
ENCOMPASS: Enhancing Agent Programming with
Search Over Program Execution Paths

Zhening Li∗
Asari AI, MIT CSAIL
zhening.li@asari.ai

Armando Solar-Lezama
Asari AI, MIT CSAIL

asolar@csail.mit.edu

Yisong Yue
Asari AI, Caltech CMS
yisong@asari.ai

Stephan Zheng
Asari AI

stephan@asari.ai

Abstract

We introduce a new approach to agent programming, the development of LLM-
based agents. Current approaches to agent programming often entangle two aspects
of agent design: the core workflow logic and the inference-time strategy (e.g., tree
search). We introduce probabilistic angelic nondeterminism (PAN), a programming
model that disentangles these two concerns, allowing the programmer to describe
the agent workflow and independently experiment with different inference-time
strategies by simply changing a few inputs. We provide an implementation of
PAN in Python as the ENCOMPASS framework, which uses a Python decorator to
compile agent workflow programs into a search space. We present three case studies
that demonstrate how the framework lets the programmer quickly improve the
reliability of an agent and easily switch between different inference-time strategies,
all with little additional coding.

1 Introduction

Recent work has shown the power of scaling inference-time compute for LLMs [1, 2], where popular
strategies include best-of-N sampling [3, 4, 5], refinement [6, 7], and tree search [8, 9]. In LLM-based
agents — systems that define how LLMs and other components interact to solve a task — these same
strategies have become common ways of improving performance and reliability. Furthermore, several
works have demonstrated the utility of applying sophisticated search and backtracking strategies in
AI agents to improve performance in various tasks [8, 10, 11, 12, 13, 14].

While various frameworks have been developed to simplify the low-level interaction between the
program and the LLM [15, 16, 17, 18], a framework for agent inference-time strategies has been
absent. Our goal is to develop an inference-time strategy framework: a framework that makes it easy
to experiment with different inference-time strategies independently of the design and implementation
of the underlying agent workflow. Such a framework is intended not to replace, but to be used in
conjunction with LLM prompting and tool use frameworks, such as LangChain [15] or DSPy [16].

We target “program-in-control” style agents, where one defines the workflow in code and uses
the LLM to accomplish specific subtasks [14, 19, 20, 21, 22].2 In these agents, inference-time
strategies have traditionally been limited to sampling and refinement loops [6, 7, 19, 20], whereas
more sophisticated strategies such as beam search and tree search have been rarely explored [14].

∗Work performed as a consultant for Asari AI
2This “program-in-control” style contrasts with the “LLM-in-control” style where the LLM decides the full

sequence of operations (tool calls) in the workflow [8, 9, 10, 11, 12, 13].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

@encompass

.compile .search(...)

@encompass.compile

def

while not

return

 solve(problem: str):

 ()

 eqn.solved():

 ()

 ()

 (evaluate(soln, ...))

 soln

solve(problem)

branchpoint

branchpoint

branchpoint

record_score

eqn = llm.setup_eqn(problem)

eqn = llm.next_step(eqn)

soln = llm.gen_soln(problem, eqn)

.search(...)

(a) ENCOMPASS Python code (b) Underlying agent workflow (c) Compiled search space (d) Overlaying search

Figure 1: An ENCOMPASS program specifies an agent workflow, which is compiled into a search
space object, and inference-time scaling is accomplished through search over the nondeterministic
execution paths of the agent workflow.

We identify the key bottleneck to be the entanglement of the inference-time scaling strategy with
the core workflow logic when programming the agent. Programmers typically bake the inference-
time strategy into the agent workflow [14, 19, 20, 22], which is inflexible, reduces readability, and
limits the kinds of inference-time strategies that can be easily implemented. Therefore, we aim to
design a framework that cleanly separates the representation of the core workflow logic from the
inference-time scaling strategy. The programmer could then make minimal modifications to their
agent to flexibly experiment with different inference-time strategies. Also, different agents would no
longer require custom implementations of the same inference-time strategy, but can instead reuse a
common implementation.

Our key insight is that inference-time strategies can be viewed as instances of search over different
execution paths of a nondeterministic program. We developed the ENCOMPASS Python programming
framework (“enhancing agents with compiled agent search”), depicted in Figure 1. Figure 1a and
Figure 1b show an agent program and its corresponding workflow, respectively. The user specifies
the “locations of unreliability” in their agent source code using branchpoint() statements. A
location of unreliability is an operation such as an LLM call where repeated invocations produce
outputs of varying quality. Since these different outputs give rise to multiple possible futures of the
program’s execution, the program has a tree of possible execution paths. ENCOMPASS compiles
the program into a search space object (Figure 1c) so that search can be conducted over this tree of
execution paths to find the path with the highest score (Figure 1d). We call this programming model
probabilistic angelic nondeterminism (PAN). As a form of angelic nondeterminism [23], PAN lets the
programmer write their program pretending the unreliable operations always produce good outputs,
and the runtime searches the space of possible execution paths for one where the operations indeed
produced good outputs.

Our work makes the following concrete contributions:

• We introduce the PAN programming model (Section 2.1), which uses angelic nondetermin-
ism to separate inference-time algorithms (search policy) from the underlying logic of the
agent (specification of the search space).

• We present ENCOMPASS, a Python library that implements PAN (Section 2.2), providing
1. primitives like branchpoint() that the programmer can use inside their ENCOMPASS
function, 2. a Python function decorator that compiles an ENCOMPASS function into a
search space object at run-time, and 3. common search algorithms, as well as an interface
for implementing custom search algorithms.

• We illustrate how ENCOMPASS provides a unifying framework for common inference-time
strategies and agentic patterns, which are special cases of search over nondeterministic
execution paths of ENCOMPASS programs (Section 3). ENCOMPASS also provides a natural
generalization of these inference-time strategies.

• We present case studies showing how ENCOMPASS enables easy experimentation of various
inference-time search strategies over an underlying agent workflow, allowing one to quickly
identify the best-performing strategy (Section 4). ENCOMPASS opens up new possibilities
for inference-time scaling of program-in-control style agents, where inference-time strategies
that were previously considered too cumbersome to implement are now made possible by
ENCOMPASS.

2

2 ENCOMPASS, a Python framework for PAN

In this section, we introduce the PAN programming model (Section 2.1) and describe its Python im-
plementation in the ENCOMPASS framework (Section 2.2). For simplicity, we will ignore the feature
of memory sharing across different program execution paths (see Section 3.2). The documentation
for ENCOMPASS is in Appendix B and the ENCOMPASS compiler is described in Appendix C.

2.1 Probabilistic angelic nondeterminism (PAN)

The core idea of PAN is to search over the tree of possible execution paths of a probabilistic program
— where some operations (e.g., LLM calls) have randomness — to find the path that optimizes a
user-specified objective. Given a probabilistic program with branchpoints at certain locations in the
program, we model its computation as a Markov chain over the space of possible program states. The
Markov chain consists of the following components:

• Branchpoints and the end of the program constitute a set of marked locations in the program.
In Figure 1, branchpoints are denoted by blue dots .

• A program state is a pair consisting of a marked location of the program and a memory state,
which is a mapping from variables to values.

• The code that executes from one marked location to the next defines a probabilistic transition
function that maps from a program state to the next program state. Program states at the end
of the program are final, i.e., they have no next states. In Figure 1, transitions are denoted by
colored boxes .

• The initial state is the program state resulting from executing the program from the start
until hitting the first branchpoint.

Normally, executing the probabilistic program results in one sampled trajectory of program states
(Figure 1b). In PAN, however, we search over the space of possible trajectories (Figure 1d). Our
search tree initially has just one node: the initial program state. At every step, the search policy
chooses a node in the current search tree, makes a copy of the program state stored at that node,
samples a next program state according to the probabilistic transition function, and adds it to the
search tree as a child of that node. The goal is to reach a final program state that optimizes a
user-specified objective.

Note that search here is formulated differently from the usual graph search formulation because we
don’t have access to all the children of any given node — we can only stochastically sample children
of a parent node. However, existing graph search algorithms can be converted to algorithms in PAN
by specifying each node’s branching factor, i.e., the number of children to sample. For example,
depth-first search (DFS) with branching factor 3 involves sampling 3 next states from the current
state and recursing on each child.

This way of adapting graph search algorithms is currently the dominant approach in LLM-based
agents that have tree search with an unenumerable action space of LLM outputs [8, 13, 24, 25].
However, we believe it is worth exploring search strategies beyond fixing the branching factor in an
existing graph search algorithm, and Case Study 3 (Appendix A.2) explores this direction by showing
that a simple strategy — repeatedly choosing the highest-scoring program state and sampling one
next state — can work quite well.

2.2 ENCOMPASS

The ENCOMPASS framework provides an instantiation of the PAN programming model in Python. It
is implemented as the @encompass.compile function decorator, which makes several new primitive
keywords available in the body of the decorated function; the full list is given in Appendix B.1. The
decorator compiles the function body into a search space object, which provides an interface for
implementing search algorithms (Appendices B.2 and B.3). The compiler is described in Appendix C.

Core primitives The two most important primitives that are available in the body of an ENCOM-
PASS-decorated function are branchpoint() and record_score().

branchpoint(**branchpoint_params)

3

This statement marks a PAN branchpoint (Section 2.1), a location in the program where the
program state is added as a new node in the search tree and the program’s execution may branch
into multiple execution paths.
Branchpoint parameters provide information to the external search algorithm about the branch-
point. For example, branchpoint(name="foo") gives the branchpoint a name that can be
used to refer to the branchpoint in the search algorithm.

record_score(score)

This records the numerical “score” used to guide the search process in many search algorithms
(e.g., the heuristic in best-first search and value function in MCTS). Furthermore, the final
score (the last score recorded before returning) usually specifies the final evaluation score to be
maximized by the search algorithm.

Inference-time search Having defined an ENCOMPASS-decorated function func, the programmer
can now apply search over its nondeterministic execution paths by calling

func(...).search(algo, **search_config)

where algo is a string such as "dfs" or "beam" specifying the search algorithm. This returns the
function’s return value on the best execution path that search algorithm algo could find. Appendix B.4
lists all algorithms that ENCOMPASS provides out-of-the-box.

Custom search algorithms The user can also define and register their custom search algorithm so
that it can be invoked through the same search interface. The Checkpoint class wraps the program
state and provides an interface for implementing custom search algorithms. Its step() method
samples a next program state: it resumes execution of the program from the current state until hitting
the next branchpoint or a return statement, returning the new program state (cf. the probabilistic
transition function from Section 2.1). The Checkpoint object’s score attribute contains the score
of the program state as recorded through record_score(). See Appendix B.3 for more details.

3 Agent inference-time strategies in ENCOMPASS

While ENCOMPASS appears most suitable for implementing tree search in agents, other common
inference-time strategies can also be cleanly implemented as search in ENCOMPASS. Furthermore,
natural generalizations of these strategies that are otherwise difficult to implement are also easily
represented in ENCOMPASS.

3.1 Best-of-N sampling and beam search

Given an agent agent_forward(...) and an evaluator evaluate(...) that evaluates the output
of the agent, best-of-N (BoN) samples N times and chooses the output with the highest evaluation
score. In ENCOMPASS, this is done by adding a branchpoint at the beginning of the function and
recording the evaluation score at the end:

1 @encompass.compile
2 def agent_forward(...):
3 branchpoint()
4 ... # Original body of agent
5 record_score(evaluate(result))
6 return result
7
8 result = agent_forward(...).search(...)

This defines a search tree with depth 1, where almost any search algorithm would sample several
children from the root node and return the best child, thus reproducing best-of-N sampling.

We call the above global best-of-N (GBoN) to contrast it with local best-of-N (LBoN), where an
agent with multiple verifiable steps has best-of-N sampling applied to each of them. In ENCOMPASS,
this is implemented by adding branchpoint() before each step and applying beam search with
beam width 1:

4

1 @encompass.compile
2 def agent_forward(...):
3 branchpoint()
4 ... # Step 1
5 record_score(evaluate_step1(...))
6 branchpoint()
7 ... # Step 2
8 record_score(evaluate_step2(...))
9 ...

10 branchpoint()
11 ... # Step k
12 record_score(evaluate_stepk(...))
13 return stepk_result
14
15 N = ... # the "N" in best-of-N
16 result = agent_forward(...).search("beam", beam_width=1, default_branching=N)

Note that the two types of best-of-N sampling described in this section—global and local sampling—
are the two limiting cases of beam search. Global best-of-N sampling is beam search with beam
width N and branching factor 1,3 whereas local best-of-N sampling is beam search with beam width
1 and branching factor N . General beam search can thus be viewed as interpolating between global
and local resampling. This has the benefit of effectively constraining the search space with local
verification while also not losing global variety. Increasing the branching factor makes sure each step
is completed correctly to help prevent compounding errors, while increasing the beam width can help
increase variety and thus improve reliability to mitigate potential errors made in earlier steps. In Case
Study 1 (Section 4.1), we empirically demonstrate that beam search indeed scales better than global
best-of-N or local best-of-N alone in complex agent workflows.

The ENCOMPASS implementation of beam search over an agent workflow also benefits from flexibility
in modifying the step granularity. Increasing the granularity (dividing steps up into smaller substeps)
or decreasing the granularity (merging multiple steps into one) is as simple as adding or removing
branchpoints in ENCOMPASS, whereas a plain Python implementation would require structural
changes to the code.

3.2 Refinement and backtracking with memory

Refinement can be viewed as sampling but with additional feedback from past sampling attempts.
In ENCOMPASS, this is accomplished by adding a branchpoint to generate multiple samples and a
memory of past attempts shared across the different sampled execution paths:

1 @encompass.compile
2 def agent_forward(...):
3 ... # stuff that comes before
4 # Step with refinement
5 feedbacks: NoCopy = []
6 branchpoint()
7 result = do_step(..., feedbacks)
8 score, feedback = get_score_and_feedback(result)
9 feedbacks.append(feedback)

10 record_score(score)
11 ... # stuff that comes after
12
13 result = agent_forward(...).search("beam", beam_width=1, default_branching=n_refine + 1)

Here, the NoCopy type annotation tells the ENCOMPASS compiler that the different execution paths
should share the same reference to the feedbacks variable, so that appending feedback is seen
across all branches.4

By adding another branchpoint() right before “feedbacks: NoCopy = []”, we create multiple
parallel refinement loops, thus interpolating between fresh sampling and refinement and maintaining
variety that may otherwise be lost from an agent that focuses too heavily on the past feedback. This is
not unlike how beam search interpolates between global best-of-N and local best-of-N (Section 3.1).
In Case Study 3 (Appendix A.2), we demonstrate how a different approach to interpolating between
refinement and sampling — by adding branchpoints to a refinement loop written in plain Python —
can result in better scaling than refinement alone.

3Except that the root node has branching factor N .
4This effect is lost if feedbacks.append(feedback) is replaced with feedbacks = feedbacks + [

feedback], since that creates a new list instead of modifying the original one.

5

Note that refinement is the simplest case of backtracking with memory: backtracking to a previous
step while remembering what happened in previous attempts. In ENCOMPASS, the general pattern
for backtracking with memory is to create a shared mutable data structure right before a branchpoint,
which serves as a memory shared across all execution paths that follow.

3.3 Self-consistency and group evaluation

Given an agent program agent_forward(input), self-consistency samples N times and chooses
the output that appeared the most times (the majority vote) [26]. This can be implemented as best-of-
N sampling with an evaluation function that evaluates a group of results at once. The ENCOMPASS
record_score() supports this:

1 def majority_vote(results):
2 counts = defaultdict(int)
3 for result in results:
4 counts[result] += 1
5 return [
6 counts[result] for result in results
7]
8

9 @encompass.compile
10 def agent_forward(...):
11 branchpoint()
12 ...
13 record_score(majority_vote, result, label=None)
14 return result
15
16 result = agent_forward(...).search(...)

In general, allowing the evaluation function to evaluate a group of results at once is helpful when it is
difficult to evaluate one result on its own. Another example of this is CodeT [27], which evaluates a
group of LLM-generated code samples against multiple LLM-generated unit test cases by considering
both the number of unit test pass rate and agreement among code samples on which test cases they
pass.

Inference-time strategies like self-consistency and CodeT are examples of the more general search
with evaluation of a group of execution paths in tandem. When one writes

record_score(group_evaluator, evaluation_target, label=group_label)

the scores of all program states where record_score() was called with label group_label are
computed as group_evaluator(evaluation_targets), where evaluation_targets is the list
of the evaluation_target variables across all the program states.

4 Case studies

We implemented and extended 3 program-in-control style agents from the literature in ENCOMPASS.
These case studies aim to answer the following research questions:

• Does ENCOMPASS make it easier to implement inference-time strategies and search in
program-in-control style agents, and if so, how?

• Does ENCOMPASS simplify experimenting with different inference-time strategies and
search in program-in-control style agents, and if so, how?

Our case studies suggest that ENCOMPASS enables the exploration of inference-time strategies that
are otherwise left unexplored due to their complexity of implementation — potentially unlocking
better scaling laws.

Case Study 1 is our main case study and is presented in the main text here. Case Studies 2 and 3 are
smaller and more didactic in purpose, and are presented in Appendix A.

In Case Study 1 (Section 4.1), we implement a Java-to-Python code repository translation agent
with a high-level architecture based on that of Syzygy [28]. We then add branchpoints before LLM
calls and, by toggling a few parameters, we experiment with a variety of search strategies including
local/global best-of-N sampling and beam search at the file level and individual method level. We
demonstrate these experiments on Java repositories from the MIT OCW Software Construction
class. We find that beam search outperforms simpler sampling strategies, thus demonstrating how
one can use ENCOMPASS to discover better inference-time scaling laws. Furthermore, we show
how the equivalent plain Python implementation of the ENCOMPASS agent involves defining the
search graph as a state machine, where the agent workflow is significantly obscured and modularity
is compromised, whereas ENCOMPASS solves these issues.

6

Table 1: Code modifications to implement search in our case studies, without ENCOMPASS vs. with
ENCOMPASS. Metrics include the number lines/words added, changeda, and removed, the number of
new function definitions, and the number of lines of the original code where the indentation level was
changed. For context, we also give the number of lines of code used to implement the core logicb of
the original base agent. All code is found in Appendix D with the modifications annotated.
a This excludes changes to the indentation level of existing code. b The “core logic” is defined as the functions that
require modification when implementing search, hence excluding unmodified code like helper/utility functions
and prompt templates.

Case Study Added Changed Removed New Indent
lines (words) lines (words) lines (words) f’ns changed

1. Code Repo Translation −ENCOMPASS +423 (+2735) 24 (-62/+186) -9 (-28) +20 189
LoC = 597 +ENCOMPASS +75 (+514) 8 (-0/+40) -0 (-0) +1 0

2. Hypothesis Search −ENCOMPASS +21 (+120) 3 (-1/+13) -0 (-0) +2 10
LoC = 11 +ENCOMPASS +8 (+27) 1 (-0/+9) -0 (-0) +0 0

3. Reflexion −ENCOMPASS +27 (+181) 6 (-13/+31) -0 (-0) +2 8
LoC = 20 +ENCOMPASS +9 (+32) 3 (-4/+13) -0 (-0) +0 0

In Case Study 2 (Appendix A.1), we implement a simplified Hypothesis Search agent [19]. We start
with a simple agent with two LLM calls. By adding a branchpoint before each LLM call and applying
multithreaded BFS out of the box, we reproduce a parallelized version of Hypothesis Search. We
demonstrate how to use ENCOMPASS to experiment with different search strategies (BFS vs. global
best-of-N), and find that they perform equally well on a subset of the ARC benchmark [29], the
benchmark that Hypothesis Search used. We show how, despite the simplicity of the original agent,
the equivalent program in plain Python already noticeably obscures the underlying agent workflow.

In Case Study 3 (Appendix A.2), we start with Reflexion [7], a simple agent with a refinement
loop. We add a branchpoint at the beginning of the agent and at the beginning of the body of the
refinement loop, and apply both global best-of-N and a variant of best-first search. Following the
original Reflexion paper, we evaluate on LeetCodeHard. We find that increasing N in best-of-N or
the number of search steps in best-first search scales better than increasing the number of refinement
iterations in vanilla Reflexion. We also show how the equivalent program in plain Python obscures
the control flow and data flow of the underlying agent.

Table 1 and Appendix D compare the code modifications required to implement search with EN-
COMPASS vs. without ENCOMPASS. On average, ENCOMPASS saves 3–6x of coding in terms of the
number of lines/words that are added or changed.

Note that since ENCOMPASS targets program-in-control style agents, our case studies do not include
benchmarks of LLM-in-control style agents such as SWEBench [30] or WebArena [31].

4.1 Case Study 1: Code Repository Translation Agent

In this case study, we demonstrate how to use ENCOMPASS to add branchpoints and implement
search in a Java-to-Python code repository translation agent based on the Syzygy agent architecture
[28]. By comparing with the equivalent plain Python implementation, we identify several concrete
benefits of the separation of concerns offered by ENCOMPASS. We also demonstrate experimenting
with different search strategies on one repository to find the best-performing strategy (“fine-grained”
beam search), and we apply this strategy to other repositories to obtain strong performance compared
to simpler strategies (global/local best-of-N).

Base agent We built an agent that translates a Java repository into Python (Listing 18). The agent
translates the repository file-by-file in dependency order. For each file, the agent calls the LLM to
write the skeleton of the Python file, and for each Java method the agent calls the LLM to translate it
into Python. Every translation is followed by validation of the translation by 1) asking the LLM to
write a script that generates random test case inputs; 2) asking the LLM to write Java code to run the
Java method on those inputs; 3) asking the LLM to write Python code to run the translated Python
method on those inputs; and 4) comparing the Python and Java outputs to see if they match.

7

The ENCOMPASS agent In ENCOMPASS, we modify the base agent by adding a branchpoint
before each of the 5 LLM calls present in the program (Listing 19). To prevent different branches
of the search from overwriting the same folder, we use Git to manage the repository, and write a
wrapper branchpoint_git_commit() around the built-in branchpoint() (Listing 19, L5–15).
We consider search at two different levels of the translation workflow: the file level (“coarse”),
and the method level (“fine”). By adjusting the search parameters, we experimented with different
search strategies at each level as well as different parameters to the search strategies. We applied 6
combinations of search strategies: “global best-of-N”, “local best-of-N (coarse)”, “local best-of-N
(fine)”, “beam (coarse)”, “local best-of-N (coarse) + beam (fine)”, and “beam (coarse) + beam (fine)”.

This was as simple as changing a couple of parameters: the file-level search strategy is specified
at line 278 of Listing 19 and the method-level search strategy is specified at line 264. Section 3.1
explains the search algorithm and parameters passed to the .search_multiple(...) method to
implement global BoN, local BoN, and beam search.

Comparison with equivalent plain Python We demonstrated how ENCOMPASS lets an agent
programmer easily switch between different search algorithms. To replicate this flexibility in plain
Python, we need to explicitly define the search graph that the ENCOMPASS function defines. The
search graph takes the form of a state machine where the states correspond to the branchpoints and
the transitions follow the control flow of the program. We maintain a dictionary frame with all the
local variables of the program as we go through the transitions of the state machine. The result is
Listing 20, which is long and difficult to read, so we illustrate this with a simplified version of our
code repository translation agent that iterates through functions in a source file, translating each of
them one-by-one:

1 @encompass.compile
2 def translate_functions(source):
3 for source_fn in source:
4 branchpoint()
5 target_fn = translate(source_fn)
6 compile_success = compile_(target_fn)
7 record_score(compile_success)
8
9 branchpoint()

10 unit_test_score = run_unit_test(target_func)
11 record_score(unit_test_score)

The equivalent state machine in plain Python is given here with minor simplifications.
1 class State(Enum):
2 TRANSLATE = auto()
3 UNIT_TEST = auto()
4
5 def step(state: State, frame: dict[str, Any]):
6 frame = frame.copy()
7
8 if state == State.TRANSLATE:
9 frame["target_fn"] = translate(frame["source_fn"])

10 compile_success = compile_(frame["target_fn"])
11 return State.UNIT_TEST, frame, compile_success
12
13 if state == State.UNIT_TEST:
14 unit_test_score = run_unit_test(frame["target_fn"])
15 frame["source_fn"] = next(frame["source"])
16 return State.TRANSLATE, frame, unit_test_score

Notice that the high-level control flow of “repeatedly translate and unit-test the translation” is no
longer obvious from the code; it is difficult to know whether any given variable access frame[...]
might throw a KeyError; and linters and static type checkers can’t be applied because variables are
accessed through the frame dictionary. Furthermore, simple changes to the ENCOMPASS function
such as moving or removing a branchpoint would require significant structural changes to the state
machine code that further create an opportunity for bugs. All these issues are exacerbated as we
increase the complexity of the agent program, so the state machine approach to defining agent search
graphs is not scalable. This can be seen in Listing 20 (Appendix D.1), which applies the state machine
approach to the original code repository translation agent.

Evaluation setup To make it affordable to run comprehensive experiments comparing the scaling
behaviors of various inference-time strategies, we first validated on a small repository consisting of

8

6 7 8 9
1

2 3 4 5 6 7 8 9
10

2
40

50

60

70

80

base GBoN LBoN (c.) LBoN (f.) beam (c.)
LBoN (c.) + beam (f.) beam (c.) + beam (f.)

Cost ($)

S
el

f-
va

lid
at

io
n

(%
)

(a)

ps1 ps2 ps3 ps4
0

0.1

0.2

0.3

0.4

0.5

0.6

base GBoN LBoN (c.) beam (c.) + beam (f.)

Repository

S
e
lf
-v

a
li
d
a
t
io

n
 (

%
)

(b)

Figure 2: Results of using ENCOMPASS to apply different inference-time scaling methods to the
code repository translation agent. All error bars show standard errors of the mean over 5 runs. (a) A
comprehensive hyperparameter search for ps0; (b) For ps1 to ps4, we applying global best-of-N
(“GBoN”), file-level local best-of-N (“LBoN (c.)”), and beam search at the file and method level
(“beam (c.) + beam (f.)”) while controlling for cost.

622 lines of Java code. The repository contains solutions to the first homework (ps0) from the Spring
2016 version of the MIT Software Construction class available on MIT OpenCourseWare [32, 33].

Because of the scarcity of test cases in the original repository, we use self-validation (%) as the
evaluation metric, which is calculated as the percentage match of the Python and Java outputs on the
automatically generated test inputs, averaged across all translated non-test methods. If any step of the
validation process failed (e.g., test input generation), then the match percentage is considered to be 0.

After identifying the inference-time strategy that scales best on ps0, we evaluated it on the other 4
repositories from the class (ps1 to ps4). Each of them contains between 1100 and 1900 lines of code,
and all 4 repositories combined contain 5756 lines of code.

For all experiments, we set the LLM temperature to 0.0 for the base agent (no inference-time
strategies), and 0.5 for the ENCOMPASS agent (with inference-time strategies).

Evaluation results Figure 2a shows a log-linear plot of the scaling of various inference-time strate-
gies on ps0. Consistent with prior work on inference-time scaling [4, 5], we find that performance
scales linearly with the logarithm of the cost (all χ2 p-values > 0.3). The best scaling is achieved
with beam search applied at both the file level and the individual method level (“beam (coarse), beam
(fine)”), outperforming the second best strategy “beam (coarse)” with a p-value of 0.2 and all other
strategies with statistical significance (p < 0.03).

Notably, the best-performing strategy (“beam (coarse), beam (fine)”) also happens to be the most
difficult one to implement in plain Python. It requires the programmer to break up the entire workflow
into all the individual LLM-calling steps where each step explicitly stores and retrieves variables
from a frame dictionary. This finding further demonstrates the merits of having a framework like
ENCOMPASS where experimenting with different search strategies can be done via simply changing
a few parameters. Combinations of agent and inference-time strategy that have better scaling but that
programmers would otherwise choose not to implement due to their complexity of implementation,
are now made possible by ENCOMPASS.

We then evaluated the best-performing strategy “beam (coarse), beam (fine)” on ps1 through ps4 and
compared it with two simpler baselines (“global best-of-N”, “local best-of-N”) while controlling
for cost. For beam search, we used a file-level beam width of 2 and a method-level beam width of
3, whereas we used N = 16 for both global and local best-of-N . The average cost of a run was
$20–$20.5 for ps1, $27–$30 for ps2, $36–$39 for ps3, and $13.5–$14 for ps4. The results are
shown in Figure 2b. Overall, “beam (coarse), beam (fine)” continues to outperform the other two
simpler strategies.

To conclude, we have demonstrated the advantages of the separation of concerns offered by ENCOM-
PASS. Implementing an inference-time strategy in ENCOMPASS mainly involves adding branchpoints
before LLM calls, whereas without ENCOMPASS, significant source code modification that obscures
the underlying workflow is often necessary. Furthermore, experimenting with different inference-time
strategies in ENCOMPASS is often as simple as changing a few search parameters.

9

5 Related work

Inference-time strategies for LLMs and agents [2] provides a comprehensive review of algo-
rithms used during LLM inference to improve its reliability and performance. Examples include
best-of-N sampling [3, 4, 5], refinement [6, 7], self-consistency [26], and tree search [8, 9, 13],
which are also commonly used in LLM-based agents [10, 11, 12, 14]. Section 3 demonstrates how
ENCOMPASS unifies and generalizes these inference-time scaling strategies for agents.

AI agent frameworks Several LLM-based agent frameworks have been developed to abstract
away boilerplate code and other low-level concerns, and provide abstractions for common agentic
patterns and components. AutoGen [18] simplifies multi-agent conversation workflows with tool
use, LangChain [15] simplifies linear workflows with RAG and tool use, LangGraph [34] simplifies
the creation of agent workflows as state machines, and DSPy [16] automates prompt engineering.
Complementary to these efforts, our framework, ENCOMPASS, simplifies applying inference-time
scaling strategies to agents. Since ENCOMPASS involves adding statements such as branchpoint()
to an existing agent written in Python, it can be flexibly incorporated into agents built with an existing
Python agent framework.

Angelic nondeterminism Previous implementations of angelic nondeterminism include John
McCarthy’s amb operator in Common Lisp [35] and the list monad in Haskell [36]. The main
conceptual difference is that ENCOMPASS implements a probabilistic form of angelic nondeterminism,
which samples from a probability distribution such as an LLM instead of choosing from a given set
of choices.

Probabilistic programming Our work is also inspired by probabilistic programming, a program-
ming paradigm that separates the two main concerns of probabilistic inference: specifying the
probabilistic model and implementing the inference algorithm. (See, e.g., [37] for a review.) This
allows the programmer to efficiently specify a probabilistic model in code while independently
experiment with different probabilistic inference algorithms. Similarly, ENCOMPASS aims to separate
the two main concerns of agent programming: specifying the core agent workflow and implementing
the inference-time search strategy.

6 Limitations

ENCOMPASS targets program-in-control style agents, where implementations without ENCOMPASS
typically force the programmer to entangle the underlying agent and the overlaying search strategy.
ENCOMPASS is not meant for LLM-in-control style agents, where the two aspects are already
decoupled. Nevertheless, there has been increased interest in “LLM+program-in-control” hybrid
style agents which involve an LLM writing a program-in-control style agent [38, 39, 40]. It would be
interesting to explore using ENCOMPASS to make it easier for the LLM to implement inference-time
strategies in LLM-calling programs that it writes.

Although ENCOMPASS simplifies the source code modifications needed to apply inference-time
strategies to an existing agent, modifications are still needed. There remains the engineering challenge
of choosing the correct places to add branchpoints, adding sufficient and good-quality intermediate
reward/verification signal, and designing a good search algorithm. ENCOMPASS could be improved
to eliminate the need for source code modifications entirely, where it solves the the majority of these
remaining challenges by potentially using a flexible LLM-based search strategy.

7 Conclusion

This work introduced the ENCOMPASS programming framework, which decouples the two fundamen-
tal aspects of agent programming: defining the core agent workflow and designing the inference-time
scaling strategy. By enabling the integration of sophisticated search strategies into complex agent
workflows, ENCOMPASS opens up new possibilities for inference-time scaling of AI agents. Looking
ahead, we anticipate that the ability to seamlessly combine agent workflows with powerful search
techniques — enabled by ENCOMPASS — will unlock new scaling laws and drive the development
of reliable LLM-augmented systems for solving complex real-world tasks.

10

References
[1] Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time com-

pute optimally can be more effective than scaling parameters for reasoning. In The Thirteenth
International Conference on Learning Representations, 2025.

[2] Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham
Neubig, Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time
algorithms for large language models. Transactions on Machine Learning Research, November
2024.

[3] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[4] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

[5] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with AlphaCode. Science, 378(6624):1092–1097, 2022.

[6] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-Refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

[7] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

[8] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models.
Advances in Neural Information Processing Systems, 36, 2024.

[9] Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and
Michael Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information
Processing Systems, 36, 2024.

[10] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang.
Language Agent Tree Search unifies reasoning, acting, and planning in language models.
In Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pages 62138–62160. PMLR, 21–27 Jul 2024.

[11] Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for
language model agents. arXiv preprint arXiv:2407.01476, 2024.

[12] Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Yang
Wang. SWE-Search: Enhancing software agents with monte carlo tree search and iterative
refinement. In The Thirteenth International Conference on Learning Representations, 2025.

[13] Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad
Godil, Ryan J Prenger, and Animashree Anandkumar. LeanDojo: Theorem proving with
retrieval-augmented language models. Advances in Neural Information Processing Systems, 36,
2024.

[14] Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff
Clune, and David Ha. The AI Scientist-v2: Workshop-level automated scientific discovery via
agentic tree search. arXiv preprint arXiv:2504.08066, 2025.

[15] Harrison Chase, Bagatur Askaryan, and Erick Friis. LangChain 0.3.16, 2025.

11

[16] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam,
Sri Vardhamanan A, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather
Miller, Matei Zaharia, and Christopher Potts. DSPy: Compiling declarative language model
calls into state-of-the-art pipelines. In The Twelfth International Conference on Learning
Representations, 2024.

[17] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting is programming: A query
language for large language models. Proceedings of the ACM on Programming Languages,
7(PLDI):1946–1969, 2023.

[18] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger,
and Chi Wang. AutoGen: Enabling next-gen LLM applications via multi-agent conversations.
In First Conference on Language Modeling, 2024.

[19] Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman.
Hypothesis search: Inductive reasoning with language models. In The Twelfth International
Conference on Learning Representations, 2023.

[20] Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi, Muhammad Salman Abid, Rangeet Pan,
Saurabh Sinha, and Reyhaneh Jabbarvand. AlphaTrans: A neuro-symbolic compositional
approach for repository-level code translation and validation. Proceedings of the ACM on
Software Engineering, 2(FSE):2454–2476, 2025.

[21] Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed Chi,
Denny Zhou, Swaroop Mishra, and Huaixiu Steven Zheng. Self-Discover: Large language
models self-compose reasoning structures. Advances in Neural Information Processing Systems,
37:126032–126058, 2024.

[22] Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The
AI Scientist: Towards fully automated open-ended scientific discovery. arXiv preprint
arXiv:2408.06292, 2024.

[23] Robert W Floyd. Nondeterministic algorithms. Journal of the ACM (JACM), 14(4):636–644,
1967.

[24] Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing GPT-4
level mathematical Olympiad solutions via Monte Carlo Tree Self-Refine with Llama-3 8B.
arXiv preprint arXiv:2406.07394, 2024.

[25] Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus Mcaleer, Ying Wen, Weinan Zhang, and
Jun Wang. AlphaZero-like tree-search can guide large language model decoding and training.
In International Conference on Machine Learning, pages 49890–49920. PMLR, 2024.

[26] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

[27] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. CodeT: Code generation with generated tests. In The Eleventh International Conference
on Learning Representations, 2023.

[28] Manish Shetty, Naman Jain, Adwait Godbole, Sanjit A Seshia, and Koushik Sen. Syzygy:
Dual code-test C to (safe) Rust translation using LLMs and dynamic analysis. arXiv preprint
arXiv:2412.14234, 2024.

[29] François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

[30] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues? In
The Twelfth International Conference on Learning Representations, 2024.

12

[31] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. WebArena: A realistic web environment for build-
ing autonomous agents. In The Twelfth International Conference on Learning Representations,
2024.

[32] Denis Savenkov. github.com/FizzyBubblech/MIT-6.005, 2017.

[33] Robert Miller and Max Goldman. 6.005 — Software Construction on MIT OpenCourseWare:
Problem Set 0: Turtle Graphics, 2016.

[34] Nuno Campos, Barda Vadym, and William F Hinthorn. LangGraph 0.2.68, 2025.

[35] John McCarthy. A basis for a mathematical theory of computation. In Computer Programming
and Formal Systems. North-Holland, 1963.

[36] Philip Wadler. Monads for functional programming. In Advanced Functional Programming:
First International Spring School on Advanced Functional Programming Techniques Båstad,
Sweden, May 24–30, 1995 Tutorial Text 1, pages 24–52. Springer, 1995.

[37] Noah D Goodman. The principles and practice of probabilistic programming. ACM SIGPLAN
Notices, 48(1):399–402, 2013.

[38] Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-
augmented code emulator. In Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pages 28259–28277.
PMLR, 21–27 Jul 2024.

[39] Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In The Thirteenth
International Conference on Learning Representations, 2025.

[40] Xunjian Yin, Xinyi Wang, Liangming Pan, Li Lin, Xiaojun Wan, and William Yang Wang. Gödel
agent: A self-referential agent framework for recursively self-improvement. In Proceedings of
the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 27890–27913, Vienna, Austria, July 2025. Association for Computational
Linguistics.

[41] Cormac Flanagan, Amr Sabry, Bruce F Duba, and Matthias Felleisen. The essence of compiling
with continuations. ACM Sigplan Notices, 28(6):237–247, 1993.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract summarizes the problem and the proposed solution; the introduc-
tion defines the scope, identifies the problem, and summarizes the proposed solution and
contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [NA]
Justification: The paper proposes a programming framework and makes no theoretical
claims.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Compiler details are in Appendix C. Case studies describe experimental setup.
Agent programs of case studies are in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Company code
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See case study sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See case study sections, including tables and figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Case study sections describe LLM costs and CPU used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No aspect of the research violated the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Foundational research with standard expectations in regards to societal impact

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No release of data/models with a high risk for misuse

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Existing agents and benchmarks cited and license terms followed

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used to help produce this research other than as a coding and
writing tool.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Additional case studies

This appendix presents Case Studies 2 and 3. In these case studies, we study agents much simpler
than the code translation agent in our main case study (Case Study 1) so that we can more explicitly
compare code written in ENCOMPASS vs. plain Python. Our objective is to illustrate and under-
stand how the modularity that ENCOMPASS provides lets programmers more easily implement and
experiment with different inference-time scaling strategies for their agent.

Experiments for all case studies were conducted on a Macbook Pro with an M3 chip and 18 GB of
RAM. All LLM calls were made through the OpenAI API.

A.1 Case Study 2: Hypothesis Search Agent

In this case study, we use a simple two-step agent for ARC-AGI [29] to illustrate how ENCOMPASS
enables the programmer to quickly implement inference-time search.

Base agent A task in ARC-AGI shows the agent around 3 validation examples of input-output grid
pairs, and the objective is to find the rule that transforms input grids into output grids and apply the
rule to a test input grid. A simple agent for solving ARC-AGI tasks is as follows (Listing 1): 1. ask
the LLM for a natural language hypothesis of the transformation rule; 2. ask the LLM to implement
the hypothesis in code.

1 def two_step_agent(task_info):
2 # Step 1: Get natural language hypothesis
3 ...
4 hypothesis = hypothesis_agent([task_info], hypothesis_instruction)
5

6 # Step 2: Implement the hypothesis in code
7 ...
8 code = solver_agent([task_info, hypothesis], solver_instruction)
9 return get_test_output(code)

Listing 1: Simple 2-step agent for ARC

The ENCOMPASS agent To convert this agent into a ENCOMPASS program, we identify the
points of unreliability: the two LLM calls. Before each LLM call, we can add a branchpoint to
allow the external search algorithm to search over different samples from the LLM. Finally, we add
a final verification step that evaluates the generated code on the validation grid pairs, so that the
search algorithm knows which execution paths did better. Here is the resulting ENCOMPASS agent
(Listing 2):

1 @encompass.compile
2 def two_step_agent(task_info):
3 # 1st branchpoint results in multiple samples of the natural language hypothesis
4 branchpoint()
5 # Step 1: Get natural language hypothesis
6 ...
7 hypothesis = hypothesis_agent([task_info], hypothesis_instruction)
8

9 # 2nd branchpoint results in multiple code samples for each hypothesis
10 branchpoint()
11 # Step 2: Implement the hypothesis in code
12 ...
13 code = solver_agent([task_info, hypothesis], solver_instruction)
14

15 # Evaluate
16 percent_correct, feedback = run_validation(code)
17 record_score(n_correct)
18 if percent_correct == 1.0:
19 early_stop_search()
20

21 return get_test_output(code)
22

21

23 two_step_agent(task_info).search("parallel_bfs", default_branching=8)
Listing 2: Two-step agent with BFS in ENCOMPASS reproduces Hypothesis Search

Here, we’ve chosen 8 samples of subsequent execution from each branchpoint and apply parallelized
breadth-first search (parallel BFS) over all program execution paths, In particular, BFS samples
8 natural language hypotheses following the first branchpoint, and for each hypothesis samples
8 code implementations from the second branchpoint. It then chooses the result from the 64
implementations with the highest evaluation score (recorded by record_score). This replicates a
version of Hypothesis Search [19] without the hypothesis summarization step and execution feedback
loop.

We also consider an agent with only the first of the two branchpoints. This gives rise to global
best-of-N sampling, i.e., running the base agent N times in parallel and keeping the best run.

Comparison with equivalent plain Python In implementing the ENCOMPASS agent, because the
changes made to the original agent are minimal, the underlying logic of the agent is clearly portrayed
by the code, with the external search logic (sampling) indicated by a few branchpoint statements.

We now compare this with the equivalent agent in plain Python. For the one-branchpoint hypothesis
search agent (best-of-N), it is still relatively straightforward to implement it in plain Python by
running N copies of the agent in N parallel threads until we find a solution that passes validation.

However, to further add the second branchpoint — which is just an additional line of code in
EnCompass — the equivalent implementation in plain Python of parallel BFS requires significant
structural changes. In defining the tasks to be executed in a multithreaded fashion, the underlying
agent workflow has been broken up and the program flow obscured, even though the agent only
contains two steps (Listing 3).

1 from concurrent.futures import ThreadPoolExecutor, as_completed
2
3
4 def two_step_agent(task_info, branching):
5 results = []
6 full_solved = False
7
8 with ThreadPoolExecutor() as executor:
9

10 def run_one_forward_pass():
11 if full_solved:
12 return
13 # Step 1: Get natural language hypothesis
14 ...
15 hypothesis = hypothesis_agent([task_info], hypothesis_instruction)
16
17 def implement_in_code():
18 nonlocal full_solved
19
20 if full_solved:
21 return
22
23 # Step 2: Implement the hypothesis in code
24 ...
25 code = solver_agent([task_info, hypothesis], solver_instruction)
26
27 # Evaluate
28 percent_correct = run_validation(code)
29 if percent_correct == 1:
30 full_solved = True
31 results.append((get_test_output(code), percent_correct))
32
33 futures = [executor.submit(implement_in_code) for _ in range(branching)]
34 for future in as_completed(futures):
35 future.result()
36
37 futures = [executor.submit(run_one_forward_pass) for _ in range(branching)]
38 for future in as_completed(futures):
39 future.result()
40
41 return max(results, key=lambda x: x[1])[0]
42
43
44 two_step_agent(task_info, branching=8)

Listing 3: Parallelized BFS in plain Python, obscuring the underlying two-step agent workflow

22

Table 2: Percentage accuracy of a simple two-step agent on a subset of ARC with progressively more
ENCOMPASS branchpoints: no branchpoints, 1 branchpoint at the top, and 2 branchpoints before the
2 LLM calls. Accuracy improves quickly as more branchpoints are added. We also compare with the
best agent discovered through meta-agent search (ADAS [39]).

Base model GPT-3.5 GPT-4o
Acc. (%) Total cost Acc. (%) Total cost

Two-step agent 4.3 ± 0.9 $0.41 24.0 ± 1.5 $2.85
+ global best-of-N , N = 8 (ours) 11.7 ± 0.8 $3.29 36.3 ± 1.1 $22.76

+ global best-of-N , N = 36 (ours) 16.0 ± 1.0 $14.81 38.7 ± 1.1 $95.98
+ BFS, branching = 8 (ours) 15.0 ± 0.9 $15.81 38.3 ± 1.2 $88.69

ADAS best agent (reported)† 13.7 ± 2.0 — 30.0 ± 2.6 —
ADAS best agent (reproduced) 10.7 ± 0.8 $2.11 32.7 ± 1.1 $27.85

†The reported results use a different checkpoint of GPT-4o and the errors are estimated differently, using a bootstrapping confidence interval.

Evaluation The purpose of this evaluation section is to complete our demonstration of using
ENCOMPASS to implement and compare different inference-time scaling strategies.

We use a subset of the ARC-AGI benchmark corresponding to the 60 tasks sampled from the “Public
Training Set (Easy)” that ADAS [39] used. We report the mean evaluation score as well as its standard
error over 5 seeds.

We evaluate the following agents on this ARC-AGI subset:

• The two-step agent (base agent)
• Global best-of-N applied to the two-step agent (one branchpoint), where N = 8, 36

• The Hypothesis Search agent [19], i.e., parallelized BFS applied to the two-step agent (two
branchpoints), with branching factor 8.

The LLM temperature was set to 0.8 for all experiments.

The evaluation results are shown in Table 2. The results show how scaling inference-time compute by
adding branchpoint() statements and adjusting search parameters quickly increases the evaluation
accuracy to results better than the best agent discovered by costly meta-agent search (ADAS) [39].
Comparing the two scaling strategies, we find that best-of-N and BFS are comparable.

A.2 Case Study 3: Reflexion Agent

In this case study, we show how applying ENCOMPASS to an existing agentic pattern provides a new
dimension for the cost-efficient scaling of inference-time compute.

Base agent As our baseline, we use Reflexion [7] as a coding agent (Listing 24), which uses an
LLM to iteratively reflect on past attempts and their feedback to improve the response. Feedback
includes both LLM-generated self-reflection and results from running LLM-generated unit tests.

The ENCOMPASS agent In ENCOMPASS, we modify Reflexion by adding two branchpoints
(Listing 25): one before the initial code generation, and one at the top of the body of the for loop (i.e.,
before each iteration of self-reflection plus generation). Pass rate on the LLM-generated unit tests
feedback is used as the verification score in record_score() in the ENCOMPASS agent. We apply
two search strategies: one is global best-of-N , and the other one is “reexpand best-first search”, our
variant of best-first search (BeFS) where the strategy is to simply always choose the node with the
highest verification score to step.

Comparison with equivalent plain Python Implementing best-of-N sampling in plain Python is
straightforward — simply wrap the agent in a for loop. However, to implement reexpand best-first
search in the Reflexion agent, a plain Python implementation requires structural changes to the code
when ENCOMPASS only requires adding two branchpoints. In particular, the initial sampling step and
the self-reflection step are put into separate functions, corresponding to the 2 actions that the agent

23

is allowed to take (Listing 26 in Appendix D.3). The agent maintains a search tree and iteratively
chooses the best node to expand: if the chosen node is the root node, then a new code sample is
drawn from the LLM, whereas if the node is not the root, then a self-reflection step is applied to it.

Furthermore, separating the two actions into separate functions loses the natural logical ordering
between them (the initial sampling step should occur before the self-reflection step). For more
complex agent workflows like the code repository translation agent in Section 4.1, the original
underlying agent workflow becomes heavily obscured.

Evaluation The purpose of this evaluation section is to complete our demonstration of using
ENCOMPASS to implement and compare different inference-time scaling strategies.

LeetCode is a website with programming exercises to help prepare for software engineer interviews,
and the LeetCodeHard benchmark is a collection of 40 hard LeetCode problems [7]. A problem
typically has a few dozen test cases (occasionally a few hundred or over a thousand test cases). While
the LLM agent does not see these test cases, it can use LLM-generated test cases. We calculate the
evaluation score as the average pass rate over all 40 problems, where the pass rate for any given
problem is the fraction of test cases passed.

For both the base agent and the ENCOMPASS BeFS agent, we consider 3 different cost settings (low,
medium, high) where the number of code generations n = 5, 8, 13. In the base agent, we vary the
number of feedback loops to be 4, 7, 12, whereas for the BeFS agent, the number of feedback loops
is fixed at 4 but the total number of code generations is controlled by the external search algorithm
algorithm. In the best-of-N agent, we have 2 cost settings (low, high) by adjusting N = 1, 2. The
temperature of the LLM is set to 0.0 in the base agent and 0.5 (n = 5, 8) or 1.0 (n = 13) in the
ENCOMPASS agent.

As shown in Table 3, controlling inference-time scaling through the external search algorithm in
ENCOMPASS scales in a more cost-efficient manner than scaling the number of feedback loops in
Reflexion: the same performance is achieved at a lower cost. Comparing the two scaling strategies,
we find that BeFS and best-of-N are comparable.

Table 3: Increasing the number of search steps in the ENCOMPASS Reflexion agent scales better
than scaling the number of refinement loops in the vanilla Reflexion agent: the same performance is
achieved at a lower cost. All errors are standard errors of the mean over 5 runs.

Cost setting Low Medium High

Acc. (%) Cost/task ($) Acc. (%) Cost/task ($) Acc. (%) Cost/task ($)

Reflexion 35.5 ± 1.0 0.279 ± 0.005 35.9 ± 1.3 0.449 ± 0.005 38.2 ± 1.2 0.736 ± 0.010
+best-of-N 35.5 ± 1.0 0.279 ± 0.005 — — 37.6 ± 1.7 0.508 ± 0.013

+BeFS 36.1 ± 2.1 0.168 ± 0.004 36.1 ± 1.1 0.289 ± 0.007 38.1 ± 1.3 0.512 ± 0.006

24

B Documentation of ENCOMPASS

ENCOMPASS is an instantiation of the PAN programming framework in Python. It is implemented
as the @encompass.compile function decorator, which makes several new keywords primitives
available in the body of the decorated function. Appendix C describes how the decorator compiles
the function body into an object that provides an interface for search.

This appendix is organized as follows:

• Appendix B.1 lists all ENCOMPASS keyword primitives that are made available inside a
function with the @encompass.compile decorator.

• Appendix B.2 describes the interface of the compiled search space object created by the
@encompass.compile decorator.

• Appendix B.3 describes the interface of the Checkpoint object that represents the program
state at a branchpoint or return statement.

• Appendix B.4 describes the search algorithms that ENCOMPASS provides out-of-the-box,
as well as the abstract Search class that the user can subclass to define their own custom
search algorithms.

B.1 ENCOMPASS primitives

The following is the complete list of the 12 ENCOMPASS keyword primitives in alphabetical order.
They are available in any function or async function with the @encompass.compile decorator.

branchpoint(**branchpoint_params)

This statement marks a branchpoint. When combined with proper verification signal from
record_score statements (see below), this creates the illusion that the stochastic operations
that follow are now biased to more desirable outputs, and unreliable operations (e.g., LLM calls)
have become more reliable.
This illusion (angelic nondeterminism) is accomplished through search over the different non-
deterministic branches of the program’s execution. More specifically, when the program’s
execution reaches a branchpoint, the program will branch into multiple copies of itself and
an external search algorithm implemented using the Checkpoint interface searches over the
multiple branches of the program.
branchpoint_params can include the following keyword arguments (all are optional):

• name: Any: A name to label the branchpoint
• max_protection: int | None: The maximum number of times stepping to the next

branchpoint is allowed to raise an exception that gets protected (see documentation for
protect()).

• message_to_agent: Any: A message to send to the agent (see below for messaging).
Other available keyword arguments depend on the specific search algorithm being used. For
example, algorithms derived from graph search algorithms by fixing the branching factor allow
the programmer to provide a branchpoint-specific branching factor branching and maximum
amount of parallelization max_workers when sampling the next state.
Example usage: The simplest use case is to add one branchpoint() statement at the top of the
function body (Listing 4), which amounts to best-of-N sampling (Section 3.1):

1 @encompass.compile
2 def branchpoint_example(...):
3 branchpoint()
4 ... # Do something
5 record_score(...)
6

7 # Sample 10 times and output the result with the highest score
8 branchpoint_example(...).search("sampling", num_rollouts=10)
9

Listing 4: branchpoint example: Best-of-N sampling

25

branchpoint() also supports messaging with the controller (user of the Checkpoint interface)
with a syntax similar to that of Python yield. This lets the programmer implement highly
customized search algorithms optimized for their particular agent workflow — decisions on node
selection and backtracking can now depend on the details of the execution state of the agent that
are sent to the search process via this messaging interface.
Example usage: Listing 5 illustrates how messaging can be used to let the controller decide
whether to backtrack based on the execution state of the underlying agent.

1 @encompass.compile
2 def branchpoint_messaging(task):
3 branchpoint()
4 solution = ...
5 feedback = ...
6 # Python equivalent: response = yield (...)
7 response = branchpoint(message_to_controller=(task, solution, feedback))
8 print(response)
9

10 # Python equivalent: generator = branchpoint_messaging(); next(generator)
11 checkpoint0 = branchpoint_messaging().start()
12 # Python equivalent: task, solution, feedback = next(generator)
13 checkpoint1 = checkpoint0.step()
14 task, solution, feedback = checkpoint1.message_from_agent
15 # Decide whether to backtrack
16 should_backtrack = decide_backtrack(task, solution, feedback)
17 if should_backtrack:
18 # Backtrack and retry last step - no Python equivalent
19 checkpoint1 = checkpoint0.step()
20 # Python equivalent: generator.send(f"backtracked: {should_backtrack}")
21 checkpoint2 = checkpoint1.step(
22 message_to_agent=f"backtracked: {should_backtrack}"
23)

Listing 5: Example of branchpoint with agent-controller messaging

branchpoint_choose(choices: Iterable, **branchpoint_params):

This is a variant of branchpoint where the resulting branches have the branchpoint_choose
(choices) expression evaluate to the elements in the iterable choices. In other words, this
implements regular angelic nondeterminism.
Example usage: The following function (Listing 6) guesses a path from a start node to a goal in
a graph. Conducting search over the nondeterministic execution branches becomes equivalent to
actual search over the graph.

1 @encompass.compile
2 def graph_search(graph, start_node, goal):
3 """
4 Guess a path from `start_node` to `goal` in a `graph` represented as an

adjacency list.
5 """
6 cur_node = start_node
7 path = [cur_node]
8 cost_so_far = 0
9 while cur_node != goal:

10 next_node = branchpoint_choose(graph[cur_node], identity=cur_node)
11 path = path + [cur_node]
12 cost_so_far += get_edge_cost(cur_node, next_node)
13 total_estimated_cost = cost_so_far + estimate_cost_to_go(next_node, goal

)
14 record_score(-total_estimated_cost)
15 cur_node = next_node
16 return path
17

18 # Conduct best-first search -> shortest path with A* search

26

19 graph_search(my_graph, my_start_node, my_goal).search("best_first", top_k_popped
=1, default_branching=None)

20

Listing 6: Graph search example with branchpoint_choose

early_stop_search()

This early-stops the external search process because, e.g., a correct answer has been found.
Example usage: (also see Case Studies 2 and 3)

1 @encompass.compile
2 def early_stop_search_example(...):
3 ... # Do something before
4 branchpoint()
5 # Ask LLM to generate answer
6 answer = llm.generate(...)
7 # Check answer
8 success = check_answer(answer)
9 if success:

10 early_stop_search()
11 return answer
12

Listing 7: early_stop_search example

kill_branch(err=None)

This kills the current branch of program execution. For example, if the LLM generated something
irreparably bad, instead of recording a large negative score (i.e., record_score(-1000)), one
can simply kill the current branch.
Example usage:

1 @encompass.compile
2 def kill_branch_example(...):
3 ... # Do something before
4 branchpoint()
5 # Ask LLM to do something
6 response = llm.generate(...)
7 sanity_check_passed = sanity_check_llm_response(response)
8 if not sanity_check_passed:
9 kill_branch()

10 ... # Do something after
11

Listing 8: Example usage of kill_branch

var: NeedsCopy var: NeedsCopy = expr

This tells the ENCOMPASS compiler that the variable named var needs to be copied upon
branching. In other words, this type annotation declares a variable that is independent across all
future execution paths of the program, assuming no “var: NoCopy” declaration ever occurs in
the future.
By default, all local variables need copying, so NeedsCopy is typically only used to undo an
earlier NoCopy declaration.
Global variables are never copied. In fact, using “var: NeedsCopy” in a Python function will
actually declare a local variable named var that needs copying.
Note that variable assignment without a NeedsCopy or NoCopy declaration will not change
whether it is NeedsCopy or NoCopy.
Example usage: In this example, the programmer wishes to reuse the name of a NoCopy variable
for something that needs copying (Listing 9):

27

1 @encompass.compile
2 def needs_copy_example(task):
3 # Step 1: Iterative refinement using NoCopy
4 feedbacks: NoCopy = []
5 branchpoint()
6 ...
7 score, feedback = get_score_and_feedback(...)
8 feedbacks.append(feedback)
9 record_score(score)

10

11 # Step 2: Summarize every feedback in `feedbacks`
12 feedbacks: NeedsCopy # Different summary attempts mutate differently --- so

we want copies of `feedbacks` on different search branches
13 branchpoint() # Sample multiple summary attempts
14 for i, feedback in enumerate(feedbacks):
15 feedbacks[i] = summarize_feedback(feedback)
16 ...
17

18 result = agent_forward(task).search("dfs", default_braching=5)
19

Listing 9: NeedsCopy example

var: NoCopy var: NoCopy = expr

This tells the ENCOMPASS compiler that the variable named var need not be copied upon
branching. In other words, this type annotation declares a variable that is shared across all future
execution paths of the program, assuming no “var: NeedsCopy” declaration ever occurs in the
future.
By default, all local variables need copying, so NoCopy is needed to declare a variable to be
shared across future execution paths.
Global variables are never copied, so there is no need to use “var: NoCopy” to specify a global
variable that doesn’t need copying. In fact, this declaration would actually declare a local variable
named var that doesn’t need copying.
Note that variable assignment without a NeedsCopy or NoCopy declaration will not change
whether it is NeedsCopy or NoCopy.
Example usage: The simplest use case is to modify the best-of-N (one branchpoint at the top)
by initializing a shared memory of feedback from past attempts. This gives rise to iterative
refinement (Section 3.2).

1 @encompass.compile
2 def no_copy_example(task):
3 feedbacks: NoCopy = []
4 branchpoint()
5 result = perform_task(task, feedbacks)
6 score, feedback = get_score_and_feedback(result)
7 feedbacks.append(feedback)
8 record_score(score)
9

10 # Sample 10 times and output the result with the highest score
11 result = agent_forward(task).search("sampling", num_rollouts=10)

Listing 10: Iterative refinement

optional_return(return_value)

This signals to the external search process that, although the program execution hasn’t finished,
an output return_value has already been produced and should be treated as a possible return
value of the program.
Example usage: (also see Listing 25 in Case Study 2)

1 @encompass.compile

28

2 def optional_return_example(...):
3 answer = llm.generate_answer(...)
4 optional_return(answer)
5 refined_answer = llm.refine_answer(answer, ...)
6 return refined_answer
7

Listing 11: optional_return answer

protect(expr, exception, max_retries=None)

If evaluating an expression expr may raise exception exception, then wrapping it in protect
(...) creates the illusion that it no longer raises the exception. The illusion is created by
resampling from the most recent branchpoint until evaluating the expression no longer raises the
exception. max_retries, if not None, sets an upper limit on the number of retries.
Example usage: One example use case is parsing output from an LLM. The following example
extracts the Python code block from an LLM and parses it. Both steps could error out because of
the unreliability of the LLM, so we can wrap them in protect.

1 @encompass.compile
2 def parse_llm_output_example(...):
3 ... # Do something before
4 branchpoint()
5 # Ask LLM to generate Python code
6 response = llm.generate(...)
7 # Extract Python code
8 python_code = protect(response.split("```python\n", 1)[1]
9 .split("```", 1)[0], IndexError)

10 # Parse Python code
11 python_ast = protect(ast.parse(python_code), SyntaxError)
12 ... # Do something after
13

Listing 12: protect example: Safely parsing output from an LLM

record_costs(**costs)

This lets the user track various kinds of cost, e.g., LLM usage. The costs are aggregated and
accessed through the dictionary func.aggreagte_costs where func is the compiled function.
Example usage:

1 @encompass.compile
2 def record_costs_example(...):
3 response, cost = llm.generate(...)
4 record_costs(llm_cost=cost, llm_num_calls=1)
5 return response
6

Listing 13: record_costs example

record_score(score)

This is the main means for providing reward/verification signal to the external search algorithm
by recording a score. The exact semantics of this score will depend on the search algorithm used
(e.g., heuristic for best-first search, value function for MCTS).
Example usage: The simplest example is best-of-N sampling, which samples the agent workflow
multiple times and selects the result with the highest score recorded by record_score.

1 @encompass.compile
2 def branchpoint_example(...):
3 branchpoint()
4 ... # Do something
5 record_score(...)

29

6

7 # Sample 10 times and output the result with the highest score
8 branchpoint_example(...).search("dfs", default_branching=10)
9

Listing 14: record_score example: Best-of-N sampling

record_score(group_evaluator, eval_target, label=eval_label)

This overloading of record_score enables evaluation that compares across multiple program
execution branches. The simplest use case for this is self-consistency majority voting, where
evaluating a result must be done relative to all results (Section 3.3).

searchover(func(...))

This is the syntax for calling an ENCOMPASS function func inside another ENCOMPASS
function. This is similar to the await func(...) syntax for calling an async function inside
another async function, where instead of await we use searchover.
Example usage: (also see Listing 19 in Case Study 1)

1 @encompass.compile
2 def helper_function(...):
3 ...
4

5 @encompass.compile
6 def searchover_example(...):
7 ... # Do something before
8 helper_result = searchover(helper_function(...))
9 ... # Do something after

10

Listing 15: searchover example

searchover_await(async_func(...))

This is the asynchronous counterpart to searchover(). In other words, it is used to call an asyn-
chronous ENCOMPASS function async_func from within another asynchronous ENCOMPASS
function.
Example usage:

1 @encompass.compile
2 async def async_helper_function(...):
3 ...
4

5 @encompass.compile
6 async def searchover_await_example(...):
7 ... # Do something before
8 helper_result = searchover_await(async_helper_function(...))
9 ... # Do something after

10

Listing 16: searchover_await example

B.2 Compiled search space interface

The interface of the compiled search space allows the user to either step through the program or
search over its nondeterministic execution paths.

In what follows, func represents a function compiled with the @encompass.compile decorator,
and func(...) represents the search space object created from calling the compiled function on
some arguments.

func(...).start() -> Checkpoint

30

This begins execution of the function with the given arguments until the first branchpoint, i.e., a
branchpoint() or branchpoint_choose(), which could be inside a nested searchover()
function call. The program state at that point is wrapped into a Checkpoint object, which can
be used to step through the function, creating checkpoints at branchpoints. A partial interface of
Checkpoint is given in Appendix B.3.

async_func(...).async_start() -> AsyncCheckpoint

(async method) Async equivalent of func(...).start() for async ENCOMPASS functions.

func(...).search(search_algo: str, **search_params) -> Any

This conducts search over the compiled search space using the given search algorithm and
returns the final result, which is usually the return value (from either return return_value
or optional_return(return_value)) from the branch with the highest latest recorded score.
Search algorithms available in ENCOMPASS are detailed in Appendix B.4.

async_func(...).async_search(search_algo: str, **search_params) -> Any

(async method) Async equivalent of func(...).search() for async ENCOMPASS functions.

func(...).search_multiple(search_algo: str, **search_params) -> list[tuple]

This is the same as search(), except it returns all results and not just the best one. Results are
returned as a list of pairs (rv, score) where rv is the return value of a branch and score is
its score.

async_func(...).async_search_multiple(search_algo, **search_params) -> list
[tuple]

(Async method) Async equivalent of func(...).search_multiple() for async ENCOMPASS
functions.

func.aggregate_costs: dict[str, float|int]

This is a dictionary containing the aggregate costs from all record_cost statements. Key
"<cost_name>" is mapped to the sum of all costs recorded with that name via record_cost
(<cost_name>=...).

func.branchpoint_step_counts: dict[Any, int]

This is a dictionary that maps the name of a branchpoint to the number of times step() has
been called on a checkpoint of that branchpoint, over all calls to func since the last time
zero_branchpoint_counts() was called (see below). The dictionary will only contain step
counts for named branchpoints, i.e., branchpoints with a name parameter (i.e., branchpoint(
name=...) or branchpoint_choose(choices, name=...)).

func.zero_branchpoint_counts() -> None

This zeros out the recorded total step counts of each named branchpoint.

B.3 Checkpoint object interface

A Checkpoint holds the program state at a branchpoint or return statement of an ENCOMPASS
program’s execution.

class Checkpoint

step(max_protection=None, score_db_flush_queue=True) -> Checkpoint

31

This continues execution of the program starting from the stored program state until the next
time a branchpoint is hit, returning a new Checkpoint object.
Any expressions protected by a protect(expr, exception) will trigger resampling
whenever the exception occurs, up to a maximum of max_protection resamplings if it is
not None.
If score_db_flush_queue is False, then pending evaluations recorded through the group-
evaluation version of record_score will not be processed.
Multiple step() calls on the same Checkpoint are mostly independent: while variable
assignments are independent, references to variables declared as NoCopy are shared, so that
mutations to a NoCopy object created before the current checkpoint are seen by all execution
branches descended from this checkpoint.
If the branchpoint is a branchpoint_choose(choices: Iterable) instead of a regualar
branchpoint() statement, then multiple step() calls iterate through choices, and the
resultant branches see the branchpoint_choose(choices) call evaluate to the elements
in choices.

step_sampler(max_samples=None, max_protection=None, score_db_flush_queue
=True) -> Generator[Checkpoint, None, None]

This calls step() repeatedly and yields the resultant Checkpoint objects. This is done at
most max_samples is not None; otherwise it samples forever, or until the list of choices
have been exhausted in branchpoint_choose.
max_protection specifies the total number of resamplings allowed for protected expres-
sion evaluations.
See Checkpoint.step() above for score_db_flush_queue.

parallel_step_sampler(max_samples=None, chunk_size=None, max_protection
=None, max_workers=None, score_db_flush_queue=True) -> Generator[
Checkpoint, None, None]

Multithreaded version of Checkpoint.step_sampler(), where max_workers specifies
the maximum number of threads to use and chunk_size, if given, does parallel samplings
in batches of that size.

status: Status

The status of the checkpoint object. One of Status.RUNNING, Status.DONE_STEPPING,
Status.RETURNED, and Status.KILLED. The Status.DONE_STEPPING status is only
possible at a branchpoint_choose with a finite set of choices.

has_return_value: bool

Whether there’s a return value from return return_value (if the checkpoint is at a return
statement) or optional_return(return_value) (if the checkpoint is at a branchpoint).

return_value: Any

The return value of the function if it exists (i.e., if the checkpoint is at a return statement,
or it is at a branchpoint following an optional_return statement without an intervening
branchpoint).

early_stopped_search: bool

Whether an early_stopped_search() statement has been called on any branch of the
program’s execution.

score: float|int

The most recent score recorded through record_score().

32

branchpoint_params: dict

This is a dictionary containing the parameters of the branchpoint as specified
through branchpoint(**branchpoint_params) or branchpoint_choose(choices
, **branchpoint_params).

For async ENCOMPASS functions, there’s a corresponding AsyncCheckpoint with the
same interface, except that certain methods are now async, and step_sampler() and
parallel_step_sampler() have been merged into one async_step_sampler().

class AsyncCheckpoint

async_step(max_protection=None, score_db_flush_queue=True) -> Checkpoint

(async method) Async equivalent of Checkpoint.step().

async_step_sampler(max_samples=None, chunk_size=None, max_protection=
None, max_workers=None, score_db_flush_queue=True) -> AsyncGenerator[
Checkpoint, None, None]

(async method) Async equivalent of Checkpoint.step_sampler() and Checkpoint.
parallel_step_sampler().

status: Status

See Checkpoint.status.

has_return_value: bool

See Checkpoint.has_return_value.

return_value: Any

See Checkpoint.return_value.

early_stopped_search: bool

See Checkpoint.early_stopped_search.

score: float|int

See Checkpoint.score.

branchpoint_params: dict

See Checkpoint.branchpoint_params.

B.4 Search interface and search algorithms

Search algorithms are implemented over the Checkpoint interface. Parameters to a search al-
gorithm can be specified both in the arguments to search() when invoking a compiled search
space object as well as in branchpoint parameters specified as arguments to branchpoint() and
branchpoint_choose() within the ENCOMPASS function.

ENCOMPASS provides several common search algorithms out-of-the-box. The async implementations
take advantage of the I/O-bound nature of LLM applications, whereas the non-async implementations
use multithreaded parallelism, which the user can disable if they wish (e.g., to prevent race conditions
when there are NoCopy variables). Here is the complete list of search algorithms in the current version
of ENCOMPASS:

• Depth-first search (DFS)

33

• Breadth-first search (BFS)
• Best-first search (BeFS)
• Beam search
• Monte-Carlo tree search (MCTS), with a given value function
• Reexpand best-first search, a variant of BeFS where an expanded node can be expanded

again. This was used in Case Study 3 (Appendix A.2).
• Explorative reexpand best-first search, a variant of reexpand BeFS where a UCB-like

exploration bonus is added to the score.

The user can also implement and register their custom search algorithm by subclassing the abstract
Search class. Here, we provide a template for defining and registering a custom search algorithm:

1 @register_search_algo(is_async=False) # or `is_async=True` if subclassing `AsyncSearch`
2 class MySearch(Search): # or `MySearch(AsyncSearch)`
3 name = "my_search"
4 param_names = ["param1", "param2"] # names of branchpoint parameters that I will use
5
6 def __init__(self, *, config1, config2, default_param1, default_param2):
7 self.config1 = config1
8 self.config2 = config2
9 self.default_param1 = default_param1

10 self.default_param2 = default_param2
11
12 def search_generator(
13 self,
14 init_program_state: Checkpoint
15) -> Generator[tuple[Any, ScoreWithCallback], None, None]:
16 # or `async def async_search_generator(self, init_program_state: AsyncCheckpoint)`
17 # if subclassing `AsyncSearch`
18 """
19 Yields pairs (return_value: Any, score_with_callback: ScoreWithCallback)
20 as they are found.
21
22 ScoreWithCallback is a wrapper around a program state's score
23 - it is needed for group evaluation to work properly.
24 """
25 # REPLACE CODE BELOW WITH YOUR CUSTOM SEARCH ALGORITHM
26 next_program_states = init_program_state.parallel_step_sampler(...)
27 for next_program_state in next_program_states:
28 param1 = next_program_state.get_branchpoint_param("param1", self.default_param1)
29 if next_program_state.has_return_value:
30 yield next_program_state.return_value, next_program_state._score_with_callback
31 ...
32 ...

34

C The ENCOMPASS compiler

The ENCOMPASS compiler syntactically transforms an ENCOMPASS function into an equivalent
regular Python program by conversion to continuation-passing style (CPS) and applying tail-call
optimization.

For simplicity, we only describe how we compile ENCOMPASS functions that are not async. The
compiler transformations for async ENCOMPASS functions are nearly identical.

C.1 CPS for branchpoints

In this subsection, we describe how to convert a piece of code containing branchpoints (but not any
of the other EnCompass keyword primitives) into CPS.

In its simplest form, transforming a piece of code into CPS results in a function

cps_function(frame: Frame, rest: Frame -> None) -> None

which runs the piece of code on the variable mapping frame to get a new variable mapping, followed
by calling the callback rest on that new variable mapping. Here, the callback rest, called the
continuation, represents the rest of the program.

For a piece of code that doesn’t contain any branchpoints, it suffices to transform variable accesses
and assignments to explicitly use frame. For example,

1 x = 1
2 y = x + 1

is compiled into

1 frame['x'] = 1
2 frame['y'] = frame['x'] + 1
3 rest(frame)

Note that we omit the def cps_function(frame, rest): in the compiled code, so technically
we’re compiling to the body of the CPS function. We will call this the CPS body to distinguish it
from the CPS function. We defer the job of wrapping the CPS body into a function to whoever asked
for the compilation. This simplifies the issue of naming CPS functions and referring to them with the
correct name.

Since the compiled CPS function explicitly runs the continuation rest(frame), adding a branch-
point immediately after the piece of code amounts to modifying the continuation to incorporate
the search process. So we replace rest(frame) with branchpoint_callback(frame, rest),
which defines the rest of the program when we hit a branchpoint, where rest here now represents
the rest of the program when we resume from the branchpoint. Taking the example above and adding
a branchpoint at the end,

1 x = 1
2 y = x + 1
3 branchpoint()

gets compiled into the following CPS body:

1 frame['x'] = 1
2 frame['y'] = frame['x'] + 1
3 branchpoint_callback(frame, rest)

Here, branchpoint_callback(frame, rest) first stores the current program state (frame,
rest) as a node in the search tree, then uses the search algorithm to decide a node (frame1, rest1
) in the search tree to expand, and call rest1(frame1.clone()) to run the rest of the program
resuming from the branchpoint that saved the state (frame1, rest1). Cloning frame1 is needed
because otherwise multiple calls to rest1(frame1) would modify the same frame1 object.

So far we’ve only defined how to transform programs with no branchpoints and programs with one
branchpoint at the end. The transformation of a general program with branchpoints in arbitrary

35

locations can be defined recursively with these two base cases. For example, a program with a
branchpoint in the middle,

1 x = 1
2 branchpoint()
3 y = x + 1

Listing 17: Program with a branchpoint in the middle

is a concatenation of two programs:
1 A :
2 x = 1
3 branchpoint()

and
1 B :
2 y = x + 1

where we can apply the recursive transformation rule for concatenation,
1 def rest(frame):
2 CPS(B)
3 CPS(A)

to obtain the CPS body
1 def rest(frame):
2 frame['y'] = frame['x'] + 1
3 finish_callback(frame)
4 frame['x'] = 1
5 branchpoint_callback(frame, rest)

Note that we have replaced rest(frame) with finish_callback(frame) in the compilation
of B to avoid name collision with the def rest(frame). As a result, the compiled CPS
function of the complete top-level program (AST root node) also has to reflect this name
change in its signature: top_level_cps_function(frame, finish_callback) instead of
top_level_cps_function(frame, rest). So, if Listing 17 is our entire program, then its CPS
function is

1 def top_level_cps_function(frame, finish_callback):
2 def rest(frame):
3 frame['y'] = frame['x'] + 1
4 finish_callback(frame)
5 frame['x'] = 1
6 branchpoint_callback(frame, rest)

As a more complicated example, consider the following code:
1 i = 0 # A
2 branchpoint() # A
3 j = 0 # B
4 while i < 10: # B
5 j -= 1 # B - X
6 branchpoint() # B - X
7 i += 1 # B - Y
8 print(j) # C

We’ve chunked up the statements at the top level into 3 pieces: A, B and C. Each chunk consists of
zero or more branchpoint-free statements followed by a statement containing a branchpoint, except
for the last chunk C which is branchpoint-free. We apply the concatenation rule to A and (B;C),
which recursively applies the concatenation rule to B and C. This then recursively compiles the last
statement of B — the while loop. Compiling the while loop using the while loop rule recursively
compiles the body of the while loop using the concatenation rule on the chunks X and Y .

The concatenation rule as applied to chunks X and Y gives

36

1 def rest(frame):
2 # CPS body of Y
3 frame['i'] += 1
4 continue_callback(frame)
5 # CPS body of X
6 frame['j'] -= 1
7 branchpoint_callback(frame, rest)

where to avoid name collision we replaced rest(frame) with continue_callback(frame).

Applying the while loop rule gives

1 def body_cps_function(frame, continue_callback, break_callback):
2 # CPS body of (X; Y) (from above)
3 def rest(frame):
4 # CPS body of Y
5 frame['i'] += 1
6 continue_callback(frame)
7 # CPS body of X
8 frame['j'] -= 1
9 branchpoint_callback(frame, rest)

10 def while_cps_function(frame, rest):
11 if frame['i'] < 10:
12 body_cps_function(frame, lambda frame: while_cps_function(frame, rest))
13 else:
14 rest(frame)
15 while_cps_function(frame, rest)

Finally, applying the concatenation rule twice in (A; (B;C)) gives the CPS body of the entire
program:

1 # CPS body of (A; B; C)
2 def rest(frame):
3 # CPS body of (B; C)
4 def rest(frame):
5 # CPS body of C
6 print(frame['j'])
7 finish_callback(frame)
8 # CPS body of B
9 frame['j'] = 0

10 ... # CPS body of the while loop (from above)
11 # CPS body of A
12 frame['i'] = 0
13 branchpoint_callback(frame, rest)

And, as usual, to get the CPS function of this program, we simply wrap the above CPS body into a
def top_level_cps_function(frame, finish_callback) function.

Note that the general solution to dealing with name collision is to add the correct version of rest(
frame) to the end of each “body” in the AST during preprocessing, so that we don’t have to deal
with it during conversion to CPS:

• At the end of the top-level program, add finish_callback(frame) during prepro-
cessing. During conversion to CPS, the signature of the CPS function of a top-level
program will be top_level_cps_function(frame, finish_callback) instead of
top_level_cps_function(frame, rest).

• At the end of the body of a for/while loop, add continue_callback(frame) during
preprocessing. During conversion to CPS, the signature of the CPS function of the
body of a for/while loop will be body_cps_function(frame, continue_callback,
break_callback) instead of body_cps_function(frame, rest). Note that this also

specifies the names of the callbacks that continue and break statements in the body get
converted to during conversion to CPS — two birds with one stone.

• At the end of the body of an if or an else, add if_else_callback(frame
). During conversion to CPS, the signature of the CPS function of the body

37

of an if will be if_body_cps_function(frame, if_else_callback) instead of
if_body_cps_function(frame, rest), and similarly for else.

• At the end of the body of a function, add return_callback(frame.caller_frame)
. During conversion to CPS, the signature of the CPS function of the body of a func-
tion will be function_body_cps_function(frame, return_callback) instead of
function_body_cps_function(frame, rest).

We are now ready to formally write down the full set of transformations for EnCompass programs with
the simplest version of EnCompass that only has branchpoints. For simplicity, we only describe the
transformations done for synchronous code (no async/await) where only loops, if/else statements and
function definitions have branchpoints (with, try-except, and match statements are all branchpoint-
free).

Preprocessing The preprocessing stage consists of the following steps:

1. Convert all names var to frame['var'].
2. Add finish_callback(frame) to the end of the program.
3. Add continue_callback(frame) to the end of the body of every for/while loop.
4. Add if_else_callback(frame) to the end of the body of every branch of every if-else

statement.
5. Add return_callback(frame.caller_frame) to the end of the body of every function

that doesn’t already end in a return statement.
6. Make the following replacements:

• continue→ continue_callback(frame)
• break→ break_callback(frame)
• return rv→ return_callback(frame.caller_frame, rv)

Conversion to CPS Here are the general transformation rules for compiling a top-level program or
the body of a function, after the preprocessing steps described above have been completed.

1. Base case — branchpoint-free: If A has no branchpoints, make no changes. In other words,
CPS(A) = A.

2. Base case — branchpoint: A branchpoint

1 branchpoint()

becomes

1 branchpoint_callback(frame, rest)

3. Concatenation: For (A;B) where A = (A′; a) with A′ branchpoint-free and a a single
statement containing one or more branchpoints (a branchpoint or a for/while/if/else statement
containing a branchpoint, but not e.g. a function definition containing a branchpoint),

1 A′ # zero or more branchpoint-free statements
2 a # single statement containing one or more branchpoints
3 B # zero or more statements

the compiled CPS body is

1 def rest(frame):
2 CPS(B)
3 A′

4 CPS(a)

4. While loops: For a while loop containing one or more branchpoints,

1 while e:
2 A # contains one or more branchpoints

the compiled CPS body is

38

1 def body_cps_function(frame, continue_callback, break_callback):
2 CPS(A)
3 def while_cps_function(frame, rest):
4 if e:
5 body_cps_function(
6 frame,
7 lambda frame: while_cps_function(frame, rest),
8 rest
9)

10 else:
11 rest(frame)
12 while_cps_function(frame, rest)

5. For loops: For a for loop containing one or more branchpoints,

1 for i in e:
2 A # contains one or more branchpoints

the compiled CPS body is

1 def body_cps_function(frame, continue_callback, break_callback):
2 CPS(A)
3 def for_cps_function(frame, rest):
4 try:
5 i = next(frame.iterables[-1])
6 except StopIteration:
7 frame.iterables.pop()
8 rest(frame)
9 return

10 def break_callback(frame):
11 frame.iterables.pop()
12 rest(frame)
13 body_cps_function(
14 frame,
15 lambda frame: for_cps_function(frame, rest),
16 break_callback
17)
18 frame.iterables.append(iter(e))
19 for_cps_function(frame, rest)

6. If-else statements: For an if-else statement containing one or more branchpoints,

1 if e:
2 A
3 else:
4 B

the compiled CPS body is

1 def if_body_cps_function(frame, if_else_callback):
2 CPS(A)
3 def else_body_cps_function(frame, if_else_callback):
4 CPS(B)
5 if e:
6 if_body_cps_function(frame, rest)
7 else:
8 else_body_cps_function(frame, rest)

C.2 Tail-call optimization

There are two issues with the compiled CPS representation. One issue is performance — the extra
function calls cause overhead, and long for/while loops become deep recursive calls that can exceed
Python’s recursion depth limit. The second issue is that defining the search algorithm by defining
branchpoint_callback(frame, rest) is unnatural and difficult. Typically, a search algorithm
is implemented assuming access to a step method that returns a child of a node, new_state =
step(state).

39

We solve both issues via tail-call optimization. More specifically, every branchpoint_callback(
frame, rest) is replaced with return frame, rest, and rest(frame) no longer resumes from
a branchpoint to execute the rest of the program, but only executes until the next branchpoint is
hit, at which point the frame, rest at that branchpoint is returned. In other words, new_frame,
new_rest = rest(frame.clone()) is exactly the new_state = step(state) that we need,

where we identify state with (frame, rest).

With this modification, reproducing the execution of the program when all branchpoints are ignored
now involves a while loop that keeps stepping until the program finishes:

1 frame = {}
2 rest = lambda frame: top_level_cps_function(frame, lambda frame: (frame, None))
3 while rest is not None:
4 frame, rest = rest(frame)

And a simple DFS looks like this:

1 frame = {}
2 rest = lambda frame: top_level_cps_function(frame, lambda frame: (frame, None))
3 stack = [(frame, rest)]
4 results = []
5 while stack:
6 frame, rest = stack.pop()
7 for _ in range(branching_factor):
8 new_frame, new_rest = rest(frame.clone())
9 if new_rest is None:

10 results.append(frame)
11 else:
12 stack.append((new_frame, new_rest))

We can wrap the state (frame, rest) into a Checkpoint object that provides a step method
wrapping new_frame, new_rest = rest(frame.clone()), and any search algorithm can now
be implemented using the Checkpoint interface.

We also need to modify the CPS transformation rules to return the next state instead of running the
entire continuation to completion. The details of the modifications are as follows:

1. Base case — branchpoint-free: No change.
2. Base case — branchpoint: A branchpoint

1 branchpoint()

is now compiled to

1 return frame, rest

3. Concatenation: No change.
4. While loops: Prepend return to these 3 lines:

1 ...
2 def while_cps_function(frame, rest):
3 if e:
4 return body_cps_function(...) # <-
5 else:
6 return rest(frame) # <-
7 return while_cps_function(frame, rest) # <-

5. For loops: Prepend return to these 3 lines:

1 ...
2 def for_cps_function(frame, rest):
3 ...
4 ...
5 return rest(frame) # <-
6 ...
7 return body_cps_function(...) # <-

40

8 ...
9 return for_cps_function(frame, rest) # <-

6. If-else statements: Prepend return to these 2 lines:

1 ...
2 if e:
3 return if_body_cps_function(frame, rest) # <-
4 else:
5 return else_body_cps_function(frame, rest) # <-

C.3 Other keywords

Most other ENCOMPASS primitives provide auxiliary information, which we store in a dictionary
info. We modify our transformation rules so that info always occurs alongside frame, so the
Checkpoint object is now a wrapper around the 3-tuple (frame, info, rest). The Checkpoint
class implements the intended semantics of these additional ENCOMPASS keywords using the

information stored inside info — details which we will omit.

Note that info is copied upon Checkpoint.step() similar to how frame gets cloned. In
other words, stepping is now implemented as new_frame, new_info, new_rest = rest(frame
.clone(), info.copy()).

For keywords that are used as standalone statements, preprocessing is done to convert these keywords
into statements that modify info. The only exception is kill_branch(), which is transformed into
a finish_callback() call. Here, we list the preprocessing transformations for all keywords that
are used as standalone statements:

• early_stop_search()→ info["early_stop_search"] = True

• kill_branch(e)→ finish_callback(frame, e, info, killed=True)

• v: NeedsCopy→
var = v; if var in info["nocopy"]: info["nocopy"].remove(var)
An annotated assignment is broken into two statements — the annotation and the assignment
— before this transformation on the annotation occurs.

• v: NoCopy→ info["nocopy"].add(v)
An annotated assignment is broken into two statements — the annotation and the assignment
— before this transformation on the annotation occurs.

• optional_return(e)→ info["optional_rv"] = e

• record_costs(keywords)→ info["costs"] = dict(keywords)

• record_score(args)→
info["score"] = info["score_db"].submit_score(args)
Here info["score_db"] is a ScoreDB object whose submit_score() method returns a
thunk that represents the eventual value of the score. This extra complexity is needed to
implement group evaluation (Section 3.3).
Without group evaluation,
record_score(e)→ info["score"] = e

would suffice.

Now, the remaining keyword primitives — branchpoint(), branchpoint_choose(),
searchover() and protect() — are all used as expressions that can be part of a larger expression
or a statement.5 A statement that contains one or more of these keyword primitives needs to be
partially converted to A-normal form [41], where the return value from a keyword primitive is first
assigned to a temporary variable, and its occurrence in the statement is replaced with that temporary
variable. This is done recursively for keywords nested within keywords. For example, the statement

5While Appendix C.1 treated branchpoint() as a statement, in fact it can be used to communicate with the
controller (user of the Checkpoint interface), where messages from the controller appear as the return value of
branchpoint().

41

1 answer = get_answer(
2 branchpoint_choose([searchover(agent1(task)), protect(agent2(task), ValueError])
3)

when converted to A-normal form will become

1 frame.tmp_vars[0] = searchover(agent1(task))
2 frame.tmp_vars[1] = protect(agent2(task), ValueError)
3 frame.tmp_vars[2] = branchpoint_choose([frame.tmp_vars[0], frame.tmp_vars[1]])
4 answer = get_answer(frame.tmp_vars[2])

After conversion to A-normal form, each statement that assigns the output of a keyword primitive to
a temporary variable is further transformed as follows:

• frame.tmp_vars[N] = branchpoint(kwargs)→ [no change]

• frame.tmp_vars[N] = branchpoint_choose(e, kwargs)→

1 iterable = e
2 iterator, iterator_copy = tee(iterable)
3 try:
4 next(iterator_copy)
5 except StopIteration:
6 info["done_stepping"] = True
7 frame.tmp_vars["iterator_list"] = [iterator]
8 frame.tmp_vars[None] = branchpoint(kwargs) # discard message from

controller - not yet supported by branchpoint_choose()
9 try:

10 frame.tmp_vars[N] = next(frame.tmp_vars["iterator_list"][0])
11 except StopIteration as e:
12 raise FinishedSteppingError from e
13 frame.tmp_vars["iterator_list"][0], iterator_copy = tee(
14 frame.tmp_vars["iterator_list"][0])
15 try:
16 next(iterator_copy)
17 except StopIteration:
18 info["last_branchpoint_done_stepping"] = True

• frame.tmp_vars[N] = searchover(e)→ [no change]

• frame.tmp_vars[N] = protect(expr, err)→

1 try:
2 frame.tmp_vars[N] = expr
3 except err:
4 finish_callback(frame, err, info, killed=True, protected=True)

Finally, note that we have to modify the CPS transformation rule for branchpoints from Appendix C.2,
as well as adding a CPS transformation rule for searchover. The new rules are:

• frame.tmp_vars[N] = branchpoint(kwargs)
→

1 def branchpoint_rest(frame, info, message_to_agent):
2 frame.tmp_vars[N] = message_to_agent
3 rest(frame, info)
4 return frame, info, branchpoint_rest, dict(kwargs)

So now, sampling a next program state is now implemented as frame, info,
branchpoint_rest, branchpoint_params = branchpoint_rest(frame.clone()
, info.copy(), message_to_agent).

• frame.tmp_vars[N] = searchover(e)
→

42

1 def return_rest(frame, rv, info):
2 frame.tmp_vars[N] = rv
3 rest(frame, info)
4 func_call = e
5 if not isinstance(func_call, SearchSpaceWithArgs):
6 raise SearchoverTypeError(f"searchover(...) expects a '

SearchSpaceWithArgs' object, instead got {type(func_call)}")
7 func_call.compiled_cps_function(
8 Frame(
9 locals=func_call._args_dict,

10 caller_frame=frame,
11 enclosing_frame=Frame.from_closurevars(
12 getclosurevars(func_call._search_space._wrapped_fn)
13)
14),
15 info,
16 return_rest,
17)

43

D Code comparisons for case studies: base agent vs. ENCOMPASS agent vs.
equivalent plain Python implementation

In this appendix, for each case study, we show the code for the underlying base agent, the agent
augmented with search in ENCOMPASS, and the equivalent agent implemented in plain Python. We
annotate the changes made relative to the base agent:

• # +n: This line was added and it has n words (a word is as defined in Vim).
• # x (-m+n): This line was changed; and m words were removed and n words were added.
• # -m: This line was removed and it contained m words.
• # <-k: This line (or group of omitted lines) was indent to the left by k indentation levels.
• # ->k: This line (or group of omitted lines) was indent to the right by k indentation levels.

We do not count lines added that don’t contain any code (i.e., that are blank or only contain a
comment).

We see that, while changes made to the base agent to support search in ENCOMPASS are minimal, sig-
nificant changes are needed to support search in the plain Python implemenation, thus demonstrating
the representational advantage of ENCOMPASS.

We will omit code that remains unchanged between the base agent, the ENCOMPASS agent, and
the ENCOMPASS agent’s plain Python implementation. Code segments that have been omitted are
indicated by ellipses “...”.

44

D.1 Case Study 1: Code Repository Translation Agent

Base agent:
1 def run_code_and_compare(method, target_code, source_code, translation_unit):
2 ... # Logging; define some variables
3
4 if method.type == "main":
5
6 test_inputs = None
7 if "System.in" in source_code:
8 # STEP 1: Write test input generation script and generate test inputs
9

10 ... # Prompt LLM
11
12 ... # Get test input format specification from LLM response
13 if fatal_error:
14 return 0.0
15
16 ... # Get test input generation script from LLM response
17 if fatal_error:
18 return 0.0
19
20 ... # Generate test inputs
21 if fatal_error:
22 return 0.0
23
24 # STEP 2: Directly run codes and compare them if tested component is main function
25 ...
26 match = ...
27 return float(match)
28
29 # Otherwise, we have to write a main function to test the component
30
31 ... # Define some variables
32
33 # STEP 1: Write test input generation script and generate test inputs
34
35 ... # Prompt LLM
36
37 ... # Get test input format specification from LLM response
38 if fatal_error:
39 return 0.0
40
41 ... # Get test input generation script from LLM response
42 if fatal_error:
43 return 0.0
44
45 ... # Generate test inputs
46 if fatal_error:
47 return 0.0
48
49 # STEP 2: Run the target code with the test inputs
50
51 ... # Prompt LLM
52
53 ... # Get output format specification from LLM response
54 if fatal_error:
55 return 0.0
56
57 ... # Get target main function code from LLM response
58 if fatal_error:
59 return 0.0
60
61 ... # Parse target main function code
62 if fatal_error:
63 return 0.0
64
65 ... # Extract target main function AST node
66 if fatal_error:
67 return 0.0
68
69 ... # Add target main function to target code
70 ... # Run target code with main function on test inputs
71
72 # STEP 3: Generate source code main function and run it
73
74 ... # Prompt LLM
75
76 ... # Get source main function code from LLM response
77 if fatal_error:
78 return 0.0
79
80 ... # Parse and extract source main function AST node
81 if fatal_error:
82 return 0.0
83
84 ... # Add target main function to target code
85 ... # Run target code with main function on test inputs
86
87 matches = ...
88 match_fraction = sum(matches) / len(matches)

45

89
90 return match_fraction
91
92
93 def translate_class(translation_unit):
94 ... # Some setup (e.g., read and parse code files)
95 methods_to_translate = ...
96 num_methods_to_translate = len(methods_to_translate)
97 translate_success_count = 0
98 pass_tests_count = 0
99 for method in methods_to_translate:

100 target_code, translate_success = translate_method(method, target_code, source_code, translation_unit)
101 if translate_success:
102 translate_success_count += 1
103
104 ... # save target code
105
106 if translation_unit.is_test:
107 pass_tests_count += run_test_module(target_code, translation_unit)
108 else:
109 pass_tests_count += run_code_and_compare(
110 method,
111 target_code,
112 source_code,
113 translation_unit,
114)
115
116 # Separately test main function (Python `if __name__ == "__main__"` block) if it's present
117 if not translation_unit.is_test and ...:
118 num_methods_to_translate += 1
119 translate_success_count += 1
120 pass_tests_count += run_code_and_compare(
121 "main",
122 target_code,
123 source_code,
124 translation_unit,
125)
126
127 ... # logging and saving progress
128
129 return pass_tests_count, translate_success_count, num_methods_to_translate, new_branch
130
131
132 def setup_antlr4(source_code_root, target_code_root, temperature):
133 source_subdir = 'src/main/antlr4'
134 num_successful_translations = 0
135 num_successful_parses = 0
136 for root, dirs, files in os.walk(source_code_root / source_subdir):
137 for file in files:
138 ... # Read antlr4 grammar file
139
140 ... # LLM modification if needed
141
142 ... # Write to target directory
143
144 ... # Run antlr4 to generate target Python classes
145
146 ... # Check if the generated files can be parsed
147
148 return num_successful_translations + num_successful_parses
149
150
151 def code_translation_agent(source_code_root, target_code_root, args):
152 ... # Set up logging and git repo for saving progress
153
154 # 0.1. Copy resource files (src/main/resources and src/test/resources)
155 copy_resource_files(source_code_root, target_code_root)
156
157 # 0.2. Set up antlr4 if applicable (src/main/antlr4)
158 setup_antlr4(source_code_root, target_code_root, args.temperature)
159
160 # 1. Get class names in topological order
161 translation_units = get_translation_order_and_dependencies(source_code_root, target_code_root)
162
163 for translation_unit in translation_units:
164 # 2. Generate stubs for the class
165 generate_stubs_success = generate_stubs(translation_unit)
166
167 # 3. Translate each class
168 pass_tests_count, translate_success_count, num_methods_to_translate, new_branch = translate_class(translation_unit)
169
170 ... # Log results
171
172 ... # Final logging and saving
173
174 return final_commit
175
176
177 code_translation_agent(...)

Listing 18: Code repository translation agent

46

With ENCOMPASS:

1 import uuid # +2
2 import encompass # +2
3
4
5 @encompass.compile # +4
6 def branchpoint_git_commit(target_code_root, log_str="Branchpoint reached", new_branch_name="branch", **branchpoint_params):

+17
7 repo = Repo(target_code_root) # +6
8 with open(target_code_root / "commit.log", "a") as f: # +16
9 f.write(log_str + '\n') # +9

10 repo.git.add(".") # +6
11 repo.git.commit("-m", log_str) # +10
12 cur_commit = str(repo.head.commit) # +10
13 branchpoint(**branchpoint_params) # +4
14 repo.git.checkout(cur_commit) # +8
15 repo.git.switch("-c", f"{new_branch_name}-{uuid.uuid4()}") # +16
16
17
18 @encompass.compile # +4
19 def run_code_and_compare(method, target_code, source_code, translation_unit, base_score): # x (-0+2)
20 ... # Logging; define some variables
21
22 if method.type == "main":
23
24 test_inputs = None
25 if "System.in" in source_code:
26 searchover(branchpoint_git_commit(# +4
27 translation_unit.target_code_root, # +4
28 f"Generate test inputs for and test {translation_unit.target_module_path}:{component_name}", # +15
29 f"bp-gen_inputs_test_main-{translation_unit.target_module_path}-{component_name}", # +12
30)) # +1
31
32 # STEP 1: Write test input generation script and generate test inputs
33
34 ... # Prompt LLM
35
36 ... # Get test input format specification from LLM response
37 if fatal_error:
38 return 0.0
39
40 ... # Get test input generation script from LLM response
41 if fatal_error:
42 return 0.0
43
44 ... # Generate test inputs
45 if fatal_error:
46 return 0.0
47
48 # STEP 2: Directly run codes and compare them if tested component is main function
49 ...
50 match = ...
51 return float(match)
52
53 # Otherwise, we have to write a main function to test the component
54
55 ... # Define some variables
56
57 searchover(branchpoint_git_commit(# +4
58 translation_unit.target_code_root, # +4
59 f"Generate test inputs for {translation_unit.target_module_path}:{method}", # +13
60 f"bp-gen_inputs-{translation_unit.target_module_path}-{method}", # +12
61)) # +1
62
63 # STEP 1: Write test input generation script and generate test inputs
64
65 ... # Prompt LLM
66
67 ... # Get test input format specification from LLM response
68 if fatal_error:
69 # pad branchpoints
70 searchover(branchpoint_git_commit(translation_unit.target_code_root)) # +8
71 searchover(branchpoint_git_commit(translation_unit.target_code_root)) # +8
72 return 0.0
73
74 ... # Get test input generation script from LLM response
75 if fatal_error:
76 # pad branchpoints
77 searchover(branchpoint_git_commit(translation_unit.target_code_root)) # +8
78 searchover(branchpoint_git_commit(translation_unit.target_code_root)) # +8
79 return 0.0
80
81 ... # Generate test inputs
82 if fatal_error:
83 # pad branchpoints
84 searchover(branchpoint_git_commit(translation_unit.target_code_root)) # +8
85 searchover(branchpoint_git_commit(translation_unit.target_code_root)) # +8
86 return 0.0
87
88 record_score(base_score + 0.01) # +8
89

47

90 searchover(branchpoint_git_commit(# +4
91 translation_unit.target_code_root, # +4
92 f"Running target code for {translation_unit.target_module_path}:{method}", # +13
93 f"bp-run_target-{translation_unit.target_module_path}-{method}", # +12
94)) # +1
95
96 # STEP 2: Run the target code with the test inputs
97
98 ... # Prompt LLM
99

100 ... # Get output format specification from LLM response
101 if fatal_error:
102 # pad branchpoints
103 searchover(branchpoint_git_commit(translation_unit.target_code_root)) # +8
104 return 0.0
105
106 ... # Get target main function code from LLM response
107 if fatal_error:
108 # pad branchpoints
109 searchover(branchpoint_git_commit(translation_unit.target_code_root)) # +8
110 return 0.0
111
112 ... # Parse target main function code
113 if fatal_error:
114 # pad branchpoints
115 searchover(branchpoint_git_commit(translation_unit.target_code_root)) # +8
116 return 0.0
117
118 ... # Extract target main function AST node
119 if fatal_error:
120 # pad branchpoints
121 searchover(branchpoint_git_commit(translation_unit.target_code_root)) # +8
122 return 0.0
123
124 ... # Add target main function to target code
125 ... # Run target code with main function on test inputs
126
127 record_score(base_score + 0.02) # +8
128
129 searchover(branchpoint_git_commit(# +4
130 translation_unit.target_code_root, # +4
131 f"Running source code for {translation_unit.target_module_path}:{method}", # +13
132 f"bp-run_source-{translation_unit.target_module_path}-{method}", # +12
133)) # +1
134
135 # STEP 3: Generate source code main function and run it
136
137 ... # Prompt LLM
138
139 ... # Get source main function code from LLM response
140 if fatal_error:
141 return 0.0
142
143 ... # Parse and extract source main function AST node
144 if fatal_error:
145 return 0.0
146
147 ... # Add target main function to target code
148 ... # Run target code with main function on test inputs
149
150 matches = ...
151 match_fraction = sum(matches) / len(matches)
152
153 return match_fraction
154
155
156 @encompass.compile # +4
157 def translate_class(translation_unit):
158 ... # Some setup (e.g., read and parse code files)
159 methods_to_translate = ...
160 num_methods_to_translate = len(methods_to_translate)
161 translate_success_count = 0
162 pass_tests_count = 0
163 for method in methods_to_translate:
164 searchover(branchpoint_git_commit(# +4
165 translation_unit.target_code_root, # +4
166 f"Begin {translation_unit.source_class_path} translation of {method}.", # +13
167 f"bp-translate-{translation_unit.source_class_path}-{method}", # +12
168)) # +1
169
170 target_code, translate_success = translate_method(method, target_code, source_code, translation_unit)
171 if translate_success:
172 translate_success_count += 1
173 record_score(translate_success_count + pass_tests_count) # +6
174
175 ... # save target code
176
177 if translation_unit.is_test:
178 pass_tests = run_test_module(target_code, translation_unit)
179 pass_tests_count += pass_tests
180 else:
181 pass_tests_count += searchover(run_code_and_compare(# x (-0+2)

48

182 method,
183 target_code,
184 source_code,
185 translation_unit,
186 base_score = translate_success_count + pass_tests_count # +5
187)) # x (-0+1)
188 record_score(translate_success_count + pass_tests_count) # +6
189
190 # Separately test main function (Python `if __name__ == "__main__"` block) if it's present
191 if not translation_unit.is_test and ...:
192 num_components_to_translate += 1
193 translate_success_count += 1
194 pass_tests_count += searchover(run_code_and_compare(# x (-0+2)
195 "main",
196 target_code,
197 source_code,
198 translation_unit,
199 base_score = translate_success_count + pass_tests_count # +5
200)) # x (-0+1)
201 record_score(translate_success_count + pass_tests_count) # +6
202
203 ... # logging and saving progress
204
205 return pass_tests_count, translate_success_count, len(methods_to_translate), new_branch
206
207
208 @encompass.compile # +4
209 def setup_antlr4(source_code_root, target_code_root, temperature):
210 source_subdir = 'src/main/antlr4'
211 num_successful_translations = 0
212 num_successful_parses = 0
213 for root, dirs, files in os.walk(source_code_root / source_subdir):
214 for file in files:
215 ... # Read antlr4 grammar file
216
217 searchover(branchpoint_git_commit(# +4
218 target_code_root, # +2
219 f"Translate antlr4 grammar {source_file_path.stem}", # +10
220 f"bp-translate_antlr4_grammar-{source_file_path.stem}", # +10
221)) # +1
222
223 ... # LLM modification if needed
224
225 ... # Write to target directory
226
227 ... # Run antlr4 to generate target Python classes
228
229 ... # Check if the generated files can be parsed
230
231 record_score(num_successful_translations + num_successful_parses) # +6
232
233 return num_successful_translations + num_successful_parses
234
235
236 @encompass.compile # +4
237 def code_translation_agent(source_code_root, target_code_root, args):
238 ... # Set up logging and git repo for saving progress
239
240 # 0.1. Copy resource files (src/main/resources and src/test/resources)
241 copy_resource_files(source_code_root, target_code_root)
242
243 # 0.2. Set up antlr4 if applicable (src/main/antlr4)
244 total_score = searchover(setup_antlr4(source_code_root, target_code_root, args.temperature)) # x (-0+5)
245
246 # 1. Get class names in topological order
247 translation_units = get_translation_order_and_dependencies(source_code_root, target_code_root)
248
249 for translation_unit in translation_units:
250 searchover(branchpoint_git_commit(# +4
251 target_code_root, # +2
252 f"Begin {translation_unit.source_class_path} translation.", # +10
253 f"bp-translate-{translation_unit.source_class_path}", # +10
254)) # +1
255
256 # 2. Generate stubs for the class
257 generate_stubs_success = generate_stubs(translation_unit)
258
259 total_score += generate_stubs_success # +3
260 record_score(total_score) # +4
261
262 # 3. Translate each class
263 searchover(branchpoint_git_commit(translation_unit.target_code_root, branching=1)) # +12
264 translate_class_results = translate_class(translation_unit).search_multiple("beam", beam_width=2, default_branching

=2) # x (-0+14)
265 (pass_tests_count, translate_success_count, num_methods_to_translate, new_branch), _ = branchpoint_choose(

translate_class_results, branching=len(translate_class_results)) # x (see above)
266
267 # "+1" to prevent agent from "cheating" (have very few e.g. zero stubs to implement)
268 total_score += pass_tests_count / (num_methods_to_translate + 1) # +9
269 record_score(total_score) # +4
270
271 ... # Log results

49

272
273 ... # Final logging and saving
274
275 return final_commit
276
277
278 code_translation_agent(...).search("beam", beam_width=3, default_branching=3) # x (-0+13)

Listing 19: Beam search in ENCOMPASS, 5 branchpoints excluding padding

50

Without ENCOMPASS: Explicitly defining a state machine to support general search not only sig-
nificantly obscures the underlying agent logic, but is also prone to bugs such as KeyError when
accessing the dictionary cur_state that stores all the variables. A lot of newly added code is for
bookkeeping to maintain a persistent state, which is implemented as a dictionary that stores the
variables of the base agent.

1 import uuid # +2
2 import numpy as np # +4
3
4
5 def git_commit(target_code_root, log_str="Branchpoint reached"): # +10
6 repo = Repo(target_code_root) # +6
7 with open(target_code_root / "commit.log", "a") as f: # +16
8 f.write(log_str + '\n') # +9
9 repo.git.add(".") # +6

10 repo.git.commit("-m", log_str) # +10
11 cur_commit = str(repo.head.commit) # +10
12 return cur_commit # +2
13
14
15 def checkout_new_branch(target_code_root, cur_commit, new_branch_name="branch"): # +11
16 repo = Repo(target_code_root) # +6
17 repo.git.checkout(cur_commit) # +8
18 repo.git.switch("-c", f"{new_branch_name}-{uuid.uuid4()}") # +16
19
20
21 def run_code_and_compare_prelude(cur_state, cur_commit, cur_score): # x (-8+6)
22 # Get used variables from `cur_state`
23 method = cur_state["method"] # +6
24 target_code = cur_state["target_code"] # +6
25 source_code = cur_state["source_code"] # +6
26 translation_unit = cur_state["translation_unit"] # +6
27
28 ... # Logging; define some variables
29
30 if method.type == "main":
31
32 test_inputs = None
33
34 # Store new variables to `new_state`
35 new_state = cur_state.copy() # +6
36 new_state["method"] = method # +6
37 new_state["run_code_log_path"] = run_code_log_path # +6
38 new_state["test_inputs"] = test_inputs # +6
39 new_state["dependency_files_str"] = dependency_files_str # +6
40 new_state["fatal_error"] = fatal_error # +6
41
42 if "System.in" in source_code:
43 # git commit
44 commit = git_commit(# +4
45 translation_unit.target_code_root, # +4
46 f"Generate test inputs for and test {translation_unit.target_module_path}:{method}", # +15
47) # +1
48
49 return new_state, run_code_and_compare_gen_test_inputs_existing_main, cur_score, commit # +8
50
51 return run_code_and_compare_run_target_source_codes_existing_main(new_state, cur_score, cur_commit) # +9
52
53 ... # Define some variables
54
55 # Store newly defined variables to `new_state`
56 new_state = cur_state.copy() # +6
57 new_state["method"] = method # +6
58 new_state["run_code_log_path"] = run_code_log_path # +6
59 new_state["num_test_inputs"] = num_test_inputs # +6
60 new_state["target_code_without_main"] = target_code_without_main # +6
61 new_state["target_code_with_dummy_main"] = target_code_with_dummy_main # +6
62 new_state["dependency_files_str"] = dependency_files_str # +6
63 new_state["fatal_error"] = fatal_error # +6
64
65 # git commit
66 commit = git_commit(# +4
67 translation_unit.target_code_root, # +4
68 f"Generate test inputs for {translation_unit.target_module_path}:{method}", # +13
69) # +1
70 return new_state, run_code_and_compare_gen_test_inputs, cur_score, commit # +8
71
72
73 def run_code_and_compare_gen_test_inputs_existing_main(cur_state, cur_commit, cur_score): # +9
74 # Get used variables from `cur_state`
75 method = cur_state["method"] # +6
76 translation_unit = cur_state["translation_unit"] # +6
77 run_code_log_path = cur_state["run_code_log_path"] # +6
78 dependency_files_str = cur_state["dependency_files_str"] # +6
79 fatal_error = cur_state["fatal_error"] # +6
80
81 checkout_new_branch(# +2
82 cur_commit, # +2
83 f"bp-gen_inputs_test_main-{translation_unit.target_module_path}-{method}", # +12
84) # +1

51

85
86 # Prepare for next step
87 new_state = cur_state.copy() # +6
88
89 # Write test input generation script and generate test inputs
90
91 ... # Prompt LLM # <-2
92
93 ... # Get test input format specification from LLM response # <-2
94 if fatal_error: # <-2
95 return new_state, translate_class_postlude_2, cur_score, None # <-2 # x (-3+7)
96
97 ... # Get test input generation script from LLM response # <-2
98 if fatal_error: # <-2
99 return new_state, translate_class_postlude_2, cur_score, None # <-2 # x (-3+7)

100
101 ... # Generate test inputs # <-2
102 if fatal_error: # <-2
103 return new_state, translate_class_postlude_2, cur_score, None # <-2 # x (-3+7)
104
105 # Store newly defined variables to `new_state`
106 new_state["stdin_format"] = stdin_format # +6
107 new_state["gen_inputs_code"] = gen_inputs_code # +6
108 new_state["test_inputs"] = test_inputs # +6
109 new_state["fatal_error"] = fatal_error # +6
110
111 return run_code_and_compare_run_target_source_codes_existing_main(new_state, cur_score, cur_commit) # +9
112
113
114 def run_code_and_compare_run_target_source_codes_existing_main(cur_state, cur_commit, cur_score): # +9
115 # Get used variables from `cur_state`
116 method = cur_state["method"] # +6
117 translation_unit = cur_state["translation_unit"] # +6
118 run_code_log_path = cur_state["run_code_log_path"] # +6
119 dependency_files_str = cur_state["dependency_files_str"] # +6
120 stdin_format = cur_state["stdin_format"] # +6
121 test_inputs = cur_state["test_inputs"] # +6
122 fatal_error = cur_state["fatal_error"] # +6
123
124 # Directly run codes and compare them if tested method is main function
125 ... # <-1
126 match = ... # <-1
127
128 # Store new variables to `new_state`
129 new_state = cur_state.copy() # +6
130 new_state["pass_tests_count"] += float(match) # +9
131
132 # Compute new score; decide next step
133 score = new_state["translate_success_count"] + new_state["pass_tests_count"] # +11
134 return new_state, translate_class_postlude_2, score, None # <-2 # x (-3+7)
135
136
137 def run_code_and_compare_gen_test_inputs(cur_state, cur_commit, cur_score): # +9
138 # Get used variables from `cur_state`
139 method = cur_state["method"] # +6
140 translation_unit = cur_state["translation_unit"] # +6
141 run_code_log_path = cur_state["run_code_log_path"] # +6
142 num_test_inputs = cur_state["num_test_inputs"] # +6
143 target_code_without_main = cur_state["target_code_without_main"] # +6
144 dependency_files_str = cur_state["dependency_files_str"] # +6
145 fatal_error = cur_state["fatal_error"] # +6
146
147 checkout_new_branch(# +2
148 cur_commit, # +2
149 f"bp-gen_inputs-{translation_unit.target_module_path}-{method}", # +12
150) # +1
151
152 # STEP 1: Write test input generation script and generate test inputs
153
154 ... # Prompt LLM
155
156 ... # Get test input format specification from LLM response
157 if fatal_error:
158 commit = git_commit(translation_unit.target_code_root) # +8
159 return cur_state, run_code_and_compare_idle_1, cur_score, commit # x (-3+7)
160
161 ... # Get test input generation script from LLM response
162 if fatal_error:
163 commit = git_commit(translation_unit.target_code_root) # +8
164 return cur_state, run_code_and_compare_idle_1, cur_score, commit # x (-3+7)
165
166 ... # Generate test inputs
167 if fatal_error:
168 commit = git_commit(translation_unit.target_code_root) # +8
169 return cur_state, run_code_and_compare_idle_1, cur_score, commit # x (-3+7)
170
171 # Store newly defined variables to `new_state`
172 new_state = cur_state.copy() # +6
173 new_state["stdin_format"] = stdin_format # +6
174 new_state["gen_inputs_code"] = gen_inputs_code # +6
175 new_state["test_inputs_list"] = test_inputs_list # +6
176 new_state["fatal_error"] = fatal_error # +6

52

177
178 # Compute score and git commit
179 score = new_state["base_score"] + 0.01 # +10
180 commit = git_commit(# +4
181 translation_unit.target_code_root, # +4
182 f"Running target code for {translation_unit.target_module_path}:{method}", # +13
183) # +1
184 return new_state, run_code_and_compare_run_target_code, score, commit # +8
185
186
187 def run_code_and_compare_idle_1(cur_state, cur_commit, cur_score): # +9
188 translation_unit = cur_state["translation_unit"] # +6
189 checkout_new_branch(cur_commit) # +4
190 commit = git_commit(translation_unit.target_code_root) # +8
191 return cur_state, run_code_and_compare_idle_2, cur_score, commit # +8
192
193
194 def run_code_and_compare_run_target_code(cur_state, cur_commit, cur_score): # +9
195 # Get used variables from `cur_state`
196 method = cur_state["method"] # +6
197 translation_unit = cur_state["translation_unit"] # +6
198 run_code_log_path = cur_state["run_code_log_path"] # +6
199 target_code_with_dummy_main = cur_state["target_code_with_dummy_main"] # +6
200 dependency_files_str = cur_state["dependency_files_str"] # +6
201 stdin_format = cur_state["stdin_format"] # +6
202 gen_inputs_code = cur_state["gen_inputs_code"] # +6
203 test_inputs_list = cur_state["test_inputs_list"] # +6
204 fatal_error = cur_state["fatal_error"] # +6
205
206 checkout_new_branch(# +2
207 cur_commit, # +2
208 f"bp-run_target-{translation_unit.target_module_path}-{method}", # +12
209) # +1
210
211 # Run the target code with the test inputs
212
213 ... # Prompt LLM
214
215 ... # Get output format specification from LLM response
216 if fatal_error:
217 commit = git_commit(translation_unit.target_code_root) # +8
218 return cur_state, run_code_and_compare_idle_2, cur_score, commit # x (-3+7)
219
220 ... # Get target main function code from LLM response
221 if fatal_error:
222 commit = git_commit(translation_unit.target_code_root) # +8
223 return cur_state, run_code_and_compare_idle_2, cur_score, commit # x (-3+7)
224
225 ... # Parse target main function code
226 if fatal_error:
227 commit = git_commit(translation_unit.target_code_root) # +8
228 return cur_state, run_code_and_compare_idle_2, cur_score, commit # x (-3+7)
229
230 ... # Extract target main function AST node
231 if fatal_error:
232 commit = git_commit(translation_unit.target_code_root) # +8
233 return cur_state, run_code_and_compare_idle_2, cur_score, commit # x (-3+7)
234
235 ... # Add target main function to target code
236 ... # Run target code with main function on test inputs
237
238 # Store newly defined variables to `new_state`
239 new_state = cur_state.copy() # +6
240 new_state["stdout_format"] = stdout_format # +6
241 new_state["target_code_with_main"] = target_code_with_main # +6
242 new_state["run_target_results"] = run_target_results # +6
243 new_state["fatal_error"] = fatal_error # +6
244
245 # Compute score and git commit
246 score = new_state["base_score"] + 0.02 # +10
247 commit = git_commit(# +4
248 translation_unit.target_code_root, # +4
249 f"Running source code for {translation_unit.target_module_path}:{method}", # +13
250) # +1
251 return new_state, run_code_and_compare_run_source_code, score, commit # +8
252
253
254 def run_code_and_compare_idle_2(cur_state, cur_commit, cur_score): # +9
255 translation_unit = cur_state["translation_unit"] # +6
256 checkout_new_branch(cur_commit) # +4
257
258 # Store new variables to `new_state`
259 new_state = cur_state.copy() # +6
260 new_state["method_idx"] += 1 # +6
261
262 # git commit; decide next step
263 if new_state["method_idx"] == len(new_state["methods_to_translate"]): # +12
264 commit = None # +3
265 next_step = translate_class_postlude_1 # +3
266 else: # +2
267 new_state["method"] = new_state["methods_to_translate"][new_state["method_idx"]] # +13
268 commit = git_commit(# +4

53

269 translation_unit.target_code_root, # +4
270 f"Begin {translation_unit.source_class_path} translation of {new_state["method"]}.", # +15
271) # +1
272 next_step = translate_method_and_save # +3
273 return new_state, next_step, cur_score, commit # +8
274
275
276 def run_code_and_compare_run_source_code(cur_state, cur_commit, cur_score): # +9
277 # Get used variables from `cur_state`
278 method = cur_state["method"] # +6
279 translation_unit = cur_state["translation_unit"] # +6
280 run_code_log_path = cur_state["run_code_log_path"] # +6
281 source_code = cur_state["source_code"] # +6
282 target_code_with_main = cur_state["target_code_with_main"] # +6
283 stdin_format = cur_state["stdin_format"] # +6
284 stdout_format = cur_state["stdout_format"] # +6
285 test_inputs_list = cur_state["test_inputs_list"] # +6
286 fatal_error = cur_state["fatal_error"] # +6
287
288 checkout_new_branch(# +2
289 cur_commit, # +2
290 f"bp-run_source-{translation_unit.target_module_path}-{method}", # +12
291) # +1
292
293 # Prepare for next step
294 new_state = cur_state.copy() # +6
295 new_state["method_idx"] += 1 # +6
296
297 # Generate source code main function and run it
298
299 ... # Prompt LLM
300
301 ... # Get source main function code from LLM response
302 if fatal_error:
303 # git commit; decide next step
304 if new_state["method_idx"] == len(new_state["methods_to_translate"]): # +12
305 commit = None # +3
306 next_step = translate_class_postlude_1 # +3
307 else: # +2
308 new_state["method"] = new_state["methods_to_translate"][new_state["method_idx"]] # +13
309 commit = git_commit(# +4
310 translation_unit.target_code_root, # +4
311 f"Begin {translation_unit.source_class_path} translation of {new_state["method"]}.", # +15
312) # +1
313 next_step = translate_method_and_save # +3
314 return new_state, next_step, cur_score, commit # x (-3+7)
315
316 ... # Parse and extract source main function AST node
317 if fatal_error:
318 # git commit; decide next step
319 if new_state["method_idx"] == len(new_state["methods_to_translate"]): # +12
320 commit = None # +3
321 next_step = translate_class_postlude_1 # +3
322 else: # +2
323 new_state["method"] = new_state["methods_to_translate"][new_state["method_idx"]] # +13
324 commit = git_commit(# +4
325 translation_unit.target_code_root, # +4
326 f"Begin {translation_unit.source_class_path} translation of {new_state["method"]}.", # +15
327) # +1
328 next_step = translate_method_and_save # +3
329 return new_state, next_step, cur_score, commit # x (-3+7)
330
331 ... # Add target main function to target code
332 ... # Run target code with main function on test inputs
333
334 matches = ...
335 match_fraction = sum(matches) / len(matches)
336
337 # Store new variables to `new_state`
338 new_state = cur_state.copy() # +6
339 new_state["pass_tests_count"] += match_fraction # +6
340
341 # Compute new score; git commit; decide next step
342 score = new_state["translate_success_count"] + new_state["pass_tests_count"] # +11
343 if new_state["method_idx"] == len(new_state["methods_to_translate"]): # +12
344 commit = None # +3
345 next_step = translate_class_postlude_1 # +3
346 else: # +2
347 new_state["method"] = new_state["methods_to_translate"][new_state["method_idx"]] # +13
348 commit = git_commit(# +4
349 translation_unit.target_code_root, # +4
350 f"Begin {translation_unit.source_class_path} translation of {new_state["method"]}.", # +15
351) # +1
352 next_step = translate_method_and_save # +3
353 return new_state, next_step, score, commit # x (-1+7)
354
355
356 def translate_class_prelude(cur_state, cur_commit, cur_score): # +9
357 # Get used variables from `cur_state`
358 translation_unit = cur_state["translation_unit"] # +6
359
360 ... # Some setup (e.g., read and parse code files)

54

361 methods_to_translate = ...
362 num_methods_to_translate = len(methods_to_translate)
363 translate_success_count = 0
364 pass_tests_count = 0
365 # for method in methods_to_translate: # -5
366
367 # Store newly defined variables to `new_state`
368 new_state = cur_state.copy() # +6
369 new_state["methods_to_translate"] = methods_to_translate # +6
370 new_state["num_methods_to_translate"] = num_methods_to_translate # +6
371 new_state["translate_success_count"] = translate_success_count # +6
372 new_state["pass_tests_count"] = pass_tests_count # +6
373 new_state["method_idx"] = 0 # +6
374 new_state["method"] = methods_to_translate[0] # +9
375
376 # git commit
377 commit = git_commit(# +4
378 translation_unit.target_code_root, # +4
379 f"Begin {translation_unit.source_class_path} translation of {new_state["method"]}.", # +15
380) # +1
381 return new_state, translate_method_and_save, cur_score, commit # +8
382
383
384 def translate_method_and_save(cur_state, cur_commit, cur_score): # +9
385 # Get used variables from `cur_state`
386 method = cur_state["method"] # +6
387 translation_unit = cur_state["translation_unit"] # +6
388 source_code = cur_state["source_code"] # +6
389 target_code = cur_state["target_code"] # +6
390 translate_success_count = cur_state["translate_success_count"] # +6
391 pass_tests_count = cur_state["pass_tests_count"] # +6
392
393 checkout_new_branch(# +2
394 cur_commit, # +2
395 f"bp-translate-{translation_unit.source_class_path}-{method}", # +12
396) # +1
397
398 new_state = cur_state.copy() # +6
399
400 target_code, translate_success = translate_method(method, target_code, source_code, translation_unit) # <-1
401 if translate_success: # <-1
402 translate_success_count += 1 # <-1
403 score = translate_success_count + pass_tests_count # +5
404
405 ... # save target code # <-1
406
407 if translation_unit.is_test: # <-1
408 pass_tests_count += run_test_module(target_code, translation_unit) # <-1
409 else: # <-1
410 # pass_tests_count += run_code_and_compare(# -4
411 # method, # -2
412 # target_code, # -2
413 # source_code, # -2
414 # translation_unit, # -2
415 #) # -1
416
417 # Store newly defined variables to `new_state`
418 new_state["base_score"] = translate_success_count + pass_tests_count # +8
419
420 return run_code_and_compare_prelude(new_state, cur_score, cur_commit) # +9
421
422 # Store new variables to `new_state`
423 new_state["method_idx"] += 1 # +6
424
425 # git commit; decide next step
426 if new_state["method_idx"] == len(new_state["methods_to_translate"]): # +12
427 commit = None # +3
428 next_step = translate_class_postlude_1 # +3
429 else: # +2
430 new_state["method"] = new_state["methods_to_translate"][new_state["method_idx"]] # +13
431 commit = git_commit(# +4
432 translation_unit.target_code_root, # +4
433 f"Begin {translation_unit.source_class_path} translation of {new_state["method"]}.", # +15
434) # +1
435 next_step = translate_method_and_save # +3
436 return new_state, next_step, cur_score, commit # +8
437
438
439 def translate_class_postlude_1(cur_state, cur_commit, cur_score): # +9
440 # Get used variables from `cur_state`
441 translation_unit = cur_state["translation_unit"] # +6
442 target_code = cur_state["target_code"] # +6
443 translate_success_count = cur_state["translate_success_count"] # +6
444 pass_tests_count = cur_state["pass_tests_count"] # +6
445 num_methods_to_translate = cur_state["num_methods_to_translate"] # +6
446
447 new_state = state.copy() # +6
448
449 # Separately test main function (Python `if __name__ == "__main__"` block) if it's present
450 if not translation_unit.is_test and ...:
451 num_methods_to_translate += 1
452 translate_success_count += 1

55

453
454 # Store newly defined variables to `new_state`
455 new_state["num_methods_to_translate"] = num_methods_to_translate # +6
456 new_state["translate_success_count"] = translate_success_count # +6
457 new_state["method"] = "main" # +8
458 new_state["base_score"] = translate_success_count + pass_tests_count # +8
459
460 return run_code_and_compare_prelude(new_state, cur_score, cur_commit) # +9
461
462 return translate_class_postlude_2(new_state, cur_commit, cur_score) # +9
463
464
465 def translate_class_postlude_2(cur_state, cur_commit, cur_score): # +9
466 # Get used variables from `cur_state`
467 translation_unit = cur_state["translation_unit"] # +6
468 translate_success_count = cur_state["translate_success_count"] # +6
469 pass_tests_count = cur_state["pass_tests_count"] # +6
470 num_methods_to_translate = cur_state["num_methods_to_translate"] # +6
471
472 ... # logging and saving progress
473
474 return_value = (pass_tests_count, translate_success_count, num_methods_to_translate, new_branch) # x (see below)
475 return return_value, None, cur_score, None # x (-0+11)
476
477
478 def translate_class(translation_unit, beam_width, branching): # x (-0+4)
479 # Use beam search to translate a class method-by-method
480
481 init_state = {"translation_unit": translation_unit} # +7
482 init_step = translate_class_prelude # +3
483 init_commit = None # +3
484 init_score = 0.0 # +5
485
486 beam = [init_step(init_state, init_commit, init_score)] # +11
487 results = [] # +3
488 while len(beam) > 0: # +8
489 new_program_states_list = [] # +3
490 for state, step, score, commit in beam: # +11
491 new_program_states = [step(state, commit, score) for _ in range(branching)] # +18
492 new_program_states.sort(key=lambda x: x[2], reverse=True) # +17
493 new_program_states_list.append(new_program_states) # +6
494 not_done_new_program_states = [] # +3
495 for i in range(len(new_program_states_list[0])): # +11
496 # random permutation of indices to break ties
497 for j in np.random.permutation(len(new_program_states_list)): # +13
498 new_program_state = new_program_states_list[j][i] # +8
499 new_state, new_step, new_score, new_commit = new_program_state # +9
500 if new_step is None: # +5
501 results.append((new_state, new_score)) # +8
502 else: # +2
503 not_done_new_program_states.append(new_program_state) # +6
504 not_done_new_program_states.sort(# +4
505 key=lambda program_state: program_state.score, reverse=True # +12
506) # +1
507 beam = not_done_new_program_states[:beam_width] # +6
508 return results # +2
509
510
511 def setup_antlr4_prelude(cur_state, cur_commit, cur_score): # x (-6+6)
512 # Get used variables from `cur_state`
513 source_code_root = cur_state["source_code_root"] # +6
514
515 new_state = cur_state.copy() # +6
516
517 source_subdir = 'src/main/antlr4'
518 new_state["num_successful_translations"] = 0 # +3
519 new_state["num_successful_parses"] = 0 # +3
520 new_state["root_dirs_files_list"] = list(os.walk(source_code_root / source_subdir)) # x (-8+8)
521 # for file in files: # -5
522
523 new_state["root_dirs_files_idx"] = 0 # +6
524 new_state["file_idx"] = 0 # +6
525
526 root, dirs, files = new_state["root_dirs_files_list"][new_state["root_dirs_files_idx"]] # +14
527 file = files[new_state["file_idx"]] # +8
528
529 ... # Read antlr4 grammar file # <-2
530
531 # Store newly defined variables to `new_state`
532 new_state["source_file_path"] = source_file_path # +6
533 new_state["grammar_content"] = grammar_content # +6
534
535 # git commit
536 commit = git_commit(# +4
537 target_code_root, # +2
538 f"Translate antlr4 grammar {source_file_path.stem}", # +10
539) # +1
540
541 return new_state, setup_antlr4_body, cur_score, commit # +8
542
543
544 def setup_antlr4_body(cur_state, cur_commit, cur_score): # +9

56

545 # Get used variables from `cur_state`
546 source_code_root = cur_state["source_code_root"] # +6
547 target_code_root = cur_state["target_code_root"] # +6
548 temperature = cur_state["temperature"] # +6
549 num_successful_translations = cur_state["num_successful_translations"] # +6
550 num_successful_parses = cur_state["num_successful_parses"] # +6
551 root, dirs, files = cur_state["root_dirs_files_list"][cur_state["root_dirs_files_idx"]] # +14
552 file = files[cur_state["file_idx"]] # +8
553 source_file_path = cur_state["source_file_path"] # +6
554 grammar_content = cur_state["grammar_content"] # +6
555
556 checkout_new_branch(# +2
557 cur_commit, # +2
558 f"bp-translate_antlr4_grammar-{source_file_path.stem}", # +10
559) # +1
560
561 ... # LLM modification if needed # <-2
562
563 ... # Write to target directory # <-2
564
565 ... # Run antlr4 to generate target Python classes # <-2
566
567 ... # Check if the generated files can be parsed # <-2
568
569 cur_score = num_successful_translations + num_successful_parses # +5
570
571 new_state = cur_state.copy() # +6
572
573 # Increment to next loop iteration
574 new_state["root_dirs_files_idx"] += 1 # +6
575 new_state["file_idx"] += 1 # +6
576 if new_state["file_idx"] == len(files): # +10
577 # Inner for loop completed -- increment outer for loop index
578 new_state["root_dirs_files_idx"] += 1 # +6
579 new_state["file_idx"] = 0 # +6
580 if new_state["root_dirs_files_idx"] == len(new_state["root_dirs_files_list"]): # +12
581 # Outer for loop completed -- return to code repo translation agent
582 new_state["total_score"] = num_successful_translations + num_successful_parses # x (see below)
583 return code_translation_agent_prelude_2(new_state, cur_commit, cur_score) # x (-0+13)
584
585 root, dirs, files = new_state["root_dirs_files_list"][new_state["root_dirs_files_idx"]] # +14
586 file = files[new_state["file_idx"]] # +8
587
588 ... # Read antlr4 grammar file # <-2
589
590 # Store newly defined variables to `new_state`
591 new_state["source_file_path"] = source_file_path # +6
592 new_state["grammar_content"] = grammar_content # +6
593
594 # git commit
595 commit = git_commit(# +4
596 target_code_root, # +2
597 f"Translate antlr4 grammar {source_file_path.stem}", # +10
598) # +1
599
600 return new_state, setup_antlr4_body, cur_score, commit # +8
601
602
603 def code_translation_agent_prelude_1(cur_state, cur_commit, cur_score): # +9
604 # Get used variables from `cur_state`
605 source_code_root = cur_state["source_code_root"] # +6
606 target_code_root = cur_state["target_code_root"] # +6
607
608 ... # Set up logging and git repo for saving progress
609
610 # 0.1. Copy resource files (src/main/resources and src/test/resources)
611 copy_resource_files(source_code_root, target_code_root)
612
613 # Store newly defined variables to `new_state`
614 new_state = cur_state.copy() # +6
615 new_state["repo"] = repo # +6
616 new_state["results"] = results # +6
617 new_state["temperature"] = cur_state["args"].temperature # +10
618
619 return setup_antlr4_prelude(new_state, cur_commit, cur_score)
620
621
622 def code_translation_agent_prelude_2(cur_state, cur_commit, cur_score): # +9
623 # Get used variables from `cur_state`
624 source_code_root = cur_state["source_code_root"] # +6
625 target_code_root = cur_state["target_code_root"] # +6
626
627 # Get class names in topological order
628 translation_units = get_translation_order_and_dependencies(source_code_root, target_code_root)
629
630 # Store newly defined variables to `new_state`
631 new_state = cur_state.copy() # +6
632 new_state["translation_units"] = translation_units # +6
633 new_state["translation_unit_idx"] = 0 # +6
634
635 # git commit
636 translation_unit = new_state["translation_units"][new_state["translation_unit_idx"]] # +10

57

637 commit = git_commit(# +4
638 translation_unit.target_code_root, # +4
639 f"Begin {translation_unit.source_class_path} translation.", # +10
640) # +1
641 return new_state, code_translation_agent_generate_stubs, cur_score, commit # +8
642
643
644 def code_translation_agent_generate_stubs(cur_state, cur_commit, cur_score): # +9
645 # Get used variables from `cur_state`
646 translation_unit = cur_state["translation_units"][cur_state["translation_unit_idx"]] # +10
647 total_score = cur_state["total_score"] # +6
648
649 checkout_new_branch(# +2
650 cur_commit, # +2
651 f"bp-translate-{translation_unit.source_class_path}", # +10
652) # +1
653
654 # Generate stubs for the class
655 generate_stubs_success = generate_stubs(translation_unit) # <-1
656
657 total_score += generate_stubs_success # +3
658
659 # Store newly defined variables to `new_state`
660 new_state = cur_state.copy() # +6
661 new_state["generate_stubs_success"] = generate_stubs_success # +6
662 new_state["total_score"] = total_score # +6
663
664 # git commit
665 commit = git_commit(translation_unit.target_code_root) # +8
666 return new_state, CodeTranslationAgentTranslateClass(2, 2), total_score, commit # +12
667
668
669 class CodeTranslationAgentTranslateClass: # +3
670 def __init__(self, beam_width, branching): # +9
671 self.beam_width = beam_width # +5
672 self.branching = branching # +5
673
674 self.called = False # +5
675
676 def __call__(self, cur_state, cur_commit, cur_score): # +11
677 # Get used variables from `cur_state`
678 target_code_root = cur_state["target_code_root"] # +6
679 translation_unit = cur_state["translation_unit"] # +6
680 total_score = cur_state["total_score"] # +6
681 generate_stubs_success = cur_state["generate_stubs_success"] # +6
682
683 if not self.called: # +6
684 checkout_new_branch(cur_commit) # +4
685
686 self.translate_class_results = translate_class(translation_unit, beam_width=self.beam_width, default_branching=

self.branching) # x (-0+20)
687 self.output_idx = 0 # +5
688 self.called = True # +5
689
690 (pass_tests_count, translate_success_count, num_methods_to_translate, new_branch), _ = self.translate_class_results[

self.output_idx] # x (see above)
691
692 # "+1" to prevent agent from "cheating" (have very few e.g. zero stubs to implement)
693 total_score += pass_tests_count / (num_methods_to_translate + 1) # +9
694
695 ... # Log results
696
697 # Increment result_idx
698 self.output_idx += 1 # +5
699
700 # Store new variables to `new_state`
701 new_state = cur_state.copy() # +6
702 new_state["total_score"] = total_score # +6
703 new_state["results"] = results # +6
704 # for translation_unit in translation_units: # -5
705 new_state["translation_unit_idx"] += 1 # +6
706
707 # git commit; decide next step
708 if new_state["translation_unit_idx"] == len(new_state["translation_units"]): # +12
709 commit = None # +3
710 next_step = code_translation_agent_postlude # +3
711 else: # +2
712 new_translation_unit = new_state["translation_units"][new_state["translation_unit_idx"]] # +10
713 commit = git_commit(# +4
714 translation_unit.target_code_root, # +4
715 f"Begin {new_translation_unit.source_class_path} translation.", # +10
716) # +1
717 next_step = code_translation_agent_generate_stubs # +3
718 return new_state, next_step, total_score, commit # +8
719
720
721 def code_translation_agent_postlude(cur_state, cur_commit, cur_score): # +9
722 # Use beam search to translate a repository
723 target_code_root = cur_state["target_code_root"] # +6
724 repo = cur_state["repo"] # +6
725
726 ... # Final logging and saving

58

727
728 return_value = final_commit # x (see below)
729 return return_value, None, cur_score, None # x (-0+8)
730
731
732 def code_translation_agent(source_code_root, target_code_root, args, beam_width, default_branching): # x (-0+4)
733 # Use beam search to translate a class method-by-method
734
735 init_state = { # +3
736 "source_code_root": source_code_root, # +5
737 "target_code_root": target_code_root, # +5
738 "args": args, # +5
739 } # +1
740 init_step = code_translation_agent_prelude_1 # +3
741 init_commit = None # +3
742 init_score = 0.0 # +5
743
744 beam = [init_step(init_state, init_commit, init_score)] # +11
745 results = [] # +3
746 while len(beam) > 0: # +8
747 new_program_states_list = [] # +3
748 for state, step, score, commit in beam: # +11
749 branching = default_branching if not isinstance(step, CodeTranslationAgentTranslateClass) else step.branching *

step.beam_width # +19
750 new_program_states = [step(state, commit, score) for _ in range(branching)] # +18
751 new_program_states.sort(key=lambda x: x[2], reverse=True) # +17
752 new_program_states_list.append(new_program_states) # +6
753 not_done_new_program_states = [] # +3
754 for i in range(len(new_program_states_list[0])): # +11
755 # random permutation of indices to break ties
756 for j in np.random.permutation(len(new_program_states_list)): # +13
757 new_program_state = new_program_states_list[j][i] # +8
758 new_state, new_step, new_score, new_commit = new_program_state # +9
759 if new_step is None: # +5
760 results.append((new_state, new_score)) # +8
761 else: # +2
762 not_done_new_program_states.append(new_program_state) # +6
763 not_done_new_program_states.sort(# +4
764 key=lambda program_state: program_state.score, reverse=True # +12
765) # +1
766 beam = not_done_new_program_states[:beam_width] # +6
767 return max(results, key=lambda x: x[2])[0] # +16
768
769
770 code_translation_agent(..., beam_width=3, default_branching=3) # x (-0+8)

Listing 20: Beam search implemented in plain Python

59

D.2 Case Study 2: Hypothesis Search Agent

Base agent:

1 def two_step_agent(task_info):
2 # Step 1: Get natural language hypothesis
3 ...
4 hypothesis = hypothesis_agent([task_info], hypothesis_instruction)
5

6 # Step 2: Implement the hypothesis in code
7 ...
8 code = solver_agent([task_info, hypothesis], solver_instruction)
9 return get_test_output(code)

10

11

12 two_step_agent(task_info)

Listing 21: Simple 2-step agent for ARC (base)

60

With ENCOMPASS:

1 import encompass # +2
2

3

4 @encompass.compile # +4
5 def two_step_agent(task_info):
6 branchpoint() # +2
7 # Step 1: Get natural language hypothesis
8 ...
9 hypothesis = hypothesis_agent([task_info], hypothesis_instruction)

10

11 branchpoint() # +2
12 # Step 2: Implement the hypothesis in code
13 ...
14 code = solver_agent([task_info, hypothesis], solver_instruction)
15

16 # Evaluate
17 percent_correct = run_validation(code) # +6
18 record_score(percent_correct) # +4
19 if percent_correct == 1: # +5
20 early_stop_search() # +2
21

22 return get_test_output(code)
23

24

25 two_step_agent(task_info).search("parallel_bfs", default_branching=8) # x (-0+9)

Listing 22: Parallelized BFS in ENCOMPASS, 2 branchpoints

61

Without ENCOMPASS: The code devoted to parallelization obscures the underlying agent logic.

1 from concurrent.futures import ThreadPoolExecutor, as_completed # +8
2

3

4 def two_step_agent(task_info, branching): # x (-0+2)
5 results = [] # +3
6 full_solved = False # +3
7

8 with ThreadPoolExecutor() as executor: # +6
9

10 def run_one_forward_pass(): # +3
11 if full_solved: # +3
12 return # +1
13 # Step 1: Get natural language hypothesis
14 ... # ->2
15 hypothesis = hypothesis_agent([task_info], hypothesis_instruction) #

->2
16

17 def implement_in_code(): # +3
18 nonlocal full_solved # +2
19

20 if full_solved: # +3
21 return # +1
22

23 # Step 2: Implement the hypothesis in code
24 ... # ->3
25 code = solver_agent([task_info, hypothesis], solver_instruction) #

->3
26

27 # Evaluate
28 percent_correct = run_validation(code) # +6
29 if percent_correct == 1: # +5
30 full_solved = True # +3
31 results.append((get_test_output(code), percent_correct)) # x (-1+7)
32

33 futures = [executor.submit(implement_in_code) for _ in range(branching)]
+16

34 for future in as_completed(futures): # +7
35 future.result() # +4
36

37 futures = [executor.submit(run_one_forward_pass) for _ in range(branching)]
+16

38 for future in as_completed(futures): # +7
39 future.result() # +4
40

41 return max(results, key=lambda x: x[1])[0] # +16
42

43

44 two_step_agent(task_info, branching=8) # x (-0+4)

Listing 23: Parallelized BFS implemented in plain Python

62

D.3 Case Study 3: Reflexion Agent

Base agent:

1 def reflexion_agent(task_info, internal_tests, max_iters):
2 # first attempt
3 code = solver_agent(task_info)
4 percent_correct, feedback = run_validation(code, internal_tests)
5

6 # if solved, exit early
7 if percent_correct == 1.0:
8 return code
9

10 for cur_iter in range(1, max_iters):
11 # self-reflect and apply to next attempt
12 reflection = self_reflection_agent(code, feedback)
13 code = solver_agent(task_info, code, feedback, reflection)
14 percent_correct, feedback = run_validation(code, internal_tests)
15

16 # if solved, exit early
17 if percent_correct == 1.0:
18 return code
19

20 return code
21

22

23 reflexion_agent(...)

Listing 24: Reflexion agent (base)

63

With ENCOMPASS:

1 import encompass # +2
2

3

4 @encompass.compile # +4
5 def reflexion_agent(task_info, internal_tests, max_iters):
6 record_score(0.2) # +6
7 branchpoint() # +2
8 # first attempt
9 code = solver_agent(task_info)

10 percent_correct, feedback = run_validation(code, internal_tests)
11 record_score(percent_correct) # +4
12 optional_return(code) # +4
13

14 # if solved, exit early
15 if percent_correct == 1.0:
16 early_stop_search() # x (-2+2)
17

18 for cur_iter in range(1, max_iters):
19 branchpoint() # +2
20 # self-reflect and apply to next attempt
21 reflection = self_reflection_agent(code, feedback)
22 code = solver_agent(task_info, code, feedback, reflection)
23 percent_correct, feedback = run_validation(code, internal_tests)
24 record_score(percent_correct) # +4
25 optional_return(code) # +4
26

27 # if solved, exit early
28 if percent_correct == 1.0:
29 early_stop_search() # x (-2+2)
30

31 return code
32

33

34 reflexion_agent(...).search("reexpand_best_first", max_num_results=5) # x (-0+9)

Listing 25: Reexpand best-first search in ENCOMPASS, 2 branchpoints

64

Without ENCOMPASS: Defining separate actions for search obscures the ordering of actions.

1 from queue import PriorityQueue # +4
2

3

4 def get_initial_attempt(task_info, internal_tests, max_iters): # +9
5 # first attempt
6 code = solver_agent(task_info)
7 percent_correct, feedback = run_validation(code, internal_tests)
8

9 # if solved, exit early
10 if percent_correct == 1.0:
11 early_stop = True # x (-2+3)
12

13 next_step = do_one_reflexion # +3
14 return next_step, early_stop, percent_correct, code, feedback, 1 # +12
15

16

17 def do_one_reflexion(task_info, internal_tests, max_iters, code, feedback, cur_idx):
+15

18 # self-reflect and apply to next attempt
19 reflection = self_reflection_agent(code, feedback) # <-1
20 code = solver_agent(task_info, code, feedback, reflection) # <-1
21 percent_correct, feedback = run_validation(code, internal_tests) # <-1
22

23 # if solved, exit early
24 if percent_correct == 1.0: # <-1
25 early_stop = True # <-1 # x (-2+3)
26

27 next_idx = cur_idx + 1 # x (-8+4)
28 next_step = None if next_idx == max_iters else do_one_reflexion # +9
29 return next_step, early_stop, percent_correct, code, feedback, next_idx # +12
30

31

32 # Apply best-first search choosing the highest-scoring state
33 # to apply an action
34 def reflexion_agent(task_info, internal_tests, max_iters, max_num_results): # x

(-0+2)
35 init_program_state = () # +3
36 init_step = get_initial_attempt # +3
37 program_states_to_expand = PriorityQueue() # +4
38 program_states_to_expand.put((init_step, init_program_state)) # +8
39 percent_correct = None # +3
40 finished = False # +3
41 num_results = 0 # +3
42 results = [] # +3
43 while not program_states_to_expand.empty() and not finished: # +10
44 step, program_state = program_states_to_expand.pop() # +8
45 program_states_to_expand.put(program_state) # put it back # +6
46 next_step, early_stop, percent_correct, code, feedback, next_idx = step(

task_info, internal_tests, max_iters, *program_state) # +23
47 results.append((code, percent_correct)) # +8
48 if early_stop: # +3
49 break # +1
50 if next_step is not None: # +6
51 program_states_to_expand.put((next_step, (code, feedback, next_idx))) #

+13
52 num_results += 1 # +3
53 if num_results >= max_num_results: # +5
54 break # +1
55 return max(results, key=lambda x: x[1])[0] # x (-1+15)
56

57

58 reflexion_agent(..., max_num_results=5) # x (-0+4)

Listing 26: Reexpand best-first search implemented in plain Python

65

	Introduction
	EnCompass, a Python framework for PAN
	Probabilistic angelic nondeterminism (PAN)
	EnCompass

	Agent inference-time strategies in EnCompass
	Best-of-N sampling and beam search
	Refinement and backtracking with memory
	Self-consistency and group evaluation

	Case studies
	Case Study 1: Code Repository Translation Agent

	Related work
	Limitations
	Conclusion
	Additional case studies
	Case Study 2: Hypothesis Search Agent
	Case Study 3: Reflexion Agent

	Documentation of EnCompass
	EnCompass primitives
	Compiled search space interface
	Checkpoint object interface
	Search interface and search algorithms

	The EnCompass compiler
	CPS for branchpoints
	Tail-call optimization
	Other keywords

	Code comparisons for case studies: base agent vs. EnCompass agent vs. equivalent plain Python implementation
	Case Study 1: Code Repository Translation Agent
	Case Study 2: Hypothesis Search Agent
	Case Study 3: Reflexion Agent

