

ADAPTIVE COLLABORATION WITH HUMANS: METACOGNITIVE POLICY OPTIMIZATION FOR MULTI- AGENT LLMs WITH CONTINUAL LEARNING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 While scaling individual Large Language Models (LLMs) has delivered remarkable
 014 progress, the next frontier lies in scaling collaboration through multi-agent
 015 systems (MAS). However, purely autonomous MAS remain “closed-world” sys-
 016 tems, constrained by the static knowledge horizon of pre-trained models. This
 017 limitation makes them brittle on tasks requiring knowledge beyond training data,
 018 often leading to collective failure under novel challenges. To address this, we pro-
 019 pose the **Learning to Intervene via Metacognitive Adaptation (LIMA)** frame-
 020 work, a principled paradigm for human–agent collaboration. LIMA trains agents
 021 to learn a metacognitive policy that governs when to solve problems autonomously
 022 and when to defer to a human expert. To operationalize this policy, we introduce
 023 **Dual-Loop Policy Optimization**, which disentangles immediate decision-making
 024 from long-term capability growth. The inner loop applies Group Relative Policy
 025 Optimization (GRPO) with a cost-aware reward to optimize deferral decisions,
 026 while the outer loop implements continual learning, transforming expert feedback
 027 into high-quality supervised signals that strengthen the agent’s reasoning ability.
 028 Experiments on challenging mathematical and problem-solving benchmarks show
 029 that LIMA, equipped with Dual-Loop Policy Optimization, consistently outper-
 030 forms state-of-the-art MAS, establishing a principled foundation for collaborative
 031 and continually improving agentic systems.

1 INTRODUCTION

034 While scaling individual Large Language Models (LLMs) has produced remarkable progress, the
 035 next frontier lies in scaling collaboration through *multi-agent systems* (MAS) (Hong et al., 2023;
 036 Chen et al., 2023b; Jiang et al., 2023; Ning et al., 2023; Han et al., 2025; Wang et al., 2025a).
 037 By coordinating multiple agents to tackle problems beyond the reach of any single model, this
 038 paradigm has inspired a wave of innovations from structured debates to dynamic workflow opti-
 039 mization (Zhang et al., 2024a; Qiao et al., 2024; Han et al., 2025). Yet these systems face an inherent
 040 ceiling: no matter how sophisticated their interaction protocols, purely autonomous agents remain
 041 fundamentally **closed-world**. Their knowledge horizon is bounded by pre-training corpora (Wang
 042 et al., 2023b; Srivatsa et al., 2024; Du et al., 2023; Liu et al., 2024). While they can recombine
 043 existing information, they cannot generate new knowledge or adapt to unseen contexts. This creates
 044 vulnerabilities when tasks demand real-time information, domain-specific expertise, or reasoning
 045 patterns absent from training (Zhang et al., 2024d; Chen et al., 2025). In such cases, internal col-
 046 laboration alone cannot bridge the gap, often leading to collective failure. To break this ceiling and
 047 enable open-ended intelligence, a new paradigm is needed. We argue that the most principled path
 048 is to integrate **external human expertise**, transforming closed systems into adaptive frameworks
 049 capable of continual learning and growth (Sun et al., 2025; Zou et al.).

050 Within this closed-world paradigm, research has followed two main directions. The first empha-
 051 sizes optimizing **autonomous collaboration** through increasingly sophisticated interaction proto-
 052 cols. Frameworks based on structured debate (Chan et al., 2023; Liu et al., 2024), topology con-
 053 trol (Ong et al., 2024; Chen et al., 2024b), and workflow graph optimization (Zhang et al., 2024b;
 Li et al., 2025) have demonstrated notable improvements in refining and recombining agents’ in-
 054 ternal knowledge. However, these methods largely engage in *collective introspection* (Zhang et al.,

054 2024e; Chen et al., 2024a), maximizing the use of existing information without extending beyond
 055 the aggregate knowledge boundary. They act as powerful integrators, but not true learners capable
 056 of acquiring genuinely new capabilities. Recognizing this intrinsic limitation, a second line of work
 057 has sought to incorporate **human expertise** (Takerngsaksiri et al., 2025; Mozannar et al., 2025).
 058 Many human-in-the-loop systems (Liu et al., 2023; Pandya et al., 2024) treat humans primarily as
 059 passive oracles or supervisors for sub-tasks. This leaves two critical questions unresolved: *when* to
 060 defer to the expert, often reduced to heuristics such as low-confidence thresholds rather than learned
 061 policies (Kenton et al., 2024; Li et al., 2024b); and *how* to learn from human input, which is typi-
 062 cally applied as a one-time fix rather than as a catalyst for long-term capability growth (Mu et al.,
 063 2024; Wang et al., 2025b). Importantly, human intervention holds the potential to operate at multiple
 064 levels, offering both localized corrections to specific reasoning errors and broader adjustments that
 065 reshape the overall collaborative process (Triem & Ding, 2024; Grondin et al., 2025).

066 This analysis highlights that the key challenge is not whether agents can interact with humans, but
 067 whether they can do so intelligently and strategically. Addressing this requires a **metacognitive pol-
 068 icy**, a high-level strategy for reasoning about both self-competence and peer competence to guide
 069 collaboration. Such a policy must solve two intertwined problems: **when to ask**, which demands
 070 moving beyond heuristics to model uncertainty and balance the risk of failure against the cost of
 071 intervention; and **how to grow**, which requires mechanisms that turn expert feedback into lasting
 072 capability improvements rather than one-time fixes. A paradigm that unifies these elements is es-
 073 sential for building open and continually evolving agentic systems.

074 To address these challenges, we propose the **Learning to Intervene via Metacognitive Adaptation**
 075 (**LIMA**) framework, a principled paradigm for human–agent collaboration. The key contribution of
 076 LIMA is not the mere inclusion of a human in the loop, but the endowment of agents with a sophis-
 077 ticated metacognitive policy that governs when and how to engage with external expertise. LIMA
 078 operationalizes this paradigm through three coordinated components: (i) **Autonomous Operation**,
 079 where agents attempt problem-solving using their evolving capabilities; (ii) **Metacognitive Assess-
 080 ment**, where agents evaluate confidence and task difficulty to identify their knowledge boundaries;
 081 and (iii) **Strategic Deferral**, where human expertise is leveraged as a targeted intervention rather
 082 than as a passive oracle. Developing this metacognitive policy requires a dedicated optimization
 083 strategy. We therefore introduce **Dual-Loop Policy Optimization (DLPO)**, a reinforcement learn-
 084 ing methodology that separates short-term decision-making from long-term capability growth. The
 085 inner loop employs Group Relative Policy Optimization (GRPO) with a cost-aware reward to re-
 086 fine the agent’s deferral behavior in real time. The outer loop implements continual learning by
 087 transforming expert feedback from deferral events into high-quality supervised samples, thereby
 088 improving the agent’s underlying reasoning ability. Together, LIMA and DLPO move beyond static
 089 supervision, enabling agents to learn both *when* to seek guidance and *how* to grow from it.

090 In summary, the main contributions of this paper are as follows:

- 091 • We propose the **Learning to Intervene via Metacognitive Adaptation (LIMA)** frame-
 092 work, a paradigm for human–agent collaboration that equips agents with a metacognitive
 093 policy to decide when to strategically defer to human expertise.
- 094 • We introduce **Dual-Loop Policy Optimization (DLPO)**, a training methodology that sep-
 095 arates short-term deferral decisions from long-term capability growth. The inner loop em-
 096 ploys GRPO with a cost-aware reward, while the outer loop leverages expert feedback as
 097 supervised signals for continual learning.
- 098 • Extensive experiments on mathematical reasoning and general problem-solving bench-
 099 marks demonstrate that LIMA with DLPO outperforms both autonomous multi-agent sys-
 100 tems, establishing a robust foundation for continually improving agentic collaboration.

101 2 RELATED WORK

102 Large language models (LLMs) acting alone are limited by context length, sequential generation,
 103 and restricted skill coverage, which constrains their ability to solve complex reasoning tasks (Gabriel
 104 et al., 2024; Liang et al., 2023; Xiong et al., 2023; Yin et al., 2023; Zhang et al., 2023). To mitigate
 105 these issues, **multi-agent systems** (MAS) have been widely explored, where multiple LLMs are
 106 organized into collaborative structures for collective problem solving (Hong et al., 2023; Chen et al.,
 107

2023b; Jiang et al., 2023; Qiao et al., 2024; Pan et al., 2024). Early efforts relied on prompt-based paradigms that assign predefined roles or workflows, enabling debate, critique, or corporate-style pipelines (Du et al., 2023; Chan et al., 2023; Wang et al., 2023a; Han et al., 2025). While effective, these designs lack adaptability since their interaction protocols are fixed and cannot evolve through experience. More recent work moves toward structured coordination and adaptive communication. Predefined schemes employ debate or peer-review across chains, trees, or graphs (Liu et al., 2024; Qian et al., 2024), while adaptive methods restructure interactions dynamically via routing, pruning, or workflow search (Zhang et al., 2024b; Zhuge et al., 2024; Yue et al., 2025).

A complementary line of research introduces **human-in-the-loop** collaboration. Humans have been positioned as supervisors, oracles, or evaluators, providing corrections or domain knowledge to strengthen agent performance (Takerngsaksiri et al., 2025; Mozannar et al., 2025; Liu et al., 2023; Pandya et al., 2024). Closely related, Siedler & Gemp (2025) study LLM-mediated guidance in MARL, where an LLM serves as a natural-language controller that interprets and delivers interventions to shape agents’ learning trajectories and accelerate training. However, such systems often rely on heuristics (e.g., confidence thresholds) to trigger deferral (Kenton et al., 2024; Li et al., 2024b), and feedback is usually treated as a one-time fix rather than a signal for sustained capability growth (Mu et al., 2024; Wang et al., 2025b). Recent discussions highlight that human involvement can occur at multiple levels, from correcting local reasoning errors to reshaping global collaborative dynamics (Triem & Ding, 2024; Grondin et al., 2025). Together, these directions have advanced the field of MAS, yet challenges remain in moving beyond closed-world recombination toward open and adaptive collaboration. A detailed review of related work is provided in Appendix A.

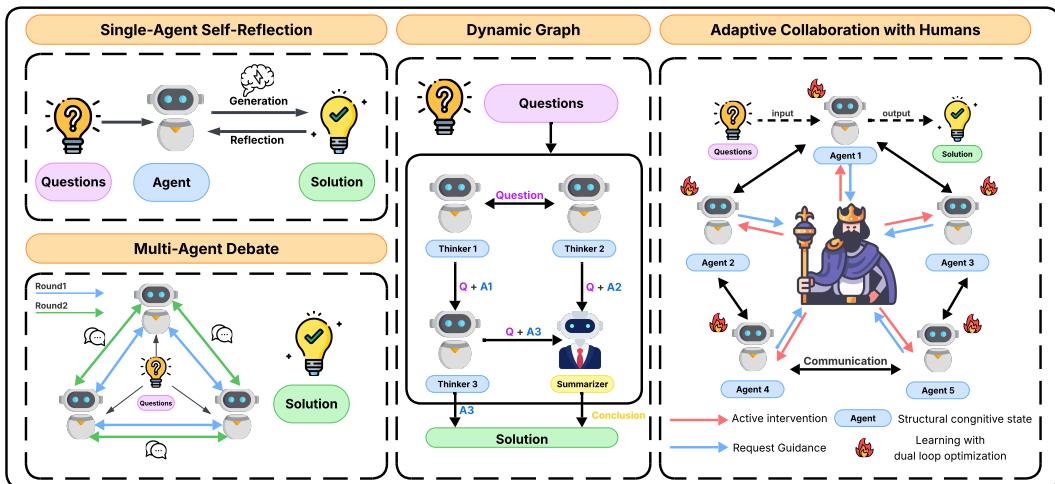


Figure 1: Comparison of collaborative reasoning paradigms. Left: *Single-Agent Self-Reflection*, where an individual agent iteratively improves its reasoning. Middle: *Multi-Agent Debate* and *Dynamic Graph* coordination, where multiple agents interact to refine knowledge integration. Right: *Adaptive Collaboration with Humans*, which augments multi-agent with strategic human guidance and Dual-Loop Policy Optimization, enabling both localized corrections and global improvements.

3 METHODOLOGY

Our methodology builds a multi-agent system designed for adaptive collaboration with a human expert. Figure 1 illustrates this setting in contrast to single-agent and purely multi-agent debate frameworks. At its core is a **metacognitive policy** that enables agents to reason about both their own competence and that of their peers, thereby deciding when to act autonomously and when to defer to external expertise. We formalize this collaborative process as a Metacognitive Markov Decision Process, which provides the foundation for our framework. The framework is then specified through a structured cognitive state space and a functional action space. Finally, we introduce a Dual-Loop Policy Optimization algorithm that combines reinforcement learning to refine the metacognitive policy with continual learning to integrate expert feedback into lasting capability growth.

162
163

3.1 PRELIMINARIES: THE METACOGNITIVE MARKOV DECISION PROCESS

164
165
166
167
168

We model human–agent collaboration as a **Metacognitive Markov Decision Process (Meta-MDP)**, which formalizes decision-making over high-level cognitive strategies such as autonomous problem-solving or deferral to human expertise. This abstraction provides a principled foundation for defining states, actions, transitions, and rewards in our collaborative framework. The full formalization and detailed design are provided in Appendix B.

169
170

3.2 A FRAMEWORK FOR HUMAN-AGENT COLLABORATION

171
172
173
174
175
176

Building on the Meta-MDP, we introduce a framework that operationalizes human–agent interaction through three components: (i) a structured cognitive state space that encodes problem context and metacognitive assessments, (ii) a functional action space representing high-level collaboration strategies, and (iii) an interaction protocol that specifies coordination across rounds. These elements allow agents to reason about tasks while regulating their decision boundaries in a principled way.

177
178

3.2.1 STRUCTURED COGNITIVE STATE SPACE

179
180
181
182
183
184
185
186
187
188
189
190

A sophisticated metacognitive policy requires a rich and informative state representation that goes beyond simple dialogue history. We therefore design a **structured cognitive state space** s_t composed of distinct dimensions intended to encode signals about an agent’s confidence, its alignment with the group, and heuristic indicators of its current reasoning quality. For each agent i , the local assessment is represented by a feature vector with three components. The first dimension, **Certainty and Confidence** ($\mathbf{z}_t^{\text{cert}}$), aggregates proxies for the agent’s belief in its current solution, such as a *Self-Confidence Score* and a measure of *Solution Uncertainty* (e.g., Shannon entropy over candidate choices). The second dimension, **Social Cohesion and Dissonance** ($\mathbf{z}_t^{\text{soc}}$), encodes the agent’s standing within the group via metrics like *Inter-Agent Agreement* and overall *Answer Diversity*. Finally, the **Argumentative Quality** ($\mathbf{z}_t^{\text{arg}}$) dimension summarizes properties of the agent’s generated ‘Reason’, including features such as *Reasoning Complexity* and *Evidence Grounding*. The full cognitive state s_t for an agent is then the concatenation of these feature vectors with the global problem context \mathbf{x}_t :

$$s_t = \text{concat}(\mathbf{x}_t, \mathbf{z}_t^{\text{cert}}, \mathbf{z}_t^{\text{soc}}, \mathbf{z}_t^{\text{arg}}). \quad (1)$$

191
192
193
194

By structuring the state space in this manner, we provide the policy with a multi-faceted set of task- and interaction-level signals on which to condition its decisions about whether to continue, revise, or defer.

195
196

3.2.2 THE STRATEGIC ACTION SPACE

197
198
199
200
201

The action space \mathcal{A} in our Meta-MDP is not defined by low-level text generation, but by a discrete set of high-level cognitive strategies. These actions empower the agent to manage its problem-solving process, balancing the exploitation of existing collective knowledge against the exploration of new solutions and the strategic deferral to external expertise. Formally, the action space is defined as $\mathcal{A} = \{a^{\text{eval}}, a^{\text{create}}, a^{\text{defer}}\}$.

202
203
204
205
206
207

Evaluate (a^{eval}): Exploiting Collective Knowledge. This action represents the cognitive stance of convergence and synthesis. When selecting a^{eval} , the agent commits to exploiting the existing knowledge within the multi-agent group. Operationally, it must select and endorse one of the solutions already proposed by its peers in the current round. This action allows the agent to leverage collective intelligence and reinforce high-quality, consensual solutions.

208
209
210
211
212
213

Create (a^{create}): Creative Exploration and Hypothesis Generation. This action embodies the cognitive stance of divergence and exploration. By choosing a^{create} , the agent posits that the current solution pool is insufficient and commits to generating a novel solution sequence (‘Choice’, ‘Reason’) from scratch. This action is crucial for breaking cognitive fixation, correcting shared errors within the group, and introducing new, potentially superior reasoning paths.

214
215

Defer (a^{defer}): Risk Mitigation and Knowledge Augmentation. This action represents the highest level of metacognitive awareness—the ability to recognize the limits of the system’s own capabilities. Selecting a^{defer} signals that the agent assesses the problem’s uncertainty or difficulty to

216 be beyond the collective’s current ability to solve reliably. Operationally, this triggers a call to the
 217 external human expert, whose high-quality demonstration is then used as the round’s output. This
 218 action serves as both a mechanism for ensuring task success in critical situations and as a conduit
 219 for introducing new knowledge into the system via continual learning.
 220

221 3.2.3 COLLABORATIVE INTERACTION MODEL

222 A defining feature of our framework is the integration of human expertise into collective reasoning
 223 through a structured, multi-round protocol. At each round t , all N agents receive the shared cognitive
 224 state s_t . Each agent i independently samples a metacognitive action $a_{i,t} \sim \pi_\theta(a|s_t)$ and executes
 225 it in parallel. The output $y_{i,t}$ depends on the chosen action. When acting autonomously, the agent
 226 applies its internal generation process $g_\theta(s_t)$. When deferring, it adopts the authoritative solution
 227 $y_{\text{human},t}$ provided by the expert:
 228

$$y_{i,t} = \begin{cases} g_\theta(s_t), & \text{if } a_{i,t} \in \{a^{\text{eval}}, a^{\text{create}}\}, \\ y_{\text{human},t}, & \text{if } a_{i,t} = a^{\text{defer}}. \end{cases} \quad (2)$$

231 The collection $\{y_{1,t}, \dots, y_{N,t}\}$ then forms the next state s_{t+1} , ensuring that updates reflect the most
 232 reliable signals, whether from autonomous synthesis or human demonstration.

233 From a learning perspective, the *Defer* action plays a dual role. It serves as **risk mitigation**, ensuring
 234 progress under uncertainty by overriding flawed solutions, and as **knowledge augmentation**, injecting
 235 expert demonstrations as high-quality samples for continual learning (Section 3.3). Thus, the
 236 human collaborator functions not merely as a fallback oracle but as a driver of system improvement.
 237

238 3.3 ADAPTIVE POLICY OPTIMIZATION WITH CONTINUAL LEARNING

239 Mastering the metacognitive challenges described above requires an optimization strategy that balances
 240 two competing paths: the high-risk but potentially high-reward route of autonomous problem-
 241 solving, and the low-risk but constrained option of deferring to an expert. This trade-off naturally
 242 lends itself to reinforcement learning (RL), where the goal is to learn a policy π_θ that maximizes
 243 the expected utility of the collaborative process. To address this, we propose a **Dual-Loop Policy**
 244 **Optimization (DLPO)** framework that integrates a reinforcement learning objective for strategic
 245 policy optimization with a supervised objective for continual knowledge acquisition.
 246

247 3.3.1 INNER LOOP: REINFORCEMENT LEARNING FOR METACOGNITIVE POLICY

248 The inner loop optimizes the agent’s high-level policy $\pi_\theta(a|s_t)$ over strategic actions. The key
 249 challenge is to provide a learning signal that reflects the trade-off between autonomous success,
 250 potential failure, and the cost of expert intervention. This problem is well-suited to **Group Relative**
 251 **Policy Optimization (GRPO)**, which contrasts the relative advantages of actions in each state.
 252

253 **Reward Formulation.** We design a reward function $R(s_t, a_t)$ that incorporates the **Cost of In-**
 254 **quiry**. Autonomous actions receive a binary ground-truth reward $R_{\text{gt}} \in \{+1, -1\}$, while the ‘Defer’
 255 action yields a discounted reward reflecting expert reliability and intervention cost:

$$R(s_t, a_k) = \begin{cases} R_{\text{gt}}(y_k), & a_k \in \{a^{\text{eval}}, a^{\text{create}}\}, \\ R_{\text{human}} - C, & a_k = a^{\text{defer}}, \end{cases} \quad (3)$$

256 where R_{human} accounts for expert accuracy and C is a tunable penalty.
 257

258 **GRPO Objective.** Given the reward vector $\mathbf{R}_t = [R(s_t, a_1), \dots, R(s_t, a_K)]$, advantages are
 259 computed by centering rewards:
 260

$$A(s_t, a_k) = R(s_t, a_k) - \frac{1}{K} \sum_{j=1}^K R(s_t, a_j). \quad (4)$$

261 The policy gradient objective is:
 262

$$\mathcal{L}_{\text{PG}}(\theta) = -\mathbb{E}_{s_t, a_t \sim \pi_\theta} [A(s_t, a_t) \log \pi_\theta(a_t|s_t)]. \quad (5)$$

263 Two regularizers ensure stability: a KL-penalty constrains deviation from the reference policy π_{ref} ,
 264 and an entropy bonus promotes exploration. The final inner-loop loss is:
 265

$$\mathcal{L}_{\text{Inner}} = \mathcal{L}_{\text{PG}} + \beta_{\text{kl}} \mathcal{L}_{\text{KL}} - \beta_{\text{ent}} \mathcal{L}_{\text{Entropy}}. \quad (6)$$

270 3.3.2 OUTER LOOP: CONTINUAL LEARNING FROM EXPERT FEEDBACK
271

272 While the inner loop optimizes how the agent *uses* its current abilities, a truly adaptive system
273 must also *expand* them. Reinforcement learning alone cannot overcome the knowledge ceiling of
274 the base LLM, as it improves decision policies without introducing fundamentally new skills. To
275 break this ceiling, we introduce an outer optimization loop for **Continual Learning from Expert**
276 **Demonstrations**.

277 This loop is activated by the ‘Defer’ action, which indicates that the agent has identified a knowledge
278 gap. When deferring, the agent receives a high-quality demonstration $y_{\text{human}} = (t_1, \dots, t_L)$ from
279 the expert, which is converted into a supervised fine-tuning (SFT) sample. The training objective is
280 to maximize the likelihood of this sequence, conditioned on the state s_t , by minimizing the cross-
281 entropy loss:

$$282 \mathcal{L}_{\text{SFT}}(\theta) = - \sum_{i=1}^L \log \pi_{\theta}(t_i \mid s_t, t_{1:i-1}). \quad (7)$$

285 In this design, the inner RL loop determines *when* to defer, while the outer loop teaches *what* to learn
286 from expert input. Together, they establish an apprentice–mentor dynamic: the agent strategically
287 invokes human guidance and systematically assimilates it into lasting capability growth.

288 3.3.3 THE FINAL DUAL-LOOP POLICY OPTIMIZATION OBJECTIVE
289

290 The inner and outer loops are optimized jointly to train a single agent that is both strategically
291 adept and continually improving. The final training objective is a principled combination of the
292 reinforcement learning signal from the inner loop and the conditional supervised signal from the
293 outer loop. The total loss, $\mathcal{L}_{\text{total}}$, is computed over a batch of experiences:

$$294 \mathcal{L}_{\text{total}}(\theta) = \mathbb{E}_{(s_t, a_t)} [\mathcal{L}_{\text{Inner}}(\theta) + \lambda_{\text{sft}} \cdot \mathbb{I}(a_t = a^{\text{defer}}) \cdot \mathcal{L}_{\text{SFT}}(\theta)], \quad (8)$$

296 where $\mathcal{L}_{\text{Inner}}(\theta)$ is the full GRPO objective, λ_{sft} is a hyperparameter balancing the two learning
297 signals, and $\mathbb{I}(\cdot)$ is the indicator function that ensures the SFT loss is only applied when the ‘Defer’
298 action is taken.

300 4 EXPERIMENTS
301

302 **Experimental Setup.** We evaluate our method on a broad suite of benchmarks, including general
303 language understanding (*MMLU*), program synthesis (*HumanEval*), and quantitative mathematics
304 (*GSM8K*, *MATH*, *AIME*, *AMC*). Following related works (Liu et al., 2023; Pandya et al., 2024), we
305 employ **GPT-4o-mini** as a proxy human expert, leveraging its strong reasoning capability to simulate
306 human interventions. Detailed experimental and training settings are provided in Appendix C.1.

308 **Overall Performance.** Table 1 shows that our **LIMA** framework establishes a new state-of-the-
309 art, consistently surpassing strong autonomous multi-agent baselines across all six reasoning
310 benchmarks. These baselines, including debate-style (e.g., LLM-Debate), topology-based (e.g., DyLAN),
311 and graph-optimization (e.g., GPTSwarm, AFLOW) methods, remain confined to “closed-world”
312 collaboration, where performance is capped by the agents’ internal knowledge and often falters
313 on problems requiring non-obvious reasoning paths. In contrast, LIMA introduces an “open-world”
314 dynamic by enabling agents to strategically access external expertise, directly addressing this knowl-
315 edge ceiling. On the Llama3-8B backbone, our trained agent achieves average gains of 7%–12%
316 over the strongest autonomous baselines, with the largest improvements on competition-style math
317 tasks such as AIME, where cascade failures from flawed premises are common. By learning a
318 metacognitive policy to defer under high uncertainty, LIMA avoids these pitfalls and effectively
319 leverages superior guidance. These results confirm that performance gains stem not from complex
320 interaction alone, but from principled integration of external knowledge and the agent’s learned
ability to decide when to invoke it.

322 **Model Scalability and Generality.** We test whether the proposed framework transfers across het-
323 erogeneous backbones and model sizes by evaluating Qwen2.5-7B, Qwen2.5-3B, LLaMA3-8B, and
LLaMA3-3B on *GSM8K*. Table 2 shows large variation in autonomous baselines: larger models

Model	GSM8K	AMC	AIME	MATH	HumanEval	MMLU
Vanilla	72.76 (+0.00)	8.03 (+0.00)	2.96 (+0.00)	42.85 (+0.00)	47.56 (+0.00)	57.99 (+0.00)
CoT	74.22 (+1.46)	11.65 (+3.62)	3.70 (+0.74)	46.93 (+4.08)	51.42 (+3.86)	61.57 (+3.58)
SC	80.79 (+8.03)	12.45 (+4.42)	4.07 (+1.11)	51.28 (+8.43)	57.52 (+9.96)	68.30 (+10.31)
PHP	80.01 (+7.25)	15.66 (+7.63)	4.44 (+1.48)	53.71 (+10.86)	56.50 (+8.94)	68.46 (+10.47)
Debate	83.52 (+10.76)	19.28 (+11.25)	5.56 (+2.60)	56.25 (+13.40)	57.72 (+10.16)	67.59 (+9.60)
G-Debate	83.98 (+11.22)	20.48 (+12.45)	5.19 (+2.23)	<u>57.42</u> (+14.57)	57.93 (+10.37)	<u>69.89</u> (+11.90)
DyLAN	82.03 (+9.27)	19.68 (+11.65)	3.70 (+0.74)	55.32 (+12.47)	61.59 (+14.03)	66.85 (+8.86)
G-Swarm	<u>84.89</u> (+12.13)	15.66 (+7.63)	<u>5.78</u> (+2.82)	56.69 (+13.84)	59.55 (+11.99)	69.67 (+11.68)
A-Prune	84.38 (+11.62)	16.47 (+8.44)	4.81 (+1.85)	54.37 (+11.52)	57.11 (+9.55)	69.09 (+11.10)
AFlow	83.75 (+10.99)	12.05 (+4.02)	4.44 (+1.48)	55.28 (+12.43)	<u>62.20</u> (+14.64)	69.31 (+11.32)
LIMA	88.23 (+15.47)	27.32 (+19.29)	8.12 (+5.16)	62.52 (+19.67)	65.78 (+18.22)	71.35 (+13.36)
w/ DLPO	91.25 (+18.49)	30.30 (+22.27)	9.30 (+6.34)	65.46 (+22.61)	67.82 (+20.26)	73.58 (+15.59)

Table 1: Comparison of baseline and proposed methods using the LLaMA3-8B backbone. All values are percentages (the percent sign is omitted in the table). Values in parentheses denote absolute differences relative to the *Vanilla* baseline (first row). Underlined numbers indicate the best-performing baseline on each benchmark. [The additional experiments on scalability, cost, stronger proxy experts, and performance gain analyses are provided in Appendix D.](#)

Model	Qwen2.5-7B	Qwen2.5-3B	LLaMA3-8B	LLaMA3-3B
Vanilla	90.88 (+0.00)	83.37 (+0.00)	72.76 (+0.00)	46.85 (+0.00)
CoT	90.98 (+0.10)	84.56 (+1.19)	74.22 (+1.46)	50.14 (+3.29)
SC	92.95 (+2.07)	88.60 (+5.23)	80.79 (+8.03)	54.21 (+7.36)
PHP	93.30 (+2.42)	86.45 (+3.08)	80.01 (+7.25)	62.22 (+15.37)
LLM-Debate	<u>93.63</u> (+2.75)	87.14 (+3.77)	83.52 (+10.76)	75.84 (+28.99)
DyLAN	93.15 (+2.27)	<u>88.10</u> (+4.73)	82.03 (+9.27)	<u>76.47</u> (+29.62)
GPTSwarm	92.27 (+1.39)	86.78 (+3.41)	<u>84.89</u> (+12.13)	69.19 (+22.34)
AgentPrune	92.44 (+1.56)	86.43 (+3.06)	84.38 (+11.62)	65.02 (+18.17)
AFlow	92.86 (+1.98)	87.52 (+4.15)	83.75 (+10.99)	68.37 (+21.52)
LIMA	96.38 (+5.50)	93.51 (+10.14)	91.25 (+18.49)	81.35 (+34.50)

Table 2: Performance of baselines across four LLM backbones on GSM8K. All values are percentages (percent sign omitted). Parentheses show absolute differences (percentage points) relative to the *Vanilla* row for each backbone. LIMA refers to the agent trained with the proposed DLPO.

are stronger than their 3B counterparts, and Qwen2.5 backbones start from higher scores than LLaMA3. Despite these differences, LIMA improves every backbone. Relative to the strongest non-LIMA baseline in each column, the absolute gains are 6.36 percentage points on LLaMA3-8B over GPTSwarm (91.25 vs. 84.89), 4.88 points on LLaMA3-3B over DyLAN (81.35 vs. 76.47), 2.75 points on Qwen2.5-7B over LLM-Debate (96.38 vs. 93.63), and 5.41 points on Qwen2.5-3B over DyLAN (93.51 vs. 88.10). The improvements are particularly pronounced for smaller models, where collaboration quality compensates for limited capacity. LIMA also surpasses several stronger-size baselines; for example, on Qwen2.5-3B it exceeds multiple 7B methods. These observations indicate that the benefit is largely orthogonal to the model’s intrinsic knowledge. Rather than injecting task facts, LIMA provides a transferable collaboration and selection policy that reliably raises performance across families and sizes, with the largest payoffs where models start weaker.

Proactive Human Intervention for Local Reasoning Correction. A central motivation for our study is that humans should not only respond passively when multi-agent systems request assistance, but also possess the ability to intervene proactively. As discussed earlier, the role of humans in collaborative systems extends beyond providing final solutions; equally important is their capacity to identify and correct local reasoning flaws during the interaction process. Leveraging our interactive collaboration architecture, we therefore investigate the effect of active human intervention. In particular, we contrast two settings: replacing human feedback with GPT-4o-mini as a proxy expert, and incorporating real human experts directly. As shown in Table 3 (a), both variants improve performance compared with pure LIMA, and real human intervention yields the strongest gains.

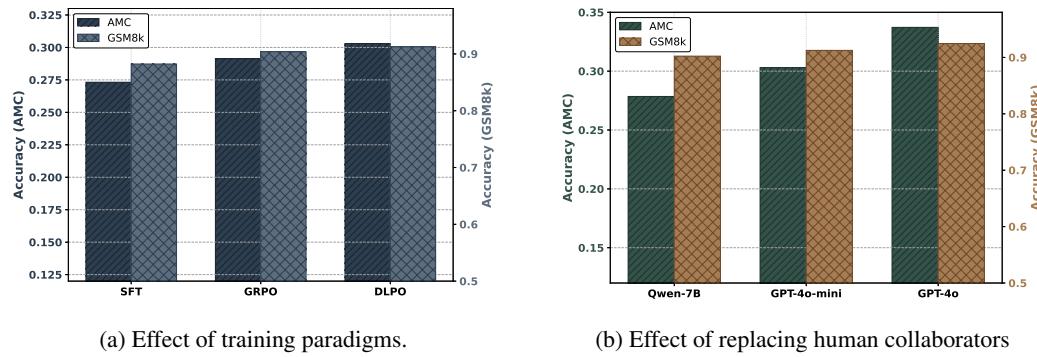
378
379
380
381
382
383
384
385
386
387
388
389

Method	GSM8K	AMC	HE	Method	GSM8K	AMC	HE
LIMA				LIMA			
w/ GPT-Intervene	0.9475	0.3162	0.7354	w/ GPT-Help	0.9236	0.3030	0.6835
w/ Human-Intervene	0.9617	0.3359	0.7231	w/ Human-Help	0.9317	0.2875	0.6717

(a) Mode A: Active human intervention during agent reasoning. HE denotes HumanEval dataset.

(b) Mode B: Human assistance only when the system requests guidance. HE denotes HumanEval dataset.

Table 3: Human involvement under two modes. Left: Mode A evaluates active human intervention during agent reasoning. Right: Mode B evaluates responses when agents explicitly request guidance. Results are reported as Solve Rate (%) on GSM8K (with subset sampling) and AMC.



(a) Effect of training paradigms.

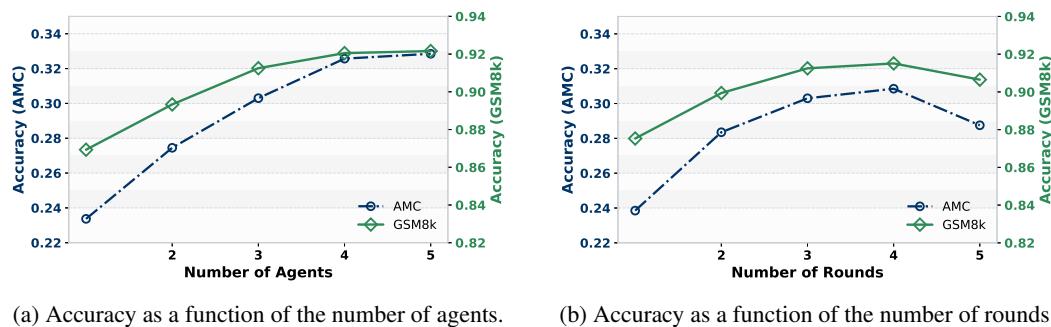
(b) Effect of replacing human collaborators

Figure 2: Ablation studies on training paradigms and external collaborators. Subfigure (a) compares different optimization strategies, while (b) evaluates the effect of substituting human expertise with LLMs of varying strengths.

This indicates that humans are especially adept at detecting local inconsistencies and steering the reasoning trajectory before errors accumulate. Furthermore, both GPT-based and human-based intervention outperform purely request-driven help, suggesting that proactive intervention and passive assistance should be integrated to fully exploit the benefits of human involvement.

On-Demand Human Assistance versus Artificial Expertise. To further examine the effect of different types of intelligence on multi-agent systems, we conduct a controlled comparison between human experts and GPT-4o-mini when agents explicitly request guidance. Results in Table 3 (b) show that on GSM8K subset, which involves relatively straightforward grade-school problems, human experts achieve higher solve rates, effectively solving most queries. However, on AMC, which contains competition-level mathematical problems, human performance does not surpass GPT-4o-mini, reflecting the limits of individual knowledge in specialized domains. These findings highlight the extensibility of our framework: it can flexibly incorporate either human collaborators or artificial experts, adapting to the strengths of each.

Ablation Studies on Learning Paradigms and Expert Substitutes. We perform two ablation studies to assess the contributions of our framework. The first examines three training paradigms: SFT-only, GRPO-only, and the complete DLPO method. SFT steadily expands the agents’ knowledge by assimilating expert demonstrations. GRPO strengthens decision-making by teaching the agents to balance the risks of autonomous attempts against the costs of expert deferrals. When combined, DLPO achieves the most consistent and robust improvements, as it unifies continual knowledge acquisition with metacognitive policy optimization Figure 2(a). The second ablation study evaluates different surrogate experts, including Qwen-7B, GPT-4o-mini, and GPT-4o. As shown in Figure 2 (b), stronger experts provide more reliable interventions and higher overall performance, yet even weaker substitutes contribute meaningfully. These results highlight the robustness of the framework to imperfect guidance and its extensibility to diverse sources of external expertise. A more detailed analysis is provided in Appendix C.2.



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
(a) Accuracy as a function of the number of agents. (b) Accuracy as a function of the number of rounds.

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Figure 3: Effect of scaling collaborative configurations. (a) shows how increasing the number of agents impacts accuracy on AMC and GSM8K, while (b) analyzes how varying the number of interaction rounds influences performance. Together, the results highlight the trade-offs between broader exploration through more agents and deeper refinement through additional rounds.

The Value of Collective Exploration. To examine how the size of the collective influences performance, we evaluate the LIMA framework with varying numbers of autonomous agents ($N \in \{1, \dots, 5\}$) on AMC and GSM8K. As illustrated in Figure 3 (a), accuracy improves consistently as the agent count increases, surpassing 0.92 on GSM8K with four agents. This pattern validates a central principle of our design: **collective exploration**. Increasing the number of parallel agents broadens the search space, producing more diverse candidate solutions and raising the likelihood of finding a correct reasoning path, especially on challenging tasks. However, the gains diminish as the number of agents grows beyond four, with the curve plateauing by five. Importantly, the results confirm that the learned metacognitive policy scales effectively: rather than being overwhelmed by a larger pool of outputs, the system successfully synthesizes them into progressively stronger decisions.

Optimal Depth of Iterative Collaboration. To assess the role of iterative refinement, we evaluate the LIMA framework with varying numbers of collaborative rounds ($R \in \{1, \dots, 5\}$). As shown in Figure 3 (b), the effect of additional rounds is distinctly non-monotonic. On both AMC and GSM8K, performance improves steadily at first, reaching its peak in the fourth round. For instance, on the challenging AMC benchmark, accuracy rises from a single-round baseline of about 0.24 to nearly 0.31 after four rounds of interaction. These gains highlight the benefit of multi-round collaboration, where agents leverage peer feedback to correct early errors and converge on stronger solutions. However, extending the process beyond this optimal depth results in diminishing and eventually negative returns, with accuracy declining in the fifth round. This pattern suggests that excessive interaction introduces failure modes such as **error amplification**, where minor mistakes propagate and intensify, or **cognitive fixation**, where agents collectively reinforce a flawed line of reasoning. The findings underscore a key design trade-off: iterative refinement is valuable, but not universally beneficial. Effective systems therefore require mechanisms to identify when additional collaboration is productive and when it risks entrenching errors.

5 CONCLUSION

In this paper, we presented the **LIMA** framework, which equips multi-agent systems with a metacognitive policy for deciding when to act autonomously and when to defer to human expertise. Through our **Dual-Loop Policy Optimization** strategy, combining GRPO for risk-aware decision-making with continual learning from expert demonstrations, agents achieve both short-term adaptability and long-term growth. Experiments across diverse reasoning benchmarks show that LIMA consistently outperforms autonomous and multi-agent baselines. Additional studies with human experts highlight the unique role of proactive intervention in correcting local reasoning errors and strengthening collaboration. In future work, we plan to explore fully dynamic collaboration paradigms and endow multi-agent systems with stronger evolutionary capabilities, moving toward open-ended and adaptive intelligence.

486 REFERENCES
487

488 Sahar Abdelnabi, Amr Gomaa, Sarah Sivaprasad, Lea Schönherr, and Mario Fritz. Cooperation,
489 competition, and maliciousness: Llm-stakeholders interactive negotiation. *Advances in Neural*
490 *Information Processing Systems*, 37:83548–83599, 2024.

491 Shayan Meshkat Alsadat and Zhe Xu. Multi-agent reinforcement learning in non-cooperative
492 stochastic games using large language models. *IEEE Control Systems Letters*, 2024.

493 Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
494 Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. *arXiv*
495 *preprint arXiv:2308.07201*, 2023.

496 Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
497 Shi. Autoagents: A framework for automatic agent generation. *arXiv preprint arXiv:2309.17288*,
498 2023a.

499 Jiaju Chen, Yuxuan Lu, Xiaojie Wang, Huimin Zeng, Jing Huang, Jiri Gesi, Ying Xu, Bingsheng
500 Yao, and Dakuo Wang. Multi-agent-as-judge: Aligning llm-agent-based automated evaluation
501 with multi-dimensional human evaluation. *arXiv preprint arXiv:2507.21028*, 2025.

502 Junzhe Chen, Xuming Hu, Shuodi Liu, Shiyu Huang, Wei-Wei Tu, Zhaofeng He, and Lijie Wen.
503 Llmarena: Assessing capabilities of large language models in dynamic multi-agent environments.
504 *arXiv preprint arXiv:2402.16499*, 2024a.

505 Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. Routerdc: Query-based
506 router by dual contrastive learning for assembling large language models. *Advances in Neural*
507 *Information Processing Systems*, 37:66305–66328, 2024b.

508 Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
509 Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and
510 exploring emergent behaviors in agents. *arXiv preprint arXiv:2308.10848*, 2(4):6, 2023b.

511 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
512 tuality and reasoning in language models through multiagent debate. In *Forty-first International*
513 *Conference on Machine Learning*, 2023.

514 Abhimanyu Dubey, Jauhri, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.

515 Xueyang Feng, Zhi-Yuan Chen, Yujia Qin, Yankai Lin, Xu Chen, Zhiyuan Liu, and Ji-Rong Wen.
516 Large language model-based human-agent collaboration for complex task solving. *arXiv preprint*
517 *arXiv:2402.12914*, 2024.

518 Adrian Garret Gabriel, Alaa Alameer Ahmad, and Shankar Kumar Jeyakumar. Advancing agentic
519 systems: Dynamic task decomposition, tool integration and evaluation using novel metrics and
520 dataset. *arXiv preprint arXiv:2410.22457*, 2024.

521 Suzie Grondin, Arthur Charpentier, and Philipp Ratz. Beyond human intervention: Algorithmic
522 collusion through multi-agent learning strategies. *arXiv preprint arXiv:2501.16935*, 2025.

523 Ai Han, Junxing Hu, Pu Wei, Zhiqian Zhang, Yuhang Guo, Jiawei Lu, and Zicheng Zhang.
524 Joyagents-r1: Joint evolution dynamics for versatile multi-llm agents with reinforcement learning.
525 *arXiv preprint arXiv:2506.19846*, 2025.

526 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
527 Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
528 a multi-agent collaborative framework. In *The Twelfth International Conference on Learning*
529 *Representations*, 2023.

530 Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. *arXiv preprint*
531 *arXiv:2408.08435*, 2024.

532 Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A llm multi-agent framework
533 toward ultra large-scale code generation and optimization. *arXiv preprint arXiv:2404.02183*,
534 2024.

540 Ziqi Jia, Junjie Li, Xiaoyang Qu, and Jianzong Wang. Enhancing multi-agent systems via reinforce-
 541 ment learning with lilm-based planner and graph-based policy. *arXiv preprint arXiv:2503.10049*,
 542 2025.

543

544 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
 545 with pairwise ranking and generative fusion. *arXiv preprint arXiv:2306.02561*, 2023.

546

547 Zhouyang Jiang, Bin Zhang, Airong Wei, and Zhiwei Xu. Qllm: Do we really need a mixing network
 548 for credit assignment in multi-agent reinforcement learning? *arXiv preprint arXiv:2504.12961*,
 549 2025.

550

551 Zachary Kenton, Noah Siegel, János Kramár, Jonah Brown-Cohen, Samuel Albanie, Jannis Bulian,
 552 Rishabh Agarwal, David Lindner, Yunhao Tang, Noah Goodman, et al. On scalable oversight
 553 with weak llms judging strong llms. *Advances in Neural Information Processing Systems*, 37:
 554 75229–75276, 2024.

555

556 Boyi Li, Zhonghan Zhao, Der-Horng Lee, and Gaoang Wang. Adaptive graph pruning for multi-
 557 agent communication. *arXiv preprint arXiv:2506.02951*, 2025.

558

559 Dapeng Li, Hang Dong, Lu Wang, Bo Qiao, Si Qin, Qingwei Lin, Dongmei Zhang, Qi Zhang,
 560 Zhiwei Xu, Bin Zhang, et al. Verco: Learning coordinated verbal communication for multi-agent
 561 reinforcement learning. *arXiv preprint arXiv:2404.17780*, 2024a.

562

563 Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee, Ehsan
 564 Moradi Pari, Charles Lewis, and Katia Sycara. Language grounded multi-agent reinforcement
 565 learning with human-interpretable communication. *Advances in Neural Information Processing
 566 Systems*, 37:87908–87933, 2024b.

567

568 Yuxi Li. Reinforcement learning applications. *arXiv preprint arXiv:1908.06973*, 2019.

569

570 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
 571 Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
 572 agent debate. *arXiv preprint arXiv:2305.19118*, 2023.

573

574 Muhan Lin, Shuyang Shi, Yue Guo, Vaishnav Tadiparthi, Behdad Chalaki, Ehsan Moradi Pari, Si-
 575 mon Stepputtis, Woojun Kim, Joseph Campbell, and Katia Sycara. Speaking the language of
 576 teamwork: Llm-guided credit assignment in multi-agent reinforcement learning. *arXiv preprint
 577 arXiv:2502.03723*, 2025.

578

579 Jijia Liu, Chao Yu, Jiaxuan Gao, Yuqing Xie, Qingmin Liao, Yi Wu, and Yu Wang. Llm-powered hi-
 580 erarchical language agent for real-time human-ai coordination. *arXiv preprint arXiv:2312.15224*,
 581 2023.

582

583 Tongxuan Liu, Xingyu Wang, Weizhe Huang, Wenjiang Xu, Yuting Zeng, Lei Jiang, Hailong Yang,
 584 and Jing Li. Groupdebate: Enhancing the efficiency of multi-agent debate using group discussion.
 585 *arXiv preprint arXiv:2409.14051*, 2024.

586

587 Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei Wang, Fei Mi, Baojun Wang, Weichao Wang,
 588 Lifeng Shang, and Qun Liu. Self: Language-driven self-evolution for large language model. 2023.

589

590 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 591 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 592 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

593

594 Hussein Mozannar, Gagan Bansal, Cheng Tan, Adam Fournier, Victor Dibia, Jingya Chen, Jack Ger-
 595 rits, Tyler Payne, Matheus Kunzler Maldaner, Madeleine Grunde-McLaughlin, et al. Magentic-ui:
 596 Towards human-in-the-loop agentic systems. *arXiv preprint arXiv:2507.22358*, 2025.

597

598 Chunjiang Mu, Hao Guo, Yang Chen, Chen Shen, Die Hu, Shuyue Hu, and Zhen Wang. Multi-
 599 agent, human-agent and beyond: a survey on cooperation in social dilemmas. *Neurocomputing*,
 600 610:128514, 2024.

594 Gabriel Mukobi, Hannah Erlebach, Niklas Lauffer, Lewis Hammond, Alan Chan, and Jesse
 595 Clifton. Welfare diplomacy: Benchmarking language model cooperation. *arXiv preprint*
 596 *arXiv:2310.08901*, 2023.

597 Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-of-
 598 thought: Prompting llms for efficient parallel generation. *arXiv preprint arXiv:2307.15337*, 2023.

599 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
 600 M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. *arXiv*
 601 *preprint arXiv:2406.18665*, 2024.

602 Bo Pan, Jiaying Lu, Ke Wang, Li Zheng, Zhen Wen, Yingchaojie Feng, Minfeng Zhu, and Wei Chen.
 603 Agentcoord: Visually exploring coordination strategy for llm-based multi-agent collaboration.
 604 *arXiv preprint arXiv:2404.11943*, 2024.

605 Ravi Pandya, Michelle Zhao, Changliu Liu, Reid Simmons, and Henny Admoni. Multi-agent
 606 strategy explanations for human-robot collaboration. In *2024 IEEE International Conference*
 607 *on Robotics and Automation (ICRA)*, pp. 17351–17357. IEEE, 2024.

608 Chanwoo Park, Seungju Han, Xingzhi Guo, Asuman Ozdaglar, Kaiqing Zhang, and Joo-Kyung Kim.
 609 Maporl: Multi-agent post-co-training for collaborative large language models with reinforcement
 610 learning. *arXiv preprint arXiv:2502.18439*, 2025.

611 Feng Peiyuan, Yichen He, Guanhua Huang, Yuan Lin, Hanchong Zhang, Yuchen Zhang, and Hang
 612 Li. Agile: A novel reinforcement learning framework of llm agents. *Advances in Neural Infor-*
 613 *mation Processing Systems*, 37:5244–5284, 2024.

614 Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du,
 615 Weize Chen, Cheng Yang, et al. Scaling large language model-based multi-agent collaboration.
 616 *arXiv preprint arXiv:2406.07155*, 2024.

617 Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor Jiang,
 618 Chengfei Lv, and Huajun Chen. Autoact: Automatic agent learning from scratch for qa via self-
 619 planning. *arXiv preprint arXiv:2401.05268*, 2024.

620 Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
 621 llm agent search in modular design space. *arXiv preprint arXiv:2410.06153*, 2024.

622 Philipp D Siedler and Ian Gemp. Llm-mediated guidance of marl systems. *arXiv preprint*
 623 *arXiv:2503.13553*, 2025.

624 KV Srivatsa, Kaushal Kumar Maurya, and Ekaterina Kochmar. Harnessing the power of multiple
 625 minds: Lessons learned from llm routing. *arXiv preprint arXiv:2405.00467*, 2024.

626 Chuanneng Sun, Songjun Huang, and Dario Pompili. Llm-based multi-agent decision-making:
 627 Challenges and future directions. *IEEE Robotics and Automation Letters*, 2025.

628 Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhancing language models with task-
 629 agnostic scaffolding. *arXiv preprint arXiv:2401.12954*, 2024.

630 Wannita Takerngsaksiri, Jirat Pasuksmit, Patanamon Thongtanunam, Chakkrit Tantithamthavorn,
 631 Ruixiong Zhang, Fan Jiang, Jing Li, Evan Cook, Kun Chen, and Ming Wu. Human-in-the-loop
 632 software development agents. In *2025 IEEE/ACM 47th International Conference on Software*
 633 *Engineering: Software Engineering in Practice (ICSE-SEIP)*, pp. 342–352. IEEE, 2025.

634 Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of
 635 intelligent llm agents. *arXiv preprint arXiv:2306.03314*, 2023.

636 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

637 Haley Triem and Ying Ding. “tipping the balance”: Human intervention in large language model
 638 multi-agent debate. *Proceedings of the Association for Information Science and Technology*, 61
 639 (1):361–373, 2024.

648 Ziyu Wan, Yunxiang Li, Xiaoyu Wen, Yan Song, Hanjing Wang, Linyi Yang, Mark Schmidt, Jun
 649 Wang, Weinan Zhang, Shuyue Hu, et al. Rema: Learning to meta-think for llms with multi-agent
 650 reinforcement learning. *arXiv preprint arXiv:2503.09501*, 2025.

651 Shenzhi Wang, Chang Liu, Zilong Zheng, Siyuan Qi, Shuo Chen, Qisen Yang, Andrew Zhao,
 652 Chaofei Wang, Shiji Song, and Gao Huang. Avalon’s game of thoughts: Battle against decep-
 653 tion through recursive contemplation. *arXiv preprint arXiv:2310.01320*, 2023a.

654 Xuejiao Wang, Guoqing Zhi, Zhihao Tang, Hao Jin, Qianyue Zhang, and Nan Li. Self-aware in-
 655 telligent medical rescue unmanned team via large language model and multi-agent reinforcement
 656 learning. In *Proceedings of the 2024 International Symposium on AI and Cybersecurity*, pp.
 657 119–124, 2024.

658 Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
 659 emergent cognitive synergy in large language models: A task-solving agent through multi-persona
 660 self-collaboration. *arXiv preprint arXiv:2307.05300*, 2023b.

661 Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
 662 Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
 663 agents via multi-turn reinforcement learning. *arXiv preprint arXiv:2504.20073*, 2025a.

664 Ziyang Wang, Zhicheng Zhang, Fei Fang, and Yali Du. M3hf: Multi-agent reinforcement learning
 665 from multi-phase human feedback of mixed quality. *arXiv preprint arXiv:2503.02077*, 2025b.

666 Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 667 Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. *arXiv preprint
 668 arXiv:2109.01652*, 2021.

669 Yuan Wei, Xiaohan Shan, and Jianmin Li. Lero: Llm-driven evolutionary framework with hy-
 670 brid rewards and enhanced observation for multi-agent reinforcement learning. *arXiv preprint
 671 arXiv:2503.21807*, 2025.

672 Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of large lan-
 673 guage models collaboration: An in-depth analysis via debate. *arXiv preprint arXiv:2305.11595*,
 674 2023.

675 Yanggang Xu, Weijie Hong, Jirong Zha, Geng Chen, Jianfeng Zheng, Chen-Chun Hsia, and Xin-
 676 lei Chen. Scalable uav multi-hop networking via multi-agent reinforcement learning with large
 677 language models. *arXiv preprint arXiv:2505.08448*, 2025.

678 Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng Guo, Junqi Dai, Xuanjing Huang, and Xipeng
 679 Qiu. Exchange-of-thought: Enhancing large language model capabilities through cross-model
 680 communication. *arXiv preprint arXiv:2312.01823*, 2023.

681 Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng Wan, Kun Wang, Dawei Cheng, and Yiyang
 682 Qi. Masrouter: Learning to route llms for multi-agent systems. *arXiv preprint arXiv:2502.11133*,
 683 2025.

684 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
 685 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

686 Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
 687 Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with large
 688 language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38,
 689 pp. 17591–17599, 2024a.

690 Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
 691 Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
 692 llm-based multi-agent systems. *arXiv preprint arXiv:2410.02506*, 2024b.

693 Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
 694 Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
 695 tion. *arXiv preprint arXiv:2410.10762*, 2024c.

702 Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Exploring collab-
 703 oration mechanisms for llm agents: A social psychology view. *arXiv preprint arXiv:2310.02124*,
 704 2023.

705 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
 706 overview of theories and algorithms. *Handbook of reinforcement learning and control*, pp. 321–
 707 384, 2021.

708 Xuan Zhang, Yang Deng, Zifeng Ren, See-Kiong Ng, and Tat-Seng Chua. Ask-before-plan: Proac-
 709 tive language agents for real-world planning. *arXiv preprint arXiv:2406.12639*, 2024d.

710 Yang Zhang, Shixin Yang, Chenjia Bai, Fei Wu, Xiu Li, Zhen Wang, and Xuelong Li. Towards
 711 efficient llm grounding for embodied multi-agent collaboration. *arXiv preprint arXiv:2405.14314*,
 712 2024e.

713 Heng Zhou, Hejia Geng, Xiangyuan Xue, Li Kang, Yiran Qin, Zhiyong Wang, Zhenfei Yin, and Lei
 714 Bai. Reso: A reward-driven self-organizing llm-based multi-agent system for reasoning tasks.
 715 *arXiv preprint arXiv:2503.02390*, 2025.

716 Guobin Zhu, Rui Zhou, Wenkang Ji, and Shiyu Zhao. Lamarl: Llm-aided multi-agent reinforcement
 717 learning for cooperative policy generation. *IEEE Robotics and Automation Letters*, 2025.

718 Yuan Zhuang, Yi Shen, Zhili Zhang, Yuxiao Chen, and Fei Miao. Yolo-marl: You only llm once for
 719 multi-agent reinforcement learning. *arXiv preprint arXiv:2410.03997*, 2024.

720 Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbulin, and Jürgen
 721 Schmidhuber. Gptswarm: Language agents as optimizable graphs. In *Forty-first International
 722 Conference on Machine Learning*, 2024.

723 Henry Peng Zou, Wei-Chieh Huang, Yaozu Wu, Yankai Chen, Chunyu Miao, Hoang Nguyen, Yue
 724 Zhou, Weizhi Zhang, Liancheng Fang, Langzhou He, et al. Llm-based human-agent collaboration
 725 and interaction systems: A survey.

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A RELATED WORK
757758 A.1 COLLABORATION PARADIGMS IN MULTI-AGENT LLM SYSTEMS.
759

760 Early research has shown that single LLM agents face inherent limitations in context length, se-
761 quential generation, and breadth of skills, which restrict their ability to solve complex tasks requir-
762 ing diverse perspectives or parallel reasoning (Gabriel et al., 2024; Liang et al., 2023; Xiong et al.,
763 2023; Yin et al., 2023; Zhang et al., 2023). To overcome these bottlenecks, recent work has explored
764 **multi-agent systems** (MAS), where multiple LLMs are orchestrated to realize collective intelli-
765 gence across domains such as software engineering, planning, and problem solving (Hong et al.,
766 2023; Chen et al., 2023b; Jiang et al., 2023; Ning et al., 2023; Qiao et al., 2024; Pan et al., 2024;
767 Suzgun & Kalai, 2024; Chen et al., 2023a; Ishibashi & Nishimura, 2024).
768

768 Most existing frameworks rely on prompt-based paradigms that predefine roles, communication pro-
769 tocols, or workflow structures. These designs enable debate, critique, and corporate-style pipelines,
770 achieving notable gains in coordination efficiency (Du et al., 2023; Chan et al., 2023; Chen et al.,
771 2024a; Mukobi et al., 2023; Wang et al., 2023a; Abdelnabi et al., 2024; Han et al., 2025). However,
772 because they are hand-crafted and do not adapt through experience, such systems remain fundamen-
773 tally **closed-world**: they can only recombine existing knowledge rather than acquire genuinely new
774 capabilities (Wang et al., 2023b; Liu et al., 2024; Chen et al., 2024b).
775

775 Beyond fixed prompts, two further directions have emerged. **Prestructured coordination** employs
776 fixed debate or peer-review topologies, such as chains, trees, or graphs, to refine reasoning (Du
777 et al., 2023; Liu et al., 2024; Qian et al., 2024). In contrast, **self-organizing approaches** adapt the
778 interaction graph dynamically through search, pruning, routing, or evolutionary mechanisms (Hu
779 et al., 2024; Shang et al., 2024; Zhang et al., 2024b; Zhuge et al., 2024; Zhang et al., 2024c; Yue
780 et al., 2025). These advances highlight the importance of who communicates and when, yet they pri-
781 marily optimize internal coordination and leave unaddressed the problem of learning from external
782 expertise.
783

783 In contrast, our work introduces a centralized and iterative collaboration framework that explicitly
784 incorporates **human expertise** as an open-world resource. Rather than treating human feedback
785 as a passive oracle or one-time correction (Takerngaksiri et al., 2025; Mozannar et al., 2025; Liu
786 et al., 2023; Pandya et al., 2024), we propose to endow agents with a metacognitive policy that
787 governs both the timing of deferral and the assimilation of human guidance into lasting improve-
788 ments. This approach differs fundamentally from prior debate, routing, and workflow-search sys-
789 tems, which often lack principled credit assignment between reasoning and decision outcomes (Chan
790 et al., 2023; Talebirad & Nadiri, 2023; Wei et al., 2025). By integrating external knowledge with
791 learned metacognitive adaptation, our framework moves beyond static collaboration to establish a
792 pathway toward adaptive and continually improving multi-agent intelligence.
793

A.2 MULTI-AGENT REINFORCEMENT LEARNING FOR LLMs.
794

795 A growing line of work seeks to move beyond static prompt engineering and endow multi-agent
796 LLM systems with adaptive learning capabilities. Early efforts rely on supervised fine-tuning (SFT)
797 to inject collaborative patterns by imitating expert demonstrations or curated trajectories (Lu et al.,
798 2023; Madaan et al., 2023; Zelikman et al., 2022; Wei et al., 2021). While effective for seeding
799 cooperative behaviors, SFT remains limited by its offline nature and cannot adapt to novel contexts.
800 Reinforcement learning (RL) has thus emerged as a natural complement, enabling agents to refine
801 policies through trial-and-error interaction and reward-driven adaptation (Zhu et al., 2025; Zhuang
802 et al., 2024). In practice, SFT often serves as initialization, with RL providing fine-grained policy
803 improvement under feedback (Zhu et al., 2025; Li, 2019; Zhang et al., 2021).
804

804 Recent research highlights three major directions. First, compiling language into structured con-
805 trollers—such as graphs, code, or plans—allows RL to optimize execution policies over symbolic
806 abstractions rather than raw text (Zhuang et al., 2024; Jia et al., 2025; Zhu et al., 2025). Second,
807 online collaboration is adapted through RL-based task decomposition, communication routing, and
808 role assignment, which allow dynamic coordination beyond static protocols (Zhou et al., 2025; Wang
809 et al., 2024; Xu et al., 2025; Li et al., 2024a). Third, several studies explore learning reasoning poli-
810 cies directly in language space using GRPO or PPO-style updates, often integrating tools or human
811 input when beneficial (Wan et al., 2025; Park et al., 2025; Han et al., 2025; Peiyuan et al., 2024; Feng
812 et al., 2024).
813

810 et al., 2024). These approaches underscore the importance of credit assignment and reward shaping
 811 for aligning emergent behaviors in high-dimensional language action spaces (Wei et al., 2025; Jiang
 812 et al., 2025; Alsadat & Xu, 2024; Lin et al., 2025).

813 Our work is closely aligned with this trajectory but emphasizes a key gap: most existing RL ap-
 814 proaches focus on optimizing intra-agent or inter-agent coordination while leaving the system’s
 815 knowledge boundary fixed. In contrast, we introduce a dual-loop perspective where RL is respon-
 816 sible for learning a metacognitive deferral policy, and expert demonstrations triggered by deferral
 817 events fuel continual learning. This integration addresses both immediate decision-making and long-
 818 term capability growth, providing a principled path toward genuinely adaptive multi-agent systems.
 819

820 B METHODOLOGY

821 B.1 PRELIMINARIES: THE METACOGNITIVE MARKOV DECISION PROCESS

822 We formalize the dynamics of human–agent collaboration as a **Meta-Cognitive Markov Decision**
 823 **Process (Meta-MDP)**, defined by the tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, R, \gamma)$. A Meta-MDP provides a prin-
 824 cipled framework for sequential decision-making where actions correspond to high-level cognitive
 825 strategies. Formally, a Meta-MDP is defined by the tuple $(\mathcal{S}, \mathcal{A}, P, R, \gamma)$. At each round t of the
 826 multi-agent collaboration, the process unfolds as follows: The state $s_t \in \mathcal{S}$ is a **structured cognitive**
 827 **state representation**, which encapsulates not only the external problem context but also the agent’s
 828 internal assessment of its own and its peers’ current understanding, as we will detail in Section 3.2.
 829 Based on this rich state, the agent selects a metacognitive action a_t from a discrete action space
 830 \mathcal{A} , which includes functional strategies such as solving the problem autonomously or deferring to
 831 the expert. The system then transitions to a new state s_{t+1} according to the transition function
 832 $P(s_{t+1}|s_t, a_t)$. A reward $R(s_t, a_t)$ is issued, designed to incentivize both task success and the ef-
 833 ficient utilization of the expert resource. The overarching goal is to learn an optimal metacognitive
 834 policy $\pi^*(a_t|s_t)$ that maximizes the expected cumulative reward, thereby training an agent that can
 835 rationally balance autonomous problem-solving with strategic reliance on human guidance.
 836

837 C EXPERIMENT

838 C.1 EXPERIMENTAL SETTINGS

839 **Benchmarks and Evaluation.** To evaluate our framework, we conduct experiments on a broad
 840 collection of benchmarks that test complementary aspects of reasoning ability. These tasks span
 841 three domains: general knowledge and analytical reasoning, program synthesis, and mathematical
 842 problem solving.

843 For general knowledge, we use the MMLU benchmark, which includes 57 subject areas in a
 844 multiple-choice format; performance is measured by classification Accuracy. For program synthesis,
 845 we adopt HumanEval, where models generate code solutions from natural-language specifications;
 846 following convention, we report Pass@1, the proportion of single attempts that succeed on all hidden
 847 tests.

848 For quantitative reasoning, we consider four math-focused datasets with concise numerical answers:
 849 GSM8K (grade-school arithmetic word problems), MATH (competition-level problems covering
 850 algebra, geometry, combinatorics, and number theory), AIME (short-form olympiad-style tasks),
 851 and AMC (large-scale contest problems). Performance on these datasets is reported as Solve Rate,
 852 defined by exact match against each dataset’s normalized reference solution.

853 All evaluations are conducted on the official datasets with standard prompting protocols. We ex-
 854 clude external tools and retrieval, ensuring that improvements stem from our collaboration frame-
 855 work rather than auxiliary resources. In single-agent settings, inference is run deterministically.
 856 For multi-agent experiments involving stochastic sampling, we fix random seeds, repeat runs, and
 857 report averaged results. Confidence intervals are included in the appendix. This setup isolates the
 858 contribution of our proposed method and allows for fair comparison against existing approaches.

864 **Baselines.** To ensure a fair and comprehensive comparison, we evaluate our framework against
 865 three broad families of baseline methods that represent the dominant paradigms in collaborative
 866 reasoning with LLMs:
 867

- 868 1. **Single-Agent Solvers.** These methods rely on a single model instance without peer interaction.
 869 They capture the performance limits of prompting alone. Examples include
 870 direct decoding under a standard prompt (*Vanilla*), reasoning traces generated by *Chain-of-*
 871 *Thought (CoT)* prompting, and multi-sample aggregation methods such as *Self-Consistency*
 872 (*SC*). Self-reflection strategies (e.g., *Reflection*, *RASC*) are also included, where the model
 873 internally revises its outputs without external assistance.
- 874 2. **Interactive Multi-Agent Deliberation.** This class introduces explicit communication
 875 among multiple agents. Agents generate, critique, and refine one another’s proposals. Ap-
 876 proaches such as *LLM-Debate* implement structured argue–respond cycles, while pairwise
 877 or pooled critique frameworks (e.g., *PHP*) simulate peer-review processes. These baselines
 878 assess whether systematic interaction alone, without external expertise, can reduce errors
 879 and improve reasoning robustness.
- 880 3. **System-Level Coordination Frameworks.** Some approaches treat collaboration as an
 881 optimization problem over computational graphs. Adaptive topology and routing meth-
 882 ods (e.g., *DyLAN*, *MasRouter*) dynamically determine communication patterns, while
 883 workflow- and search-based systems (e.g., *GPTSwarm*, *AFLOW*) orchestrate reusable
 884 reasoning modules. Communication-pruning strategies such as *AgentPrune* improve scalabil-
 885 ity by filtering redundant interactions. These baselines highlight efficiency and coordina-
 886 tion at scale.

887 For all baselines, we control the backbone model, prompting setup, and generation budget (number
 888 of agents, rounds, and outputs). When multiple candidates are produced, we apply the baseline’s
 889 canonical reduction method (e.g., majority vote). No retrieval augmentation or external tools are
 890 used. This categorization clarifies whether improvements arise from stronger *single-agent reasoning*,
 891 richer *peer verification*, or more effective *coordination*, providing a clear context for evaluating
 892 our method.

894 **Implementation Details.** Our experiments employ three agents engaged in collaborative reason-
 895 ing over three successive rounds. Each agent is drawn from instruction-tuned open models, specif-
 896 ically **Qwen2.5-7B-Instruct**, **Qwen2.5-3B-Instruct** (Team, 2024), **Llama-3.1-8B-Instruct**, and
 897 **Llama-3.2-3B-Instruct** (Dubey et al., 2024). All models are fine-tuned with a parameter-efficient
 898 LoRA configuration, using a rank of 16. To ensure efficient execution, we rely on the Hugging-
 899 Face Transformers framework, enabling both 8-bit quantization and key–value caching for reduced
 900 memory usage and faster inference. Decoding follows a nucleus sampling scheme with $p = 0.95$,
 901 a temperature of 0.7, and a maximum generation length of 512 tokens. For tasks requiring repro-
 902 ducibility, such as pairwise evaluation, we reduce the temperature to 0.3. Each experimental setup
 903 is repeated with three independent random seeds, and results are averaged to control for variance.
 904 For optimization, we use Adam with an initial learning rate of 5×10^{-5} and apply a cosine decay
 905 schedule. Training incorporates an entropy regularization term of 0.01 to encourage exploration,
 906 and a KL penalty of 1.0 to anchor the learned policy to the supervised initialization. Training runs
 907 for three epochs maximum with a global batch size of 256, distributed across four NVIDIA A100
 908 GPUs (80 GB each).

909 **Definition of Human Expert.** In principle, the human collaborator in our framework refers to a
 910 real person who can provide external knowledge and corrective interventions. However, following
 911 prior studies that approximate human input with advanced language models (Liu et al., 2023; Pandya
 912 et al., 2024), we also adopt intelligent LLMs as practical substitutes. In most experiments, we use
 913 **GPT-4o-mini** as the default proxy for the human expert, striking a balance between cost and effec-
 914 tiveness. To more rigorously assess the framework’s native design for human–agent collaboration,
 915 we additionally conduct experiments with two complementary settings: (i) *proactive intervention*,
 916 where the human actively identifies local reasoning errors, and (ii) *passive assistance*, where the
 917 human responds only when explicitly queried. For comparison with real experts, we further in-
 918 volve several PhD students in computer science with extensive research experience and specialized

918 knowledge relevant to the benchmark datasets. This setup enables us to disentangle the influence of
 919 simulated versus real human input on the multi-agent system’s performance.
 920

921
 922 **C.2 EXPERIMENTAL RESULTS**
 923

924 **Ablation Study on Learning Paradigms.** We compare three training settings: SFT-only, GRPO-
 925 only, and the full DLPO method that integrates GRPO with continual learning. As shown in Fig-
 926 ure 2(a), the results reveal several important patterns. Pure SFT improves the baseline by con-
 927 tinuously assimilating expert demonstrations, which allows the agents to reduce recurring reasoning
 928 mistakes and improve performance on the evaluated tasks. GRPO on its own strengthens the decision
 929 policy by teaching agents to weigh the trade-off between autonomous attempts and costly deferrals.
 930 While both settings are beneficial in isolation, their gains are limited when applied separately. The
 931 combined DLPO method achieves the strongest and most stable improvement, demonstrating that
 932 continual acquisition of expert knowledge and the optimization of metacognitive decision-making
 933 reinforce one another.
 934

935 **Ablation Study on Human Substitutes.** We further examine how the system behaves when the
 936 human collaborator is replaced by different surrogate experts of varying strength, specifically Qwen-
 937 7B, GPT-4o-mini, and GPT-4o. Figure 2(b) presents the comparison, which highlights two insights.
 938 Stronger models provide more consistent and higher-quality interventions, naturally leading to bet-
 939 ter overall performance. At the same time, even weaker surrogates still contribute meaningfully,
 940 showing that the system is robust to imperfect guidance and capable of integrating diverse forms
 941 of external input. Importantly, the results validate the extensibility of our design: the collaborative
 942 loop does not rely on a particular expert, but instead offers a general mechanism for incorporating
 943 any external intelligence, whether it is another LLM or a human expert.
 944

945 **The Value of Collective Exploration.** To examine how the size of the collective influences
 946 performance, we evaluate the LIMA framework with varying numbers of autonomous agents
 947 ($N \in 1, \dots, 5$) on AMC and GSM8K. As illustrated in Figure 3 (a), performance improves con-
 948 sistently as the agent count increases. On AMC, scaling from a single agent to three agents yields
 949 a notable boost in accuracy, and a similar upward trend is observed on GSM8K, where the system
 950 surpasses 0.92 accuracy with four agents. This pattern validates a central principle of our design:
 951 **collective exploration.** Increasing the number of parallel agents broadens the search space, pro-
 952 ducing more diverse candidate solutions and raising the likelihood of finding a correct reasoning
 953 path, especially on challenging tasks where solutions are non-trivial. However, the gains diminish
 954 as the number of agents grows beyond four, with the curve beginning to plateau by five agents. This
 955 indicates a trade-off between the marginal benefit of additional perspectives and the computational
 956 overhead they incur. Importantly, the results confirm that the learned metacognitive policy scales
 957 effectively: rather than being overwhelmed by a larger pool of outputs, the system successfully
 958 synthesizes them into progressively stronger decisions.
 959

960 **Optimal Depth of Iterative Collaboration.** To assess the role of iterative refinement, we evaluate
 961 the LIMA framework with varying numbers of collaborative rounds ($R \in 1, \dots, 5$). As shown in
 962 Figure 3 (b), the effect of additional rounds is distinctly non-monotonic. On both AMC and GSM8K,
 963 performance improves steadily at first, reaching its peak in the fourth round. For instance, on the
 964 challenging AMC benchmark, accuracy rises from a single-round baseline of about 0.24 to nearly
 965 0.31 after four rounds of interaction. These gains highlight the benefit of multi-round collaboration,
 966 where agents leverage peer feedback to correct early errors and converge on stronger solutions.
 967 However, extending the process beyond this optimal depth results in diminishing and eventually
 968 negative returns, with accuracy declining in the fifth round. This pattern suggests that excessive
 969 interaction introduces failure modes such as **error amplification**, where minor mistakes propagate
 970 and intensify, or **cognitive fixation**, where agents collectively reinforce a flawed line of reasoning.
 971 The findings underscore a key design trade-off: iterative refinement is valuable, but not universally
 972 beneficial. Effective systems therefore require mechanisms to identify when additional collaboration
 973 is productive and when it risks entrenching errors.

972 Table 4: Accuracy (%) on five benchmarks. The top block studies the effect of external experts and
 973 the DLPO meta-policy on top of the LIMA collaboration architecture. The bottom block compares
 974 DLPO against naive defer strategies, all with access to the same human expert.

976 Method	976 GSM8K	976 AMC	976 MATH	976 HumanEval	976 MMLU
<i>Effect of external experts and DLPO</i>					
979 LIMA (No Defer)	979 85.45	979 19.38	979 57.17	979 58.36	979 68.93
980 LIMA (Self Defer)	980 85.92	980 20.25	980 57.69	980 59.28	980 69.34
981 LIMA (Human Defer)	981 88.23	981 27.32	981 62.52	981 65.78	981 71.35
982 LIMA + DLPO (Self Defer)	982 86.71	982 24.52	982 59.28	982 61.54	982 69.91
983 LIMA + DLPO (Human Defer)	983 91.25	983 30.30	983 65.46	983 67.82	983 73.58
<i>Learned vs. naive defer policies with human expert</i>					
985 Random Defer (Human)	985 86.53	985 25.52	985 59.46	985 61.75	985 70.12
986 Uniform Defer (Human, Budget K)	986 87.82	986 26.87	986 62.81	986 65.35	986 70.59
987 Always Defer (Human)	987 94.38	987 40.27	987 68.85	987 84.32	987 81.45
988 LIMA + DLPO (Human Defer)	988 91.25	988 30.30	988 65.46	988 67.82	988 73.58

990 D ADDITIONAL EXPERIMENTS

993 D.1 PERFORMANCE GAIN FROM EXTERNAL

994 **Experimental setup.** We evaluate the impact of external high level feedback and the DLPO meta-
 995 policy on top of the LIMA collaboration architecture. The variant *LIMA (No Defer)* disables any
 996 external expert and runs the base multi agent system alone. *LIMA (Self Defer)* augments this system
 997 with a self expert: when the controller chooses to defer, it calls the same LIMA backbone to produce
 998 an additional candidate solution without introducing new external knowledge. *LIMA (Human Defer)*
 999 instead routes these defer actions to a pool of human domain experts, who provide full solutions and
 1000 reasoning traces that act as high level feedback. The variants with “+ DLPO” train a metacognitive
 1001 policy with GRPO to choose between create, evaluate and defer actions. *LIMA + DLPO (Self Defer)*
 1002 uses the self expert as the teacher, while *LIMA + DLPO (Human Defer)* combines the learned policy
 1003 with real human experts under a fixed consultation budget and also uses their demonstrations for
 1004 continual SFT updates. We report accuracy on GSM8K, AMC, MATH, HumanEval and MMLU.

1005 To study whether performance gains come from the meta-policy or from the presence of a strong
 1006 external expert, we fix a human expert and compare DLPO against naive defer strategies under the
 1007 same setting. *Random Defer (Human)* chooses to consult the human expert for each instance with
 1008 a fixed probability, which yields an expected number of human calls close to the DLPO budget.
 1009 *Uniform Defer (Human, Budget K)* selects a fixed number of instances to defer, matching the total
 1010 number of human consultations used by DLPO, and distributes these calls uniformly across the
 1011 evaluation set. *Always Defer (Human)* forwards every instance directly to the human expert and
 1012 uses the human answer as the final prediction. This variant ignores any cost of inquiry and serves as
 1013 an upper bound that corresponds to full manual solving rather than a realistic deployment.

1014 **Experimental analysis.** The first block shows that external feedback and the DLPO meta-policy
 1015 contribute in complementary ways. Moving from *LIMA (No Defer)* to *LIMA (Self Defer)* yields only
 1016 mild gains, which indicates that extra rollouts from the same backbone provide limited benefit when
 1017 no new knowledge is introduced. Replacing the self expert with human experts in *LIMA (Human*
 1018 *Defer)* produces consistent improvements on all five benchmarks, especially on AMC, MATH and
 1019 HumanEval, which confirms that high level human feedback is valuable even under a simple defer
 1020 rule. Adding DLPO on top of self defer already brings a clear boost over *LIMA (Self Defer)*, most
 1021 notably on AMC and MATH, which shows that a learned metacognitive policy helps the system
 1022 decide when additional reasoning is worthwhile even without external knowledge. The full variant
 1023 *LIMA + DLPO (Human Defer)* achieves the best accuracy among all cost aware methods and im-
 1024 proves over *LIMA (Human Defer)* by several points on every benchmark. This pattern indicates that
 1025 the performance gains are not only due to stronger feedback, but also due to the way DLPO selects
 when to defer and how it converts expert interactions into long term improvements.

1026 Table 5: Accuracy and token usage on GSM8K and AMC as a function of the number of agents.
 1027 We report accuracy together with average input, output, and total tokens per instance under a fixed
 1028 backbone and decoding configuration.

1029

# Agents	GSM8K	AMC	Avg. Input Tokens	Avg. Output Tokens	Avg. Total Tokens
1	0.8693	0.2337	1670	591	2261
2	0.8933	0.2745	3675	1273	4948
3	0.9125	0.3030	7910	2032	9942
4	0.9205	0.3257	13489	2782	16271
5	0.9216	0.3285	23316	3526	26842
6	0.9271	0.3123	29464	4280	33744
8	0.9405	0.3574	38584	5574	44158
10	0.9378	0.3528	50772	7184	57956

1039

1040

1041 The second block isolates the effect of the learned defer policy under access to the same human
 1042 expert. Both *Random Defer (Human)* and *Uniform Defer (Human, Budget K)* benefit from human
 1043 feedback, yet they remain below *LIMA + DLPO (Human Defer)* on all benchmarks. The gap is
 1044 especially visible on the more challenging datasets, where DLPO improves over random defer by
 1045 roughly five points on AMC and six points on MATH and still outperforms uniform defer by a
 1046 meaningful margin. This shows that selective, state dependent defer decisions are more effective
 1047 than using the same human budget in a task agnostic way. The *Always Defer (Human)* variant
 1048 achieves the highest raw scores but does so by fully offloading the task to humans and ignoring any
 1049 cost of inquiry, which makes it an unrealistic reference point. Our method approaches this upper
 1050 bound while using a limited number of consultations, which supports the claim that the framework
 1051 improves performance not only by adding external feedback but by learning how to use that feedback
 1052 efficiently.

1053

D.2 SCALING TO LARGER AGENT POPULATIONS

1054

1055 **Experimental setup.** Most prior multi-agent work on math, reasoning, and code benchmarks eval-
 1056 uates relatively small teams, typically with at most five agents. Following this convention, our orig-
 1057 inal submission focused on configurations up to four agents. In response to the review, we extend
 1058 the study to larger populations and jointly measure accuracy and inference cost. Using the same
 1059 backbone, decoding configuration, and meta-policy, we vary the number of agents on GSM8K and
 1060 AMC from 1 up to 10. For each configuration we report task accuracy together with the average
 1061 input, output, and total tokens per instance, as summarized in Table 5.

1062

1063 **Experimental analysis.** The results reveal a clear pattern. From 1 to 4 agents, accuracy improves
 1064 sharply. For example, GSM8K rises from 0.8693 (1 agent) to 0.9205 (4 agents), and AMC from
 1065 0.2337 to 0.3257, while the average total token usage grows from 2,261 to 16,271 per instance.
 1066 Beyond 4 agents, the gains become much smaller. Increasing the team size from 4 to 6 agents raises
 1067 GSM8K only from 0.9205 to 0.9271 and leaves AMC at a similar level (0.3257 versus 0.3123), yet
 1068 the total tokens increase from 16,271 to 33,744. With 8 and 10 agents, GSM8K and AMC continue
 1069 to improve slightly (for example GSM8K 0.9405 at 8 agents and 0.9378 at 10 agents, AMC 0.3574
 1070 and 0.3528), but the total cost grows to 44,158 and 57,956 tokens per instance.

1071

1072 These extended results clarify that our earlier focus on four agents was not arbitrary. The case of four
 1073 agents lies near a practical sweet spot where the marginal accuracy gain per additional agent begins
 1074 to saturate, while the communication and inference cost continues to grow rapidly. In practice this
 1075 suggests that collaborative configurations should be chosen as a task dependent trade off between
 1076 accuracy and computational cost. We will add this scaling analysis and a performance–cost plot to
 1077 the revised version to justify our emphasis on small to medium team sizes in the main experiments.

1078

D.3 APPROXIMATE INTER AGENT CONSISTENCY VIA PARTIAL SAMPLING

1079

1079 **Experimental setup.** You also raise a valuable concern about the complexity of full inter agent
 consistency checks. In the original design, we compute pairwise consistency features between

1080
1081 Table 6: Comparison between full pairwise consistency and partial sampling consistency for larger
1082 agent teams. We report accuracy on GSM8K and AMC and the average total tokens per instance for
1083 each variant.

#Agents	GSM8K (Full)	GSM8K (Partial)	AMC (Full)	AMC (Partial)	Avg. (Full)	Avg. (Partial)
5	0.9216	0.9187	0.3285	0.3217	26842	15315
6	0.9271	0.9156	0.3123	0.3025	33744	17861
8	0.9405	0.9332	0.3574	0.3516	44158	22758
10	0.9378	0.9283	0.3528	0.3362	57956	26394

1089
1090 agents, which has quadratic cost in the number of agents. We agree that this becomes prohibitive for
1091 very large populations and we appreciate you highlighting this point.

1092 To address this, we conduct an additional ablation inspired by communication efficient multi agent
1093 methods. We test a simple approximate scheme in which each agent only compares its outputs with
1094 a sampled subset of peers. In this *partial sampling* variant, each agent communicates with at most
1095 $K = 3$ other agents, which reduces the complexity from $O(n^2)$ pairwise checks to approximately
1096 $O(nK)$. We evaluate this variant on GSM8K and AMC with 5, 6, 8, and 10 agents, and we report
1097 accuracy together with the average total tokens per instance. The results are summarized in Table 6.

1098
1099 **Experimental analysis.** On both GSM8K and AMC, partial sampling remains very close to full
1100 pairwise consistency in terms of accuracy. For example, with 8 agents, GSM8K changes from
1101 0.9405 (full) to 0.9332 (partial), and AMC from 0.3574 to 0.3516. With 10 agents, GSM8K changes
1102 from 0.9378 to 0.9283 and AMC from 0.3528 to 0.3362. In most cases the differences are within
1103 about one absolute point. In contrast, the cost reduction is substantial. At 8 agents, the average
1104 total tokens decrease from 44,158 (full) to 22,758 (partial), and at 10 agents from 57,956 to 26,394,
1105 which corresponds to roughly a 40–50% reduction in communication and inference cost.

1106 These results show that the metacognitive policy and consistency features do not require dense all to
1107 all communication. A simple sampled consistency scheme preserves most of the performance while
1108 significantly lowering cost and scaling more gracefully with the number of agents. Our framework
1109 is also orthogonal to existing communication optimization techniques, such as methods that learn
1110 sparse interaction graphs or prune redundant agents. LIMA can be combined with such approaches
1111 so that the meta policy operates on a communication topology that is already optimized for larger
1112 populations.

1114 D.4 SEQUENTIAL MULTI TASK LEARNING AND FORGETTING

1116 **Experimental setup.** To study long term capability growth and potential catastrophic forgetting,
1117 we follow a sequential two task protocol. We treat GSM8K as Task A and AMC as Task B. Starting
1118 from the same base LIMA backbone and meta policy, we evaluate three stages:

1. **Base.** No DLPO training. We evaluate the initial model on GSM8K and AMC and obtain accuracies A_0 and B_0 .
2. **After Task A.** We run the full DLPO procedure with expert feedback only on GSM8K. We collect defer demonstrations, update the base model with outer loop SFT, and then evaluate the updated model on both tasks, yielding A_1 and B_1 .
3. **After Task A → B.** Starting from the GSM8K trained model, we run DLPO with expert feedback on AMC. During outer loop SFT we replay demonstrations from both GSM8K and AMC, so the model sees a mixture of Task A and Task B examples. We then evaluate again on both tasks, obtaining A_2 and B_2 .

1130 In addition to DLPO with replay, we include a *naive sequential SFT* baseline that uses the same
1131 expert demonstrations but does not use DLPO or replay. This baseline first fine tunes on GSM8K
1132 demonstrations only, then fine tunes on AMC demonstrations only. It corresponds to the standard
1133 sequential fine tuning setting that is known to induce catastrophic forgetting. All reported values are
accuracies in percent.

1134 Table 7: Sequential learning across GSM8K (Task A) and AMC (Task B). We report accuracy (%)
 1135 for DLPO with replay and a naive sequential SFT baseline at three stages: Base (no training), After
 1136 Task A (trained on GSM8K only), and After Task A→B (sequentially trained on GSM8K then
 1137 AMC).

1138

Method	Stage	GSM8K Accuracy (A)	AMC Accuracy (B)
DLPO (ours)	Base	88.23	27.32
DLPO (ours)	After Task A	91.45	26.78
DLPO (ours)	After Task A→B	90.97	32.58
Naive sequential SFT	Base	88.23	27.32
Naive sequential SFT	After Task A	90.47	22.65
Naive sequential SFT	After Task A→B	88.71	29.36

1146

1147

1148

Experimental analysis. The results in Table 7 show clear differences between DLPO with replay and naive sequential SFT. For DLPO, the base model starts at 88.23 on GSM8K and 27.32 on AMC. After DLPO on GSM8K, GSM8K improves to 91.45, while AMC remains roughly similar at 26.78. After further DLPO on AMC with replay, AMC increases to 32.58 and GSM8K remains high at 90.97. The forgetting on GSM8K is modest: the drop from 91.45 to 90.97 is 0.48 points, while the gain over the base model is still more than 2.7 points.

1154

1155

1156

1157

1158

By contrast, the naive sequential SFT baseline exhibits much stronger forgetting. Using the same GSM8K demonstrations, sequential SFT improves GSM8K from 88.23 to 90.47, but reduces AMC from 27.32 to 22.65. After fine tuning only on AMC demonstrations, AMC rises to 29.36 while GSM8K drops to 88.71. The drop from 90.47 to 88.71 corresponds to about 1.8 points of forgetting, which removes most of the earlier gain on GSM8K.

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

Overall, these results indicate that the DLPO outer loop, when combined with replay of earlier defer demonstrations, can support sequential learning with limited forgetting: the model gains new capability on AMC while retaining most of the improvements on GSM8K. In contrast, naive sequential SFT with the same expert data shows significantly stronger degradation on GSM8K after training on AMC. This provides empirical evidence that the framework is not only an offline performance booster on fixed benchmarks, but also a reasonable starting point for long term capability growth across a sequence of related reasoning tasks. In the revised version, we soften the language around “long term capability growth” to clarify that the current evidence is for multi task, sequential improvements in a two task setting, and that extending DLPO to longer task sequences and richer continual learning benchmarks is an important direction for future work.

1169

1170

1171

D.5 EFFECT OF DIFFERENT LLM EXPERTS FOR THE HUMAN PROXY

1172

1173

1174

1175

1176

1177

Experimental setup. In the main experiments, we used GPT-4o-mini as the default proxy for the “human expert” channel. To examine how the framework behaves with experts of different strengths, we keep the backbone model, collaboration architecture, and DLPO configuration fixed, and vary only the model used as the external expert. We compare three choices: a LLaMA3 model (weaker LLM expert), GPT-4o-mini, and GPT-4o. We report accuracy on GSM8K, AMC, MATH, HumanEval, and MMLU.

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Experimental analysis. Table 8 shows two consistent patterns. First, as the expert model becomes stronger (from LLaMA3 to GPT-4o-mini to GPT-4o), performance improves monotonically on all five benchmarks. For example, AMC increases from 24.52 to 30.30 to 37.25, and HumanEval from 61.54 to 67.82 to 74.61. This confirms that the framework scales smoothly with expert capability and that our main results with GPT-4o-mini are conservative relative to what GPT-4o can achieve. Second, the qualitative behavior of the method is stable across all expert choices: in each case, adding an external expert on top of LIMA yields clear gains, and the DLPO policy continues to extract additional benefit under a cost-aware defer scheme. In practice, the choice between GPT-4o-mini and GPT-4o is therefore an application-level trade-off between accuracy and inference cost rather than a limitation of the framework itself.

1188 Table 8: Accuracy (%) with different LLM experts used as the human proxy. We keep the backbone
 1189 and collaboration architecture fixed and vary only the expert model.

1190

1191 Human Proxy	1192 GSM8K	1193 AMC	1194 MATH	1195 HumanEval	1196 MMLU
1197 LLaMA3-8B	1198 86.71	1199 24.52	1200 59.28	1201 61.54	1202 69.91
1203 GPT-4o-mini	1204 91.25	1205 30.30	1206 65.46	1207 67.82	1208 73.58
1209 GPT-4o	1210 93.58	1211 37.25	1212 68.37	1213 74.61	1214 75.42

1197

1198

E DECLARATION ON THE USE OF LARGE LANGUAGE MODELS

1199

1200

In preparing this work, we made use of several large language models for different purposes. First, **GPT-4o-mini** and **GPT-4o** were integrated directly into our experimental framework, where they served as proxies for human experts in the human-in-the-loop setting. This design choice follows prior research and allowed us to evaluate the framework under controlled and repeatable conditions while balancing cost and effectiveness. Second, **GPT-5** was employed to assist with improving the clarity, organization, and readability of the manuscript. The model helped refine phrasing and grammar, but all conceptual contributions, methodological design, and experimental analysis were developed by the authors. All content was carefully reviewed, edited, and validated by the authors, who take full responsibility for the accuracy and integrity of the final publication.

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241