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Abstract

Understanding hand-object pose with computer vision opens the door to new
applications in mixed reality, assisted living or human-robot interaction. Most
methods are trained and evaluated on balanced datasets. This is of limited use in
real-world applications; how do these methods perform in the wild on unknown
objects? We propose a novel benchmark for object group distribution shifts in
hand and object pose regression. We then test the hypothesis that meta-learning a
baseline pose regression neural network can adapt to these shifts and generalize
better to unknown objects. Our results show measurable improvements over the
baseline, depending on the amount of prior knowledge. For the task of joint hand-
object pose regression, we observe optimization interference for the meta-learner.
To address this issue and improve the method further, we provide a comprehensive
analysis which should serve as a basis for future work on this benchmark.

1 Introduction

Joint hand-object pose regression methods – and hand pose regression in object grasping – are not
commonly benchmarked for in-the-wild data or a wide variety of object grasps [15]. They aim to
generalize to unseen poses on the same objects by learning from a large collection of diverse poses
and grasps [5, 9, 10]. This may be due to the cost of annotating 3D pose and the limited availability
of 3D scanned objects, which encourages researchers to reuse objects’ meshes. In addition, synthetic
datasets of realistic object grasps are hard to produce and lead to domain adaptation challenges.
However, such models have limited use if they are only accurate for a limited set of objects.

To accurately predict the pose of a hand occluded by an object, a deep learning model must learn
prior knowledge of various grasps of diverse objects. Neural networks are usually trained to keep
a balance between generalization and specialization as their knowledge is frozen when deployed.
However, temporarily learning at test time would allow them to specialize their parameters for a
specific object grasp while remaining generalisable by forgetting this specialized knowledge. Test-
time adaptation (TTA) methods demonstrate improvements in regression accuracy for distribution
shifts and in-the-wild data in other domains, such as human pose estimation [12], gaze estimation
[20], mesh reconstruction [19] and video object segmentation [25]. We propose to achieve this on
the grasp prediction problem with a meta-learning algorithm, where the goal is to quickly learn
new tasks from a few examples at test time [1, 17, 24]. We then evaluate this method on a novel
benchmark for group distribution shifts in hand-object pose regression for object grasping. How
does the performance of a CNN pose predictor evolve as the test set grasps diverge from the training
set? We answer this question and look at the advantages and limitations of meta-learning for this
application via experiments and empirical analysis.
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Contributions In this work, we: (a) reformulate grasp prediction in the context of multi-task
learning such that meta-learning can be applied, (b) propose a new benchmark for object group
shifts in hand grasp regression based on the DexYCB dataset [5], and (c) prove that meta-learning
is effective at tackling group distribution shifts for hand grasp regression.We also find an increase
in accuracy for unknown objects from 6 training objects upwards. We compare the relative error of
the meta-learning with a baseline on our benchmark and provide a comprehensive analysis of the
limitations of the method.

2 A benchmark for object group shifts in hand grasp regression

In this section, we explain the task set creation process which is necessary so that meta-learning can
be applied to the grasp prediction problem.

Task set creation To cast pose prediction as a multi-task problem and apply meta-learning, we
must create a dataset of tasks from a dataset of samples. For such a task set, we require that:

• Each task is composed of a support set of K randomly sampled images corresponding to
one manipulation sequence of an object by one subject, and a query set of Q distinct random
samples from the said sequence.

• A series of Ω-objects-left-out splits is used, where Ω is the number of objects absent in the
training split and placed in the test split. Thus, all images associated with Ω+min(5, Ω2 +(Ω
mod 2)) objects are removed from the training split: the samples associated with 5 or fewer
objects are used for validation while the ones for other Ω objects are used for testing. This
ensures that there is no overlap between the training, validation and test splits.

• For all values of Ω, the objects are randomly sampled with a fixed random seed for repro-
ducibility across experiments.

We use the DexYCB dataset to create our task set and run our experiments, although the procedure is
applicable to any object manipulation dataset (see the survey of [15] for an overview of hand-object
pose datasets). Along with a similarity study of object grasps from this dataset, we provide more
implementation details as well as visual examples of tasks in Appendix A, and the code on GitHub 1.

3 Evaluating the effectiveness of meta-learning

In this section, we describe our experimental framework used to assess the hypothesis that TTA of a
pose prediction model through meta-learning improves the generalization of unknown objects. We
give an introduction to optimization-based meta-learning in Appendix B.

3.1 Experimental framework

Figure 1: An overview of the meta-learning system. – The outer block optimizes the inner block’s parameters
by back-propagating the second-order gradients of the meta-loss. This cost function is the cumulative loss of the
inner block on all N tasks, computed with the adapted parameters ψS obtained after S optimization steps and
with the same initial parameters θt.

1https://github.com/DubiousCactus/meta-learning-HOPE
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To evaluate the effectiveness of meta-learning at tackling object group shifts and dealing with highly
imbalanced dataset splits, we apply ANIL [21] with the improvements of MAML++ [2] to a ResNet18
[13] baseline. As seen in Fig. 1, our framework consists of an outer block (ANIL) and an inner block
(ResNet18).

Outer block The outer block trains the inner block to learn good parameters that are amenable
to fast adaptation with few gradient descent steps and examples. It is based on MAML and is a
re-implementation of ANIL [21] which brings performance improvements to the former by only
adapting the head of the network and learning a common feature extractor for all tasks. We further
implement some of the improvements proposed by [2], such as the Multi-Step Loss and Derivative-
Order Annealing. Furthermore, to deal with the meta-overfitting phenomenon that arises from the
non-mutual-exclusiveness of our regression tasks, we implement the regularization method of [26].
We use the learn2learn [3] library to facilitate the implementation and minimize mistakes.

Inner block For the inner block, the baseline pose regression neural network, we use the same
backbone for both experiments: ResNet18 [13] pre-trained on ImageNet [23]. The choice of a shallow
ResNet architecture is motivated by the speed of training and low memory footprint for meta-learning.
It allows a fair comparison without being impacted by the limitations of meta-learning methods
regarding more complex architectures. Combining these more complex and efficient architectures
with meta-learning should be the focus of future work. For a fair comparison, the baseline is trained
with weight decay regularization to minimize overfitting.

For the baseline, we use a batch size of 64 and a learning rate α = 10−3 for 100 epochs. For the
meta-learner, we use a meta-batch size of 8 and found learning rates α = 10−5 and β = 10−2

via hyper-parameter search using Weights & Biases [4], with 300 epochs. For both methods, we
normalize the inputs according to ImageNet’s statistics and align the ground-truth poses to the root
of the hand. Using wrist-aligned pose labels greatly improves the convergence of both methods,
and the absolute position in 3D space is not in the scope of this work. For the meta-learner, we use
K = 10 for the support set, Q = 50 for the query set, and 15 adaptation steps. This implies that
during evaluation, there are K × ( T

K+Q ) samples – with T being the size of the test split – virtually
removed from the test split, which is a slight disadvantage for the baseline. It is acceptable because
the goal is to measure error changes relative to various test splits. In fact, the pose prediction error
of the meta-learner is roughly 1.5× that of the baseline for both experiments. When evaluating the
meta-learner, we average all metrics over 5 runs to account for the run-time stochasticity coming
from the support and query sets sampling. For all experiments, we normalize the error against each
model’s performance on the easiest setting (5 test objects) to compare the relative error changes.

With this framework, we design two experiments: (1) we evaluate the relative error of the 3D hand
pose regression for manipulation samples of unknown objects, (2) we reiterate on the joint hand-
object pose regression by incorporating the object bounding cuboid coordinates in the targets, as in
[7, 14, 18].

3.2 Results

Experiment 1: hand pose only Fig. 2a shows the meta-learner’s ability to deal with object group
shifts on a macro scale. The size of the training set decreases inversely and in proportion to the size
of the test set, thus the error is expected to go up for the baseline as the test set grows. The error of
both models rises steeply from 8 objects in the test set, where the gap starts to widen, but less steeply
for the meta-learner. It corresponds to 8 training objects as well (with 4 for validation); a more or less
balanced dataset. By fitting a linear regression model on both curves, we prove that the difference in
the two slopes is statistically significant with a p-value of 0.0031.

We look at the micro scale by freezing the training split for 3 levels of prior knowledge, and
progressively adding objects to the test split; the results are shown in Fig. 3. Both methods are trained
and evaluated on 3 train/test splits; the average curve is shown for the 3 sizes. The meta-learner and
the baseline behave identically in Fig. 3a since the training set is too small for the meta-learner to
collect sufficient prior knowledge for adaptation: 3 training objects are not sufficient prior knowledge.
As the training set size and variability grow for Fig. 3b, the meta-learner reduces the error significantly
better than the baseline: 6 objects are enough prior knowledge. However, with 9 training objects in
Fig. 3c, both curves have a similar horizontal slope and a variance roughly a third of that of Fig. 3a.
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Figure 2: Relative Mean Per-Joint Pose Error (RMPJPE) & Mean Per-Corner Pose Error (RMPCPE) as
functions of the imbalance level – All curves are aligned to the origin to show the relative changes and compare
the generalisability of both methods. The more objects are in the test set, the more deprived the training set (see
Tab. 1 in Appendix A); the dashed line shows the equilibrium between the two. Both experiments are plotted in
Fig. 2a since they both regress the hand pose, while only experiment 2 predicts the object pose and is plotted in
Fig. 2b on its own. The meta-learner is overall better at handling object class imbalance, and thus generalisability
to unknown grasps. However, this behaviour is not seen for the prediction of the object corners coordinates.

In short, the baseline and the meta-learner generalize equally well. For this case, the improvement of
the meta-learner may nonetheless be revealed with more test objects if available. The findings are
different than in Fig. 2a since the models are here compared in terms of accuracy for a given training
set size, and not their ability to deal with dataset imbalance.

Experiment 2: joint hand-object pose Analogously to the previous experiment, Fig. 2a shows a
mild improvement in the hand pose regression for the meta-learner when trained for the task of joint
hand-object pose regression. This improvement however is lesser than for the first experiment, as
reflected by the smaller gap between the two curves and a p-value of 0.3186. The null hypothesis
cannot be rejected: the meta-learner shows no significant improvement in generalization. Fig. 2b
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confirms this phenomenon and shows even worse results than the baseline. We tried increasing the
network’s capacity but obtained similar results with underfitting. Therefore we can hypothesize
that this joint regression causes interference in the adaptation to both tasks, and this problem would
have to be processed separately in future work. In Sec. 4.1, we run more experiments to assess the
hypotheses made on the meta-learner in an attempt to explain the results.

4 Empirical analysis and conclusions

Takeaways From these experiments, we can conclude three things: (1) for hand grasp prediction,
the meta-learner is better able to deal with dataset imbalance than the baseline, as shown in Fig. 2a
this is especially true when using less than 8 training objects (or more than 8 test objects), (2) the
meta-learner improves the accuracy with enough training data (i.e. 6 objects) on unknown objects,
and (3) this method is ineffective for joint hand-object pose regression, and is even worse than the
baseline for object pose prediction (see Fig. 2b). This weakness is investigated in the following
section.

4.1 Empirical analysis

Hypothesis 1: the model learns specialized object-specific parameters ANIL and the like learn
prior knowledge of related tasks during training so that they can adapt to specialized parameters for a
novel task with few optimization steps [16]. But does it translate to learning object- or grasp-specific
parameters in the proposed framework? To verify this, we plotted the t-SNE embeddings of the
network’s head parameters post adaptation (see Appendix C.1). We would expect to find clusters
of tasks for the same manipulated object but none appeared. It reveals that the parameters do not
specialize to a specific grasp or object after adaptation, thus refuting this hypothesis. This may well
be due to the non-mutual exclusiveness of tasks incurring memorization overfitting [22], for which
the regulariser of [26] did not help. In future work, the problem should be properly formulated in the
meta-objective to encourage specialization.

Hypothesis 2: Using Oriented Bounding Box (OBB) coordinates in the training signal constrains
the hand-object pose In experiment 2, we rely on this hypothesis and make the conjecture that
OBBs differ enough to lead away from the initialization in the loss landscape. In truth, Fig. 2b shows
that it limits the adaptation for the hand pose and leads to worse generalization than the baseline for
the object pose. [8] define the shape as "all the geometrical information that remains when location,
scale and rotational effects are filtered out from an object". Therefore we can consider that most
OBBs have almost identical shapes, except for unusually thin or wide objects such as large marker or
pitcher base. We postulate that due to this, the adaptation phase should produce small gradients for
the object keypoints and thus the hand keypoint regression should not be severely impacted. However,
we observed a 2 − 3× increase in gradient norms from experiment 1 to 2 (see Appendix C.2 for
more details). We hypothesize that this is due to the complex hand-object relationship which is not
expressed in the meta-objective, causing interference in the meta-optimization landscape. In future
work, these constraints should be explicitly defined in the objective, or the two problems decoupled.

Conclusions. Our results show measurable improvements over the baseline, where it reduces the
error rise with less than 8 training objects. On the other hand, it can generalize better than the baseline
from 6 training objects. For the task of joint hand-object pose regression, the meta-learner’s ability
to deal with object group shifts is dampened and is worse than the baseline for the object pose. In
our empirical analysis, we show that this may be due to interference in the optimization. We further
propose solutions to address this issue and to encourage the model to learn object-specific parameters
during adaptation. This should in turn improve the effectiveness of this method.
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A Task set creation

Table 1: Image samples per split as the number of unseen objects grows in the test split – As the test set size
increases for each added object, the training set size decreases proportionally. We cap the validation objects so
as to maximise the number of dataset versions.

# objects in test split 5 6 7 8 9 10 11 12 13

Training 242, 704 221, 688 183, 104 163, 608 117, 824 98, 704 80, 072 58, 016 42, 288
Validation 60, 248 62, 552 79, 232 82, 240 105, 040 101, 744 99, 952 100, 896 99, 072
Test 100, 960 119, 672 141, 576 158, 064 181, 048 203, 464 223, 888 245, 000 262, 552

In order to assess the generalisation of a grasp prediction model to unseen objects, we need a dataset
of 2D images of the largest amount of manipulated objects with full 3D hand joint annotations, as
well as 6D object pose. The review of [15] provides an extensive list of available datasets, but their
limited amount of objects was the main factor in choosing the unlisted and recently released DexYCB
[5]. We began the experiment with the HO-3Dv3 dataset [10, 11] which contains 10 different objects.
This limitation hindered the experimental results, as more objects are needed to have enough training,
validation and testing object categories, since they cannot overlap in each split. We further used the
DexYCB after realising that the results were not conclusive. It contains 582, 000 annotated frames
with 10 subjects and 21 objects, of which the large clamp is not annotated and therefore removed.
We discard all frames where the hand is not in contact with the object, such that at least two fingertips
are within the object bounding box. That oriented cuboid is computed using Trimesh [6] on the
associated object mesh, before applying transforms. Tab. 1 shows the final size of each split for every
variant of the dataset, and Fig. 4 shows examples of tasks built from DexYCB.

With the DexYCB dataset, there are approximately 20K samples per object with 100 manipulation
sequences each, providing the across-task diversity required for the training of neural networks and
minimise overfitting. Meta-learning shows its power over standard gradient descent optimisation
in the presence of across-task diversity, such that each task is an objective requiring specialisation.
We analyse the diversity of object-specific grasps using the Generalised Procrustes Analysis and the
Procrustes distance to compare mean hand shape similarity. It is defined as the sum of the squared
vertex distances:

d =

N∑
i

[(xi1 − xi2)
2 + (yi1 − yi2)

2 + (zi1 − zi2)
2] (1)

for two 3D shapes with N matching vertices. The heat map of hand poses similarity in Tab. 2 shows
relatively few light cells, hence most grasps are similar to each other. This is partly because subjects
may grasp the same object in various and unusual ways, thus resulting in an uninformative mean
hand shape. Due to this, we construct tasks from individual manipulation sequences such that there is
only one grasp per task, as described in Sec. 2.
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Figure 4: Example of tasks built from the DexYCB dataset. – T1 and T2 are two tasks composed of a support
set of 3 training images, and a query set of 5 test images for 3-shot learning. T1 is the manipulation of a drill,
while T2 is the grasping of scissors. The tasks contain several viewpoints but only one subject and intent of use
in their support and query sets.

Table 2: Distance heat map of mean hand shapes – Heat map of Procrustes distances of mean hand shapes
obtained via Generalised Procrustes Analysis; similarity ranges from yellow to red (best seen in colour). The
Large marker induces the most different grasps in the dataset, while all box-shaped objects induce similar grasps
(as seen by the more uniform upper left square). Note that all objects have several grasps associated with them,
which vary depending on the intent of use of the subject.
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B Optimisation-based meta-learning

A task is defined as Ti = {pi(x), pi(y|x),Li} and comprises a distribution of samples pi(x), a
distribution of ground-truth labels pi(y|x) and a loss function Li. By targeting similar tasks, a model
can make use of the shared structure in the data across tasks for a meta-learning approach. This
allows the model to learn a generic – or across-task – prior, while having the plasticity required to
adjust its parameters for task-specific knowledge.

Meta-learning is often presented in the context of few-shot learning (also known as K-shot learning),
where the goal is to optimise a new objective from a few examples, referred to as the context set.
During training, the meta-learner optimises the learner on various objectives from their context set
(of K ≤ 10 samples typically) and evaluates its performance on a validation set of Q unseen samples
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called the query set. The model’s performance on the tasks aggregate of the latter is a measure of its
ability to learn quickly.

In a single-task supervised learning context, we consider a single dataset D = {(x,y)K} of pairs of
images and labels. The optimisation problem is thus to minimise the loss over the entire dataset to
find the optimal model parameters θ as:

min
θ

L(θ,D), (2)

where L is the Mean Squared Error for regression tasks. It is minimised such that the update rule at
each optimisation step is given by

θt+1 = θt − αt∇fθt (3)

with a static or adaptive learning rate α for each step t and the optimised function f parameterised by
θt at a step t. The most characteristic aspect of the meta-learning approach is that the update rule is
instead learnt end-to-end, such that the parameter update can be reformulated, as defined by [1], to

θt+1 = θt + gt(∇fθt , ϕ) (4)

where g is the learnt optimiser parameterised by ϕ and f is the optimisee.

Typically, an optimisation-based meta-learning system is composed of an outer block called the
optimiser, which learns the update rule of the base learner, and of an inner block called the optimisee,
which is the base learner that directly learns the task. The optimisee is thus optimised by the optimiser
block to rapidly learn novel tasks. A general definition of the optimisation problem for meta-learning
is given as

min
θ

N∑
i=1

Li(θ,Di) (5)

for N tasks where each task is a small dataset Di. For MAML and other optimisation-based meta-
learning algorithms, this meta-objective becomes

min
θ

N∑
Ti∼p(T )

LTi
(fψ) =

N∑
Ti∼p(T )

LTi
(fθ−α∇θLTi

(fθ)) (6)

for N tasks sampled from p(T ), with post-adaptation parameters ψ. As for the update rule, it is
defined as such:

θt+1 = θt − β∇θt

N∑
Ti∼p(T )

fθt−α∇θtLTi
(fθt )

. (7)

In most cases, the learnt optimiser is only effective during training. However, some algorithms
propose to learn per-layer and/or per-step learning rates for SGD as the learnable optimiser, and use
them at test-time during the adaptation phase [2].

C Empirical analysis

In this section, we run extra experiments on the trained models to support the analysis of the
hypotheses made in Sec. 4.1.

C.1 Visualisation of the specialised networks’ parameters

We plotted the t-SNE embeddings of all parameters of the network’s head, after adaptation on the
context set, in Fig. 5. The absence of clusters reveals that no object-specific information is encoded in
the parameters during adaptation. In Fig. 6, the weights alone of each layer of the network’s head are
embedded, and the biases in Fig. 7. Only the biases of the final layer seem to reveal some structure
after adaptation, although it is unknown what this corresponds to.
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Figure 5: Visualisation of the specialised parameters for experiment 2 – The fully-connected layers parame-
ters, after adaptation on the context set, are embedded with t-SNE and labelled by object. This is done for each
sampled task of the largest test set (13 objects, 3814 tasks). The absence of clusters indicates that the specialised
parameters do not encode object-specific information on the hand-object pose.

Table 3: Average gradient norm per adaptation step: exp. 1 vs exp. – Entries follow an exp1/exp2 format,
with larger values in bold.

Step Tomato soup can Banana Scissors Foam brick Mug

1 204/394 231/638 270/677 195/380 236/505
2 193/360 219/576 255/613 185/338 225/458
3 182/330 207/522 242/557 176/302 214/416
4 173/303 197/475 229/509 167/273 205/381
5 164/280 187/435 217/467 159/248 195/349
6 155/259 178/401 207/430 152/227 187/322
7 148/241 169/371 197/398 145/209 179/298
8 141/225 161/344 188/369 139/194 172/277
9 134/210 153/321 180/344 133/181 165/259

10 128/198 146/301 172/322 127/169 159/243

C.2 Interpretation of the gradients norm during adaptation

We here provide evidence to assess the hypothesis that the adaptation phase produces smaller gradients
for the object keypoints than for the hand keypoints. In Sec. 4.1, we make this postulate to conclude
that the hand keypoint regression task should not be severely impacted.

In Tab. 3 we show the norm of the gradients during the adaptation phase. For both experiments,
on the same randomly sampled test objects, the gradient norms of the first 10 adaptation steps are
averaged over batches of the same task. Both models were trained on the same 6 objects. Experiment
2 has consistently much larger gradients, meaning that jointly regressing the hand and object poses
requires deviating further away from the initialisation during adaptation. This could reflect a poor
initialisation of meta-parameters.
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(a) Weights of first layer: experiment 1 – Hand pose
only.

(b) Weights of second layer: experiment 1 – Hand
pose only.

(c) Weights of first layer: experiment 2 – Joint hand-
object pose.

(d) Weights of second layer: experiment 2 – Joint
hand-object pose.

Figure 6: Visualisation of weights per layer – The t-SNE embeddings of the adapted weights of each layer, for
both experiments, show no signs of separate clusters for the 13 different objects. This means that they mostly
encode the same information regarding the hand or joint hand-object pose for all objects.
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(a) Biases of first layer: experiment 1 – Hand pose
only.

(b) Biases of second layer: experiment 1 – Hand pose
only.

(c) Biases of first layer: experiment 2 – Joint hand-
object pose.

(d) Biases of second layer: experiment 2 – Joint hand-
object pose.

Figure 7: Visualisation of biases per layer – The t-SNE embeddings of the adapted biases of each layer, for
both experiments, show that no structure is present in the first layer, while they appear to be clustered in some
way for the last layer, the final 3D regression layer. However, those clusters do not coincide with the objects
themselves, therefore the biases of the last layer may encode information specific to other aspects of the image
features.
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