1.71 | 1.71 | -                    | 1.52 | 1.55 | 1.58 | 1.62 |
| hin      | -                    | 1.42 | 1.42 | 1.42 | 1.42 | -                    | 1.28 | 1.28 | 1.30 | 1.33 |
| hrv      | -                    | 1.61 | 1.62 | 1.62 | 1.62 | -                    | 1.48 | 1.52 | 1.55 | 1.58 |
| kat      | -                    | 1.40 | 1.41 | 1.41 | 1.40 | -                    | 1.11 | 1.14 | 1.16 | 1.19 |
| lit      | -                    | 1.58 | 1.59 | 1.59 | 1.59 | -                    | 1.39 | 1.42 | 1.46 | 1.49 |
| lvs      | -                    | 1.59 | 1.59 | 1.59 | 1.59 | -                    | 1.35 | 1.38 | 1.42 | 1.45 |
| mar      | -                    | 1.52 | 1.53 | 1.52 | 1.53 | -                    | 1.23 | 1.25 | 1.27 | 1.30 |
| mkd      | -                    | 1.43 | 1.44 | 1.44 | 1.44 | -                    | 1.20 | 1.23 | 1.26 | 1.28 |
| nob      | -                    | 1.92 | 1.92 | 1.92 | 1.92 | -                    | 1.82 | 1.85 | 1.88 | 1.91 |
| npi      | -                    | 1.32 | 1.33 | 1.32 | 1.32 | -                    | 1.08 | 1.10 | 1.12 | 1.14 |
| slk      | -                    | 1.46 | 1.46 | 1.46 | 1.46 | -                    | 1.36 | 1.40 | 1.43 | 1.46 |
| slv      | -                    | 1.65 | 1.66 | 1.66 | 1.66 | -                    | 1.46 | 1.50 | 1.54 | 1.57 |
| srp      | -                    | 1.79 | 1.79 | 1.79 | 1.79 | -                    | 1.49 | 1.53 | 1.56 | 1.59 |
| tam      | -                    | 1.52 | 1.52 | 1.52 | 1.52 | -                    | 1.28 | 1.29 | 1.32 | 1.34 |
| urd      | -                    | 1.77 | 1.78 | 1.78 | 1.78 | -                    | 1.46 | 1.48 | 1.50 | 1.53 |
| zsm      | -                    | 1.62 | 1.62 | 1.63 | 1.62 | -                    | 1.46 | 1.48 | 1.51 | 1.53 |

Table 15: Comparison of the final validation loss for 50 languages in the *curse of multilinguality* experiments. The results are presented for a fixed total data budget under two conditions: natural distribution and temperature sampling.