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ABSTRACT

While scaling individual Large Language Models (LLMs) has delivered remark-
able progress, the next frontier lies in scaling collaboration through multi-agent
systems (MAS). However, purely autonomous MAS remain “closed-world” sys-
tems, constrained by the static knowledge horizon of pre-trained models. This
limitation makes them brittle on tasks requiring knowledge beyond training data,
often leading to collective failure under novel challenges. To address this, we pro-
pose the Learning to Intervene via Metacognitive Adaptation (LIMA) frame-
work, a principled paradigm for human–agent collaboration. LIMA trains agents
to learn a metacognitive policy that governs when to solve problems autonomously
and when to defer to a human expert. To operationalize this policy, we introduce
Dual-Loop Policy Optimization, which disentangles immediate decision-making
from long-term capability growth. The inner loop applies Group Relative Policy
Optimization (GRPO) with a cost-aware reward to optimize deferral decisions,
while the outer loop implements continual learning, transforming expert feedback
into high-quality supervised signals that strengthen the agent’s reasoning ability.
Experiments on challenging mathematical and problem-solving benchmarks show
that LIMA, equipped with Dual-Loop Policy Optimization, consistently outper-
forms state-of-the-art MAS, establishing a principled foundation for collaborative
and continually improving agentic systems.

1 INTRODUCTION

While scaling individual Large Language Models (LLMs) has produced remarkable progress, the
next frontier lies in scaling collaboration through multi-agent systems (MAS) (Hong et al., 2023;
Chen et al., 2023b; Jiang et al., 2023; Ning et al., 2023; Han et al., 2025; Wang et al., 2025a).
By coordinating multiple agents to tackle problems beyond the reach of any single model, this
paradigm has inspired a wave of innovations from structured debates to dynamic workflow opti-
mization (Zhang et al., 2024a; Qiao et al., 2024; Han et al., 2025). Yet these systems face an inherent
ceiling: no matter how sophisticated their interaction protocols, purely autonomous agents remain
fundamentally closed-world. Their knowledge horizon is bounded by pre-training corpora (Wang
et al., 2023b; Srivatsa et al., 2024; Du et al., 2023; Liu et al., 2024). While they can recombine
existing information, they cannot generate new knowledge or adapt to unseen contexts. This creates
vulnerabilities when tasks demand real-time information, domain-specific expertise, or reasoning
patterns absent from training (Zhang et al., 2024d; Chen et al., 2025). In such cases, internal col-
laboration alone cannot bridge the gap, often leading to collective failure. To break this ceiling and
enable open-ended intelligence, a new paradigm is needed. We argue that the most principled path
is to integrate external human expertise, transforming closed systems into adaptive frameworks
capable of continual learning and growth (Sun et al., 2025; Zou et al.).

Within this closed-world paradigm, research has followed two main directions. The first empha-
sizes optimizing autonomous collaboration through increasingly sophisticated interaction proto-
cols. Frameworks based on structured debate (Chan et al., 2023; Liu et al., 2024), topology con-
trol (Ong et al., 2024; Chen et al., 2024b), and workflow graph optimization (Zhang et al., 2024b;
Li et al., 2025) have demonstrated notable improvements in refining and recombining agents’ in-
ternal knowledge. However, these methods largely engage in collective introspection (Zhang et al.,
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2024e; Chen et al., 2024a), maximizing the use of existing information without extending beyond
the aggregate knowledge boundary. They act as powerful integrators, but not true learners capable
of acquiring genuinely new capabilities. Recognizing this intrinsic limitation, a second line of work
has sought to incorporate human expertise (Takerngsaksiri et al., 2025; Mozannar et al., 2025).
Many human-in-the-loop systems (Liu et al., 2023; Pandya et al., 2024) treat humans primarily as
passive oracles or supervisors for sub-tasks. This leaves two critical questions unresolved: when to
defer to the expert, often reduced to heuristics such as low-confidence thresholds rather than learned
policies (Kenton et al., 2024; Li et al., 2024b); and how to learn from human input, which is typi-
cally applied as a one-time fix rather than as a catalyst for long-term capability growth (Mu et al.,
2024; Wang et al., 2025b). Importantly, human intervention holds the potential to operate at multiple
levels, offering both localized corrections to specific reasoning errors and broader adjustments that
reshape the overall collaborative process (Triem & Ding, 2024; Grondin et al., 2025).

This analysis highlights that the key challenge is not whether agents can interact with humans, but
whether they can do so intelligently and strategically. Addressing this requires a metacognitive pol-
icy, a high-level strategy for reasoning about both self-competence and peer competence to guide
collaboration. Such a policy must solve two intertwined problems: when to ask, which demands
moving beyond heuristics to model uncertainty and balance the risk of failure against the cost of
intervention; and how to grow, which requires mechanisms that turn expert feedback into lasting
capability improvements rather than one-time fixes. A paradigm that unifies these elements is es-
sential for building open and continually evolving agentic systems.

To address these challenges, we propose the Learning to Intervene via Metacognitive Adaptation
(LIMA) framework, a principled paradigm for human–agent collaboration. The key contribution of
LIMA is not the mere inclusion of a human in the loop, but the endowment of agents with a sophis-
ticated metacognitive policy that governs when and how to engage with external expertise. LIMA
operationalizes this paradigm through three coordinated components: (i) Autonomous Operation,
where agents attempt problem-solving using their evolving capabilities; (ii) Metacognitive Assess-
ment, where agents evaluate confidence and task difficulty to identify their knowledge boundaries;
and (iii) Strategic Deferral, where human expertise is leveraged as a targeted intervention rather
than as a passive oracle. Developing this metacognitive policy requires a dedicated optimization
strategy. We therefore introduce Dual-Loop Policy Optimization (DLPO), a reinforcement learn-
ing methodology that separates short-term decision-making from long-term capability growth. The
inner loop employs Group Relative Policy Optimization (GRPO) with a cost-aware reward to re-
fine the agent’s deferral behavior in real time. The outer loop implements continual learning by
transforming expert feedback from deferral events into high-quality supervised samples, thereby
improving the agent’s underlying reasoning ability. Together, LIMA and DLPO move beyond static
supervision, enabling agents to learn both when to seek guidance and how to grow from it.

In summary, the main contributions of this paper are as follows:

• We propose the Learning to Intervene via Metacognitive Adaptation (LIMA) frame-
work, a paradigm for human–agent collaboration that equips agents with a metacognitive
policy to decide when to strategically defer to human expertise.

• We introduce Dual-Loop Policy Optimization (DLPO), a training methodology that sep-
arates short-term deferral decisions from long-term capability growth. The inner loop em-
ploys GRPO with a cost-aware reward, while the outer loop leverages expert feedback as
supervised signals for continual learning.

• Extensive experiments on mathematical reasoning and general problem-solving bench-
marks demonstrate that LIMA with DLPO outperforms both autonomous multi-agent sys-
tems, establishing a robust foundation for continually improving agentic collaboration.

2 RELATED WORK

Large language models (LLMs) acting alone are limited by context length, sequential generation,
and restricted skill coverage, which constrains their ability to solve complex reasoning tasks (Gabriel
et al., 2024; Liang et al., 2023; Xiong et al., 2023; Yin et al., 2023; Zhang et al., 2023). To mitigate
these issues, multi-agent systems (MAS) have been widely explored, where multiple LLMs are
organized into collaborative structures for collective problem solving (Hong et al., 2023; Chen et al.,
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2023b; Jiang et al., 2023; Qiao et al., 2024; Pan et al., 2024). Early efforts relied on prompt-based
paradigms that assign predefined roles or workflows, enabling debate, critique, or corporate-style
pipelines (Du et al., 2023; Chan et al., 2023; Wang et al., 2023a; Han et al., 2025). While effective,
these designs lack adaptability since their interaction protocols are fixed and cannot evolve through
experience. More recent work moves toward structured coordination and adaptive communication.
Predefined schemes employ debate or peer-review across chains, trees, or graphs (Liu et al., 2024;
Qian et al., 2024), while adaptive methods restructure interactions dynamically via routing, pruning,
or workflow search (Zhang et al., 2024b; Zhuge et al., 2024; Yue et al., 2025).

A complementary line of research introduces human-in-the-loop collaboration. Humans have been
positioned as supervisors, oracles, or evaluators, providing corrections or domain knowledge to
strengthen agent performance (Takerngsaksiri et al., 2025; Mozannar et al., 2025; Liu et al., 2023;
Pandya et al., 2024). Closely related, Siedler & Gemp (2025) study LLM-mediated guidance in
MARL, where an LLM serves as a natural-language controller that interprets and delivers interven-
tions to shape agents’ learning trajectories and accelerate training. However, such systems often
rely on heuristics (e.g., confidence thresholds) to trigger deferral (Kenton et al., 2024; Li et al.,
2024b), and feedback is usually treated as a one-time fix rather than a signal for sustained capability
growth (Mu et al., 2024; Wang et al., 2025b). Recent discussions highlight that human involvement
can occur at multiple levels, from correcting local reasoning errors to reshaping global collaborative
dynamics (Triem & Ding, 2024; Grondin et al., 2025). Together, these directions have advanced the
field of MAS, yet challenges remain in moving beyond closed-world recombination toward open
and adaptive collaboration. A detailed review of related work is provided in Appendix A.
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Figure 1: Comparison of collaborative reasoning paradigms. Left: Single-Agent Self-Reflection,
where an individual agent iteratively improves its reasoning. Middle: Multi-Agent Debate and Dy-
namic Graph coordination, where multiple agents interact to refine knowledge integration. Right:
Adaptive Collaboration with Humans, which augments multi-agent with strategic human guidance
and Dual-Loop Policy Optimization, enabling both localized corrections and global improvements.

3 METHODOLOGY

Our methodology builds a multi-agent system designed for adaptive collaboration with a human
expert. Figure 1 illustrates this setting in contrast to single-agent and purely multi-agent debate
frameworks. At its core is a metacognitive policy that enables agents to reason about both their own
competence and that of their peers, thereby deciding when to act autonomously and when to defer
to external expertise. We formalize this collaborative process as a Metacognitive Markov Decision
Process, which provides the foundation for our framework. The framework is then specified through
a structured cognitive state space and a functional action space. Finally, we introduce a Dual-Loop
Policy Optimization algorithm that combines reinforcement learning to refine the metacognitive
policy with continual learning to integrate expert feedback into lasting capability growth.
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3.1 PRELIMINARIES: THE METACOGNITIVE MARKOV DECISION PROCESS

We model human–agent collaboration as a Metacognitive Markov Decision Process (Meta-MDP),
which formalizes decision-making over high-level cognitive strategies such as autonomous problem-
solving or deferral to human expertise. This abstraction provides a principled foundation for defining
states, actions, transitions, and rewards in our collaborative framework. The full formalization and
detailed design are provided in Appendix B.

3.2 A FRAMEWORK FOR HUMAN-AGENT COLLABORATION

Building on the Meta-MDP, we introduce a framework that operationalizes human–agent interac-
tion through three components: (i) a structured cognitive state space that encodes problem context
and metacognitive assessments, (ii) a functional action space representing high-level collaboration
strategies, and (iii) an interaction protocol that specifies coordination across rounds. These elements
allow agents to reason about tasks while regulating their decision boundaries in a principled way.

3.2.1 STRUCTURED COGNITIVE STATE SPACE

A sophisticated metacognitive policy requires a rich and informative state representation that goes
beyond simple dialogue history. We therefore design a structured cognitive state space st com-
posed of distinct dimensions intended to encode signals about an agent’s confidence, its alignment
with the group, and heuristic indicators of its current reasoning quality. For each agent i, the local
assessment is represented by a feature vector with three components. The first dimension, Certainty
and Confidence (zcert

t ), aggregates proxies for the agent’s belief in its current solution, such as a
Self-Confidence Score and a measure of Solution Uncertainty (e.g., Shannon entropy over candi-
date choices). The second dimension, Social Cohesion and Dissonance (zsoc

t ), encodes the agent’s
standing within the group via metrics like Inter-Agent Agreement and overall Answer Diversity. Fi-
nally, the Argumentative Quality (zarg

t ) dimension summarizes properties of the agent’s generated
‘Reason’, including features such as Reasoning Complexity and Evidence Grounding. The full cog-
nitive state st for an agent is then the concatenation of these feature vectors with the global problem
context xt:

st = concat(xt, z
cert
t , zsoc

t , zarg
t ). (1)

By structuring the state space in this manner, we provide the policy with a multi-faceted set of task-
and interaction-level signals on which to condition its decisions about whether to continue, revise,
or defer.

3.2.2 THE STRATEGIC ACTION SPACE

The action space A in our Meta-MDP is not defined by low-level text generation, but by a discrete set
of high-level cognitive strategies. These actions empower the agent to manage its problem-solving
process, balancing the exploitation of existing collective knowledge against the exploration of new
solutions and the strategic deferral to external expertise. Formally, the action space is defined as
A = {aeval, acreate, adefer}.

Evaluate (aeval): Exploiting Collective Knowledge. This action represents the cognitive stance
of convergence and synthesis. When selecting aeval, the agent commits to exploiting the existing
knowledge within the multi-agent group. Operationally, it must select and endorse one of the so-
lutions already proposed by its peers in the current round. This action allows the agent to leverage
collective intelligence and reinforce high-quality, consensual solutions.

Create (acreate): Creative Exploration and Hypothesis Generation. This action embodies the
cognitive stance of divergence and exploration. By choosing acreate, the agent posits that the current
solution pool is insufficient and commits to generating a novel solution sequence (‘Choice‘, ‘Rea-
son‘) from scratch. This action is crucial for breaking cognitive fixation, correcting shared errors
within the group, and introducing new, potentially superior reasoning paths.

Defer (adefer): Risk Mitigation and Knowledge Augmentation. This action represents the high-
est level of metacognitive awareness—the ability to recognize the limits of the system’s own ca-
pabilities. Selecting adefer signals that the agent assesses the problem’s uncertainty or difficulty to
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be beyond the collective’s current ability to solve reliably. Operationally, this triggers a call to the
external human expert, whose high-quality demonstration is then used as the round’s output. This
action serves as both a mechanism for ensuring task success in critical situations and as a conduit
for introducing new knowledge into the system via continual learning.

3.2.3 COLLABORATIVE INTERACTION MODEL

A defining feature of our framework is the integration of human expertise into collective reasoning
through a structured, multi-round protocol. At each round t, all N agents receive the shared cognitive
state st. Each agent i independently samples a metacognitive action ai,t ∼ πθ(a|st) and executes
it in parallel. The output yi,t depends on the chosen action. When acting autonomously, the agent
applies its internal generation process gθ(st). When deferring, it adopts the authoritative solution
yhuman,t provided by the expert:

yi,t =

{
gθ(st), if ai,t ∈ {aeval, acreate},
yhuman,t, if ai,t = adefer.

(2)

The collection {y1,t, . . . , yN,t} then forms the next state st+1, ensuring that updates reflect the most
reliable signals, whether from autonomous synthesis or human demonstration.

From a learning perspective, the Defer action plays a dual role. It serves as risk mitigation, ensuring
progress under uncertainty by overriding flawed solutions, and as knowledge augmentation, inject-
ing expert demonstrations as high-quality samples for continual learning (Section 3.3). Thus, the
human collaborator functions not merely as a fallback oracle but as a driver of system improvement.

3.3 ADAPTIVE POLICY OPTIMIZATION WITH CONTINUAL LEARNING

Mastering the metacognitive challenges described above requires an optimization strategy that bal-
ances two competing paths: the high-risk but potentially high-reward route of autonomous problem-
solving, and the low-risk but constrained option of deferring to an expert. This trade-off naturally
lends itself to reinforcement learning (RL), where the goal is to learn a policy πθ that maximizes
the expected utility of the collaborative process. To address this, we propose a Dual-Loop Policy
Optimization (DLPO) framework that integrates a reinforcement learning objective for strategic
policy optimization with a supervised objective for continual knowledge acquisition.

3.3.1 INNER LOOP: REINFORCEMENT LEARNING FOR METACOGNITIVE POLICY

The inner loop optimizes the agent’s high-level policy πθ(a|st) over strategic actions. The key
challenge is to provide a learning signal that reflects the trade-off between autonomous success,
potential failure, and the cost of expert intervention. This problem is well-suited to Group Relative
Policy Optimization (GRPO), which contrasts the relative advantages of actions in each state.

Reward Formulation. We design a reward function R(st, at) that incorporates the Cost of In-
quiry. Autonomous actions receive a binary ground-truth reward Rgt ∈ {+1,−1}, while the ‘Defer‘
action yields a discounted reward reflecting expert reliability and intervention cost:

R(st, ak) =

{
Rgt(yk), ak ∈ {aeval, acreate},
Rhuman − C, ak = adefer,

(3)

where Rhuman accounts for expert accuracy and C is a tunable penalty.

GRPO Objective. Given the reward vector Rt = [R(st, a1), . . . , R(st, aK)], advantages are
computed by centering rewards:

A(st, ak) = R(st, ak)− 1
K

K∑
j=1

R(st, aj). (4)

The policy gradient objective is:
LPG(θ) = −Est,at∼πθ

[
A(st, at) log πθ(at|st)

]
. (5)

Two regularizers ensure stability: a KL-penalty constrains deviation from the reference policy πref,
and an entropy bonus promotes exploration. The final inner-loop loss is:

LInner = LPG + βklLKL − βentLEntropy. (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3.2 OUTER LOOP: CONTINUAL LEARNING FROM EXPERT FEEDBACK

While the inner loop optimizes how the agent uses its current abilities, a truly adaptive system
must also expand them. Reinforcement learning alone cannot overcome the knowledge ceiling of
the base LLM, as it improves decision policies without introducing fundamentally new skills. To
break this ceiling, we introduce an outer optimization loop for Continual Learning from Expert
Demonstrations.

This loop is activated by the ‘Defer‘ action, which indicates that the agent has identified a knowledge
gap. When deferring, the agent receives a high-quality demonstration yhuman = (t1, . . . , tL) from
the expert, which is converted into a supervised fine-tuning (SFT) sample. The training objective is
to maximize the likelihood of this sequence, conditioned on the state st, by minimizing the cross-
entropy loss:

LSFT(θ) = −
L∑

i=1

log πθ(ti | st, t1:i−1). (7)

In this design, the inner RL loop determines when to defer, while the outer loop teaches what to learn
from expert input. Together, they establish an apprentice–mentor dynamic: the agent strategically
invokes human guidance and systematically assimilates it into lasting capability growth.

3.3.3 THE FINAL DUAL-LOOP POLICY OPTIMIZATION OBJECTIVE

The inner and outer loops are optimized jointly to train a single agent that is both strategically
adept and continually improving. The final training objective is a principled combination of the
reinforcement learning signal from the inner loop and the conditional supervised signal from the
outer loop. The total loss, Ltotal, is computed over a batch of experiences:

Ltotal(θ) = E(st,at)

[
LInner(θ) + λsft · I(at = adefer) · LSFT(θ)

]
, (8)

where LInner(θ) is the full GRPO objective, λsft is a hyperparameter balancing the two learning
signals, and I(·) is the indicator function that ensures the SFT loss is only applied when the ‘Defer‘
action is taken.

4 EXPERIMENTS

Experimental Setup. We evaluate our method on a broad suite of benchmarks, including general
language understanding (MMLU), program synthesis (HumanEval), and quantitative mathematics
(GSM8K, MATH, AIME, AMC). Following related works (Liu et al., 2023; Pandya et al., 2024), we
employ GPT-4o-mini as a proxy human expert, leveraging its strong reasoning capability to simulate
human interventions. Detailed experimental and training settings are provided in Appendix C.1.

Overall Performance. Table 1 shows that our LIMA framework establishes a new state-of-the-
art, consistently surpassing strong autonomous multi-agent baselines across all six reasoning bench-
marks. These baselines, including debate-style (e.g., LLM-Debate), topology-based (e.g., DyLAN),
and graph-optimization (e.g., GPTSwarm, AFLOW) methods, remain confined to ”closed-world”
collaboration, where performance is capped by the agents’ internal knowledge and often falters
on problems requiring non-obvious reasoning paths. In contrast, LIMA introduces an ”open-world”
dynamic by enabling agents to strategically access external expertise, directly addressing this knowl-
edge ceiling. On the Llama3-8B backbone, our trained agent achieves average gains of 7%–12%
over the strongest autonomous baselines, with the largest improvements on competition-style math
tasks such as AIME, where cascade failures from flawed premises are common. By learning a
metacognitive policy to defer under high uncertainty, LIMA avoids these pitfalls and effectively
leverages superior guidance. These results confirm that performance gains stem not from complex
interaction alone, but from principled integration of external knowledge and the agent’s learned
ability to decide when to invoke it.

Model Scalability and Generality. We test whether the proposed framework transfers across het-
erogeneous backbones and model sizes by evaluating Qwen2.5-7B, Qwen2.5-3B, LLaMA3-8B, and
LLaMA3-3B on GSM8K. Table 2 shows large variation in autonomous baselines: larger models
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Model GSM8K AMC AIME MATH HumanEval MMLU

Vanilla 72.76 (+0.00) 8.03 (+0.00) 2.96 (+0.00) 42.85 (+0.00) 47.56 (+0.00) 57.99 (+0.00)
CoT 74.22 (+1.46) 11.65 (+3.62) 3.70 (+0.74) 46.93 (+4.08) 51.42 (+3.86) 61.57 (+3.58)
SC 80.79 (+8.03) 12.45 (+4.42) 4.07 (+1.11) 51.28 (+8.43) 57.52 (+9.96) 68.30 (+10.31)

PHP 80.01 (+7.25) 15.66 (+7.63) 4.44 (+1.48) 53.71 (+10.86) 56.50 (+8.94) 68.46 (+10.47)
Debate 83.52 (+10.76) 19.28 (+11.25) 5.56 (+2.60) 56.25 (+13.40) 57.72 (+10.16) 67.59 (+9.60)
G-Debate 83.98 (+11.22) 20.48 (+12.45) 5.19 (+2.23) 57.42 (+14.57) 57.93 (+10.37) 69.89 (+11.90)
DyLAN 82.03 (+9.27) 19.68 (+11.65) 3.70 (+0.74) 55.32 (+12.47) 61.59 (+14.03) 66.85 (+8.86)
G-Swarm 84.89 (+12.13) 15.66 (+7.63) 5.78 (+2.82) 56.69 (+13.84) 59.55 (+11.99) 69.67 (+11.68)
A-Prune 84.38 (+11.62) 16.47 (+8.44) 4.81 (+1.85) 54.37 (+11.52) 57.11 (+9.55) 69.09 (+11.10)
AFlow 83.75 (+10.99) 12.05 (+4.02) 4.44 (+1.48) 55.28 (+12.43) 62.20 (+14.64) 69.31 (+11.32)

LIMA 88.23 (+15.47) 27.32 (+19.29) 8.12 (+5.16) 62.52 (+19.67) 65.78 (+18.22) 71.35 (+13.36)
w/ DLPO 91.25 (+18.49) 30.30 (+22.27) 9.30 (+6.34) 65.46 (+22.61) 67.82 (+20.26) 73.58 (+15.59)

Table 1: Comparison of baseline and proposed methods using the LLaMA3-8B backbone. All values
are percentages (the percent sign is omitted in the table). Values in parentheses denote absolute dif-
ferences relative to the Vanilla baseline (first row). Underlined numbers indicate the best-performing
baseline on each benchmark. The additional experiments on scalability, cost, stronger proxy experts,
and performance gain analyses are provided in Appendix D.

Model Qwen2.5-7B Qwen2.5-3B LLaMA3-8B LLaMA3-3B

Vanilla 90.88 (+0.00) 83.37 (+0.00) 72.76 (+0.00) 46.85 (+0.00)
CoT 90.98 (+0.10) 84.56 (+1.19) 74.22 (+1.46) 50.14 (+3.29)
SC 92.95 (+2.07) 88.60 (+5.23) 80.79 (+8.03) 54.21 (+7.36)

PHP 93.30 (+2.42) 86.45 (+3.08) 80.01 (+7.25) 62.22 (+15.37)
LLM-Debate 93.63 (+2.75) 87.14 (+3.77) 83.52 (+10.76) 75.84 (+28.99)
DyLAN 93.15 (+2.27) 88.10 (+4.73) 82.03 (+9.27) 76.47 (+29.62)
GPTSwarm 92.27 (+1.39) 86.78 (+3.41) 84.89 (+12.13) 69.19 (+22.34)
AgentPrune 92.44 (+1.56) 86.43 (+3.06) 84.38 (+11.62) 65.02 (+18.17)
AFlow 92.86 (+1.98) 87.52 (+4.15) 83.75 (+10.99) 68.37 (+21.52)
LIMA 96.38 (+5.50) 93.51 (+10.14) 91.25 (+18.49) 81.35 (+34.50)

Table 2: Performance of baselines across four LLM backbones on GSM8K. All values are percent-
ages (percent sign omitted). Parentheses show absolute differences (percentage points) relative to
the Vanilla row for each backbone. LIMA refers to the agent trained with the proposed DLPO.

are stronger than their 3B counterparts, and Qwen2.5 backbones start from higher scores than
LLaMA3. Despite these differences, LIMA improves every backbone. Relative to the strongest
non-LIMA baseline in each column, the absolute gains are 6.36 percentage points on LLaMA3-8B
over GPTSwarm (91.25 vs. 84.89), 4.88 points on LLaMA3-3B over DyLAN (81.35 vs. 76.47),
2.75 points on Qwen2.5-7B over LLM-Debate (96.38 vs. 93.63), and 5.41 points on Qwen2.5-3B
over DyLAN (93.51 vs. 88.10). The improvements are particularly pronounced for smaller models,
where collaboration quality compensates for limited capacity. LIMA also surpasses several stronger-
size baselines; for example, on Qwen2.5-3B it exceeds multiple 7B methods. These observations
indicate that the benefit is largely orthogonal to the model’s intrinsic knowledge. Rather than inject-
ing task facts, LIMA provides a transferable collaboration and selection policy that reliably raises
performance across families and sizes, with the largest payoffs where models start weaker.

Proactive Human Intervention for Local Reasoning Correction. A central motivation for our
study is that humans should not only respond passively when multi-agent systems request assistance,
but also possess the ability to intervene proactively. As discussed earlier, the role of humans in col-
laborative systems extends beyond providing final solutions; equally important is their capacity to
identify and correct local reasoning flaws during the interaction process. Leveraging our interac-
tive collaboration architecture, we therefore investigate the effect of active human intervention. In
particular, we contrast two settings: replacing human feedback with GPT-4o-mini as a proxy ex-
pert, and incorporating real human experts directly. As shown in Table 3 (a), both variants improve
performance compared with pure LIMA, and real human intervention yields the strongest gains.
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Method GSM8K AMC HE

LIMA
w/ GPT-Intervene 0.9475 0.3162 0.7354
w/ Human-Intervene 0.9617 0.3359 0.7231

(a) Mode A: Active human intervention during agent
reasoning. HE denotes HumanEval dataset.

Method GSM8K AMC HE

LIMA
w/ GPT-Help 0.9236 0.3030 0.6835
w/ Human-Help 0.9317 0.2875 0.6717

(b) Mode B: Human assistance only when the system
requests guidance.HE denotes HumanEval dataset.

Table 3: Human involvement under two modes. Left: Mode A evaluates active human intervention
during agent reasoning. Right: Mode B evaluates responses when agents explicitly request guidance.
Results are reported as Solve Rate (%) on GSM8K (with subset sampling) and AMC.
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(b) Effect of replacing human collaborators

Figure 2: Ablation studies on training paradigms and external collaborators. Subfigure (a) compares
different optimization strategies, while (b) evaluates the effect of substituting human expertise with
LLMs of varying strengths.

This indicates that humans are especially adept at detecting local inconsistencies and steering the
reasoning trajectory before errors accumulate. Furthermore, both GPT-based and human-based in-
tervention outperform purely request-driven help, suggesting that proactive intervention and passive
assistance should be integrated to fully exploit the benefits of human involvement.

On-Demand Human Assistance versus Artificial Expertise. To further examine the effect of
different types of intelligence on multi-agent systems, we conduct a controlled comparison between
human experts and GPT-4o-mini when agents explicitly request guidance. Results in Table 3 (b)
show that on GSM8K subset, which involves relatively straightforward grade-school problems, hu-
man experts achieve higher solve rates, effectively solving most queries. However, on AMC, which
contains competition-level mathematical problems, human performance does not surpass GPT-4o-
mini, reflecting the limits of individual knowledge in specialized domains. These findings highlight
the extensibility of our framework: it can flexibly incorporate either human collaborators or artificial
experts, adapting to the strengths of each.

Ablation Studies on Learning Paradigms and Expert Substitutes. We perform two ablation
studies to assess the contributions of our framework. The first examines three training paradigms:
SFT-only, GRPO-only, and the complete DLPO method. SFT steadily expands the agents’ knowl-
edge by assimilating expert demonstrations. GRPO strengthens decision-making by teaching the
agents to balance the risks of autonomous attempts against the costs of expert deferrals. When com-
bined, DLPO achieves the most consistent and robust improvements, as it unifies continual knowl-
edge acquisition with metacognitive policy optimization Figure 2(a). The second ablation study
evaluates different surrogate experts, including Qwen-7B, GPT-4o-mini, and GPT-4o. As shown in
Figure 2 (b), stronger experts provide more reliable interventions and higher overall performance,
yet even weaker substitutes contribute meaningfully. These results highlight the robustness of the
framework to imperfect guidance and its extensibility to diverse sources of external expertise. A
more detailed analysis is provided in Appendix C.2.
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(b) Accuracy as a function of the number of rounds.

Figure 3: Effect of scaling collaborative configurations. (a) shows how increasing the number of
agents impacts accuracy on AMC and GSM8K, while (b) analyzes how varying the number of
interaction rounds influences performance. Together, the results highlight the trade-offs between
broader exploration through more agents and deeper refinement through additional rounds.

The Value of Collective Exploration. To examine how the size of the collective influences
performance, we evaluate the LIMA framework with varying numbers of autonomous agents
(N ∈ {1, . . . , 5}) on AMC and GSM8K. As illustrated in Figure 3 (a), accuracy improves con-
sistently as the agent count increases, surpassing 0.92 on GSM8K with four agents. This pattern
validates a central principle of our design: collective exploration. Increasing the number of par-
allel agents broadens the search space, producing more diverse candidate solutions and raising the
likelihood of finding a correct reasoning path, especially on challenging tasks. However, the gains
diminish as the number of agents grows beyond four, with the curve plateauing by five. Importantly,
the results confirm that the learned metacognitive policy scales effectively: rather than being over-
whelmed by a larger pool of outputs, the system successfully synthesizes them into progressively
stronger decisions.

Optimal Depth of Iterative Collaboration. To assess the role of iterative refinement, we evaluate
the LIMA framework with varying numbers of collaborative rounds (R ∈ {1, . . . , 5}). As shown
in Figure 3 (b), the effect of additional rounds is distinctly non-monotonic. On both AMC and
GSM8K, performance improves steadily at first, reaching its peak in the fourth round. For instance,
on the challenging AMC benchmark, accuracy rises from a single-round baseline of about 0.24
to nearly 0.31 after four rounds of interaction. These gains highlight the benefit of multi-round
collaboration, where agents leverage peer feedback to correct early errors and converge on stronger
solutions. However, extending the process beyond this optimal depth results in diminishing and
eventually negative returns, with accuracy declining in the fifth round. This pattern suggests that
excessive interaction introduces failure modes such as error amplification, where minor mistakes
propagate and intensify, or cognitive fixation, where agents collectively reinforce a flawed line of
reasoning. The findings underscore a key design trade-off: iterative refinement is valuable, but not
universally beneficial. Effective systems therefore require mechanisms to identify when additional
collaboration is productive and when it risks entrenching errors.

5 CONCLUSION

In this paper, we presented the LIMA framework, which equips multi-agent systems with a metacog-
nitive policy for deciding when to act autonomously and when to defer to human expertise. Through
our Dual-Loop Policy Optimization strategy, combining GRPO for risk-aware decision-making
with continual learning from expert demonstrations, agents achieve both short-term adaptability and
long-term growth. Experiments across diverse reasoning benchmarks show that LIMA consistently
outperforms autonomous and multi-agent baselines. Additional studies with human experts high-
light the unique role of proactive intervention in correcting local reasoning errors and strengthening
collaboration. In future work, we plan to explore fully dynamic collaboration paradigms and en-
dow multi-agent systems with stronger evolutionary capabilities, moving toward open-ended and
adaptive intelligence.
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A RELATED WORK

A.1 COLLABORATION PARADIGMS IN MULTI-AGENT LLM SYSTEMS.

Early research has shown that single LLM agents face inherent limitations in context length, se-
quential generation, and breadth of skills, which restrict their ability to solve complex tasks requir-
ing diverse perspectives or parallel reasoning (Gabriel et al., 2024; Liang et al., 2023; Xiong et al.,
2023; Yin et al., 2023; Zhang et al., 2023). To overcome these bottlenecks, recent work has explored
multi-agent systems (MAS), where multiple LLMs are orchestrated to realize collective intelli-
gence across domains such as software engineering, planning, and problem solving (Hong et al.,
2023; Chen et al., 2023b; Jiang et al., 2023; Ning et al., 2023; Qiao et al., 2024; Pan et al., 2024;
Suzgun & Kalai, 2024; Chen et al., 2023a; Ishibashi & Nishimura, 2024).

Most existing frameworks rely on prompt-based paradigms that predefine roles, communication pro-
tocols, or workflow structures. These designs enable debate, critique, and corporate-style pipelines,
achieving notable gains in coordination efficiency (Du et al., 2023; Chan et al., 2023; Chen et al.,
2024a; Mukobi et al., 2023; Wang et al., 2023a; Abdelnabi et al., 2024; Han et al., 2025). However,
because they are hand-crafted and do not adapt through experience, such systems remain fundamen-
tally closed-world: they can only recombine existing knowledge rather than acquire genuinely new
capabilities (Wang et al., 2023b; Liu et al., 2024; Chen et al., 2024b).

Beyond fixed prompts, two further directions have emerged. Prestructured coordination employs
fixed debate or peer-review topologies, such as chains, trees, or graphs, to refine reasoning (Du
et al., 2023; Liu et al., 2024; Qian et al., 2024). In contrast, self-organizing approaches adapt the
interaction graph dynamically through search, pruning, routing, or evolutionary mechanisms (Hu
et al., 2024; Shang et al., 2024; Zhang et al., 2024b; Zhuge et al., 2024; Zhang et al., 2024c; Yue
et al., 2025). These advances highlight the importance of who communicates and when, yet they pri-
marily optimize internal coordination and leave unaddressed the problem of learning from external
expertise.

In contrast, our work introduces a centralized and iterative collaboration framework that explicitly
incorporates human expertise as an open-world resource. Rather than treating human feedback
as a passive oracle or one-time correction (Takerngsaksiri et al., 2025; Mozannar et al., 2025; Liu
et al., 2023; Pandya et al., 2024), we propose to endow agents with a metacognitive policy that
governs both the timing of deferral and the assimilation of human guidance into lasting improve-
ments. This approach differs fundamentally from prior debate, routing, and workflow-search sys-
tems, which often lack principled credit assignment between reasoning and decision outcomes (Chan
et al., 2023; Talebirad & Nadiri, 2023; Wei et al., 2025). By integrating external knowledge with
learned metacognitive adaptation, our framework moves beyond static collaboration to establish a
pathway toward adaptive and continually improving multi-agent intelligence.

A.2 MULTI-AGENT REINFORCEMENT LEARNING FOR LLMS.

A growing line of work seeks to move beyond static prompt engineering and endow multi-agent
LLM systems with adaptive learning capabilities. Early efforts rely on supervised fine-tuning (SFT)
to inject collaborative patterns by imitating expert demonstrations or curated trajectories (Lu et al.,
2023; Madaan et al., 2023; Zelikman et al., 2022; Wei et al., 2021). While effective for seeding
cooperative behaviors, SFT remains limited by its offline nature and cannot adapt to novel contexts.
Reinforcement learning (RL) has thus emerged as a natural complement, enabling agents to refine
policies through trial-and-error interaction and reward-driven adaptation (Zhu et al., 2025; Zhuang
et al., 2024). In practice, SFT often serves as initialization, with RL providing fine-grained policy
improvement under feedback (Zhu et al., 2025; Li, 2019; Zhang et al., 2021).

Recent research highlights three major directions. First, compiling language into structured con-
trollers—such as graphs, code, or plans—allows RL to optimize execution policies over symbolic
abstractions rather than raw text (Zhuang et al., 2024; Jia et al., 2025; Zhu et al., 2025). Second,
online collaboration is adapted through RL-based task decomposition, communication routing, and
role assignment, which allow dynamic coordination beyond static protocols (Zhou et al., 2025; Wang
et al., 2024; Xu et al., 2025; Li et al., 2024a). Third, several studies explore learning reasoning poli-
cies directly in language space using GRPO or PPO-style updates, often integrating tools or human
input when beneficial (Wan et al., 2025; Park et al., 2025; Han et al., 2025; Peiyuan et al., 2024; Feng
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et al., 2024). These approaches underscore the importance of credit assignment and reward shaping
for aligning emergent behaviors in high-dimensional language action spaces (Wei et al., 2025; Jiang
et al., 2025; Alsadat & Xu, 2024; Lin et al., 2025).

Our work is closely aligned with this trajectory but emphasizes a key gap: most existing RL ap-
proaches focus on optimizing intra-agent or inter-agent coordination while leaving the system’s
knowledge boundary fixed. In contrast, we introduce a dual-loop perspective where RL is respon-
sible for learning a metacognitive deferral policy, and expert demonstrations triggered by deferral
events fuel continual learning. This integration addresses both immediate decision-making and long-
term capability growth, providing a principled path toward genuinely adaptive multi-agent systems.

B METHODOLOGY

B.1 PRELIMINARIES: THE METACOGNITIVE MARKOV DECISION PROCESS

We formalize the dynamics of human–agent collaboration as a Meta-Cognitive Markov Decision
Process (Meta-MDP), defined by the tuple M = (S,A, P,R, γ). A Meta-MDP provides a prin-
cipled framework for sequential decision-making where actions correspond to high-level cognitive
strategies. Formally, a Meta-MDP is defined by the tuple (S,A, P,R, γ). At each round t of the
multi-agent collaboration, the process unfolds as follows: The state st ∈ S is a structured cognitive
state representation, which encapsulates not only the external problem context but also the agent’s
internal assessment of its own and its peers’ current understanding, as we will detail in Section 3.2.
Based on this rich state, the agent selects a metacognitive action at from a discrete action space
A, which includes functional strategies such as solving the problem autonomously or deferring to
the expert. The system then transitions to a new state st+1 according to the transition function
P (st+1|st, at). A reward R(st, at) is issued, designed to incentivize both task success and the ef-
ficient utilization of the expert resource. The overarching goal is to learn an optimal metacognitive
policy π∗(at|st) that maximizes the expected cumulative reward, thereby training an agent that can
rationally balance autonomous problem-solving with strategic reliance on human guidance.

C EXPERIMENT

C.1 EXPERIMENTAL SETTINGS

Benchmarks and Evaluation. To evaluate our framework, we conduct experiments on a broad
collection of benchmarks that test complementary aspects of reasoning ability. These tasks span
three domains: general knowledge and analytical reasoning, program synthesis, and mathematical
problem solving.

For general knowledge, we use the MMLU benchmark, which includes 57 subject areas in a
multiple-choice format; performance is measured by classification Accuracy. For program synthesis,
we adopt HumanEval, where models generate code solutions from natural-language specifications;
following convention, we report Pass@1, the proportion of single attempts that succeed on all hidden
tests.

For quantitative reasoning, we consider four math-focused datasets with concise numerical answers:
GSM8K (grade-school arithmetic word problems), MATH (competition-level problems covering
algebra, geometry, combinatorics, and number theory), AIME (short-form olympiad-style tasks),
and AMC (large-scale contest problems). Performance on these datasets is reported as Solve Rate,
defined by exact match against each dataset’s normalized reference solution.

All evaluations are conducted on the official datasets with standard prompting protocols. We ex-
clude external tools and retrieval, ensuring that improvements stem from our collaboration frame-
work rather than auxiliary resources. In single-agent settings, inference is run deterministically.
For multi-agent experiments involving stochastic sampling, we fix random seeds, repeat runs, and
report averaged results. Confidence intervals are included in the appendix. This setup isolates the
contribution of our proposed method and allows for fair comparison against existing approaches.
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Baselines. To ensure a fair and comprehensive comparison, we evaluate our framework against
three broad families of baseline methods that represent the dominant paradigms in collaborative
reasoning with LLMs:

1. Single-Agent Solvers. These methods rely on a single model instance without peer in-
teraction. They capture the performance limits of prompting alone. Examples include
direct decoding under a standard prompt (Vanilla), reasoning traces generated by Chain-of-
Thought (CoT) prompting, and multi-sample aggregation methods such as Self-Consistency
(SC). Self-reflection strategies (e.g., Reflection, RASC) are also included, where the model
internally revises its outputs without external assistance.

2. Interactive Multi-Agent Deliberation. This class introduces explicit communication
among multiple agents. Agents generate, critique, and refine one another’s proposals. Ap-
proaches such as LLM-Debate implement structured argue–respond cycles, while pairwise
or pooled critique frameworks (e.g., PHP) simulate peer-review processes. These baselines
assess whether systematic interaction alone, without external expertise, can reduce errors
and improve reasoning robustness.

3. System-Level Coordination Frameworks. Some approaches treat collaboration as an
optimization problem over computational graphs. Adaptive topology and routing meth-
ods (e.g., DyLAN, MasRouter) dynamically determine communication patterns, while
workflow- and search-based systems (e.g., GPTSwarm, AFLOW) orchestrate reusable rea-
soning modules. Communication-pruning strategies such as AgentPrune improve scalabil-
ity by filtering redundant interactions. These baselines highlight efficiency and coordina-
tion at scale.

For all baselines, we control the backbone model, prompting setup, and generation budget (number
of agents, rounds, and outputs). When multiple candidates are produced, we apply the baseline’s
canonical reduction method (e.g., majority vote). No retrieval augmentation or external tools are
used. This categorization clarifies whether improvements arise from stronger single-agent reason-
ing, richer peer verification, or more effective coordination, providing a clear context for evaluating
our method.

Implementation Details. Our experiments employ three agents engaged in collaborative reason-
ing over three successive rounds. Each agent is drawn from instruction-tuned open models, specif-
ically Qwen2.5-7B-Instruct, Qwen2.5-3B-Instruct (Team, 2024), Llama-3.1-8B-Instruct, and
Llama-3.2-3B-Instruct (Dubey et al., 2024). All models are fine-tuned with a parameter-efficient
LoRA configuration, using a rank of 16. To ensure efficient execution, we rely on the Hugging-
Face Transformers framework, enabling both 8-bit quantization and key–value caching for reduced
memory usage and faster inference. Decoding follows a nucleus sampling scheme with p = 0.95,
a temperature of 0.7, and a maximum generation length of 512 tokens. For tasks requiring repro-
ducibility, such as pairwise evaluation, we reduce the temperature to 0.3. Each experimental setup
is repeated with three independent random seeds, and results are averaged to control for variance.
For optimization, we use Adam with an initial learning rate of 5 × 10−5 and apply a cosine decay
schedule. Training incorporates an entropy regularization term of 0.01 to encourage exploration,
and a KL penalty of 1.0 to anchor the learned policy to the supervised initialization. Training runs
for three epochs maximum with a global batch size of 256, distributed across four NVIDIA A100
GPUs (80 GB each).

Definition of Human Expert. In principle, the human collaborator in our framework refers to a
real person who can provide external knowledge and corrective interventions. However, following
prior studies that approximate human input with advanced language models (Liu et al., 2023; Pandya
et al., 2024), we also adopt intelligent LLMs as practical substitutes. In most experiments, we use
GPT-4o-mini as the default proxy for the human expert, striking a balance between cost and effec-
tiveness. To more rigorously assess the framework’s native design for human–agent collaboration,
we additionally conduct experiments with two complementary settings: (i) proactive intervention,
where the human actively identifies local reasoning errors, and (ii) passive assistance, where the
human responds only when explicitly queried. For comparison with real experts, we further in-
volve several PhD students in computer science with extensive research experience and specialized
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knowledge relevant to the benchmark datasets. This setup enables us to disentangle the influence of
simulated versus real human input on the multi-agent system’s performance.

C.2 EXPERIMENTAL RESULTS

Ablation Study on Learning Paradigms. We compare three training settings: SFT-only, GRPO-
only, and the full DLPO method that integrates GRPO with continual learning. As shown in Fig-
ure 2(a), the results reveal several important patterns. Pure SFT improves the baseline by con-
tinuously assimilating expert demonstrations, which allows the agents to reduce recurring reasoning
mistakes and improve performance on the evaluated tasks. GRPO on its own strengthens the decision
policy by teaching agents to weigh the trade-off between autonomous attempts and costly deferrals.
While both settings are beneficial in isolation, their gains are limited when applied separately. The
combined DLPO method achieves the strongest and most stable improvement, demonstrating that
continual acquisition of expert knowledge and the optimization of metacognitive decision-making
reinforce one another.

Ablation Study on Human Substitutes. We further examine how the system behaves when the
human collaborator is replaced by different surrogate experts of varying strength, specifically Qwen-
7B, GPT-4o-mini, and GPT-4o. Figure 2(b) presents the comparison, which highlights two insights.
Stronger models provide more consistent and higher-quality interventions, naturally leading to bet-
ter overall performance. At the same time, even weaker surrogates still contribute meaningfully,
showing that the system is robust to imperfect guidance and capable of integrating diverse forms
of external input. Importantly, the results validate the extensibility of our design: the collaborative
loop does not rely on a particular expert, but instead offers a general mechanism for incorporating
any external intelligence, whether it is another LLM or a human expert.

The Value of Collective Exploration. To examine how the size of the collective influences
performance, we evaluate the LIMA framework with varying numbers of autonomous agents
(N ∈ 1, . . . , 5) on AMC and GSM8K. As illustrated in Figure 3 (a), performance improves con-
sistently as the agent count increases. On AMC, scaling from a single agent to three agents yields
a notable boost in accuracy, and a similar upward trend is observed on GSM8K, where the system
surpasses 0.92 accuracy with four agents. This pattern validates a central principle of our design:
collective exploration. Increasing the number of parallel agents broadens the search space, pro-
ducing more diverse candidate solutions and raising the likelihood of finding a correct reasoning
path, especially on challenging tasks where solutions are non-trivial. However, the gains diminish
as the number of agents grows beyond four, with the curve beginning to plateau by five agents. This
indicates a trade-off between the marginal benefit of additional perspectives and the computational
overhead they incur. Importantly, the results confirm that the learned metacognitive policy scales
effectively: rather than being overwhelmed by a larger pool of outputs, the system successfully
synthesizes them into progressively stronger decisions.

Optimal Depth of Iterative Collaboration. To assess the role of iterative refinement, we evaluate
the LIMA framework with varying numbers of collaborative rounds (R ∈ 1, . . . , 5). As shown in
Figure 3 (b), the effect of additional rounds is distinctly non-monotonic. On both AMC and GSM8K,
performance improves steadily at first, reaching its peak in the fourth round. For instance, on the
challenging AMC benchmark, accuracy rises from a single-round baseline of about 0.24 to nearly
0.31 after four rounds of interaction. These gains highlight the benefit of multi-round collaboration,
where agents leverage peer feedback to correct early errors and converge on stronger solutions.
However, extending the process beyond this optimal depth results in diminishing and eventually
negative returns, with accuracy declining in the fifth round. This pattern suggests that excessive
interaction introduces failure modes such as error amplification, where minor mistakes propagate
and intensify, or cognitive fixation, where agents collectively reinforce a flawed line of reasoning.
The findings underscore a key design trade-off: iterative refinement is valuable, but not universally
beneficial. Effective systems therefore require mechanisms to identify when additional collaboration
is productive and when it risks entrenching errors.
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Table 4: Accuracy (%) on five benchmarks. The top block studies the effect of external experts and
the DLPO meta-policy on top of the LIMA collaboration architecture. The bottom block compares
DLPO against naive defer strategies, all with access to the same human expert.

Method GSM8K AMC MATH HumanEval MMLU
Effect of external experts and DLPO

LIMA (No Defer) 85.45 19.38 57.17 58.36 68.93
LIMA (Self Defer) 85.92 20.25 57.69 59.28 69.34
LIMA (Human Defer) 88.23 27.32 62.52 65.78 71.35
LIMA + DLPO (Self Defer) 86.71 24.52 59.28 61.54 69.91
LIMA + DLPO (Human Defer) 91.25 30.30 65.46 67.82 73.58

Learned vs. naive defer policies with human expert

Random Defer (Human) 86.53 25.52 59.46 61.75 70.12
Uniform Defer (Human, Budget K) 87.82 26.87 62.81 65.35 70.59
Always Defer (Human) 94.38 40.27 68.85 84.32 81.45
LIMA + DLPO (Human Defer) 91.25 30.30 65.46 67.82 73.58

D ADDITIONAL EXPERIMENTS

D.1 PERFORMANCE GAIN FROM EXTERNAL

Experimental setup. We evaluate the impact of external high level feedback and the DLPO meta-
policy on top of the LIMA collaboration architecture. The variant LIMA (No Defer) disables any
external expert and runs the base multi agent system alone. LIMA (Self Defer) augments this system
with a self expert: when the controller chooses to defer, it calls the same LIMA backbone to produce
an additional candidate solution without introducing new external knowledge. LIMA (Human Defer)
instead routes these defer actions to a pool of human domain experts, who provide full solutions and
reasoning traces that act as high level feedback. The variants with “+ DLPO” train a metacognitive
policy with GRPO to choose between create, evaluate and defer actions. LIMA + DLPO (Self Defer)
uses the self expert as the teacher, while LIMA + DLPO (Human Defer) combines the learned policy
with real human experts under a fixed consultation budget and also uses their demonstrations for
continual SFT updates. We report accuracy on GSM8K, AMC, MATH, HumanEval and MMLU.

To study whether performance gains come from the meta-policy or from the presence of a strong
external expert, we fix a human expert and compare DLPO against naive defer strategies under the
same setting. Random Defer (Human) chooses to consult the human expert for each instance with
a fixed probability, which yields an expected number of human calls close to the DLPO budget.
Uniform Defer (Human, Budget K) selects a fixed number of instances to defer, matching the total
number of human consultations used by DLPO, and distributes these calls uniformly across the
evaluation set. Always Defer (Human) forwards every instance directly to the human expert and
uses the human answer as the final prediction. This variant ignores any cost of inquiry and serves as
an upper bound that corresponds to full manual solving rather than a realistic deployment.

Experimental analysis. The first block shows that external feedback and the DLPO meta-policy
contribute in complementary ways. Moving from LIMA (No Defer) to LIMA (Self Defer) yields only
mild gains, which indicates that extra rollouts from the same backbone provide limited benefit when
no new knowledge is introduced. Replacing the self expert with human experts in LIMA (Human
Defer) produces consistent improvements on all five benchmarks, especially on AMC, MATH and
HumanEval, which confirms that high level human feedback is valuable even under a simple defer
rule. Adding DLPO on top of self defer already brings a clear boost over LIMA (Self Defer), most
notably on AMC and MATH, which shows that a learned metacognitive policy helps the system
decide when additional reasoning is worthwhile even without external knowledge. The full variant
LIMA + DLPO (Human Defer) achieves the best accuracy among all cost aware methods and im-
proves over LIMA (Human Defer) by several points on every benchmark. This pattern indicates that
the performance gains are not only due to stronger feedback, but also due to the way DLPO selects
when to defer and how it converts expert interactions into long term improvements.
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Table 5: Accuracy and token usage on GSM8K and AMC as a function of the number of agents.
We report accuracy together with average input, output, and total tokens per instance under a fixed
backbone and decoding configuration.

# Agents GSM8K AMC Avg. Input Tokens Avg. Output Tokens Avg. Total Tokens

1 0.8693 0.2337 1670 591 2261
2 0.8933 0.2745 3675 1273 4948
3 0.9125 0.3030 7910 2032 9942
4 0.9205 0.3257 13489 2782 16271
5 0.9216 0.3285 23316 3526 26842
6 0.9271 0.3123 29464 4280 33744
8 0.9405 0.3574 38584 5574 44158

10 0.9378 0.3528 50772 7184 57956

The second block isolates the effect of the learned defer policy under access to the same human
expert. Both Random Defer (Human) and Uniform Defer (Human, Budget K) benefit from human
feedback, yet they remain below LIMA + DLPO (Human Defer) on all benchmarks. The gap is
especially visible on the more challenging datasets, where DLPO improves over random defer by
roughly five points on AMC and six points on MATH and still outperforms uniform defer by a
meaningful margin. This shows that selective, state dependent defer decisions are more effective
than using the same human budget in a task agnostic way. The Always Defer (Human) variant
achieves the highest raw scores but does so by fully offloading the task to humans and ignoring any
cost of inquiry, which makes it an unrealistic reference point. Our method approaches this upper
bound while using a limited number of consultations, which supports the claim that the framework
improves performance not only by adding external feedback but by learning how to use that feedback
efficiently.

D.2 SCALING TO LARGER AGENT POPULATIONS

Experimental setup. Most prior multi-agent work on math, reasoning, and code benchmarks eval-
uates relatively small teams, typically with at most five agents. Following this convention, our orig-
inal submission focused on configurations up to four agents. In response to the review, we extend
the study to larger populations and jointly measure accuracy and inference cost. Using the same
backbone, decoding configuration, and meta-policy, we vary the number of agents on GSM8K and
AMC from 1 up to 10. For each configuration we report task accuracy together with the average
input, output, and total tokens per instance, as summarized in Table 5.

Experimental analysis. The results reveal a clear pattern. From 1 to 4 agents, accuracy improves
sharply. For example, GSM8K rises from 0.8693 (1 agent) to 0.9205 (4 agents), and AMC from
0.2337 to 0.3257, while the average total token usage grows from 2,261 to 16,271 per instance.
Beyond 4 agents, the gains become much smaller. Increasing the team size from 4 to 6 agents raises
GSM8K only from 0.9205 to 0.9271 and leaves AMC at a similar level (0.3257 versus 0.3123), yet
the total tokens increase from 16,271 to 33,744. With 8 and 10 agents, GSM8K and AMC continue
to improve slightly (for example GSM8K 0.9405 at 8 agents and 0.9378 at 10 agents, AMC 0.3574
and 0.3528), but the total cost grows to 44,158 and 57,956 tokens per instance.

These extended results clarify that our earlier focus on four agents was not arbitrary. The case of four
agents lies near a practical sweet spot where the marginal accuracy gain per additional agent begins
to saturate, while the communication and inference cost continues to grow rapidly. In practice this
suggests that collaborative configurations should be chosen as a task dependent trade off between
accuracy and computational cost. We will add this scaling analysis and a performance–cost plot to
the revised version to justify our emphasis on small to medium team sizes in the main experiments.

D.3 APPROXIMATE INTER AGENT CONSISTENCY VIA PARTIAL SAMPLING

Experimental setup. You also raise a valuable concern about the complexity of full inter agent
consistency checks. In the original design, we compute pairwise consistency features between
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Table 6: Comparison between full pairwise consistency and partial sampling consistency for larger
agent teams. We report accuracy on GSM8K and AMC and the average total tokens per instance for
each variant.

#Agents GSM8K (Full) GSM8K (Partial) AMC (Full) AMC (Partial) Avg. (Full) Avg. (Partial)

5 0.9216 0.9187 0.3285 0.3217 26842 15315
6 0.9271 0.9156 0.3123 0.3025 33744 17861
8 0.9405 0.9332 0.3574 0.3516 44158 22758

10 0.9378 0.9283 0.3528 0.3362 57956 26394

agents, which has quadratic cost in the number of agents. We agree that this becomes prohibitive for
very large populations and we appreciate you highlighting this point.

To address this, we conduct an additional ablation inspired by communication efficient multi agent
methods. We test a simple approximate scheme in which each agent only compares its outputs with
a sampled subset of peers. In this partial sampling variant, each agent communicates with at most
K = 3 other agents, which reduces the complexity from O(n2) pairwise checks to approximately
O(nK). We evaluate this variant on GSM8K and AMC with 5, 6, 8, and 10 agents, and we report
accuracy together with the average total tokens per instance. The results are summarized in Table 6.

Experimental analysis. On both GSM8K and AMC, partial sampling remains very close to full
pairwise consistency in terms of accuracy. For example, with 8 agents, GSM8K changes from
0.9405 (full) to 0.9332 (partial), and AMC from 0.3574 to 0.3516. With 10 agents, GSM8K changes
from 0.9378 to 0.9283 and AMC from 0.3528 to 0.3362. In most cases the differences are within
about one absolute point. In contrast, the cost reduction is substantial. At 8 agents, the average
total tokens decrease from 44,158 (full) to 22,758 (partial), and at 10 agents from 57,956 to 26,394,
which corresponds to roughly a 40–50% reduction in communication and inference cost.

These results show that the metacognitive policy and consistency features do not require dense all to
all communication. A simple sampled consistency scheme preserves most of the performance while
significantly lowering cost and scaling more gracefully with the number of agents. Our framework
is also orthogonal to existing communication optimization techniques, such as methods that learn
sparse interaction graphs or prune redundant agents. LIMA can be combined with such approaches
so that the meta policy operates on a communication topology that is already optimized for larger
populations.

D.4 SEQUENTIAL MULTI TASK LEARNING AND FORGETTING

Experimental setup. To study long term capability growth and potential catastrophic forgetting,
we follow a sequential two task protocol. We treat GSM8K as Task A and AMC as Task B. Starting
from the same base LIMA backbone and meta policy, we evaluate three stages:

1. Base. No DLPO training. We evaluate the initial model on GSM8K and AMC and obtain
accuracies A0 and B0.

2. After Task A. We run the full DLPO procedure with expert feedback only on GSM8K. We
collect defer demonstrations, update the base model with outer loop SFT, and then evaluate
the updated model on both tasks, yielding A1 and B1.

3. After Task A → B. Starting from the GSM8K trained model, we run DLPO with expert
feedback on AMC. During outer loop SFT we replay demonstrations from both GSM8K
and AMC, so the model sees a mixture of Task A and Task B examples. We then evaluate
again on both tasks, obtaining A2 and B2.

In addition to DLPO with replay, we include a naive sequential SFT baseline that uses the same
expert demonstrations but does not use DLPO or replay. This baseline first fine tunes on GSM8K
demonstrations only, then fine tunes on AMC demonstrations only. It corresponds to the standard
sequential fine tuning setting that is known to induce catastrophic forgetting. All reported values are
accuracies in percent.
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Table 7: Sequential learning across GSM8K (Task A) and AMC (Task B). We report accuracy (%)
for DLPO with replay and a naive sequential SFT baseline at three stages: Base (no training), After
Task A (trained on GSM8K only), and After Task A→B (sequentially trained on GSM8K then
AMC).

Method Stage GSM8K Accuracy (A) AMC Accuracy (B)

DLPO (ours) Base 88.23 27.32
DLPO (ours) After Task A 91.45 26.78
DLPO (ours) After Task A→B 90.97 32.58

Naive sequential SFT Base 88.23 27.32
Naive sequential SFT After Task A 90.47 22.65
Naive sequential SFT After Task A→B 88.71 29.36

Experimental analysis. The results in Table 7 show clear differences between DLPO with replay
and naive sequential SFT. For DLPO, the base model starts at 88.23 on GSM8K and 27.32 on AMC.
After DLPO on GSM8K, GSM8K improves to 91.45, while AMC remains roughly similar at 26.78.
After further DLPO on AMC with replay, AMC increases to 32.58 and GSM8K remains high at
90.97. The forgetting on GSM8K is modest: the drop from 91.45 to 90.97 is 0.48 points, while the
gain over the base model is still more than 2.7 points.

By contrast, the naive sequential SFT baseline exhibits much stronger forgetting. Using the same
GSM8K demonstrations, sequential SFT improves GSM8K from 88.23 to 90.47, but reduces AMC
from 27.32 to 22.65. After fine tuning only on AMC demonstrations, AMC rises to 29.36 while
GSM8K drops to 88.71. The drop from 90.47 to 88.71 corresponds to about 1.8 points of forgetting,
which removes most of the earlier gain on GSM8K.

Overall, these results indicate that the DLPO outer loop, when combined with replay of earlier defer
demonstrations, can support sequential learning with limited forgetting: the model gains new capa-
bility on AMC while retaining most of the improvements on GSM8K. In contrast, naive sequential
SFT with the same expert data shows significantly stronger degradation on GSM8K after training
on AMC. This provides empirical evidence that the framework is not only an offline performance
booster on fixed benchmarks, but also a reasonable starting point for long term capability growth
across a sequence of related reasoning tasks. In the revised version, we soften the language around
“long term capability growth” to clarify that the current evidence is for multi task, sequential im-
provements in a two task setting, and that extending DLPO to longer task sequences and richer
continual learning benchmarks is an important direction for future work.

D.5 EFFECT OF DIFFERENT LLM EXPERTS FOR THE HUMAN PROXY

Experimental setup. In the main experiments, we used GPT-4o-mini as the default proxy for
the “human expert” channel. To examine how the framework behaves with experts of different
strengths, we keep the backbone model, collaboration architecture, and DLPO configuration fixed,
and vary only the model used as the external expert. We compare three choices: a LLaMA3 model
(weaker LLM expert), GPT-4o-mini, and GPT-4o. We report accuracy on GSM8K, AMC, MATH,
HumanEval, and MMLU.

Experimental analysis. Table 8 shows two consistent patterns. First, as the expert model becomes
stronger (from LLaMA3 to GPT-4o-mini to GPT-4o), performance improves monotonically on all
five benchmarks. For example, AMC increases from 24.52 to 30.30 to 37.25, and HumanEval from
61.54 to 67.82 to 74.61. This confirms that the framework scales smoothly with expert capability
and that our main results with GPT-4o-mini are conservative relative to what GPT-4o can achieve.
Second, the qualitative behavior of the method is stable across all expert choices: in each case,
adding an external expert on top of LIMA yields clear gains, and the DLPO policy continues to
extract additional benefit under a cost-aware defer scheme. In practice, the choice between GPT-
4o-mini and GPT-4o is therefore an application-level trade-off between accuracy and inference cost
rather than a limitation of the framework itself.
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Table 8: Accuracy (%) with different LLM experts used as the human proxy. We keep the backbone
and collaboration architecture fixed and vary only the expert model.

Human Proxy GSM8K AMC MATH HumanEval MMLU
LLaMA3-8B 86.71 24.52 59.28 61.54 69.91
GPT-4o-mini 91.25 30.30 65.46 67.82 73.58
GPT-4o 93.58 37.25 68.37 74.61 75.42

E DECLARATION ON THE USE OF LARGE LANGUAGE MODELS

In preparing this work, we made use of several large language models for different purposes. First,
GPT-4o-mini and GPT-4o were integrated directly into our experimental framework, where they
served as proxies for human experts in the human-in-the-loop setting. This design choice follows
prior research and allowed us to evaluate the framework under controlled and repeatable conditions
while balancing cost and effectiveness. Second, GPT-5 was employed to assist with improving
the clarity, organization, and readability of the manuscript. The model helped refine phrasing and
grammar, but all conceptual contributions, methodological design, and experimental analysis were
developed by the authors. All content was carefully reviewed, edited, and validated by the authors,
who take full responsibility for the accuracy and integrity of the final publication.
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