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Abstract
Data augmentation is commonly used in train-001
ing in low-resource scenarios. However, there002
are sometimes large discrepancy between dis-003
tributions of augmented data and target data.004
How to bridge the gap between the augmented005
and target data, especially when target data is006
harder-to-learn? In this paper, we study im-007
proved data augmentation strategies in the sce-008
nario of scientific slides text summarization,009
where we generate a textual summary based010
on texts of presentation slides. Since slides are011
messy and difficult to understand by current012
models, we introduce an easier form of data,013
i.e., articles in natural language. The basic014
idea is that we generate the transition data be-015
tween slides and articles, and all three of them016
form a curriculum for neural models to learn017
the distribution transition from article data to018
slides data. We find that our approach achieves019
consistent improvements over different back-020
bone summarization models. The curriculum-021
oriented data augmentation method can gener-022
ate data that fill the gap between the easy-to-023
obtain data and the low-resource task data. We024
show that curriculum learning and data aug-025
mentation can be combined to help NLP mod-026
els learn from otherwise hard-to-learn data. 1027

1 Introduction028

Nowadays, presentation slides have become one029

of the main materials for disseminating ideas and030

thoughts in conferences, lectures or events. Simi-031

lar to other formats of documents such as articles,032

presentation slides grow rapidly in volume. The033

difficulty for readers to exhaustively go through all034

contents for so many slides calls for the automatic035

summarization of such documents. With textual036

summaries for presentation slides, readers can eas-037

ily find ones they are interested in and then dive038

into details.039

Most existing works focus on summarizing arti-040

cles for large-scale datasets, e.g., CNN/Daily Mail041

1We will release the code after paper’s acceptance.
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Figure 1: Difference between slides summarization and
the corresponding article summarization.

(Hermann et al., 2015), XSum (Narayan et al., 042

2018) and PubMed/ArXiv (Cohan et al., 2018), 043

leaving the summarization of slides an unsolved 044

puzzle. Traditional extractive text summarization 045

methods (Mihalcea and Tarau, 2004; Zhang et al., 046

2018; Liu, 2019). do not trivially apply to noisy 047

and broken text as slides, as seen in Figure 1. On 048

the other hand, abstractive methods are developed 049

to generate summaries for given text (Rush et al., 050

2015; See et al., 2017; Gehrmann et al., 2018). 051

In recent years, summarization with large-scale 052

pre-trained language models (PLMs) (Devlin et al., 053

2019; Raffel et al., 2020; Lewis et al., 2020; Zhang 054

et al., 2020) has become the dominant paradigm, 055

due to their excellent ability in language model- 056

ing. However, slides differ greatly from regular 057

text these models are pre-trained or fine-tuned on, 058

leaving the potential of the PLMs not fully realized. 059

To fill in the blank, we propose the task of slides 060

summarization in this work. There are two major 061

challenges in this task: limited resource and noisy 062

input. Summarizing slides is a low-resource task 063

by nature, because we can not utilize any section 064
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of the slides as summaries directly for building065

large-scale datasets. In contrast, article summariza-066

tion often uses the first paragraph or abstract of an067

article as ground-truth summary. Moreover, the068

rich multi-modal information (i.e., textual, visual069

and layout information (Xu et al., 2020b, 2021))070

in the source documents (i.e., presentation slides)071

are difficult to be utilized for current summariza-072

tion techniques. When parsed into text, the source073

documents are much more noisy and ill-formatted074

than articles, posing great challenges for language075

models to understand in a low-resource setting.076

Instead of focusing on designing summarization077

models, we tackle this task from the perspective078

of data augmentation. The intuition is that lan-079

guage models can learn better representations of080

unfamiliar slides if they start with something fa-081

miliar, i.e., articles in natural language. We are082

motivated by the idea of curriculum learning (CL)083

(Bengio et al., 2009), where models benefit from084

starting small and gradually increasing the learning085

difficulty when training with limited data samples086

(Wang et al., 2021; Wu et al., 2020). In this sense,087

the accompanying articles facilitate the learning of088

the model by providing connections between what089

it knows well (natural language) and what it does090

not (noisy slides).091

In this paper, we propose the LESSON frame-092

work for Low-rEsource Slides SummarizatiON093

with curriculum data augmentation. Different from094

traditional CL (Bengio et al., 2009; Liu et al., 2018;095

Platanios et al., 2019), we do not discover curricu-096

lum data within training data. Instead, we build097

extra curriculum data from the accompanying ar-098

ticles of slides. To bridge the gap between data099

distributions of articles and slides, we enrich the100

curriculum by generating in-between data samples,101

yielding a sequence of data samples to language102

models in an increasing order of difficulty. We103

adopt a simple generative model to realize the tran-104

sition from articles to slides, which is controlled by105

a balancing weight in training objectives. Like CL,106

our method focuses on optimizing training and thus107

does not need such corresponding articles for slides108

in the test time. In this sense, LESSON is practi-109

cal, because we do not usually have corresponding110

articles for test-time slides.111

In summary, the contributions of this paper in-112

clude: 1) We are the first to propose the slides113

summarization problem, and tackle low-resource114

scientific slides summarization as a concrete task;115

2) We propose LESSON framework for this task, 116

a training strategy with curriculum data augmen- 117

tation, in order to learn a robust model for slides 118

summarization; 3) We conduct extensive experi- 119

ments to verify and understand the effectiveness of 120

the LESSON framework. 121

2 Related Work 122

Data Augmentation In NLP, the goals of data 123

augmentation include increasing training data size 124

(Fadaee et al., 2017), achieving regularizing ef- 125

fects (Hernández-García and König, 2020; Fabbri 126

et al., 2021), and diversifying data (Lu et al., 2020; 127

Kumar et al., 2019). Common data augmentation 128

approaches include rule-based methods, interpo- 129

lation methods and model-based methods (Feng 130

et al., 2021). Rule-based approaches utilize a set 131

of pre-defined rules to transform existing data and 132

create new samples (Wei and Zou, 2019). Inter- 133

polation approaches construct a continuous hid- 134

den space for text and interpolate new data from 135

that hidden space (Chen et al., 2020; Cheng et al., 136

2020). Model-based approaches either leverage a 137

pre-trained language model (Anaby-Tavor et al., 138

2020; Yang et al., 2020) or train an auxiliary model 139

based on existing training data (Kumar et al., 2019), 140

and then use the model to generate new samples. 141

Curriculum Learning Curriculum learning 142

(Bengio et al., 2009) is a learning strategy that 143

mimics the human learning process. Theoretically, 144

curriculum can be regarded as an optimization 145

strategy (Bengio et al., 2009) for non-convex 146

training criteria. Starting from easier samples, the 147

model can learn a smoother training objective, 148

and approximate local minima that have better 149

generalization ability towards the global minima 150

(Wang et al., 2021). Previous empirical results 151

have demonstrated the strengths of curriculum 152

learning in a wide range of NLP tasks, such as 153

question answering (Liu et al., 2018), natural 154

language understanding (Xu et al., 2020a), 155

machine translation (Platanios et al., 2019), and 156

text classification (Wei et al., 2021). These works 157

have testified to curriculum learning’s ability to 158

learn from noisier data (Wu et al., 2020), reduce 159

training time (Wu et al., 2020; Platanios et al., 160

2019), and gain performance improvements over 161

randomized training (Liu et al., 2018; Platanios 162

et al., 2019; Xu et al., 2020a). 163
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Curriculum Data Augmentation Previously,164

Wei et al. (2021) explore curriculum data augmen-165

tation in a few-shot setting. They use rule-based166

approaches (Wei and Zou, 2019) to augment the167

original dataset through controlled noising, i.e., cre-168

ating noisier and more difficult data for curriculum169

learning. In contrast, we employ curriculum learn-170

ing to make the optimization process smoother and171

improve the model’s performance on the hard data.172

Both of our studies represent a new approach in173

curriculum learning: instead of discovering curricu-174

lum from existing data, we artificially create data175

of different difficulty levels.176

Abstractive Summarization The goal of ab-177

stractive summarization is to generate concise and178

precise summary text for documents. Traditionally,179

such methods mostly applies sequence-to-sequence180

encoder-decoder architectures (Rush et al., 2015;181

See et al., 2017; Gehrmann et al., 2018; You et al.,182

2019). In recent years, pre-trained transformer-183

based (Vaswani et al., 2017) language models have184

achieves remarkable success on a wide range of185

NLP tasks (Radford et al., 2019; Devlin et al., 2019;186

Liu et al., 2019b; Raffel et al., 2020; Lewis et al.,187

2020). Many approaches using pre-trained lan-188

guage models have achieved state-of-the-art results189

on abstractive summarization tasks (Liu and Lap-190

ata, 2019; Rothe et al., 2020; Zhang et al., 2020;191

Beltagy et al., 2020). Most summarization studies192

work on text summarization, and some focus on193

summarizing from noisier input such as meeting194

transcripts and dialogues (Liu et al., 2019a; Zhao195

et al., 2019; Liu et al., 2019c; Zhu et al., 2020).196

In this work, we directly use parsed text as the in-197

put due to the difficulty in slides structure parsing.198

Thus, our input is even noisier with structured in-199

formation mixed in plain text. As our proposed200

LESSON is model-agnostic, we leave the handling201

of slides structures and layouts to future work.202

3 Proposed Approach203

In this section, we detail the slides summariza-204

tion task and the proposed LESSON method,205

a curriculum-based data augmentation training206

framework for slides summarization.207

3.1 Task Formulation208

Let X S denote slides text and Y denote summary209

text, and we have DS = (X S ,Y) for a slides sum-210

marization dataset. We hypothesize that slides data211

are harder to learn compared with normal article212
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Figure 2: Comparison of (a) Direct summarization, in-
putXS slides, outputY summary and (b) Data augmen-
tation withXA article and (c) LESSON. The acquisition
of transition data XA→S is shown.

data, given limited parsing techniques and language 213

models that are easier to process natural language. 214

Inspired by previous studies on curriculum learn- 215

ing, which demonstrate that learning from easier 216

samples helps a model to learn harder samples, we 217

introduce paralleled article data XA as augmenta- 218

tion, denoted as DA = (XA,Y). Thus we have 219

paralleled data triples (X S ,XA,Y). Since the dis- 220

tribution of the parallel articles is greatly different 221

from target slides data, we further generate transi- 222

tion data to bridge the distributional discrepancy 223

between them, which is denoted as XA→S and thus 224

DA→S = (XA→S ,Y). 225

Finally, we set up a multi-stage (XA, XA→S , 226

X S) curriculum learning strategy to learn from eas- 227

ier samples to harder ones during training. Hence, 228

the model is able to deal with slides data directly 229

during inference. 230

3.2 Transition Data Generation 231

We approximate the transition between slides data 232

X S and article data XA, in the form of text gen- 233

eration, where we train a transition model PA→S 234

by fine-tuning a BART (Lewis et al., 2020), a pre- 235

trained sequence-to-sequence model. 236

In order to control the transition process, we 237

design a hyper-parameter schedule weight α in the 238

training objective LA→S , which is defined as 239

LA→S = αLS + (1− α)LA (1) 240

where LS is the cross entropy loss for article-to- 241

slides generation, and LA is the cross entropy loss 242
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for article-to-article generation, which is basically243

input reconstruction. Note that a larger α empiri-244

cally steers the generated text towards the distribu-245

tion of slides, and vice versa.246

After training the article-to-slides model, we247

use it for generating intermediate transition248

data XA→S = PA→S(XA, α). The gener-249

ated data is then compiled to form a transition250

data pair DA→S = (XA→S ,Y), reaching the251

full augmented dataset with quadruples: D =252

(X S ,XA,XA→S ,Y).253

3.3 Curriculum Learning254

Finally, we employ curriculum learning strategy to255

train models on the augmented dataset D.256

Curriculum learning strategies usually include257

two components: the difficulty measurer and the258

curriculum scheduler. The difficulty measurer eval-259

uates the difficulty level of the training samples. In260

this work, we employ a pre-defined approach to261

difficulty measurement that slides data are harder262

to learn compared with article data in natural text.263

Specifically, we treat DA, DA→S , and DS as dis-264

crete training buckets that are trained during differ-265

ent curriculum stages. Note that the curriculum is266

fully extendable, as we can generate more stages267

of transition data DA→S by tuning the schedule268

weight α.269

During each of the stages, the model takes as270

input X ? and is optimized with a simple text sum-271

marization objective for summaries Y . To auto-272

matically regulate curriculum stages, we observe273

the development set ROUGE score during training274

and move to the next curriculum stage when the275

score converges. In this way, the model starts with276

the easiest article data, then switch to the transi-277

tion data, and finally learns the target slides data.278

During inference, the model is enhanced with the279

knowledge to understand noisy data and does not280

require the help of parallel article data, which may281

be hard to collect during test time.282

4 Experimental Setup283

4.1 Datasets284

We use two slides summarization datasets for ex-285

periments, where one is an existing dataset with286

few adaptations and the other is collected ourselves.287

Statistics of these datasets are reported in Table 1,288

where they are randomly split into training, de-289

velopment, and test set at the ratio of 7:1:2. One290

major difference between them is the noisiness of291

Dataset Split # Inst. Src. Len. Tgt. Len.

S3
Train 191 697 138
Dev 26 817 145
Test 55 663 132

NOISYS3
Train 306 2,878 298
Dev 44 2,388 202
Test 87 2,444 319

Table 1: Statistics of the datasets. “# Inst.” denotes the
number of instances in the splits. “Src. Len.” and “Tgt.
Len.” denote the average token number of parsed slides
text (source) and summary text (target) respectively.

the parsed slides text, due to different slides parsing 292

techniques. Empirically, noisier slides text as input 293

makes it harder for models to generate summaries. 294

We describe the details of these datasets as follows. 295

The Existing Dataset: S3 We use the pub- 296

lic SCIDUET-ACL dataset released by Sun et al. 297

(2021), which is a dataset for generating presen- 298

tation slides from scientific papers.2 Based on 299

SCIDUET-ACL, we construct the dataset of slides 300

summarization by keeping the abstract of a paper 301

as the summary for the corresponding slides, re- 302

ferred to as S3 (Scientific Slides Summarization). 303

We keep only the slides text parsed by Sun et al. 304

(2021) and discard the figures and tables in the 305

slides, which are identified by OpenCV (Bradski, 306

2000). 307

The Collected Dataset: NOISYS3 We also col- 308

lect a relatively larger-scale dataset from scratch. 309

We crawl from the ACL anthology and scholars’ 310

home pages for pairs of slides and scientific papers 311

and get 137 and 300 instances respectively. Since 312

most of the slides are in PDF format, we transform 313

all slides into PDF and use pymupdf to parse slides 314

text.3 In other words, we do not exclude figures 315

and tables, thus the parsed text is much noisier than 316

one in S3 due to mixed numbers and text snippets. 317

4.2 Metrics & Baselines 318

Since the output of our task is a resemblance to the 319

mainstream text summarization tasks, we evaluate 320

the generated summaries with the commonly-used 321

ROUGE-1/2/L (Lin, 2004), which calculates the 322

n-gram overlap of generated and reference text. 323

There was no previous work for slides sum- 324

marization, so we adopt several widely used 325

2The authors of SCIDUET only release the ACL portion of
the dataset due to copyright issues.

3https://github.com/pymupdf/PyMuPDF
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Model The S3 Dataset The NOISYS3 Dataset

R-1 R-2 R-L R-1 R-2 R-L

Transformer 3.50 0.01 3.42 2.00 0.00 2.00
BERT2BERT 22.87 4.55 13.59 21.44 3.61 12.13

+ LESSON 24.97(+9.18%) 4.55(+0.00%) 13.79(+1.47%) 24.14(+12.59%) 4.07(+12.74%) 12.80(+5.52%)
SCIB2SCIB 24.89 4.10 12.94 21.22 3.50 11.56
+ LESSON 26.62(+6.95%) 4.97(+21.22%) 12.91(-0.23%) 23.78(+12.06%) 4.25(+21.43%) 12.14(+5.02%)

BART 36.65 9.46 20.25 30.05 6.72 16.68
+ LESSON 38.55(+5.18%) 10.30(+8.88%) 21.19(+4.64%) 34.21(+13.84%) 8.48(+26.19%) 18.27(+9.53%)

BART-ArXiv 37.46 9.64 20.77 32.18 7.46 17.19
+ LESSON 38.92(+3.90%) 10.30(+6.85%) 21.56(+3.80%) 35.88(+11.50%) 9.61(+28.82%) 19.02(+10.65%)

Table 2: Main summarization results of baselines with LESSON in two datasets. LESSON shows consistent perfor-
mance improvements over baseline models.

abstractive text summarization models as base-326

lines, where we prioritize on the Transformer-327

based generative language models pre-trained on328

large corpus.4 These models follow the domi-329

nant encoder-decoder architecture for sequence-to-330

sequence (Seq2Seq) generation. Note that LESSON331

is open to the choices of the backbone summariza-332

tion model.333

Transformer (Vaswani et al., 2017) is the classic334

attention-based Seq2Seq model, which serves as a335

non-pre-trained baseline for this task.336

BERT2BERT (Rothe et al., 2020) leverages pre-337

trained checkpoints, such as BERT (Devlin et al.,338

2019), to initialize both encoder and decoder,339

where the only variables initialized randomly is the340

encoder-decoder attention. In addition, we also use341

SciBERT (Beltagy et al., 2019) as the pre-trained342

checkpoint for in-domain scientific text.343

BART (base version) (Lewis et al., 2020) is a344

transformer-based PLM for Seq2Seq generation,345

pre-trained with a set of self-supervised sequence346

denoising tasks. BART has shown its effectiveness347

on a variety of text generation tasks, which makes348

it our primary backbone model for LESSON in the349

experiments.350

BART-ArXiv We also study the effect of trans-351

fer learning from article summarization to slides352

summarization, since these two tasks are in a sim-353

ilar domain but the former is much more high-354

resourced than the latter. To this end, we finetune355

a BART (base version) with article summarization356

4Note that we do not incorporate some summarization
models such as T5 (Raffel et al., 2020) and PEGASUS (Zhang
et al., 2020) as baselines because part of the summary data in
S3 is leaked in the C4 dataset upon which these models are
pre-trained.

objective on ArXiv dataset (Cohan et al., 2018), 357

which consists of 215,913 scientific papers.5 358

4.3 Implementation Details 359

We use pre-trained checkpoints provided by Hug- 360

gingFace (Wolf et al., 2019) in our experiments. 361

For transition data XA→S generation, we fine- 362

tune a BART model for 3 epochs on the training set. 363

We set the maximum generation length to 1024, 364

the maximum length for BART. We use Adam 365

(Kingma and Ba, 2015) as the optimizer for all 366

of our models and set the learning rate to 5× 10−5. 367

For scheduling LESSON training, we train our 368

models for 20 epochs in each curriculum stage and 369

select the checkpoint with the highest development 370

set ROUGE score to enter the next stage. 371

Each model has a different maximum input token 372

length configuration. Since our input data is usually 373

longer than most of the models’ maximum possi- 374

ble input length, we set each of them to the max 375

possible length. The max input token lengths for 376

BERT- and BART- models are set to 512, 1024. For 377

summary generation, we set the minimum length 378

to 50 tokens and maximum to 400 tokens. We also 379

set the number of beams to 4 and length penalty to 380

2.0. 381

5 Results & Analysis 382

5.1 Main Results 383

We report the main results of slides summarization 384

in Table 2. In general, we observe a consistent 385

performance boost with LESSON across different 386

base models, including out-of-the-box pre-trained 387

language models (BERT2BERT, BART), models 388

pre-trained on in-domain texts (SCIB2SCIB), and 389

5We ensure there is no data leakage in the ArXiv dataset.
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Dataset Ablation R-1 R-2 R-L

S3

BART 36.65 9.46 20.25
+ XA 36.84 9.37 19.98
+ XA, XA→S 35.88 8.24 19.13
+ XA + CL 37.25 9.65 20.73
+ LESSON 38.55 10.30 21.19

NOISYS3

BART 30.05 6.72 16.68
+ XA 32.83 7.25 17.35
+ XA, XA→S 30.28 6.65 16.41
+ XA + CL 33.93 7.42 17.53
+ LESSON 34.21 8.48 18.27

Table 3: Ablation study on different components of
LESSON using BART as the base model, including ar-
ticle data XA, transition data XA→S , and curriculum
learning strategy CL. If “+ CL” is not indicated, the
data is trained in random order. “+ LESSON” is equiv-
alent to “+ XA, XA→S + CL”. A leap in performance
emerges when data augmentation and curriculum learn-
ing are combined.

pre-trained models finetuned on downstream in-390

domain summarization task (BART-ArXiv). The391

ROUGE-2 boosts are the greatest in most cases, up392

to 28.82% for BART-ArXiv.393

When we compare LESSON-BART with BART-394

ArXiv, we find that a base model with LESSON395

outperforms the base model with transfer learning396

on much larger in-domain data. It shows that in397

cases where abundant in-domain texts are not avail-398

able, LESSON can still achieve similar performance399

under the low-resource constraint.400

We also observe bigger performance improve-401

ments on the NOISYS3 dataset. This corroborates402

LESSON’s ability to learn noisy and difficult data403

better through curriculum learning.404

Ablation Study We perform an ablation study405

on different components of LESSON with BART,406

the results are presented in Table 3. We observe that407

there is little effect when we use data augmentation408

without curriculum learning (“+XA” and “+ XA,409

XA→S ”). However, if we use the curriculum to410

strategically order the training of the augmented411

data, we can take full advantage of XA and XA→S .412

This provides strong evidence for our assumption413

that combining data augmentation and curriculum414

learning leads to better performance on hard-to-415

learn data.416

5.2 Analysis417

In this section, we analyze the curriculum data aug-418

mentation in LESSON to figure out two research419

questions: Does the augmented data form a cur-420
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Figure 3: t-SNE visualization of the SciBERT embed-
dings of articles, transition data and slides text in order
to show the distribution shift within curriculum. t-SNE
is computed individually for each sub-figure. There-
fore, the same data distribution in different sub-figures
are slightly different. The transition data is controlled
by the schedule weight α. Best viewed in color.

riculum? Does curriculum learning work for slides 421

summarization? 6 422

Data Visualization Theoretically, CL helps the 423

model learn from the easy distribution (articles) 424

to the hard distribution (slides). For an empiri- 425

cal understanding of the distribution shift between 426

them, we visualize the SciBERT embedding (Belt- 427

agy et al., 2019) of articles, slides, and in-between 428

transition data in the curriculum as seen in Figure 429

3. The ideal transition data bridges the distribution 430

gap between the slides data and the article data. 431

Our qualitative evaluation concludes that Figure 432

3(b) (XA→Sα=0.5) shows the most desirable case, where 433

the generated transition data lies in the middle of 434

the article and slides data. For other configurations 435

6For the rest of the experiments, we run LESSON with
BART (base) by default.
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Figure 4: Results of LESSON-BART using transi-
tion data generated from different schedule weight α.
The result indicates that XA→S

α=0.5 yields the best perfor-
mance, which is consistent with our qualitative evalua-
tion that XA→S

α=0.5 makes up the smoothest transition be-
tween the article data and the slides data.

of α, the transition data does not make as good436

a distributional shift between the article and the437

slides data.438

Then, we verify how XA→S generated with dif-439

ferent α affects the curriculum. The results are440

presented in Figure 4, which we find is consistent441

with the pattern we find in Figure 3. The transition442

dataXA→Sα=0.5 achieve the best result because it forms443

the smoothest distributional shift between the arti-444

cle data XA and the slides data Y . Other transition445

data, especially XA→Sα=1.0, performs poorly because446

the transitions are not smooth, which would lead to447

a harder optimization process.448

Multi-Staged Curriculum We extend the cur-449

riculum to multiple stages. In particular, we in-450

clude {XA→Sα=i }i as XA→S . The results are shown451

in Table 4. We organize stage order based on Equa-452

tion 1. Hence, XA→Sα=0.25 is closest to the article data453

and XA→Sα=1.00 is closest to the slides data.454

On the S3 dataset, the single-stage curriculum455

learning strategy proves to be the best, and we ob-456

serve performance decrease when we add more457

stages to training. This is because, as shown pre-458

viously in Figure 3, the transition data for α ∈459

{0.25, 0.75, 1.00} do not make up a smooth dis-460

tributional shift between the article data and the461

target slides data. The learning process would be462

complicated by these noisy transition data.463

Curriculum Schedules To study the effects of464

curriculum learning, we schedule the curriculum465

learning in three settings: 1) regular curricu-466

{XA→S
α=i }i Setting R-1 R-2 R-L

i = 0.50 (LESSON baseline) 38.55 10.30 21.19

i ∈ {0.25, 0.50} 35.76 6.87 18.01
i ∈ {0.25, 0.50, 0.75} 31.73 5.00 14.95
i ∈ {0.25, 0.50, 0.75, 1.00} 29.94 3.99 15.06

Table 4: Results of LESSON-BART with multiple cur-
riculum stages for different values of α on S3. Increas-
ing curriculum stages leads to performance drop, as the
transition data for α ∈ {0.25, 0.75, 1.00} do not make
up a smooth distributional shift between the article data
and the target slides data.

Dataset Schedule R-1 R-2 R-L

S3
CL 38.55 10.30 21.19

Anti-CL 36.06 10.03 19.58
Rand-CL 35.88 8.24 19.13

NOISYS3
CL 34.21 8.48 18.27

Anti-CL 32.03 7.16 17.23
Rand-CL 30.28 6.65 16.41

Table 5: Results of LESSON-BART trained with differ-
ent curriculum schedules. Anti-CL refers to the inverse
training order (first XS , then XA→S , and last XA).
Curriculum learning shows better results than Anti-CL
and random training schedule.

lum (CL) as described in Section 3.3; 2) auti- 467

curriculum (Anti-CL) where we reverse the train- 468

ing order of the curriculum; and 3) random curricu- 469

lum (Rand-CL) where we shuffle all data during 470

training. As seen in Table 5, we observe LESSON 471

trained with regular CL achieves the best result 472

whereas LESSON with random CL has the lowest 473

scores, which is consistent with the findings of Wu 474

et al. (2020). The results also demonstrate the dif- 475

ficulty order of slides, transition data, and articles, 476

which is consistent with our intuition and findings 477

mentioned above. 478

5.3 Case Study 479

We examine the generation results from a baseline 480

BART model and BART equipped with LESSON 481

on the NOISYS3 test set and compare them with 482

the reference abstract and the input slides. We can 483

identify some key observations in the results, as 484

demonstrated in Table 6. Due to the difficulty of 485

the input slides, the BART baseline model is un- 486

able to generate meaningful summarization. On 487

the other hand, as we expected, the improvement 488

of LESSON over the baseline is particularly visible. 489

LESSON makes it possible to digest the noisy input 490

and provide more consistent and factually correct 491

7



Reference

Conformity is a type of social influence involving a change in opinion or behavior to fit in with a group. Employing several
social networks as the source for our experimental data, we study how the effect of conformity plays a role in changing users’
online behavior. We formally define several major types of conformity in individual, peer, and group levels. We propose
Confluence model to formalize the effects of social conformity into a probabilistic model. Confluence can distinguish and
quantify the effects of the different types of conformities. To scale up to large social networks, we propose a distributed
learning method that can construct the Confluence model efficiently with near-linear speedup. Our experimental results
on four different types of large social networks, i.e., Flickr, Gowalla, Weibo and Co-Author, verify the existence of the
conformity phenomena. Leveraging the conformity information, Confluence can accurately predict actions of users. Our
experiments show that Confluence significantly improves the prediction accuracy by up to 5-10% compared with several
alternative methods.

BART Baseline

Aspect Term Extraction (ASE) is a novel way to measure the sentiment of an aspect term. In this paper, we propose a new
dataset, the Aspect-based Sentiment Estimation (AGE) dataset. Aspect term extraction (aspect-term-extraction) is used to
quantify the frequency of distinct aspect terms. We propose a novel approach, which is based on a dataset that is used for the
task of estimating the frequency and frequency of the most frequent aspect terms in a domain. Our dataset, which consists of
two datasets, consists of three datasets, and consists of four datasets. The first two datasets (the second dataset) are based on
the same dataset, and the second dataset on the third dataset (the third dataset). The second dataset, our dataset consists of a
dataset consisting of two different datasets, which are both based on our dataset. The third dataset is a dataset based on two
datasets. We evaluate our dataset on a variety of domain-specific domains, and we show that our dataset outperforms the
previous datasets on a wide range of domains. We show that we outperform the previous dataset on both domains. We also
show that aspect term Extraction is more accurate than the first dataset. In our dataset, we find that our approach outperforms
our previous dataset by more than 90% of the time. We use a new approach to evaluate the accuracy of our datasets.

LESSON-BART

Aspect-based sentiment analysis estimates the sentiment expressed for each particular aspect (e.g., battery, screen). Different
words or phrases, however, may be used to refer to the same aspect, and similar aspects may need to be aggregated at coarser or
finer granularity to fit the available space or satisfy user preferences. We introduce the problem of aspect similarity at multiple
levels of learning. We decompose it in two processing phases, to allow previous work on term similarity and hierarchical
clustering to be reused. We show that the second phase, where aspects are clustered, is almost a solved problem. We also
introduce a novel sense pruning mechanism for WordNet-based similarity measures, which improves their performance in the
first phase. Finally, we provide publicly available benchmark datasets.

Consistent with the slides. Inconsistent with the slides or flawed generation.

Table 6: Case study for generated slides summaries for different methods on the NOISYS3 test set.

summarization. There are, however, several prob-492

lems in LESSON’s generation that we observed:493

1) LESSON sometimes generates contents that are494

consistent with the input slides, but inconsistent495

within the passage. The example in Table 6 shows496

LESSON can point out that three factors are influ-497

encing social conformity, but it is unable to name498

them, making the marked sentence abrupt in the499

summary; 2) LESSON sometimes generates fac-500

tually inconsistent information. For example, the501

datasets mentioned in Table 6’s LESSON generation502

is incorrect. These errors show that as a generation503

model in its essence, LESSON still faces common504

obstacles in natural language generation.505

6 Conclusion and Future Work506

In this paper, we tackle the slides summarization507

problem, which is under-studied but of much prac-508

tical use. We formulate this problem as a text sum- 509

marization task, and propose LESSON with cur- 510

riculum data augmentation to overcome the limited 511

resource and noisy input challenges in this task. 512

Experiments on both the public dataset S3 and our 513

collected dataset NOISYS3 show that LESSON con- 514

sistently improves summarization results over base- 515

line models. Further analyses show the data aug- 516

mentation process successfully creates transition 517

data that bridges the gap between the article data 518

and the slides data. The transition data enables cur- 519

riculum training, which proves to boost the model’s 520

ability to learn from the noisy slides data. In the 521

future, we will emphasize on multi-modal slides 522

summarization to utilize the layout information of 523

the slides, and explore few-shot adaptation to slides 524

of unseen domains. 525
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