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Abstract

Data augmentation is commonly used in train-
ing in low-resource scenarios. However, there
are sometimes large discrepancy between dis-
tributions of augmented data and target data.
How to bridge the gap between the augmented
and target data, especially when target data is
harder-to-learn? In this paper, we study im-
proved data augmentation strategies in the sce-
nario of scientific slides text summarization,
where we generate a textual summary based
on texts of presentation slides. Since slides are
messy and difficult to understand by current
models, we introduce an easier form of data,
i.e., articles in natural language. The basic
idea is that we generate the transition data be-
tween slides and articles, and all three of them
form a curriculum for neural models to learn
the distribution transition from article data to
slides data. We find that our approach achieves
consistent improvements over different back-
bone summarization models. The curriculum-
oriented data augmentation method can gener-
ate data that fill the gap between the easy-to-
obtain data and the low-resource task data. We
show that curriculum learning and data aug-
mentation can be combined to help NLP mod-
els learn from otherwise hard-to-learn data. !

1 Introduction

Nowadays, presentation slides have become one
of the main materials for disseminating ideas and
thoughts in conferences, lectures or events. Simi-
lar to other formats of documents such as articles,
presentation slides grow rapidly in volume. The
difficulty for readers to exhaustively go through all
contents for so many slides calls for the automatic
summarization of such documents. With textual
summaries for presentation slides, readers can eas-
ily find ones they are interested in and then dive
into details.

Most existing works focus on summarizing arti-
cles for large-scale datasets, e.g., CNN/Daily Mail
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Figure 1: Difference between slides summarization and
the corresponding article summarization.

(Hermann et al., 2015), XSum (Narayan et al.,
2018) and PubMed/ArXiv (Cohan et al., 2018),
leaving the summarization of slides an unsolved
puzzle. Traditional extractive text summarization
methods (Mihalcea and Tarau, 2004; Zhang et al.,
2018; Liu, 2019). do not trivially apply to noisy
and broken text as slides, as seen in Figure 1. On
the other hand, abstractive methods are developed
to generate summaries for given text (Rush et al.,
2015; See et al., 2017; Gehrmann et al., 2018).
In recent years, summarization with large-scale
pre-trained language models (PLMs) (Devlin et al.,
2019; Raffel et al., 2020; Lewis et al., 2020; Zhang
et al., 2020) has become the dominant paradigm,
due to their excellent ability in language model-
ing. However, slides differ greatly from regular
text these models are pre-trained or fine-tuned on,
leaving the potential of the PLMs not fully realized.

To fill in the blank, we propose the task of slides
summarization in this work. There are two major
challenges in this task: limited resource and noisy
input. Summarizing slides is a low-resource task
by nature, because we can not utilize any section



of the slides as summaries directly for building
large-scale datasets. In contrast, article summariza-
tion often uses the first paragraph or abstract of an
article as ground-truth summary. Moreover, the
rich multi-modal information (i.e., textual, visual
and layout information (Xu et al., 2020b, 2021))
in the source documents (i.e., presentation slides)
are difficult to be utilized for current summariza-
tion techniques. When parsed into text, the source
documents are much more noisy and ill-formatted
than articles, posing great challenges for language
models to understand in a low-resource setting.

Instead of focusing on designing summarization
models, we tackle this task from the perspective
of data augmentation. The intuition is that lan-
guage models can learn better representations of
unfamiliar slides if they start with something fa-
miliar, i.e., articles in natural language. We are
motivated by the idea of curriculum learning (CL)
(Bengio et al., 2009), where models benefit from
starting small and gradually increasing the learning
difficulty when training with limited data samples
(Wang et al., 2021; Wu et al., 2020). In this sense,
the accompanying articles facilitate the learning of
the model by providing connections between what
it knows well (natural language) and what it does
not (noisy slides).

In this paper, we propose the LESSON frame-
work for Low-rEsource Slides SummarizatiON
with curriculum data augmentation. Different from
traditional CL (Bengio et al., 2009; Liu et al., 2018;
Platanios et al., 2019), we do not discover curricu-
lum data within training data. Instead, we build
extra curriculum data from the accompanying ar-
ticles of slides. To bridge the gap between data
distributions of articles and slides, we enrich the
curriculum by generating in-between data samples,
yielding a sequence of data samples to language
models in an increasing order of difficulty. We
adopt a simple generative model to realize the tran-
sition from articles to slides, which is controlled by
a balancing weight in training objectives. Like CL,
our method focuses on optimizing training and thus
does not need such corresponding articles for slides
in the test time. In this sense, LESSON is practi-
cal, because we do not usually have corresponding
articles for test-time slides.

In summary, the contributions of this paper in-
clude: /) We are the first to propose the slides
summarization problem, and tackle low-resource
scientific slides summarization as a concrete task;

2) We propose LESSON framework for this task,
a training strategy with curriculum data augmen-
tation, in order to learn a robust model for slides
summarization; 3) We conduct extensive experi-
ments to verify and understand the effectiveness of
the LESSON framework.

2 Related Work

Data Augmentation In NLP, the goals of data
augmentation include increasing training data size
(Fadaee et al., 2017), achieving regularizing ef-
fects (Herndndez-Garcia and Konig, 2020; Fabbri
et al., 2021), and diversifying data (Lu et al., 2020;
Kumar et al., 2019). Common data augmentation
approaches include rule-based methods, interpo-
lation methods and model-based methods (Feng
et al., 2021). Rule-based approaches utilize a set
of pre-defined rules to transform existing data and
create new samples (Wei and Zou, 2019). Inter-
polation approaches construct a continuous hid-
den space for text and interpolate new data from
that hidden space (Chen et al., 2020; Cheng et al.,
2020). Model-based approaches either leverage a
pre-trained language model (Anaby-Tavor et al.,
2020; Yang et al., 2020) or train an auxiliary model
based on existing training data (Kumar et al., 2019),
and then use the model to generate new samples.

Curriculum Learning Curriculum learning
(Bengio et al., 2009) is a learning strategy that
mimics the human learning process. Theoretically,
curriculum can be regarded as an optimization
strategy (Bengio et al., 2009) for non-convex
training criteria. Starting from easier samples, the
model can learn a smoother training objective,
and approximate local minima that have better
generalization ability towards the global minima
(Wang et al., 2021). Previous empirical results
have demonstrated the strengths of curriculum
learning in a wide range of NLP tasks, such as
question answering (Liu et al., 2018), natural
language understanding (Xu et al., 2020a),
machine translation (Platanios et al., 2019), and
text classification (Wei et al., 2021). These works
have testified to curriculum learning’s ability to
learn from noisier data (Wu et al., 2020), reduce
training time (Wu et al., 2020; Platanios et al.,
2019), and gain performance improvements over
randomized training (Liu et al., 2018; Platanios
et al., 2019; Xu et al., 2020a).



Curriculum Data Augmentation Previously,
Wei et al. (2021) explore curriculum data augmen-
tation in a few-shot setting. They use rule-based
approaches (Wei and Zou, 2019) to augment the
original dataset through controlled noising, i.e., cre-
ating noisier and more difficult data for curriculum
learning. In contrast, we employ curriculum learn-
ing to make the optimization process smoother and
improve the model’s performance on the hard data.
Both of our studies represent a new approach in
curriculum learning: instead of discovering curricu-
lum from existing data, we artificially create data
of different difficulty levels.

Abstractive Summarization The goal of ab-
stractive summarization is to generate concise and
precise summary text for documents. Traditionally,
such methods mostly applies sequence-to-sequence
encoder-decoder architectures (Rush et al., 2015;
See et al., 2017; Gehrmann et al., 2018; You et al.,
2019). In recent years, pre-trained transformer-
based (Vaswani et al., 2017) language models have
achieves remarkable success on a wide range of
NLP tasks (Radford et al., 2019; Devlin et al., 2019;
Liu et al., 2019b; Raffel et al., 2020; Lewis et al.,
2020). Many approaches using pre-trained lan-
guage models have achieved state-of-the-art results
on abstractive summarization tasks (Liu and Lap-
ata, 2019; Rothe et al., 2020; Zhang et al., 2020;
Beltagy et al., 2020). Most summarization studies
work on text summarization, and some focus on
summarizing from noisier input such as meeting
transcripts and dialogues (Liu et al., 2019a; Zhao
et al., 2019; Liu et al., 2019c; Zhu et al., 2020).
In this work, we directly use parsed text as the in-
put due to the difficulty in slides structure parsing.
Thus, our input is even noisier with structured in-
formation mixed in plain text. As our proposed
LESSON is model-agnostic, we leave the handling
of slides structures and layouts to future work.

3 Proposed Approach

In this section, we detail the slides summariza-
tion task and the proposed LESSON method,
a curriculum-based data augmentation training
framework for slides summarization.

3.1 Task Formulation

Let X'° denote slides text and ) denote summary
text, and we have D = (X, ))) for a slides sum-
marization dataset. We hypothesize that slides data
are harder to learn compared with normal article
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Figure 2: Comparison of (a) Direct summarization, in-
put X' slides, output )) summary and (b) Data augmen-
tation with X4 article and (c) LESSON. The acquisition
of transition data X4~ is shown.

data, given limited parsing techniques and language
models that are easier to process natural language.

Inspired by previous studies on curriculum learn-
ing, which demonstrate that learning from easier
samples helps a model to learn harder samples, we
introduce paralleled article data X as augmenta-
tion, denoted as D4 = (X“4,)). Thus we have
paralleled data triples (X5, X4, ). Since the dis-
tribution of the parallel articles is greatly different
from target slides data, we further generate transi-
tion data to bridge the distributional discrepancy
between them, which is denoted as X% and thus
DA—S — (.)C'AHS, y)

Finally, we set up a multi-stage (X4
X®) curriculum learning strategy to learn from eas-
ier samples to harder ones during training. Hence,
the model is able to deal with slides data directly
during inference.

XA—>S

3.2 Transition Data Generation

We approximate the transition between slides data
X° and article data X4, in the form of text gen-
eration, where we train a transition model P4_,g
by fine-tuning a BART (Lewis et al., 2020), a pre-
trained sequence-to-sequence model.

In order to control the transition process, we
design a hyper-parameter schedule weight « in the
training objective £ 4,5, which is defined as

Lass=als+(1—a)la (1)

where Lg is the cross entropy loss for article-to-
slides generation, and L 4 is the cross entropy loss



for article-to-article generation, which is basically
input reconstruction. Note that a larger o empiri-
cally steers the generated text towards the distribu-
tion of slides, and vice versa.

After training the article-to-slides model, we
use it for generating intermediate transition
data X479 = P,,g(X4 a). The gener-
ated data is then compiled to form a transition
data pair DA (X475Y), reaching the
full augmented dataset with quadruples: D =
(XS, XA, XA—>S7y).

3.3 Curriculum Learning

Finally, we employ curriculum learning strategy to
train models on the augmented dataset .

Curriculum learning strategies usually include
two components: the difficulty measurer and the
curriculum scheduler. The difficulty measurer eval-
uates the difficulty level of the training samples. In
this work, we employ a pre-defined approach to
difficulty measurement that slides data are harder
to learn compared with article data in natural text.
Specifically, we treat D4, D45, and DS as dis-
crete training buckets that are trained during differ-
ent curriculum stages. Note that the curriculum is
fully extendable, as we can generate more stages
of transition data DA~ by tuning the schedule
weight a.

During each of the stages, the model takes as
input X* and is optimized with a simple text sum-
marization objective for summaries ). To auto-
matically regulate curriculum stages, we observe
the development set ROUGE score during training
and move to the next curriculum stage when the
score converges. In this way, the model starts with
the easiest article data, then switch to the transi-
tion data, and finally learns the target slides data.
During inference, the model is enhanced with the
knowledge to understand noisy data and does not
require the help of parallel article data, which may
be hard to collect during test time.

4 Experimental Setup
4.1 Datasets

We use two slides summarization datasets for ex-
periments, where one is an existing dataset with
few adaptations and the other is collected ourselves.
Statistics of these datasets are reported in Table 1,
where they are randomly split into training, de-
velopment, and test set at the ratio of 7:1:2. One
major difference between them is the noisiness of

Dataset  Split #Inst. Src.Len. Tgt. Len.
Train 191 697 138
s3 Dev 26 817 145
Test 55 663 132
Train 306 2,878 298
NoisyS®  Dev 44 2,388 202
Test 87 2,444 319

Table 1: Statistics of the datasets. “# Inst.” denotes the
number of instances in the splits. “Src. Len.” and “Tgt.
Len.” denote the average token number of parsed slides
text (source) and summary text (target) respectively.

the parsed slides text, due to different slides parsing
techniques. Empirically, noisier slides text as input
makes it harder for models to generate summaries.
We describe the details of these datasets as follows.

The Existing Dataset: S® We use the pub-
lic SCIDUET-ACL dataset released by Sun et al.
(2021), which is a dataset for generating presen-
tation slides from scientific papers.” Based on
SCIDUET-ACL, we construct the dataset of slides
summarization by keeping the abstract of a paper
as the summary for the corresponding slides, re-
ferred to as S® (Scientific Slides Summarization).
We keep only the slides text parsed by Sun et al.
(2021) and discard the figures and tables in the
slides, which are identified by OpenCV (Bradski,
2000).

The Collected Dataset: NOISYS®  We also col-
lect a relatively larger-scale dataset from scratch.
We crawl from the ACL anthology and scholars’
home pages for pairs of slides and scientific papers
and get 137 and 300 instances respectively. Since
most of the slides are in PDF format, we transform
all slides into PDF and use pymupdf to parse slides
text.> In other words, we do not exclude figures
and tables, thus the parsed text is much noisier than
one in S? due to mixed numbers and text snippets.

4.2 Metrics & Baselines

Since the output of our task is a resemblance to the
mainstream text summarization tasks, we evaluate
the generated summaries with the commonly-used
ROUGE-1/2/L (Lin, 2004), which calculates the
n-gram overlap of generated and reference text.
There was no previous work for slides sum-
marization, so we adopt several widely used

The authors of SCIDUET only release the ACL portion of
the dataset due to copyright issues.
3https://github.com/pymupdf/PyMuPDF



The S® Dataset The NOISYS?® Dataset

Model
R-1 R-2 R-L R-1 R-2 R-L
Transformer 3.50 0.01 342 2.00 0.00 2.00
" BERT2BERT =~ 2287 455 1359 2144 361 213
+ LESSON 24.97(+9.18%)  4.55(+0.00%)  13.79(+1.47%) 24.14(+12.59%) 4.07(+12.74%)  12.80(+5.52%)

" SciB2SciB - 2489 410 1294 2122 350 11.56
+ LESSON 26.62(+6.95%) 4.97(+21.22%) 12.91(-0.23%) 23.78(+12.06%) 4.25(+21.43%) 12.14(+5.02%)
"BART 3665 946 2025 30.05 ¢ 672 16.68
+ LESSON 38.55(+5.18%) 10.30(+8.88%) 21.19(+4.64%) 34.21(+13.84%) 8.48(+26.19%) 18.27(+9.53%)

" BART-ArXiv 3746 964 2077 3218 746 1719
+ LESSON 38.92(+3.90%) 10.30(+6.85%) 21.56(+3.80%) 35.88(+11.50%) 9.61(+28.82%) 19.02(+10.65%)

Table 2: Main summarization results of baselines with LESSON in two datasets. LESSON shows consistent perfor-

mance improvements over baseline models.

abstractive text summarization models as base-
lines, where we prioritize on the Transformer-
based generative language models pre-trained on
large corpus.* These models follow the domi-
nant encoder-decoder architecture for sequence-to-
sequence (Seq2Seq) generation. Note that LESSON
is open to the choices of the backbone summariza-
tion model.

Transformer (Vaswani et al., 2017) is the classic
attention-based Seq2Seq model, which serves as a
non-pre-trained baseline for this task.

BERT2BERT (Rothe et al., 2020) leverages pre-
trained checkpoints, such as BERT (Devlin et al.,
2019), to initialize both encoder and decoder,
where the only variables initialized randomly is the
encoder-decoder attention. In addition, we also use
SciBERT (Beltagy et al., 2019) as the pre-trained
checkpoint for in-domain scientific text.

BART (base version) (Lewis et al., 2020) is a
transformer-based PLM for Seq2Seq generation,
pre-trained with a set of self-supervised sequence
denoising tasks. BART has shown its effectiveness
on a variety of text generation tasks, which makes
it our primary backbone model for LESSON in the
experiments.

BART-ArXiv We also study the effect of trans-
fer learning from article summarization to slides
summarization, since these two tasks are in a sim-
ilar domain but the former is much more high-
resourced than the latter. To this end, we finetune
a BART (base version) with article summarization

“Note that we do not incorporate some summarization
models such as T5 (Raffel et al., 2020) and PEGASUS (Zhang
et al., 2020) as baselines because part of the summary data in
S is leaked in the C4 dataset upon which these models are
pre-trained.

objective on ArXiv dataset (Cohan et al., 2018),
which consists of 215,913 scientific papers.’

4.3 Implementation Details

We use pre-trained checkpoints provided by Hug-
gingFace (Wolf et al., 2019) in our experiments.

For transition data X4—° generation, we fine-
tune a BART model for 3 epochs on the training set.
We set the maximum generation length to 1024,
the maximum length for BART. We use Adam
(Kingma and Ba, 2015) as the optimizer for all
of our models and set the learning rate to 5 x 1075,

For scheduling LESSON training, we train our
models for 20 epochs in each curriculum stage and
select the checkpoint with the highest development
set ROUGE score to enter the next stage.

Each model has a different maximum input token
length configuration. Since our input data is usually
longer than most of the models’ maximum possi-
ble input length, we set each of them to the max
possible length. The max input token lengths for
BERT- and BART- models are set to 512, 1024. For
summary generation, we set the minimum length
to 50 tokens and maximum to 400 tokens. We also
set the number of beams to 4 and length penalty to
2.0.

5 Results & Analysis

5.1 Main Results

We report the main results of slides summarization
in Table 2. In general, we observe a consistent
performance boost with LESSON across different
base models, including out-of-the-box pre-trained
language models (BERT2BERT, BART), models
pre-trained on in-domain texts (SCIB2SCIB), and

SWe ensure there is no data leakage in the ArXiv dataset.



Dataset Ablation R-1 R-2 R-L
BART 36.65 9.46  20.25

+ x4 36.84 937  19.98

s? + XA X475 3588 824 19.13

+ X4 +CL 3725 9.65 20.73

+ LESSON 3855 1030 21.19

BART 3005 672 16.68

+ x4 3283 725 17.35

NoisYS® 4+ x4 x4A=S 3028 665 1641
+ X4 +CL 3393 742 17.53

+ LESSON 3421 848 1827

Table 3: Ablation study on different components of
LESSON using BART as the base model, including ar-
ticle data X4, transition data X4~%, and curriculum
learning strategy CL. If “+ CL” is not indicated, the
data is trained in random order. “+ LESSON” is equiv-
alent to “+ X4, X4~ 4+ CL”. A leap in performance
emerges when data augmentation and curriculum learn-
ing are combined.

pre-trained models finetuned on downstream in-
domain summarization task (BART-ArXiv). The
ROUGE-2 boosts are the greatest in most cases, up
to 28.82% for BART-ArXiv.

When we compare LESSON-BART with BART-
ArXiv, we find that a base model with LESSON
outperforms the base model with transfer learning
on much larger in-domain data. It shows that in
cases where abundant in-domain texts are not avail-
able, LESSON can still achieve similar performance
under the low-resource constraint.

We also observe bigger performance improve-
ments on the NOISYS? dataset. This corroborates
LESSON’s ability to learn noisy and difficult data
better through curriculum learning.

Ablation Study We perform an ablation study
on different components of LESSON with BART,
the results are presented in Table 3. We observe that
there is little effect when we use data augmentation
without curriculum learning (“+X“” and “+ X4,
XA=5 ). However, if we use the curriculum to
strategically order the training of the augmented
data, we can take full advantage of X and X475,
This provides strong evidence for our assumption
that combining data augmentation and curriculum
learning leads to better performance on hard-to-
learn data.

5.2 Analysis

In this section, we analyze the curriculum data aug-
mentation in LESSON to figure out two research
questions: Does the augmented data form a cur-
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Figure 3: t-SNE visualization of the SciBERT embed-
dings of articles, transition data and slides text in order
to show the distribution shift within curriculum. t-SNE
is computed individually for each sub-figure. There-
fore, the same data distribution in different sub-figures
are slightly different. The transition data is controlled
by the schedule weight a.. Best viewed in color.

riculum? Does curriculum learning work for slides
summarization? ¢

Data Visualization Theoretically, CL helps the
model learn from the easy distribution (articles)
to the hard distribution (slides). For an empiri-
cal understanding of the distribution shift between
them, we visualize the SciBERT embedding (Belt-
agy et al., 2019) of articles, slides, and in-between
transition data in the curriculum as seen in Figure
3. The ideal transition data bridges the distribution
gap between the slides data and the article data.
Our qualitative evaluation concludes that Figure
3(b) (X &4;0%) shows the most desirable case, where
the generated transition data lies in the middle of
the article and slides data. For other configurations

®For the rest of the experiments, we run LESSON with
BART (base) by default.
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Figure 4: Results of LESSON-BART using transi-
tion data generated from different schedule weight a.
The result indicates that XA yields the best perfor-

(0%
mance, which is consistent with our qualitative evalua-

tion that X33 makes up the smoothest transition be-
tween the article data and the slides data.

of «, the transition data does not make as good
a distributional shift between the article and the
slides data.

Then, we verify how X475 generated with dif-
ferent « affects the curriculum. The results are
presented in Figure 4, which we find is consistent
with the pattern we find in Figure 3. The transition
data X223 achieve the best result because it forms
the smoothest distributional shift between the arti-
cle data X and the slides data Y. Other transition
data, especially Xof‘:_{%, performs poorly because
the transitions are not smooth, which would lead to

a harder optimization process.

Multi-Staged Curriculum We extend the cur-
riculum to multiple stages. In particular, we in-
clude {X 279}, as X475 The results are shown
in Table 4. We organize stage order based on Equa-
tion 1. Hence, X223 is closest to the article data
and X435 is closest to the slides data.

On the S? dataset, the single-stage curriculum
learning strategy proves to be the best, and we ob-
serve performance decrease when we add more
stages to training. This is because, as shown pre-
viously in Figure 3, the transition data for o €
{0.25,0.75,1.00} do not make up a smooth dis-
tributional shift between the article data and the
target slides data. The learning process would be

complicated by these noisy transition data.

Curriculum Schedules To study the effects of
curriculum learning, we schedule the curriculum
learning in three settings: 1) regular curricu-

{x22251, Setting R1 R2 RL
i = 0.50 (LESSON baseline) 38.55 10.30 21.19
i €{0.25,0.50} 3576 687 18.01
i € {0.25,0.50,0.75} 3173 5.00 14.95
i €{0.25,0.50,0.75,1.00}  29.94 399 15.06

Table 4: Results of LESSON-BART with multiple cur-
riculum stages for different values of o on S3. Increas-
ing curriculum stages leads to performance drop, as the
transition data for o € {0.25,0.75,1.00} do not make
up a smooth distributional shift between the article data
and the target slides data.

Dataset Schedule R-1 R-2 R-L
CL 38.55 10.30 21.19

s3 Anti-CL  36.06 10.03 19.58
Rand-CL 3588 824 19.13

CL 3421 8.48 18.27

NoisyS?®  Anti-CL  32.03 7.16 17.23
Rand-CL  30.28 6.65 1641

Table 5: Results of LESSON-BART trained with differ-
ent curriculum schedules. Anti-CL refers to the inverse
training order (first X%, then X475, and last X'4).
Curriculum learning shows better results than Anti-CL
and random training schedule.

lum (CL) as described in Section 3.3; 2) auti-
curriculum (Anti-CL) where we reverse the train-
ing order of the curriculum; and 3) random curricu-
lum (Rand-CL) where we shuffle all data during
training. As seen in Table 5, we observe LESSON
trained with regular CL achieves the best result
whereas LESSON with random CL has the lowest
scores, which is consistent with the findings of Wu
et al. (2020). The results also demonstrate the dif-
ficulty order of slides, transition data, and articles,
which is consistent with our intuition and findings
mentioned above.

5.3 Case Study

We examine the generation results from a baseline
BART model and BART equipped with LESSON
on the NOISYS? test set and compare them with
the reference abstract and the input slides. We can
identify some key observations in the results, as
demonstrated in Table 6. Due to the difficulty of
the input slides, the BART baseline model is un-
able to generate meaningful summarization. On
the other hand, as we expected, the improvement
of LESSON over the baseline is particularly visible.
LESSON makes it possible to digest the noisy input
and provide more consistent and factually correct
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Conformity is a type of social influence involving a change in opinion or behavior to fit in with a group. Employing several
social networks as the source for our experimental data, we study how the effect of conformity plays a role in changing users’
online behavior. We formally define several major types of conformity in individual, peer, and group levels. We propose
Confluence model to formalize the effects of social conformity into a probabilistic model. Confluence can distinguish and
quantify the effects of the different types of conformities. To scale up to large social networks, we propose a distributed
learning method that can construct the Confluence model efficiently with near-linear speedup. Our experimental results
on four different types of large social networks, i.e., Flickr, Gowalla, Weibo and Co-Author, verify the existence of the
conformity phenomena. Leveraging the conformity information, Confluence can accurately predict actions of users. Our
experiments show that Confluence significantly improves the prediction accuracy by up to 5-10% compared with several
alternative methods.

BART Baseline

Aspect Term Extraction (ASE) is a novel way to measure the sentiment of an aspect term. In this paper, we propose a new
dataset, the Aspect-based Sentiment Estimation (AGE) dataset. Aspect term extraction (aspect-term-extraction) is used to
quantify the frequency of distinct aspect terms. We propose a novel approach, which is based on a dataset that is used for the
task of estimating the frequency and frequency of the most frequent aspect terms in a domain. Our dataset, which consists of
two datasets, consists of three datasets, and consists of four datasets. The first two datasets (the second dataset) are based on
the same dataset, and the second dataset on the third dataset (the third dataset). The second dataset, our dataset consists of a
dataset consisting of two different datasets, which are both based on our dataset. The third dataset is a dataset based on two
datasets. We evaluate our dataset on a variety of domain-specific domains, and we show that our dataset outperforms the
previous datasets on a wide range of domains. We show that we outperform the previous dataset on both domains. We also
show that aspect term Extraction is more accurate than the first dataset. In our dataset, we find that our approach outperforms
our previous dataset by more than 90% of the time. We use a new approach to evaluate the accuracy of our datasets.

LESSON-BART

Aspect-based sentiment analysis estimates the sentiment expressed for each particular aspect (e.g., battery, screen). Different
words or phrases, however, may be used to refer to the same aspect, and similar aspects may need to be aggregated at coarser or
finer granularity to fit the available space or satisty user preferences. We introduce the problem of aspect similarity at multiple
levels of learning. We decompose it in two processing phases, to allow previous work on term similarity and hierarchical
clustering to be reused. We show that the second phase, where aspects are clustered, is almost a solved problem. We also
introduce a novel sense pruning mechanism for WordNet-based similarity measures, which improves their performance in the
first phase. Finally, we provide publicly available benchmark datasets.

Consistent with the slides.  Inconsistent with the slides or flawed generation.

Table 6: Case study for generated slides summaries for different methods on the No1sYS? test set.

summarization. There are, however, several prob-
lems in LESSON’s generation that we observed:
1) LESSON sometimes generates contents that are
consistent with the input slides, but inconsistent
within the passage. The example in Table 6 shows
LESSON can point out that three factors are influ-
encing social conformity, but it is unable to name
them, making the marked sentence abrupt in the
summary; 2) LESSON sometimes generates fac-
tually inconsistent information. For example, the
datasets mentioned in Table 6’s LESSON generation
is incorrect. These errors show that as a generation
model in its essence, LESSON still faces common
obstacles in natural language generation.

6 Conclusion and Future Work

In this paper, we tackle the slides summarization
problem, which is under-studied but of much prac-

tical use. We formulate this problem as a text sum-
marization task, and propose LESSON with cur-
riculum data augmentation to overcome the limited
resource and noisy input challenges in this task.
Experiments on both the public dataset S* and our
collected dataset NOISYS® show that LESSON con-
sistently improves summarization results over base-
line models. Further analyses show the data aug-
mentation process successfully creates transition
data that bridges the gap between the article data
and the slides data. The transition data enables cur-
riculum training, which proves to boost the model’s
ability to learn from the noisy slides data. In the
future, we will emphasize on multi-modal slides
summarization to utilize the layout information of
the slides, and explore few-shot adaptation to slides
of unseen domains.
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