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Abstract001

Uncertainty quantification (UQ) in natural lan-002
guage generation (NLG) tasks remains an open003
challenge, exacerbated by the intricate nature004
of the recent large language models (LLMs).005
This study investigates adapting conformal pre-006
diction (CP), which can convert any heuristic007
measure of uncertainty into rigorous theoretical008
guarantees by constructing prediction sets, for009
black-box LLMs in open-ended NLG tasks. We010
propose a sampling-based uncertainty measure011
leveraging self-consistency, and develop a con-012
formal uncertainty criterion by integrating the013
uncertainty condition aligned with correctness014
into the design of the CP algorithm. Experimen-015
tal results indicate that our uncertainty measure016
generally surpasses prior state-of-the-art meth-017
ods. Furthermore, we calibrate the prediction018
sets within the model’s unfixed answer distri-019
bution and achieve strict control over the cor-020
rectness coverage rate across 6 LLMs on 4 free-021
form NLG datasets, spanning general-purpose022
and medical domains, while the small average023
set size further highlights the efficiency of our024
method in providing trustworthy guarantees for025
practical open-ended NLG applications.026

1 Introduction027

Despite advancements in various natural language028

generation (NLG) tasks like question answering029

(QA) (Katz et al., 2024; Touvron et al., 2023a; Chen030

et al., 2023), large language models (LLMs) are031

proven to hallucinate facts and confidently generate032

textual information that is not correct or grounded033

in reality (Ji et al., 2023; Manakul et al., 2023). Fac-034

tually incorrect answers can confuse and mislead035

users, resulting in erroneous conclusions and ulti-036

mately undermining the trustworthiness of LLMs-037

based high-stakes applications.038

Uncertainty quantification (UQ) provides valu-039

able insights into the reliability of model responses,040

facilitating risk assessment and hallucination de-041

tection (Kadavath et al., 2022; Lin et al., 2022a).042

However, it demands investigating black-box un- 043

certainty measures with the proliferation of LLMs 044

served via APIs (Achiam et al., 2023), which only 045

allows textual inputs and outputs. Conformal pre- 046

diction (CP) (Campos et al., 2024; Angelopoulos 047

and Bates, 2021; Quach et al., 2023) is known for 048

providing a model-agnostic and statistically rigor- 049

ous uncertainty estimation. CP was primarily em- 050

ployed in classification (Angelopoulos and Bates, 051

2021) and regression tasks (Wang et al., 2024a). 052

For NLG tasks, CP is first adapted to the multiple- 053

choice question-answering (MCQA) setting, where 054

the correct response is selected from a fixed set 055

of options (Kumar et al., 2023; Ye et al., 2024), 056

limiting its applications in real-world open-ended 057

NLG tasks. Conformal language modeling (Quach 058

et al., 2023) relies on the model likelihoods and 059

calibrates a stopping rule to sample prediction sets 060

from the infinite output space until users are con- 061

fident that the set covers at least one response sat- 062

isfied. LofreeCP (Su et al., 2024) studies CP for 063

API-only LLMs without logit access by leveraging 064

uncertainty information from diverse sources. 065

Our study explores adapting CP for general NLG 066

applications. The nonconformity score (NS) in CP 067

serves as a criterion for calibrating prediction sets, 068

which provide coverage guarantees by selecting 069

a set of possible labels that satisfy the NS thresh- 070

old (Angelopoulos and Bates, 2021). Since typical 071

logits-based NS may encounter miscalibration, we 072

aim to integrate black-box UQ into the definition 073

of NS, by closely aligning it with the uncertainty 074

condition of the correct answers and devising a con- 075

formal uncertainty criterion, while it is more trust- 076

worthy to analyze the uncertainty within LLMs’ 077

true output space. Then, we can leverage the un- 078

certainty criterion, concluded from a small amount 079

of independent and identically distributed (i.i.d.) 080

calibration data, to construct prediction sets by se- 081

lecting generations sharing a similar uncertainty 082

condition from the unbounded output space on test 083
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samples. Typically, there are two goals of CP: (1)084

the calibrated prediction set contains the correct085

answer with at least a user-specified probability;086

and (2) the average set size should be small, demon-087

strating the prediction efficiency of our method.088

The first challenge is UQ for black-box LLMs.089

Our solution is inspired by an intuitive observation:090

If a language model generates more semantically di-091

verse outputs for the same prompt, the uncertainty092

is likely higher (Su et al., 2024; Lin et al., 2023;093

Xiong et al., 2023). Regardless of the model’s capa-094

bility to tackle the current problem, the confidence095

score that the model assigns to a generation can096

be represented by its frequency within the output097

space. We approximate the model’s output distri-098

bution by sampling multiple answers to the same099

question. Then, we perform semantic clustering on100

the sampled generations, and propose to measure101

the uncertainty of each generation by combining102

two factors: the frequency of occurrence of the103

semantic meaning it conveys, and the consistency104

between its semantic and other semantic clusters105

augmented by their individual frequency.106

Based on the measure, we define NS as the un-107

certainty score of the generation. To this end, the108

generation meets the correctness criterion and is109

semantically most similar to the reference answer110

in the calibration set. We then calculate the quan-111

tile q̂ of NSs for all calibration samples, based112

on the user-specified upper bound of error rate α.113

Next, we utilize the conformal uncertainty crite-114

rion (i.e., the uncertainty threshold q̂) to construct115

a prediction set for each test sample by selecting116

generations that satisfy the uncertainty conditions117

strictly associated with correctness from the candi-118

date generations. Additionally, for black-box UQ,119

we propose employing the most frequent genera-120

tion or semantic (i.e., the model’s most confident121

answer) as a more trustworthy reference object for122

the query and leveraging it to measure the overall123

uncertainty of the current query-answering process.124

We term this measure ConU, as it employs the same125

approach as the conformal uncertainty criterion.126

Extensive experimental results exhibit that ConU127

generally outperforms prior state-of-the-art meth-128

ods and verify the strict correctness coverage guar-129

antees. Specifically, the prediction sets calibrated130

by the conformal uncertainty criterion always en-131

compass the correct answers under various user-132

specified error rates. Furthermore, the average pre-133

diction set size is small, highlighting the prediction134

efficiency of our approach. To our knowledge, this135

is the first method in the literature to strictly link the 136

NS with the uncertainty condition aligned with cor- 137

rectness via black-box UQ, thereby developing a 138

more robust conformal uncertainty criterion, which 139

provides rigorous correctness coverage guarantees 140

in practical open-ended NLG tasks, and its unique 141

inspiration in benchmarking UQ in LLMs through 142

CP generates independent interest. 143

In summary, our major contributions are listed 144

as follows: 145

• We propose a sampling-based black-box un- 146

certainty measure, termed as ConU, utilizing 147

self-consistency in free-form NLG tasks, fa- 148

cilitating trustworthy decision-making. 149

• We devise a conformal uncertainty criterion by 150

strictly aligning the NS with the uncertainty 151

condition of correct answers, and achieve rig- 152

orous correctness coverage with at least a user- 153

specified probability, thereby providing robust 154

guarantees under various error rates in practi- 155

cal open-ended NLG applications. 156

• We conduct selective prediction leveraging the 157

calibrated prediction sets and obtain promis- 158

ing improvements in model accuracy without 159

requiring additional task-specific fine-tuning 160

or architectural modifications. 161

2 Related Work 162

2.1 Uncertainty Quantification in LLMs 163

Prior work on UQ in LLMs predominantly focuses 164

on white-box information like token-likelihoods 165

or embeddings (Kuhn et al., 2023; Duan et al., 166

2024; Wang et al., 2024b), internal state or acti- 167

vations (Yin et al., 2024; Chen et al., 2024), model 168

fine-tuning (Lin et al., 2022a; Tian et al., 2023). 169

These methods can encounter poor calibration and 170

require substantial computational resources. Addi- 171

tionally, researchers lack white-box access to the in- 172

ternal information of LLMs served via APIs. These 173

restrictions demand black-box measures for gen- 174

eral UQ in LLMs generations. 175

Recent work (Lin et al., 2023) develops several 176

sampling-based uncertainty measures, which can 177

be applied to black-box LLMs by leveraging se- 178

mantic similarity along with dispersion. Our study 179

follows the sampling setting and proposes to em- 180

ploy the most frequent generation as the reference 181

object to measure the overall uncertainty based on 182

the self-consistency theory (Wang et al., 2022). 183
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2.2 Conformal Prediction in LLMs184

CP (Angelopoulos and Bates, 2021; Quach et al.,185

2023; Campos et al., 2024) has emerged as a theo-186

retically sound and practically useful way to guar-187

antee ground-truth coverage with the aid of a small188

amount of independent and identically distributed189

(i.i.d.) samples for calibration. CP in classification190

defines NS that is correlated with the ground-truth191

label, obtains the quantile q̂ of NSs for all calibra-192

tion samples based on a user-specified error rate193

α, and utilizes q̂ as a threshold to select possible194

labels on test samples, thereby establishing predic-195

tion sets that achieve ground truth coverage with at196

least the probability of 1− α.197

Recently, researchers have attempted to apply198

CP to LLMs for principled UQ. The work (Mohri199

and Hashimoto, 2024) achieves conformal factual-200

ity guarantees by progressively making generations201

less specific and establishing their corresponding202

entailment sets until correct answers are encom-203

passed. For correctness coverage, two studies (Ku-204

mar et al., 2023; Ye et al., 2024) follow CP in clas-205

sification tasks and convert NLG tasks into MCQA206

settings. For open-ended NLG, based on the out-207

put token sequence logits, the study (Quach et al.,208

2023) devises a stopping rule to sample genera-209

tions until users are confident that a correct answer210

is covered in QA tasks. LofreeCP (Su et al., 2024)211

leverages uncertainty information to construct pre-212

diction sets that achieve correctness coverage.213

This paper focuses on more practical scenarios214

of black-box LLMs in open-ended NLG tasks. Dif-215

fering from LofreeCP, we strictly connect the NS216

with the uncertainty condition of correct answers217

via black-box UQ, which concludes a more robust218

conformal uncertainty criterion to calibrate predic-219

tion sets with rigorous correctness coverage guar-220

antees under various error rates despite the com-221

plexity of the model or datasets.222

3 Method223

Our method investigates two key issues: (1) how to224

quantify the uncertainty in black-box LLMs when225

we can only access the generated texts; and (2) how226

to provide rigorous guarantees on the error rate in227

open-ended NLG tasks. We first devise a black-box228

uncertainty measure grounded in self-consistency229

to provide the trustworthiness notion of model re-230

sponses. Furthermore, we utilize the CP technique231

to convert the heuristic approximation into a statis-232

tically rigorous one, thereby ensuring a more robust233

and systematic assessment of uncertainty. 234

3.1 Preliminaries 235

Following prior utility of black-box LLMs (Xiong 236

et al., 2023; Lin et al., 2023; Manakul et al., 2023), 237

conditioned on each prompt (or question) xi, we 238

employ the most likely generation ŷi for correct- 239

ness evaluation. Additionally, we sample a set 240

of M candidate generations
{
ŷ
(i)
m

}M

m=1
from the 241

model’s output space for black-box UQ and the 242

derivation of conformal uncertainty criterion. We 243

denote the reference answer to xi as y∗i . 244

3.2 Uncertainty Quantification 245

For each sample, we first cluster semantics in the 246

M sampled generations and obtain K non-repeated 247

semantics. We denote the number of generations 248

sharing the k-th semantic as Vk (i.e.,
∑K

k=1 Vk = 249

M ) and any one generation in this cluster as ŷ(i)k . 250

Building on earlier approaches that utilize self- 251

consistency (Wang et al., 2022; Su et al., 2024; 252

Yadkori et al., 2024) as a reliable measure of con- 253

fidence, we employ the frequency of the k-th se- 254

mantic as its proxy for reliability: F
(
ŷ
(i)
k

)
= Vk

M . 255

Then, we define the uncertainty score of each can- 256

didate generation in
{
ŷ
(i)
m

}M

m=1
as 257

U
(
ŷ(i)m

)
=1− λ · F

(
ŷ(i)m

)
− (1− λ) ·

1

K

K∑
k=1

S
(
ŷ(i)m , ŷ

(i)
k

)
F
(
ŷ
(i)
k

)
,

(1) 258

where F
(
ŷ
(i)
m

)
refers to the frequency of the se- 259

mantic that ŷ(i)m conveys, and S (·, ·) measures the 260

semantic similarity between two generations utiliz- 261

ing a cross-encoder model (Reimers and Gurevych, 262

2019). F
(
ŷ
(i)
k

)
is to augment the persuasiveness 263

of the similarity score associated with ŷ
(i)
k . 264

To measure the overall uncertainty, we randomly 265

select one generation in the largest semantic cluster 266

to be the most trustworthy generation in the M 267

sampled generations and denote it as ŷimst: 268

ŷimst = argmax
ŷ
(i)
k ∈

{
ŷ
(i)
m

}M

m=1

Vk. (2) 269

Then, we define the uncertainty score of the i-th 270
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query-response as271

U
({

ŷ(i)m

}M

m=1
|xi

)
= 1− λ · F

(
ŷimst

)
−

(1− λ) · 1

K

K∑
k=1

S
(
ŷimst, ŷ

(i)
k

)
F
(
ŷ
(i)
k

)
.

(3)272

Intuitively, the most frequent semantic within the273

candidate generations represents the model’s most274

confident answer to the current problem. Even275

though the reference semantic may not necessar-276

ily be the correct one, we can measure the degree277

of the model’s uncertainty by calculating the confi-278

dence level of that semantic as well as the deviation279

between it and other semantics.280

Since Eq. (1) can quantify the uncertainty of281

each candidate generation, we attempt to develop282

an uncertainty criterion to search for the correct an-283

swers within the unfixed output space of the LLM.284

3.3 Conformal Correctness Coverage285

Following the fundamental requirement in CP (An-286

gelopoulos and Bates, 2021), we randomly em-287

ploy N samples to construct the calibration data288

set {(xi, y∗i )}
N
i=1, and for each calibration sample289

we demand that at least one sampled generation ŷ(i)j290

in
{
ŷ
(i)
m

}M

m=1
meets the correctness criterion. Our291

objective of conformal correctness coverage is by292

concluding the uncertainty criterion that is closely293

linked with correctness on {(xi, y∗i )}
N
i=1, we can294

calibrate an uncertainty (prediction) set P (xtest)295

for the test prompt xtest by selecting generations296

that meet the common uncertainty condition, and297

the set can guarantee correctness coverage under298

various user-specificed error rates. Here, we ap-299

proximate the prediction region of xtest to the M300

candidate generations
{
ŷ
(test)
m

}M

m=1
.301

Assumptions: (1) There is at least one candidate302

generation in
{
ŷ
(test)
m

}M

m=1
meeting the correct-303

ness criterion; (2) Samples in the calibration and304

test data sets are exchangeable.305

As the sampled set
{
ŷ
(test)
m

}M

m=1
is a subset of306

the prediction region, which is impossible to enu-307

merate, we can simplify it by stating that there is308

at least one correct answer in
{
ŷ
(test)
m

}M

m=1
. Ex-309

changeability is the fundamental assumption of CP310

techniques (Angelopoulos and Bates, 2021).311

Based on the uncertainty measure described as312

Eq. (1), we define the NS of the i-th calibration313

sample as 314

ri = r (xi, y
∗
i ) =

U

 argmax

ŷ
(i)
j ∈

{
ŷ
(i)
m

}M

m=1

S
(
ŷ
(i)
j , y∗i

)
E
(
ŷ
(i)
j , y∗i

) ,

(4)

315

where E (·, ·) is the indicator function determining 316

whether the two sentences share equivalent seman- 317

tics, i.e., E
(
ŷ
(i)
j , y∗i

)
= 1 indicates that the sam- 318

pled generation ŷ
(i)
j is semantically equivalent to 319

y∗i , and E
(
ŷ
(i)
j , y∗i

)
= 0 denotes it does not. This 320

is, the NS r (xi, y
∗
i ) represents the uncertainty con- 321

dition of the candidate generation ŷ
(i)
j , which has 322

the highest similarity score with the reference an- 323

swer y∗i in generations that are semantically equiv- 324

alent to y∗i . The criterion for determining semantic 325

equivalence here is the same as that for correctness 326

evaluation (i.e., ŷ(i)j is correct according to y∗i if 327

E
(
ŷ
(i)
j , y∗i

)
= 1). 328

It is worth noting that we strictly align NS with 329

the uncertainty condition of the correct answer in 330

sampled generations, which is crucial for robust 331

correctness coverage guarantees in test samples. 332

Following prior work (Angelopoulos and Bates, 333

2021; Quach et al., 2023; Campos et al., 2024), 334

we sort {ri}Ni=1 ({r1 ≤ · · · ≤ rN}) and calculate 335

the ⌈(N+1)(1−α)⌉
N quantile of NSs for all calibration 336

data to develop the conformal uncertainty criterion 337

q̂ = inf

{
q :

|{i : ri ≤ q}|
N

≥ ⌈(N + 1) (1− α)⌉
N

}
= r⌈(N+1)(1−α)⌉,

(5)

338

where α is the upper bound of the error rate. 339

As for each test sample, we construct the predic- 340

tion set following 341

P (xtest) ={
ŷ
(test)
j ∈

{
ŷ(test)m

}M

m=1
: r

(
xtest, ŷ

(test)
j

)
≤ q̂

}
.

(6)

342

It is evident that the most semantically similar 343

generation to ŷ
(test)
j in

{
ŷ
(test)
m

}M

m=1
is itself, and 344

we obtain r
(
xtest, ŷ

(test)
j

)
= U

(
ŷ
(test)
j

)
. Recall 345

the assumption that
{
ŷ
(test)
m

}M

m=1
contains at least 346
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Table 1: Performance comparison (AUROC) of uncertainty quantification across our proposed method and 8 baseline
approaches, evaluated on 5 instruction-tuned LLMs over 4 open-ended NLG datasets. The correctness criterion is
based on the sentence similarity measured by the DistillRoBERTa model with a threshold of 0.7.

Dataset LLMs
White-box Black-box

PE LNPE SE SAR LS NumSet Ecc Deg ConU

TriviaQA

LLaMA-2-7B-Chat 0.6587 0.6459 0.7495 0.7876 0.5571 0.7763 0.7839 0.8103 0.8198
Mistral-7B-Instruct-v0.3 0.6620 0.5968 0.7845 0.8306 0.5969 0.8491 0.8596 0.8596 0.8671
LLaMA-3-8B-Instruct 0.7247 0.6465 0.7934 0.8271 0.4661 0.8201 0.7404 0.8246 0.8275

Vicuna-13B-v1.5 0.5553 0.5543 0.7568 0.7207 0.5734 0.7629 0.6578 0.7858 0.7926
LLaMA-2-13B-Chat 0.6065 0.5614 0.7624 0.7757 0.6121 0.7885 0.8035 0.8035 0.8048

Average 0.6414 0.6010 0.7693 0.7883 0.5611 0.7994 0.7690 0.8167 0.8224

CoQA

LLaMA-2-7B-Chat 0.6236 0.5618 0.7120 0.7372 0.5403 0.7309 0.6769 0.7613 0.7600
Mistral-7B-Instruct-v0.3 0.6746 0.5795 0.7062 0.7551 0.5799 0.7481 0.6931 0.7645 0.7652
LLaMA-3-8B-Instruct 0.7495 0.6531 0.7652 0.7902 0.4532 0.7400 0.7288 0.7763 0.7702

Vicuna-13B-v1.5 0.5928 0.5565 0.7110 0.6984 0.4965 0.6832 0.6679 0.7191 0.7106
LLaMA-2-13B-Chat 0.6203 0.5634 0.7039 0.7427 0.5534 0.7230 0.6805 0.7546 0.7591

Average 0.6522 0.5829 0.7197 0.7472 0.5247 0.7250 0.6894 0.7552 0.7530

MedQA

LLaMA-2-7B-Chat 0.4888 0.4925 0.5341 0.5862 0.5599 0.5933 0.5511 0.6064 0.6120
Mistral-7B-Instruct-v0.3 0.4613 0.4639 0.5091 0.6397 0.5520 0.6282 0.6562 0.6660 0.6789
LLaMA-3-8B-Instruct 0.5854 0.5781 0.6508 0.7167 0.4522 0.7093 0.6142 0.7159 0.7196

Vicuna-13B-v1.5 0.4970 0.4922 0.5523 0.5854 0.5479 0.5926 0.5383 0.6261 0.6360
LLaMA-2-13B-Chat 0.4618 0.4647 0.5277 0.5792 0.5734 0.6041 0.5743 0.6070 0.6153

Average 0.4989 0.4983 0.5548 0.6214 0.5371 0.6255 0.5868 0.6443 0.6524

MedMCQA

LLaMA-2-7B-Chat 0.4774 0.4848 0.5221 0.5883 0.5531 0.6171 0.5165 0.5983 0.6330
Mistral-7B-Instruct-v0.3 0.4971 0.4989 0.5491 0.6944 0.5103 0.7084 0.7170 0.7173 0.7413
LLaMA-3-8B-Instruct 0.5414 0.5395 0.6244 0.6940 0.4817 0.6992 0.5952 0.6993 0.7098

Vicuna-13B-v1.5 0.4614 0.4815 0.5550 0.5509 0.5377 0.5891 0.5135 0.6221 0.6448
LLaMA-2-13B-Chat 0.4547 0.4712 0.5385 0.5701 0.5711 0.6378 0.6188 0.6188 0.6414

Average 0.4864 0.4952 0.5578 0.6195 0.5308 0.6503 0.5922 0.6511 0.6741

one correct generation (i.e., y∗test ∈
{
ŷ
(test)
m

}M

m=1
),347

then the event {y∗test ∈ P (xtest)} is equivalent to348

{rtest = r (xtest, y
∗
test) ≤ q̂}.349

Since the calibration and test samples (x1, y∗1),350

..., (xN , y∗N ), (xtest, y∗test) are exchangeable, we351

have P (rtest ≤ ri) =
i

N+1 . Then we conclude352

P (y∗test ∈ P (xtest)) = P
(
rtest ≤ r⌈(N+1)(1−α)⌉

)
=

⌈(N + 1) (1− α)⌉
N + 1

≥ 1− α,

(7)

353

and obtain the user-specified lower bound (i.e., 1−354

α) of the correctness coverage rate guaranteed by355

the calibrated prediction sets.356

4 Evaluations357

4.1 Experimental Set-up358

Baselines. We consider 8 baseline methods, in-359

cluding 4 white-box methods: Predictive Entropy360

(PE) (Kadavath et al., 2022), Length-normalized361

Predictive Entropy (LNPE) (Malinin and Gales, 362

2020), Semantic Entropy (SE) (Kuhn et al., 2023), 363

and Shift Attention to Relevance (SAR) (Duan et al., 364

2024), and 4 black-box approaches: Lexical Sim- 365

ilarity (LS) (Lin et al., 2022b) and Number of Se- 366

mantic Sets (NumSet) (Kuhn et al., 2023; Lin et al., 367

2023). Moreover, we also include the most recent 368

state-of-the-art uncertainty quantification methods, 369

Degree Matrix (Deg) (Lin et al., 2023), and Ec- 370

centricity (Ecc) (Lin et al., 2023). More details of 371

baseline methods can be found in Appendix B.1. 372

Base LLMs. We conduct experimental evalua- 373

tions on 6 open-source LLMs encompassing var- 374

ious sizes and architectures for comprehensive 375

analysis, including LLaMA-2-7B-Chat (Touvron 376

et al., 2023b), Mistral-7B-Instruct-v0.3 (Jiang et al., 377

2023), Llama-3-8B-Instruct (AI@Meta, 2024), 378

Vicuna-13B-v1.5 (Zheng et al., 2023), LLaMA-2- 379

13B-Chat (Touvron et al., 2023b), LLaMA-3-70B- 380

Instruct (AI@Meta, 2024). We utilize the default 381

generation configs and checkpoints provided by the 382
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Figure 1: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the LLaMA-2-7B-Chat
model as the generator. Empirically, we achieve strict
control over the coverage of correct answers by calibrat-
ing prediction sets on 4 free-form QA datasets.

HuggingFace platform1 for all models.383

Datasets. We evaluate the performance of ConU384

and verify the correctness coverage guarantees on385

4 free-form NLG datasets, including CoQA (Reddy386

et al., 2019) for conversational QA task, Trivi-387

aQA (Joshi et al., 2017) for reading comprehen-388

sion, MedQA (Jin et al., 2021) for solving medical389

problems, and MedMCQA (Pal et al., 2022) for390

medical entrance exam questions. More details of391

datasets can be found in Appendix B.2.392

Evaluation Metric. Following prior work (Duan393

et al., 2024; Wang et al., 2024b), we evaluate the394

performance of UQ by treating it as the problem of395

predicting whether to trust a generation given the396

prompt, and utilize the Area Under the Receiver397

Operating Characteristic Curve (AUROC) which398

gauges if the uncertainty scores can effectively dis-399

tinguish between correct and incorrect generations.400

To verify if the correctness coverage is strictly guar-401

anteed, we evaluate the coverage rate under various402

user-specified error rates. We also report the aver-403

age prediction set size to evaluate the prediction404

efficiency and practicality of our approach.405

Correctness and Equivalence Metric. We uti-406

lize sentence similarity (Duan et al., 2024) as the407

metric for correctness and equivalence evaluation.408

We employ the cross-encoder model (Reimers and409

Gurevych, 2019) with DistillRoBERTa (Sanh et al.,410

2019) serving as the backbone to measure the se-411

mantic similarity score between the most likely412

1https://huggingface.co/models

Table 2: The results of correctness coverage rate (%) on
6 LLMs with various sizes across 4 open-ended NLG
datasets. The user-specified error rate α is set to 0.1.

LLMs TriviaQA CoQA MedQA MedMCQA

LLaMA-2-7B-Chat 91.00 93.37 100.00 91.32
Mistral-7B-Instruct-v0.3 90.83 91.87 90.70 90.39
LLaMA-3-8B-Instruct 94.27 90.73 90.46 93.17
LLaMA-2-13B-Chat 91.68 91.63 91.72 92.45

Vicuna-13B-v1.5 90.19 92.68 90.25 92.13
LLaMA-3-70B-Instruct 92.18 90.95 93.70 92.48

Table 3: The average prediction set size on 6 LLMs with
various sizes across 4 open-ended NLG datasets. The
user-specified error rate α is set to 0.1.

LLMs TriviaQA CoQA MedQA MedMCQA

LLaMA-2-7B-Chat 2.28 2.26 4.28 3.07
Mistral-7B-Instruct-v0.3 2.24 2.49 4.20 3.26
LLaMA-3-8B-Instruct 2.34 2.45 2.68 2.60
LLaMA-2-13B-Chat 2.19 2.28 3.40 2.73

Vicuna-13B-v1.5 2.26 2.47 3.29 2.98
LLaMA-3-70B-Instruct 1.03 1.71 2.15 1.60

generation and reference answer and set a strict 413

correctness threshold of 0.7. 414

Hyperparameters. We randomly sample 5 an- 415

swers to each question for UQ and 10 candidate 416

generations for verification of correctness cover- 417

age guarantees. We leverage beam search for the 418

most likely generations for correctness evaluation 419

and multinominal sampling for candidate genera- 420

tions (Duan et al., 2024). The max length of each 421

generation is set to 128 tokens. The temperature 422

of generation is set to 1.0. The coefficient λ intro- 423

duced in Eq. (1) is set to 0.5. The ratio of calibra- 424

tion and test set is set to 1:10 by default. 425

4.2 UQ in Black-Box LLMs 426

As defined in failure prediction (Xiong et al., 2023) 427

which evaluates whether the uncertainty score can 428

effectively distinguish between correct and incor- 429

rect generations, an effective measure should as- 430

sign higher uncertainty to incorrect generations and 431

lower to correct ones. We compare our approach 432

with state-of-the-art methods utilizing AUROC. Ex- 433

perimental results are summarized in Table 1. Gen- 434

erally, our method outperforms baseline methods in 435

most of the settings. For instance, our method con- 436

sistently beat 8 baseline methods on the TriviaQA 437

datasets. It is worth noting that our method outper- 438

forms other methods by at most 2.4% AUROC on 439

the MedMCQA dataset and 1.29% AUROC on the 440

MedQA, which indicates the potential impacts of 441

our methods on real-world high-stakes NLG appli- 442
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Figure 2: Target correctness coverage rate vs. empiri-
cal correctness coverage rate on non-empty prediction
sets. We test the 4 datasets utilizing the LLaMA-2-7B-
Chat model. We can almost obtain absolute coverage of
correct answers in non-empty calibrated prediction sets
even at a strict user-accepted error rate.

cations. We discuss the impact of the number of443

sampled generations on UQ in Section 4.4.444

4.3 Conformal Correctness Coverage445

In this section, we verify that the calibrated pre-446

diction sets constructed following Eq. (6) indeed447

achieve rigorous correctness coverage guarantees448

under various user-specified error rates as described449

in Eq. (7). Then we explore the utility of prediction450

sets and conduct selective prediction based on our451

proposed uncertainty measure.452

Empirical Coverage Guarantees. To guarantee453

the derived lower bound of correctness coverage454

rate in practice, we randomly split the four datasets455

at a ratio of 1:10, employing the respective por-456

tions as the calibration and test set. We utilize the457

calibration set to derive the conformal uncertainty458

criterion specified by the upper bound of the error459

rate. Then, we measure the correctness coverage460

rate on the test set and plot the results on four461

datasets in Figure 1. It is evident that we achieve462

strict control of the correctness coverage rate un-463

der various error rates. The verification on other464

models can be found in Appendix C.465

Following (Ye et al., 2024), we set the error rate466

α to 0.1 and test the coverage rate on 4 datasets uti-467

lizing 7 LLMs with multiple scales. As is exhibited468

in Table 2, the coverage rate is at least 90%, indi-469

cating that the requirement of correctness coverage470

guarantees is satisfied. It is worth noting that prior471

work (Ye et al., 2024; Kumar et al., 2023) selects472

the possible option from the fixed choices while473

Table 4: The enhancement of model accuracy (%) af-
ter conducting selective prediction within the calibrated
prediction sets based on the black-box uncertainty mea-
sure, utilizing sentence similarity as the criterion for
correctness evaluation under the threshold of 0.7.

Dataset LLMs Original Calibrated

TriviaQA

LLaMA-2-7B-Chat 68.43 70.77
Mistral-7B-Instruct-v0.3 79.04 81.45
LLaMA-3-8B-Instruct 79.36 80.00

Vicuna-13B-v1.5 78.40 78.80
LLaMA-2-13B-Chat 76.70 78.13

CoQA

LLaMA-2-7B-Chat 73.00 75.53
Mistral-7B-Instruct-v0.3 78.25 80.80
LLaMA-3-8B-Instruct 72.93 74.67

Vicuna-13B-v1.5 76.17 78.43
LLaMA-2-13B-Chat 80.00 81.23

MedQA

LLaMA-2-7B-Chat 37.88 40.80
Mistral-7B-Instruct-v0.3 38.65 43.90
LLaMA-3-8B-Instruct 66.29 70.59

Vicuna-13B-v1.5 44.42 46.78
LLaMA-2-13B-Chat 42.07 46.15

we characterize the unbound answer distribution 474

by sampling and utilize our devised conformal un- 475

certainty criterion to search for the correct answer, 476

which is more practical. 477

We also evaluate the prediction efficiency of the 478

conformal uncertainty criterion utilizing the aver- 479

age size of these calibrated prediction sets, which 480

is the primary metric for CP (Angelopoulos and 481

Bates, 2021). Table 3 demonstrates that the average 482

size of prediction sets calibrated by our method re- 483

mains very small across the 4 datasets. For instance, 484

the average set size is 1.03 on the LLaMa-3-70B- 485

Instruct model in the TriviaQA task, indicating that 486

we can almost directly identify the correct answers 487

through these calibrated prediction sets. 488

We boldly expect that as long as the language 489

model has the capability to solve the current prob- 490

lem, despite the unfixed answer distribution, we can 491

always find the correct generation by performing 492

black-box UQ on each sampled answer and search- 493

ing for answers meeting the conformal uncertainty 494

criterion, and then limit the selection region to the 495

calibrated prediction set for post-processing. 496

Utility of Calibrated Prediction Sets. Since for 497

some test samples, all the candidate generations 498

can be filtered out by the conformal uncertainty 499

criterion, we explore the utility of non-empty pre- 500

diction sets in practice. Figure 2 exhibits that the 501

prediction sets achieve promising correctness cov- 502

erage rate, raising to 100% as the accepted error 503

rate increases. In the MedQA dataset, while the 504
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Figure 3: The average correctness coverage rate across
4 datasets at different ratios of the size between the cali-
bration and test set utilizing the LLaMA-3-8B-Instruct
model. The accepted error rate is set to 0.1, and the red
dashed line in the figure indicates the lower bound of
accuracy at 0.9 (i.e., α = 0.1).

error rate is set to 0.1, we almost achieve absolute505

correctness coverage guarantees, indicating that,506

without reference answers provided in real-world507

high-stakes situations, we can ensure that the small508

reference range we have established contains the509

correct answer for posterior selection, and then510

high-uncertainty problems will be handed over to511

experts, which aligns with the selective prediction512

and abstention criterion.513

Based on the proposed uncertainty measure, we514

conduct post-processing to select the generation515

with the lowest uncertainty score from each cali-516

brated prediction set and evaluate the total selective517

accuracy. It is worth noting that the performance518

depends on the quality of the uncertainty measure.519

Results are summarized in Table 4. Through pos-520

terior selection, we obtain promising accuracy im-521

provement despite several empty prediction sets.522

4.4 Ablation Studies523

Considering that these sampling-based methods524

integrate multiple generations within the candi-525

date set, We investigate the effects of the num-526

ber of sampled generations (i.e., M ) on the per-527

formance of UQ. As illustrated in Figure 4, our528

uncertainty measure consistently outperforms the529

baseline approaches, and its performance can be530

further boosted by incorporating more generations.531

While employing just 4 generations, our method532

is able to achieve the highest AUROC of 0.8082,533

demonstrating its generation-efficient nature.534

As described in Section 3.3, conformal predic-535

Figure 4: The performance of UQ over various numbers
of generations. Results are obtained from the LLaMA-3-
8B-Instruct model on the TriviaQA dataset. Our method
consistently surpasses 7 baseline methods.

tion assumes a calibration set for the threshold q̂. 536

In our prior analysis, We divide the dataset into the 537

calibration and test set at a fixed ratio of 1:10. Here, 538

we investigate the correctness coverage rate at dif- 539

ferent ratios of size between the calibration and test 540

set, and present the results in Figure 3. Despite var- 541

ious ratios of set size, we can always obtain a strict 542

lower bound of correctness coverage by construct- 543

ing prediction sets based on our devised conformal 544

uncertainty criterion. This indicates the potential 545

impacts of our method for robust guarantees in 546

real-world open-ended NLG applications. 547

5 Conclusion 548

In this work, we introduce ConU tailored for black- 549

box UQ in open-ended NLG tasks. Relying on CP 550

which can transform any heuristic approximation 551

into a statistically rigorous uncertainty notion, we 552

develop a robust conformal uncertainty criterion to 553

provide reliable guarantees of correctness coverage 554

under various user-specified error rates. We achieve 555

strict control of the coverage rate across 6 practical 556

LLMs on 4 free-from NLG datasets. Furthermore, 557

the small average uncertainty set size underscores 558

the efficiency of our methods. Utilizing these cal- 559

ibrated prediction sets, we perform selective pre- 560

diction and obtain remarkable improvements in 561

model accuracy. We envisage that our conformal 562

uncertainty criterion can provide new strategies for 563

principled UQ in open-ended NLG tasks. 564

Limitations 565

Our approach has some limitations. In our study, 566

we assume that at least one correct answer exists 567
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in the candidate generations. However, we need568

to develop a criterion to verify whether the correct569

answer has been sampled from the unbound output570

space in real-world applications. Secondly, our571

findings are limited to the four datasets and future572

works will extend to other typical NLG tasks like573

document summarization. Finally, we will attempt574

to expand our conformal uncertainty criterion to575

non-exchangeability scenarios, aiming to establish576

a general criterion across different NLG tasks.577
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A Proof of the Coverage Property757

This is the explanation of validity for the conformal758

uncertainty criterion introduced in Section 3.3. We759

reproduce the derivation here for completeness. Let760

us break down the overall implementation into the761

following five steps:762

Black-box Uncertainty Measure. We first con-763

duct semantic clustering within the M candidate764

generations and obtain K non-repeated semantics765

for each sample. Since generations in the k-th clus-766

ter share the equivalent meaning, we denote any767

one generation in the k-th cluster as ŷ(i)k . Then we768

rely on self-consistency and define the uncertainty769

score of each candidate generation as U
(
ŷ
(i)
m

)
as770

described in Eq. (1).771

NS Definition. For each calibration sample, we772

select the generation that first shares the equiva-773

lent semantics with the reference answer and then774

exhibits the highest semantic similarity to the ref-775

erence answer, and then define the NS as its uncer-776

tainty score calculated following Eq. (1). The first777

condition is to tightly couple the NS with correct-778

ness and the second is to select generations in test779

samples. The NS of the i-th calibration data ri is780

described as Eq. (4).781

Conformal Uncertainty Criterion. We calcu-782

late the ⌈(N+1)(1−α)⌉
N quantile of the NSs for all783

calibration data to develop our conformal uncer-784

tainty criterion (i.e., the uncertainty threshold q̂)785

based on the user-specified error rate α. As de-786

scribed in Eq. 5, q̂ = r⌈(N+1)(1−α)⌉.787

Construction of Prediction Sets. For each test788

data, we construct the prediction set following789

Eq. (6). Since the generation that is semantically790

equivalent to ŷ
(test)
i and shares the highest seman-791

tic similarity to ŷ
(test)
i in

{
ŷ
(test)
m

}M

m=1
is itself, we792

obtain r
(
xtest, ŷ

(test)
j

)
= U

(
ŷ
(test)
j

)
. Then we793

calibrate the prediction set by selecting generations,794

of which the uncertainty satisfies the conformal un-795

certainty criterion closely linked with correctness.796

Correctness Coverage Guarantees. Consider-797

ing the assumption that there is at least one cor-798

rect answer in
{
ŷ
(test)
m

}M

m=1
, we can conclude799

that the event {y∗test ∈ P (xtest)} is equivalent to800

{rtest = r (xtest, y
∗
test) ≤ q̂}. Since (x1, y

∗
1), ...,801

(xN , y∗N ), (xtest, y∗test) are exchangeable, we have802

P (rtest ≤ ri) =
i

N+1 . Ultimately, we achieve rig-803

orous guarantees of the correctness coverage rate804

on test samples as described as Eq. (7).805

B Implementation Details 806

B.1 Baselines 807

We compare ConU with 8 baseline measures. PE 808

is defined as the entropy over the whole generation 809

and LNPE is the length normalized PE. SE tackles 810

the issue of semantic equivalence by gathering gen- 811

erations sharing the same meaning into semantic 812

clusters and calculating cluster-wise entropy. SAR 813

solves the issue of generative inequality and allo- 814

cates more attention to key tokens and sentences. 815

LS measures the average sentence similarity among 816

sampled responses. NumSet employs the number of 817

semantic sets (equivalence classes) as a reflection 818

of uncertainty. Deg and Ecc treat each generation 819

as one node, calculate the symmetric normalized 820

graph Laplacian, and respectively utilize the degree 821

matrix and the average distance from the center as 822

the uncertainty measures. 823

We do not compare the two recent approaches 824

that adapt CP for correctness coverage in open- 825

ended NLG tasks for several reasons: (1) Confor- 826

mal language modeling (Quach et al., 2023) relies 827

on the white-box model likelihoods information, 828

which is impractical for recent LLMs served via 829

API without logit access; (2) LofreeCP (Su et al., 830

2024) is susceptible to different settings of datasets 831

and models, and cannot consistently guarantee the 832

correctness coverage rate; (3) Our conformal un- 833

certainty criterion achieves strict control of the cor- 834

rectness coverage rate under various user-specified 835

error rates, model settings, and datasets, first link- 836

ing black-box UQ with rigorous guarantees of cor- 837

rectness coverage, which meets the requirement for 838

general NLG applications. 839

B.2 Datasets 840

CoQA (Reddy et al., 2019) is a large-scale conver- 841

sational QA dataset with more than 127k question- 842

answer pairs equipped with contextual information. 843

TriviaQA (Joshi et al., 2017) is a reading compre- 844

hension dataset with over 650k question-answer 845

pairs. MedQA (Jin et al., 2021) is a medical MCQA 846

dataset collected from professional medical board 847

exams. MedMCQA (Pal et al., 2022) is a large- 848

scale MCQA dataset for practical medical entrance 849

exam questions. For the evaluation of UQ, we ran- 850

domly select 3,000 samples from each dataset. For 851

the verification of correctness coverage guarantees, 852

we utilize the development set (7,983 questions) 853

of CoQA and full validation sets of MedQA and 854

MedMCQA. For TriviaQA, we utilize the same 855
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3,000 samples in UQ evaluations.856

For CoQA, we utilize the contextual informa-857

tion combined with the question as the prompt.858

For TriviaQA and MedMCQA, we randomly select859

5 question-answer pairs as a fixed few-shot tem-860

plate and combine it with the current question. For861

MedQA, we employ 3 question-answer pairs.862

C Robustness of Conformal Uncertainty863

Criterion864

We verify the correctness coverage guarantees on865

other 5 LLMs across 4 datasets. As demonstrated866

in Figures 5 ˜ 9, we achieve rigorous control of cov-867

erage rate under various user-specified error rates868

despite different model settings or datasets. We869

also report the results of the correctness coverage870

rate under two strict error rates of 0.05 and 0.01.871

Table 5 and Table 6 indicate the robustness of our872

conformal uncertainty criterion.873

Figure 5: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the Mistral-7B-Instruct-
v0.3 model as the generator.

Figure 6: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the LLaMA-3-8B-
Instruct model as the generator.

Figure 7: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the LLaMA-2-13B-Chat
model as the generator.

Figure 8: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the Vicuna-13B-v1.5
model as the generator.

Figure 9: Target vs. empirical correctness coverage rate.
We test the 4 datasets utilizing the LLaMA-3-70B-
Instruct model as the generator.
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Table 5: The results of correctness coverage rate (%)
on 6 LLMs across 4 open-ended NLG datasets. The
user-accepted error rate α is strictly set to 0.05.

LLMs TriviaQA CoQA MedQA MedMCQA

LLaMA-2-7B-Chat 95.26 96.45 100.00 95.99
Mistral-7B-Instruct-v0.3 95.01 95.72 95.79 95.12
LLaMA-3-8B-Instruct 98.17 95.23 95.78 98.38
LLaMA-2-13B-Chat 95.04 96.96 95.15 96.59

Vicuna-13B-v1.5 97.28 95.33 95.51 97.29
LLaMA-3-70B-Instruct 95.38 95.33 95.51 97.29

Table 6: The results of correctness coverage rate (%)
on 6 LLMs across 4 open-ended NLG datasets. The
user-accepted error rate α is strictly set to 0.01.

LLMs TriviaQA CoQA MedQA MedMCQA

LLaMA-2-7B-Chat 99.93 99.83 100.00 99.14
Mistral-7B-Instruct-v0.3 99.38 99.27 99.15 99.81
LLaMA-3-8B-Instruct 99.79 99.53 100.00 99.76
LLaMA-2-13B-Chat 99.06 99.13 99.51 99.48

Vicuna-13B-v1.5 99.52 100.00 99.94 100.00
LLaMA-3-70B-Instruct 99.84 99.75 99.15 99.82
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