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Abstract001

Document-level event argument extraction002
(EAE) is a critical task in natural language pro-003
cessing. While most prior approaches rely on004
supervised training with large labeled datasets005
or resource-intensive fine-tuning, recent studies006
explore in-context learning (ICL) with LLMs007
to reduce data dependence and training costs.008
However, the performance of ICL-based meth-009
ods still lags behind fully supervised models.010
We highlight a key reason for this shortfall: the011
lack of sufficient extraction rules. In this pa-012
per, we conduct a systematic study of using013
hierarchical rules to enhance LLMs’ ICL ca-014
pabilities. We first define three types of hier-015
archical rules and demonstrate their effective-016
ness in enhancing the performance of LLMs for017
document-level EAE. Building on this, we fur-018
ther propose an LLM-driven HiErarchical Rule019
Optimization (HERO) framework that itera-020
tively generates and selects optimal hierarchi-021
cal rules. Specifically, in each iteration, high-022
value instances are selected to produce error023
feedback, which is used to update and expand024
hierarchical rule sets. This results in multiple025
candidate hierarchical rule sets, from which the026
optimal one is selected using a scoring-based027
mechanism. During inference, prompts are con-028
structed using the optimal hierarchical rules to029
enhance ICL performance of LLMs. Extensive030
experiments demonstrate the effectiveness of031
HERO, surpassing few-shot supervised meth-032
ods and outperforming state-of-the-art prompt-033
ing baselines by 3.18% F1 on RAMS, 4.30%034
F1 on DocEE-N, and 3.17% F1 on DocEE-C.035

1 Introduction036

Document-level event argument extraction (EAE)037

aims to transform unstructured event information038

from documents into structured formats encapsulat-039

ing event arguments, facilitating many downstream040

tasks such as machine reading comprehension (Han041

et al., 2021), summarization (Li et al., 2021a),042

news narrative understanding (Zhang et al., 2022;043

Keith Norambuena et al., 2023) and dialogue sys- 044

tems (Su et al., 2022). Most of the previous meth- 045

ods heavily depend on supervised training with 046

large-scale labeled data (Du and Cardie, 2020b; 047

Li et al., 2021b; Xu et al., 2022; Ma et al., 2022; 048

He et al., 2023; Liu et al., 2024). Recently, there 049

has been a notable surge in applications of large 050

language models (LLMs) for document-level EAE 051

(Zhu et al., 2024; Zhang et al., 2024; Uddin et al., 052

2024; Shuang et al., 2024; Hong and Liu, 2024). 053

These methods aim to combine the strengths of 054

SLMs and LLMs or fine-tune LLMs with labeled 055

data. While effective, they still require sufficient 056

labeled data, and fine-tuning LLMs incurs high 057

training costs. 058

In-Context Learning (ICL) (Brown et al., 2020), 059

a hallmark capability of LLMs, leverages simple 060

task instructions and a few input-output demon- 061

strations within prompts to circumvent traditional 062

resource-intensive requirements. Recent work 063

(Zhou et al., 2024) advances this paradigm by de- 064

signing heuristic rules to steer LLMs in document- 065

level EAE, effectively bypassing both model tuning 066

and data dependency. However, despite these ad- 067

vantages, the performance of ICL-based methods 068

still lags behind supervised models. We under- 069

line a critical bottleneck in current ICL approaches 070

for document-level EAE: the lack of fine-grained 071

extraction rules. This deficiency stems from the in- 072

herent complexity of document-level EAE, which 073

typically involves hundreds of event types with 074

diverse, fine-grained types of argument roles, espe- 075

cially, most argument roles may have long spans of 076

non-entity arguments. Without sufficient extraction 077

rules, LLMs frequently exhibit two types of errors: 078

(1) Missing or redundant arguments, (2) Partial 079

argument spans. As illustrated in Figure 1, the doc- 080

ument describes a Protest event. When extracting 081

the argument role Location using coarse-grained 082

rule, the model incorrectly captures vague phrases 083

like “throughout the United States and around the 084
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Document fragments:                             

[0] The 2017 May Day protests were a series of protests that took place on May Day (May 1, 2017) over 

worker and immigrant rights,[1][2] throughout the United States and around the world.

[1] Protests became violent in {Olympia, Washington, and Portland, Oregon}. 

[2] The protests occurred in several major cities, including {Chicago,[8] Detroit,[9][10] Las Vegas,[11] Los 

Angeles,[12][13] Miami,[14] New York City,[15] Philadelphia,[14] San Francisco,[16] Seattle,[17] and 

Washington, D.C}.[14]

Coarse-grained rule: 

the places or locations where the Protest event took place.

{throughout the United States and around the world},     {Olympia, Washington},{Portland, Oregon}

redundant arguments  partial argument spans

Figure 1: An example of LLMs making errors due to
coarse-grained rule for argument role Location in the
Protest event, gold annotations are shown in green.

world”. In contrast, annotators label only specific085

locations rather than broad geopolitical regions.086

Additionally, LLMs often struggle with accurately087

extracting argument spans. For example, the model088

correctly identifies both “Olympia, Washington”089

and “Portland, Oregon”, but extracts them as sepa-090

rate spans instead of a single continuous one. The091

current coarse-grained rule offers little guidance092

on span boundaries, and even human annotators093

following this rule may make similar mistakes.094

To address the aforementioned challenges, in095

this work, we explore the use of fine-grained hi-096

erarchical rules to guide LLMs for the document-097

level EAE via ICL. We first define hierarchical098

rules that mirror human coarse-to-fine reasoning:099

(1) Role Semantics Rule determines candidate ar-100

guments based on argument role definitions; (2)101

Argument Validity Rule verifies whether the argu-102

ments are contextually valid; (3) Argument Span103

Rule identifies the precise argument spans for ex-104

traction. Experimental results demonstrate the ef-105

fectiveness of these hierarchical rules in enhancing106

the LLMs’ performance on document-level EAE.107

Based on this, we further propose an LLM-driven108

HiErarchical Rule Optimization (HERO) frame-109

work that iteratively generates and selects optimal110

hierarchical rules. Specifically, during the rule op-111

timization, we select the high-value instance (i.e.,112

the worst-performing instance corresponding to the113

worst-performing argument role) to generate de-114

tailed error feedback for the LLMs. This feedback115

is then used to refine the hierarchical rules. By iter-116

atively repeating this process, we produce diverse117

sets of hierarchical rules. Finally, we score and118

select optimal hierarchical rules for inference. At119

inference time, HERO constructs prompts by lever-120

aging all three types of optimal hierarchical rules,121

improving ICL performance for document-level122

EAE. Our contributions are as follows:123

• We define fine-grained hierarchical rules and124

empirically demonstrate their effectiveness 125

in improving LLMs’ ICL performance on 126

document-level EAE. 127

• We introduce an LLM-driven hierarchical rule 128

optimization framework that iteratively gen- 129

erates and selects optimal hierarchical rules, 130

leveraging only a small amount of labeled data 131

and requiring no model training. 132

• We conduct extensive experiments demon- 133

strating the effectiveness of HERO, which 134

outperforms state-of-the-art prompting base- 135

lines and few-shot supervised methods on 136

both RAMS and DocEE. 137

2 Preliminary Study 138

In this section, we first define fine-grained hier- 139

archical rules and experimentally verify that our 140

proposed rules can effectively guide LLMs and im- 141

prove their performance on document-level EAE. 142

2.1 Hierarchical Rules 143

We define hierarchical rules that emulate the hu- 144

man annotation process from coarse to fine. The 145

Role Semantics Rule (RSR) clarifies argument role 146

definitions to identify candidate arguments. The 147

Argument Validity Rule (AVR) introduces finer- 148

grained constraints and specific conditions to filter 149

and confirm valid arguments. Finally, the Argu- 150

ment Span Rule (ASR) provides detailed boundary 151

guidelines to extract the precise argument spans. 152

Figure 2 illustrates how hierarchical rules guide 153

LLMs through this reasoning process. We provide 154

a detailed description of hierarchical rules in the 155

following sections.

Document fragments:                             

[0] The 2017 May Day protests were a series of protests that took place on May Day (May 1, 2017) over 

worker and immigrant rights,[1][2] throughout the United States and around the world.

[1] Protests became violent in {Olympia, Washington, and Portland, Oregon}. 

[2] The protests occurred in several major cities, including {Chicago,[8] Detroit,[9][10] Las Vegas,[11] Los 

Angeles,[12][13] Miami,[14] New York City,[15] Philadelphia,[14] San Francisco,[16] Seattle,[17] and 

Washington, D.C}.[14]

+Role Semantics Rule: 

refers to the specific geographical place(s) where an event takes place, typically expressed as cities, 

countries, regions, or landmarks.

{United States},{ around the world},{Olympia, Washington},{Portland, Oregon},{Chicago}...{United States},{ around the world},{Olympia, Washington},{Portland, Oregon},{Chicago}...

+Argument Validity Rule: 

the main sites of protest activity as described in the event context, do not include broad or country-

level locations.

{Olympia, Washington},{Portland, Oregon},{Chicago}...{Olympia, Washington},{Portland, Oregon},{Chicago}...

+Argument Validity Rule: 

the main sites of protest activity as described in the event context, do not include broad or country-

level locations.

{Olympia, Washington},{Portland, Oregon},{Chicago}...

+Argument Span Rule: 

Extract the full list of specific locations as a single argument span if they are grouped together in the 

text.

{Olympia, Washington, and Portland, Oregon},{Chicago,[8] Detroit, ... and Washington, D.C}{Olympia, Washington, and Portland, Oregon},{Chicago,[8] Detroit, ... and Washington, D.C}

+Argument Span Rule: 

Extract the full list of specific locations as a single argument span if they are grouped together in the 

text.

{Olympia, Washington, and Portland, Oregon},{Chicago,[8] Detroit, ... and Washington, D.C}

Incorrect Full correct

Figure 2: An example of using hierarchical rules to
guide LLMs, “+” indicates stepwise rule integration.

156
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2.1.1 Role Semantics Rule157

RSR fully explains the meaning of argument roles158

and the attributes of corresponding arguments, with159

the aim of guiding LLMs in determining candidate160

arguments. For example, in the gold annotations161

of the DocEE dataset (Tong et al., 2022), for the162

argument role Arrested, only the number of arrests163

is annotated, not the arrest fragments. (e.g., “four”164

instead of “four people were arrested”). There-165

fore, the description “the number of individuals166

or groups legally or illegally detained by law en-167

forcement agencies during a protest event” is more168

accurate than “individuals or groups legally or ille-169

gally detained by law enforcement agencies during170

a protest event”.171

2.1.2 Argument Validity Rule172

AVR introduces fine-grained rules, including role-173

specific requirements and constraints, to guide174

LLMs in accurately identifying valid arguments.175

Regarding specific requirements, as specified in the176

RAMS dataset (Ebner et al., 2020), when multiple177

text spans refer to the same entity, the span clos-178

est to the event trigger should be selected. For179

example, in the sentence “John and Mary like180

candy. They ate some today.”, the gold arguments181

for the argument role Consumer is “They” rather182

than “John and Mary”. In the DocEE dataset, the183

argument role Location in Protest event requires184

specific physical locations rather than general re-185

gions. Furthermore, we collect frequent words or186

phrases associated with specific argument roles to187

aid extraction. For instance, “against” often ap-188

pears with the argument role Protest Reasons.189

2.1.3 Argument Span Rule190

ASR provides rules to precisely determine argu-191

ment spans. As reported in the RAMS dataset,192

annotators achieve only 55.3% agreement on ar-193

gument span boundaries, emphasizing the impor-194

tance of detailed and clear guidelines for argument195

span extraction. As illustrated in Figure 2, when196

two valid argument fragments appear consecutively,197

they should be extracted as a single continuous span198

(e.g., “Olympia, Washington and Portland, Oregon”199

instead of separating them as “Olympia, Washing-200

ton”, “Portland, Oregon”). This challenge has also201

been identified in prior studies (Han et al., 2024;202

Zhang et al., 2024), which we attribute to the lack203

of explicit guidance on argument span extraction.204

2.2 Impact of Hierarchical Rules Towards 205

ICL Performance 206

We first reproduce the results of HD-LoA (Zhou 207

et al., 2024), the current state-of-the-art prompt 208

method for document-level EAE. Based on the re- 209

production, we select low-performing events: 49 210

events with 293 instances in RAMS, and 10 events 211

with 110 instances in DocEE-N. For these events, 212

we manually design hierarchical rules for each ar- 213

gument role and use them to prompt LLMs for 214

document-level EAE. Section 4 provides detailed 215

description of the dataset and the LLMs employed 216

in our experiments. As shown in Figure 3, both

Figure 3: Comparing performance with incrementally
added hierarchical rules. “-” indicates use of only the
LLM’s pretrained knowledge, “+” indicates stepwise
rule integration.

217
LLMs perform suboptimally when relying only on 218

pretrained knowledge. With the gradual integration 219

of hierarchical rules, F1 scores steadily improve 220

on both datasets. We further analyze the impact 221

by comparing redundant roles and exact argument 222

matches under different rule levels. The results, 223

shown in Figure 4, reveal two key trends: (1) Re- 224

dundancy Reduction: As more hierarchical rules 225

are added, the number of redundant argument roles 226

decreases. Notably, the AVR plays a central role by 227

filtering out contextually irrelevant arguments. (2) 228

Improved Span Accuracy: The number of exactly 229

matched arguments increases with the addition of 230

more hierarchical rules. This is primarily driven by 231

the ASR, which provides detailed guidance for ac- 232

curate span extraction. These findings suggest that 233

fine-grained hierarchical rules enhance LLMs’ ICL 234

performance, and LLMs can effectively interpret 235

and apply such natural language-based hierarchical 236

rules. 237
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Figure 4: Comparison of redundant roles and matched
arguments across hierarchical rule integration levels.

3 Approach238

3.1 Task Definition239

Given an instance (X, e,A(e)) ∈ D with R(e),240

where X denotes the document context, e indi-241

cates the event type, R(e) =
{
r1, r2, . . . , r|R(e)|

}
242

is the predefined set of argument roles specific to243

event type e. A(e) = {a(r) | r ∈ R(e)} contains244

the annotated arguments, where each a(r) ⊆ X is a245

segmentation of X corresponding to argument role246

r. Our goal is to extract a set of span Â(e), each247

â(r) ∈ Â(e) is a segmentation of X and represents248

the arguments about r ∈ R(e).249

3.2 Overview250

Section 2 shows that fine-grained hierarchical rules251

improve LLMs’ performance on document-level252

EAE when detailed and accurate rules are pro-253

vided. However, designing rules manually is both254

time-consuming and labor-intensive in practice. To255

address this, we introduce an LLM-driven hier-256

archical rule optimization framework that itera-257

tively generates and selects optimal hierarchical258

rules. Specifically, for each event type e, we begin259

by randomly selecting an instance and applying260

the LLMs’ pretrained knowledge to perform infer-261

ence. The predicted results and gold annotations262

are then fed into an error feedback template to gen-263

erate the first set of hierarchical rules. We then264

enter an iterative process: in each iteration, we use265

the hierarchical rules from the previous round for266

inference and evaluate their performance scores267

on a constructed balanced dataset De. We select268

the worst-performing argument role and its lowest-269

performing instance, derive new error feedback,270

and refine the rules accordingly. This process re-271

peats for a fixed number of iterations T . Afterward,272

the optimal hierarchical rules for each argument273

role are selected based on evaluation scores from274

all candidates hierarchical rules generated during275

iteration. During inference, optimal hierarchical276

rules are used to construct prompts, which guide277

the LLMs to perform argument extraction. See278

Figure 5 for an overview. 279

3.3 Inference 280

In this section, we introduce how to predict the 281

answer of an instance (X, e,A(e)) based on the op- 282

timal hierarchical rules. Suppose we have collected 283

the optimal hierarchical rules {R(ei,r)}r∈R(ei) | 284

i = 1, . . . , |Ne|, where {R(ei,r)} is the rule set for 285

argument role r in event type ei, consisting of three 286

types of hierarchical rules introduced before (i,e., 287

{R(ei,r)} = {R(r)
RSR,R

(r)
AVR,R

(r)
ASR}). The task in- 288

struction Ttest, the document content X , examples 289

of a fixed demonstration N , and the optimal hierar- 290

chical rules {R(e,r)}r∈R(e) searched for event type 291

e are integrated to create a query prompt Ptest, it 292

is used to feed into LLMs, which identify the argu- 293

ment roles and their arguments present in X . The 294

inference process unfolds as follows: 295

Ptest = f
(
Ttest, X,N, {R(e,r)}r∈R(e)

)
,

{Â(e,r)}r∈R(e) = Reason(Ptest).
(1) 296

3.4 Hierarchical Rule Optimization 297

Framework 298

In this section, we introduce an iterative hierarchi- 299

cal rule optimization framework, aimed at gener- 300

ating and selecting the optimal hierarchical rules 301

for all argument roles of each event type (i.e., 302

{R(ei,r)}r∈R(ei) | i = 1, . . . , |Ne|). 303

Given an event type e with R(e), we construct 304

a balanced dataset De consisting of a few training 305

instances (X, e,A(e)) (i.e., with the same or simi- 306

lar number of gold annotations for each argument 307

role). We begin by prompting the LLMs to generate 308

initial rules for each argument role {R(e,r)
0 }r∈R(e) 309

using their pretrained knowledge. Then we ran- 310

domly select an instance from the dataset De and 311

use {R(e,r)
0 }r∈R(e) for inference. The predictions 312

{Â(e,r)}r∈R(e) and gold annotations {A(e,r)}r∈R(e) 313

are fed into an error feedback template to gener- 314

ate error feedback information. Then we combine 315

the task description for optimizing rules Topti, hi- 316

erarchical rules description Dhr, document con- 317

tent X , error feedback information Ferr, and cur- 318

rent rules {R(e,r)
0 }r∈R(e) into a refined hierarchical 319

rules prompt Popti, feed it into LLMs, and obtain 320

updated hierarchical rules {R(e,r)
1 }r∈R(e) , which 321

includes three types of hierarchical rules for each 322

argument role that we introduced in Section 2. 323
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Hierarchical 

Rules _2, ...

SELECT

worst roleworst roleworst role

STEP 1:Find Worst-Performing Argument Role

STEP 2 :Find the Worst Instance for the Worst Role

worst role

STEP 1:Find Worst-Performing Argument Role

STEP 2 :Find the Worst Instance for the Worst Role

Optimal Hierarchical Rules 

(Final Rule library)

Protesters:{RSR,AVR,ABR}

...

Location:{RSR,AVR,ABR}

Optimal Hierarchical Rules 

(Final Rule library)

Protesters:{RSR,AVR,ABR}

...

Location:{RSR,AVR,ABR}

HiErarchical Rules Optimization

Step 1 The RSR of [Location] is ..., the AVR of [Location] is ..., the ABR of [Location] is ...

Step 2 Applying hierarchical rules to the document, the arguments of [Location] is "...", "...".

Reason Prompt : Task Instruction  + Example sample  + Optimal Hierarchical Rules + Target instance
SEARCH

  Final Inference Stage

Explain the meaning of the argument roles : 'Protesters',  'Date',  

'Method',  'Arrested',  'Location' in the 'Protest' event . 

Hierarchical Rules Description:

Role Semantics Rule(RSR):

Elaborate on the mean of argument roles in the context of 

{EVENT_TYPE} event. The definition should ... 

Argument Validity Rule(AVR):

Define the conditions or give examples of trigger words that ... 

Argument Span Rule(ABR): Guide the model to extract 

complete arguments spans that …

Error Feedback [instance]:

the roles of arguments that do not exist in the text: Date. 

There are no missing predicted argument roles. 

For Location, incorrectly predicted the following 2 text 

fragments: "..." and "..." as event arguments.

Additionally, missed 2 correct event arguments: "..." and "..." 

START: Generate the first set of 

Hierarchical Rules 

- Hierarchical Rules _1

Response

...
- Hierarchical Rules Description
- Error Faceback[instance]
- Rule_0

Update Hierarchical Rules 

- Rule_0

Response

...
- Rule_0
- Randomly select an instance

Reason Prompt

- Rules induction prompt

Prompt

- Answer

Response

- Hierarchical Rules _T

Response

...
- Hierarchical Rules Description
- Error Faceback[worst instance]
- Hierarchical Rules_(T-1)

Update Hierarchical Rules 

YES

All instances in the balanced 

dataset completed?
NO

Select worst instance

...
- Hierarchical Rules _(T-1)
- Target  instance

Reason Prompt

- Answer

Response

ITERATION: The last iteration (T-1)

ITERATION

Figure 5: The Hierarchical Rule Optimization Framework, including both inference and optimization phases. Rule_0
denotes the initial rules derived from the LLMs’ pretrained knowledge, corresponding to {R(e,r)

0 }r∈R(e) in the
paper.

This process unfolds as follows:324

Popti = f
(
Topti, Dhr, X, Ferr, {R(e,r)

0 }r∈R(e)

)
,

{R(e,r)
1 }r∈R(e) = Reason(Popti).

(2)325

At this point, we obtain the first set of hierarchi-326

cal rules. Next, we iteratively refine hierarchical327

rules by selecting the high-value instance to gener-328

ate error feedback. Specifically, at iteration t, we329

evaluate the hierarchical rules {R(e,r)
t } for each330

argument role r ∈ R(e) on dataset De. The score331

for each role’s rules on De is computed as follows:332

s(R(e,r)
t ,De) = 2∗P (r)

De
∗R(r)

De
/(P

(r)
De

+R
(r)
De

), (3)333

where P
(r)
De

and R
(r)
De

represent the accuracy and334

recall of the role r. We calculate the score335

s(R(e,r)
t , Xi) of each argument role’s current rules336

{R(e,r)
t }r∈R(e) on the instance (Xi, e, A

(e)) as fol-337

lows:338

s(R(e,r)
t , Xi) = 2∗P (r)

i ∗R(r)
i /(P

(r)
i +R

(r)
i ). (4)339

At the end of the t-th iteration, we select the worst-340

performing argument role as follows:341

rworst = argmin
r∈R(e)

s(R(e,r)
t ,De), (5)342

and then choose the corresponding worst-343

performing instance for that argumen role based on344

the score of s(R(e,r)
t , Xi) as follows: 345

iworst = argmin
i∈{1,...,m}

s(R(e,rworst)
t , Xi), (6) 346

where m represents the number of instances in the 347

balanced dataset De. The predictions and gold an- 348

notations are fed back to regenerate hierarchical 349

rules R(e,r)
t+1 r∈R(e) . The iteration stops when the 350

maximum iteration T is reached. In all experi- 351

ments, we consider the number of iterations T is 352

3. At the end of all iterations, we select optimal 353

hierarchical rules as follows: 354

R(e,r)
final = argmax

t∈{1,...,T}
r∈R(e)

s(R(e,r)
t ,De). (7) 355

4 Experiments 356

4.1 Experimental Setup 357

Datasets Follow previous work (Zhou et al., 358

2024), we conduct experiments on two common 359

datasets in the document-level EAE: RAMS (Ebner 360

et al., 2020) and DocEE (Tong et al., 2022) datasets. 361

RAMS and DocEE contain 139 and 59 event types, 362

65 and 356 argument role types, respectively, with 363

a total of 9,124 and 27,485 documents. DocEE 364

offers two evaluation settings: DocEE-N (Normal), 365

where event types in the training and test sets are 366

the same, and DocEE-C (Cross), where they are dis- 367

joint. We leave the detailed statistics of the datasets 368

in Appendix A.1. 369
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Method PLMs Paradigm RAMS DocEE

Arg-I Arg-C Normal (Arg-C) Cross (Arg-C)

EEQA (Du and Cardie, 2020b) BERT-large SFT 40.09 34.76 - -
BART-Gen (Li et al., 2021b) BART-large SFT 40.77 35.51 - -
TSAR (Xu et al., 2022) BERT-large SFT 44.13 38.88 - -
PAIE (Ma et al., 2022) BART-large SFT 47.02 40.75 - -
TabEAE (He et al., 2023) BART-large SFT 47.83 41.07 - -
SCPRG (Liu et al., 2023) BERT-large SFT 45.96 39.73 - -
DEEIA (Liu et al., 2024) BART-large SFT 47.14 40.41 - -

ULTRA (Zhang et al., 2024) Flan-UL2 FT - - - 32.70∗

CQWS (Uddin et al., 2024) T5, GPT-4, BART-base FT - 45.20∗ - -
GLM2-6B (Shuang et al., 2024) ChatGLM2-6B FT 50.90∗ 45.80∗ - -
RLQG (Hong and Liu, 2024) Llama2-7B, 13B FT - 19.61∗ - -

Standard (Agrawal et al., 2022) Llama3 ICL 42.17 32.99 25.71 25.98
CoT (Wei et al., 2022) Llama3 ICL 40.39 33.44 26.13 27.47
HD-LoA (Zhou et al., 2024) Llama3 ICL 44.23 36.06 27.36 28.91
HERO (ours) Llama3 ICL 43.47 37.21 30.52 31.90

Standard (Agrawal et al., 2022) DeepSeek-V3 ICL 41.29 32.85 26.74 28.09
CoT (Wei et al., 2022) DeepSeek-V3 ICL 44.33 36.24 28.07 30.34
HD-LoA (Zhou et al., 2024) DeepSeek-V3 ICL 47.49 40.85 30.51 32.97
HERO (ours) DeepSeek-V3 ICL 50.49 44.03 34.81 36.14

Table 1: Overall performance. We highlight the best result and underline the second best. * means the value from
the original paper. FT, SFT, and PLMs respectively refer to fine-tuning, supervised fine-tuning, and pretrained
language models.

Evaluation Metric Follow the metrics in (Ma370

et al., 2022; Zhou et al., 2024), we adopt two evalu-371

ation metrics. (1) Argument Identification F1 score372

(Arg-I): an event argument is correctly identified if373

its offsets and event type match those of any of the374

argument mentions. (2) Argument Classification375

F1 score (Arg-C): an event argument is correctly376

classified if its role type is also correct.377

Baselines Our HERO is compared against sev-378

eral state-of-the-art models in three categories:379

(1) Three state-of-the-art prompting methods with-380

out fine-tuning, including the Standard Prompt-381

ing (Agrawal et al., 2022) used in clinical EAE,382

the Chain-of-Thought (CoT) prompt (Wei et al.,383

2022), and HD-LoA (Zhou et al., 2024), which is384

the best prompting method currently tailored for385

the document-level EAE. (2) Four latest methods386

based on LLMs fine-tuning, RLQG (Hong and Liu,387

2024), ULTRA (Zhang et al., 2024), GLM2-6B388

(Shuang et al., 2024), CQWS (Uddin et al., 2024).389

(3) Various supervised learning methods, includ-390

ing: two SOTA span-based methods, TSAR (Xu391

et al., 2022) and SCPRG (Liu et al., 2023); two392

typical generation-based methods, EEQA (Du and393

Cardie, 2020b), BART-Gen (Li et al., 2021b); three394

prompt-based approaches, PAIE (Ma et al., 2022),395

TabEAE (He et al., 2023), DEEIA (Liu et al.,396

2024). For fair comparison, all supervised learning 397

methods comparison results are reproduced using 398

the same data as our method. Our HERO uses ap- 399

proximately five labeled instances per event type 400

for rule optimization. This results in a total of 645 401

instances on RAMS, 310 instances on DocEE-N, 402

and 50 instances on DocEE-C. More details of base- 403

lines are listed in Appendix A.3. We also compare 404

our HERO with supervised learning methods that 405

trained on the entire dataset in Appendix B. 406

Implementation Details Please refer to Ap- 407

pendix A.2 for implementation details of HERO. 408

All prompts used in this paper are provided in the 409

appendix C. 410

LLM In our experiments, we employ two LLMs: 411

Llama-3-8B-Instruct (Llama3) (Grattafiori et al., 412

2024) and DeepSeek-V3 (DeepSeek-AI et al., 413

2024). Each LLM independently optimizes its own 414

hierarchical rules and subsequently uses these rules 415

to guide inference. 416

4.2 Overall Experimental Results 417

The main experimental results presented in Table 1. 418

We can observe that: (1) Our method is better 419

than all SFTs and 2.96% (44.03% vs. 41.07%) 420

higher than the best SFT method TabEAE on the 421

RAMS. Notably, TabEAE requires a large num- 422
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ber of training iterations, whereas our method423

achieves superior performance without any fine-424

tuning. (2) HERO consistently outperforms all425

three existing prompting methods. Compared426

to the strongest baseline HD-LoA, our approach427

achieves F1 improvements of 3.18% (44.03% vs.428

40.85%), 4.30% (34.81% vs. 30.51%), and 3.17%429

(36.14% vs. 32.97%) on the RAMS, DocEE-N,430

and DocEE-C datasets, respectively. (3) Com-431

pared with fine-tuned LLM-based methods, our ap-432

proach performs slightly lower than GLM2-6B and433

CQWS on RAMS by 1.77% (44.03% vs. 45.80%)434

and 1.17% (44.03% vs. 45.20%), respectively.435

However, these methods depend on large labeled436

datasets and costly fine-tuning, while our approach437

needs only a small amount of data and no training,438

yet achieves competitive performance.439

4.3 Ablation Study440

To evaluate the effectiveness of each proposed mod-441

ule, an ablation study is conducted as follow: we442

compare four settings: (1) using only RSR, (2)443

using both RSR and AVR, (3) replacing all three444

hierarchical rule types with R-base (rules derived445

solely from the LLMs’ pretrained knowledge), and446

(4) HERO-r, a variant of our method that generates447

feedback using randomly selected instances instead448

of the worst-performing ones. Results are shown449

in Table 2.450

Method RAMS DocEE

Arg-I Arg-C Normal (Arg-C) Cross (Arg-C)

HERO 50.49 44.03 34.81 36.14
HERO-r 50.17 42.49 33.05 35.69
R-base 45.99 38.35 29.13 30.04
RSR,AVR 50.24 43.77 33.21 34.75
RSR 49.07 42.11 32.46 32.08

Table 2: Ablation study results

Experimental results demonstrate that: (1) fo-451

cusing error feedback generation on the most high-452

value instances yields consistent F1 gains of 1.54%453

(44.03% vs. 42.49%), 1.76% (34.81% vs. 33.05%),454

and 0.45% (36.14% vs. 35.69%) on the RAMS,455

DocEE-N, and DocEE-C datasets, respectively.456

This indicates that focusing on challenging in-457

stances where LLMs often fail provides more effec-458

tive supervision, while random instances offer lim-459

ited gains. (2) When relying solely on pre-training460

knowledge (i.e., R-base), model performance con-461

sistently declined across all datasets, with up to a462

3.76% (42.11% vs. 38.35%) drop on RAMS com-463

Figure 6: Performance comparison between hierarchical
rules from different iterations and the optimal hierarchi-
cal rules selected by our method.

pared to using only RSR rules. This highlights the 464

effectiveness of RSR rules refined through error 465

feedback. Removing ASR and then AVR results 466

in a stepwise performance drop across all datasets, 467

confirming that each LLM-generated hierarchical 468

rules contributes valuable guidance. 469

5 Analysis 470

5.1 Results from Different Iterations 471

To evaluate the effectiveness of our score-based 472

hierarchical rules selection strategy, we compare 473

the performance of hierarchical rules from each 474

iteration with the final optimal rules selected for 475

each argument role, as shown in Figure 6. Results 476

show a consistent performance gain across itera- 477

tions on both datasets and models, with the best 478

results achieved using our selected optimal rules. 479

Remarkably, for DeepSeek-V3, the rule refined 480

from just a single instance in the first iteration al- 481

ready surpasses HD-LoA on both datasets. This 482

demonstrates that even a single round of feedback 483

is effective, as the three types of hierarchical rules 484

provide specific guidance. 485

5.2 Error Analysis and Case Study 486

We randomly select 50 instances from the DocEE- 487

N dataset, covering a total of 286 argument roles, 488

and conduct a manual analysis of the prediction er- 489

rors. The findings are summarized in Table 3. The 490

most common error type (43.89%) is role redun- 491

dancy, where the model predicts arguments such as 492

Arrest_time and Arrest_location that are not present 493

in the gold annotations. However, manual review 494

confirms that these arguments are correctly, sug- 495

gesting that some gold annotations in DocEE-N are 496

incomplete. The second most frequent error (40%) 497

involves partial spans, where the predicted spans 498
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Error Type Example

Role redundancy
(43.89%)

[. . . ]The US citizen was detained at [Karachi airport ]PREDICTED_Arrest Location after security
staff found 15 bullets for a 9mm handgun [. . . ] when he was detained [on Monday
night]PREDICTED_Arrest time.[. . . ]

Partial spans
(40%)

[. . . ]An agent with the US FBI has been [arrested under anti-terrorism
laws in Pakistan for [carrying ammunition while trying to board a
flight]GOLD_The Charged Crime]PREDICTED_The Charged Crime.[. . . ]

Wrong spans
(10.56%)

[. . . ][Three suicide attacks have hit an island on Lake Chad]PREDICTED_Attacker, killing at
least 27 people, [. . . ] but the region is under a state of emergency after attacks by the
[Boko Haram militant group]GOLD_Arrest time. [. . . ]

Table 3: Most common errors made by HERO on DocEE-N.

are either too short or too long. Although our ASR499

is designed to improve argument span precision,500

the model still struggles with instances that lack501

clear span boundaries. Wrong spans are relatively502

rare (10.56%), suggesting that the model seldom503

assigns arguments to unrelated text.504

6 Related Work505

6.1 Document-level EAE506

Existing methods for document-level EAE can507

be classified into four main categories: (1) Span-508

based methods, which identify candidate spans509

and subsequently predict their roles (Xu et al.,510

2022; Liu et al., 2023; Yang et al., 2023). (2)511

Generation-based methods (Du and Cardie, 2020b;512

Li et al., 2021b; Du et al., 2022; Hsu et al., 2023;513

Zhang et al., 2023) utilize prompt templates and514

transformer-based encoder-decoder frameworks to515

extract the arguments within each event sequen-516

tially. (3) Prompt-based methods (Ma et al., 2022;517

He et al., 2023; Liu et al., 2024), which use slotted518

prompts and leverage a generative slot-filling ap-519

proach for argument extraction. (4) Large language520

models methods. (Zhu et al., 2024) proposed an521

LLM-based error correction framework that cor-522

rects SLM predictions using feedback generated523

by LLMs. In parallel, (Shuang et al., 2024) ex-524

plored LLM-generated external event-related fea-525

tures as supplementary context. Another line of526

work ((Hong and Liu, 2024; Uddin et al., 2024))527

developed various question generation strategies to528

systematically interrogate event arguments through529

fine-tuned models. (Zhang et al., 2024) focused on530

enhancing argument span extraction via specialized531

LLM fine-tuning.532

6.2 In-context learning 533

Constrained by the difficulties of fine-tuning LLMs, 534

in-context learning (ICL) is proposed to emulate 535

few-shot learning by providing several labeled ex- 536

amples in the prompt (Brown et al., 2020) How- 537

ever, LLMs are sensitive to the quality of in-context 538

example (Liu et al., 2022). Recent studies high- 539

light various strategies for selecting in-context ex- 540

amples, including complexity (Fu et al., 2023), 541

diversity (Zhang et al.), and labeled data (Shum 542

et al., 2023). (Fu et al., 2024) conduct the first 543

study to explore this problem in EAE, focusing 544

exclusively on sentence-level scenarios. Recent 545

work (Zhou et al., 2024) addresses this challenge 546

by introducing Heuristic-Driven Link-of-Analogy 547

(HD-LoA) prompting, which uses heuristic rules to 548

guide LLMs in performing EAE via ICL. However, 549

its coarse-grained rules limit performance on com- 550

plex document-level cases. We extend this line of 551

work by proposing fine-grained hierarchical rules 552

that offer more precise guidance. 553

7 Conclusion 554

In this paper, we explore guiding LLMs to per- 555

form document-level EAE through ICL using fine- 556

grained hierarchical rules. We begin by defining 557

three types of hierarchical rules and validating their 558

effectiveness. Building on this, we propose a hier- 559

archical rule optimization framework that requires 560

only a small amount of labeled data. By iteratively 561

selecting the high-value instances to generate er- 562

ror feedback, the framework refines and selects 563

optimal hierarchical rules without any parameter 564

tuning. Experimental results on RAMS and DocEE 565

demonstrate the effectiveness of our approach. 566
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Limitations567

As our primary goal is to validate the effective-568

ness of our method. However, our work still lacks569

depth in certain aspects, and many potential re-570

search directions within this framework warrant571

further investigation.572

Enhancing LLMs’ Rule-Following Ability573

While we have demonstrated that LLMs can be574

prompted to induce and apply hierarchical rules,575

we have not explicitly measured the extent to which576

they effectively follow these rules. Improving577

LLMs’ ability to accurately apply rules could fur-578

ther boost the performance of our method.579

Broader Application Our HERO framework is580

designed to be general and can be adapted to other581

tasks with limited labeled data. In this paper, we582

focus solely on document-level EAE, but future583

work will explore applying HERO to other com-584

plex information extraction tasks, such as relation585

extraction.586
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A Dataset and Model808

A.1 Dataset statistics809

RAMS is a document-level dataset annotated with810

139 event types and 65 semantic roles. Each sample811

is a 5-sentence document, with a trigger word in-812

dicating a pre-defined event type and its argument813

scattered throughout the document. DocEE con-814

tains 27,485 document-level events with 180,528815

arguments, including 59 event types involving 356816

fine-grained argument roles, far exceeding the scale817

of existing document-level EE datasets. Consider-818

ing the extensive size of the DocEE dataset, which819

makes a full-scale evaluation using LLMs imprac-820

tical, we follow (Zhou et al., 2024) and evaluate a821

subset of these datasets. The detailed statistics of822

the datasets and the number of tested samples are823

listed in Table 4.824

A.2 Implementation Details825

We evaluate HERO on Llama-3-8B-Instruct826

(Llama3) (Grattafiori et al., 2024) and DeepSeek-827

V3 (DeepSeek-AI et al., 2024). The Llama3 model828

checkpoint is publicly accessible on Hugging Face829

under the Llama3 Community License Agreement.830

We deploy Llama3 on a single 32GB virtual GPU831

environment, and use the vLLM (Kwon et al., 2023)832

to accelerate the inference. We employ DeepSeek-833

V3 from the official API. The pricing for running834

DeepSeek-V3 is RMB 0.008 per 1,000 tokens. Dur- 835

ing the all experiments, the temperature is fixed as 836

0. 837

A.3 Details of baseline models 838

We compare our model with following previous 839

models. (1) EEQA (Du and Cardie, 2020b): the 840

first Question Answering (QA) based model de- 841

signed for the sentence-level EAE task. (2) BART- 842

Gen (Li et al., 2021b): a conditional genera- 843

tion model generating (rather than recognizing the 844

spans) arguments sequentially via a sequence-to- 845

sequence model and prompt. (3) TSAR (Xu et al., 846

2022): a two-stream encoding model for document- 847

level EAE, which encodes the document through 848

two different perspectives to better utilize the con- 849

text. (4) PAIE (Ma et al., 2022): a prompt tuning 850

paradigm for extraction tasks which prompts mul- 851

tiple role knowledge from PLMs via role-specific 852

selectors and joint prompts. (5) TabEAE (He et al., 853

2023): a novel text-to-table framework, that can 854

extract multiple event in parallel. (6) SCPRG (Liu 855

et al., 2023): A span-trigger-based contextual pool- 856

ing and latent role guidance method. (7) DEEIA 857

(Liu et al., 2024): a Multi-EAE model that over- 858

comes the inefficiency limitations of traditional 859

EAE methods. The implementation details of all 860

baselines are as follows: 861

1. EEQA (Du and Cardie, 2020b): We use 862

BERT-large and their publicly available code 863

to test its performance on the RAMS dataset. 864

The question template is: What is the ROLE 865

in TRIGGER WORD? 866

2. BART-Gen (Li et al., 2021b) : We used the 867

BART-large model and their publicly avail- 868

able code on the RAMS dataset with the same 869

training data as ours. 870

3. TSAR (Xu et al., 2022): We use BERT-large 871

and their publicly available code to test its 872

performance on the RAMS dataset. 873

4. PAIE (Ma et al., 2022): We use BART-large 874

and their publicly available code to test its 875

performance on the RAMS dataset. 876

5. TabEAE (He et al., 2023): We use BART- 877

large and their publicly available code to test 878

its performance on the RAMS dataset, and we 879

use their proposed single-to-single pattern. 880
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Dataset # EvTyp. # ArgTyp. # TrainDoc. # DevDoc. # TestDoc. # Eval.

RAMS (Ebner et al., 2020) 139 65 7,329 924 871 871
DocEE (Normal) (Tong et al., 2022) 59 356 22k 2.7K 2.7K 400
DocEE (Cross) (Tong et al., 2022) 59 356 23.7K 1.6K 2.0K 400

Table 4: Datasets Overview ( # EvTyp.: event type, # ArgTyp.: event argument type, # TrainDoc.: the number of
documents in the training set, # DevDoc.: the number of documents in the validation set, # TeseDoc.: the number of
documents in the test set, # Eval.:the number of samples used for evaluation of different methods of LLMs without
fine-tuning. )

6. SCPRG (Liu et al., 2023): We use BERT-881

large and their publicly available code to test882

its performance on the RAMS dataset.883

7. DEEIA (Liu et al., 2024): We use BART-884

large and their publicly available code to test885

its performance on the RAMS dataset.886

We also compare with several fine-tuned LLMs887

methods, the specific implementations are as fol-888

lows. (1) RLQG (Hong and Liu, 2024): They fine-889

tune LLaMA-2-7B to generate questions and use890

LLaMA-2-13B-Chat to answer them. (2) ULTRA891

(Zhang et al., 2024): This approach fine-tunes Flan-892

UL2 to address the issue of LLMs failing to ac-893

curately extract argument spans in document-level894

EAE. (3) GLM2-6B (Shuang et al., 2024): They895

perform instruction tuning on GLM2-6B using the896

document-level EAE dataset RAMS to better adapt897

the model to the document-level EAE. (4) CQWS898

(Uddin et al., 2024): They fine-tune T5 for question899

generation using weakly supervised data generated900

by GPT-4, and further fine-tune BART-base for901

question answering.902

The implementation details of methods without903

fine-tuning LLMs are as follows. (1) Standard904

Prompting (Agrawal et al., 2022): We follow the905

method and prompts described in their paper, given906

the document and the specified target argument907

roles, we then directly extracts the corresponding908

argument spans from the document. (2) CoT (Wei909

et al., 2022): We follow the method and prompts910

described in their paper. Given a document and911

the specified target argument roles, we provide a912

demonstration that includes the correct answers913

and a detailed reasoning process to illustrate the914

extraction. The model then directly extracts the915

corresponding argument spans from the document.916

(3) HD-LoA (Shuang et al., 2024): Our implemen-917

tation strictly adheres to the publicly available code918

provided by the authors. We replicate the experi-919

ments by employing different LLMs to assess the920

generalizability of the approach.921

B Comparison with Fully Supervised 922

Methods 923

We compare our HERO method with fully super- 924

vised models trained on the entire dataset for the 925

document-level EAE task. As shown in Table 5, 926

these models, trained on thousands of annotated 927

data, achieve strong performance on datasets such 928

as RAMS and DocEE-N. In contrast, HERO does 929

not require any training. Instead, it relies on a small 930

number of labeled data to induce guiding rules, 931

which are then used to perform event argument ex- 932

traction. While there remains a performance gap on 933

RAMS and DocEE-N, HERO achieves a significant 934

improvement of 6.34% (36.14% vs. 29.80%) over 935

supervised models on the DocEE-C dataset. This 936

demonstrates the effectiveness of our approach in 937

cross-domain and low-resource scenarios, where 938

large-scale annotation is impractical or unavailable. 939

C Full Prompts 940

We present all the prompts mentioned in the paper. 941

1. Table 6 presents a complete prompt used to 942

guide LLMs in generating initial rules for ar- 943

gument roles based on their pretrained knowl- 944

edge. 945

2. Table 7 presents a complete example of an er- 946

ror feedback prompt, illustrating the detailed 947

error information used to guide rule refine- 948

ment. 949

3. Table 8 presents the complete prompt for re- 950

fined hierarchical rules incorporating error 951

feedback. 952

4. Table 9 presents the complete prompt used for 953

final testing on the RAMS dataset with the 954

optimal hierarchical rules. 955

5. Table 10 presents the complete prompt used 956

for final testing on the DocEE dataset with the 957

optimal hierarchical rules. 958
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Method Model RAMS DocEE

Arg-I Arg-C Normal (Arg-C) Cross (Arg-C)

Supervised learning

EEQA(Du and Cardie, 2020b) 48.70 46.70 33.50 24.00
MG-Reader (Du and Cardie, 2020a) - - 32.90 21.40
BART-Gen (Li et al., 2021b) 51.20 47.10 - -
OntologyQA (Tong et al., 2022) - - 41.00 29.80
TSAR (Xu et al., 2022) - 51.18 - -
PAIE (Ma et al., 2022) 56.80 52.20 - -
SCPRG (Liu et al., 2023) - 52.32 - -
TabEAE (He et al., 2023) 57.30 52.70 - -
DEEIA (Liu et al., 2024) 58.00 53.40 - -
EAESR (Shuang et al., 2024) 60.20 53.20 - -
Sep2F(Xu et al., 2024) 58.70 53.70 - -

Llama3 HERO (ours) 43.47 37.21 30.52 31.90
DeepSeek-V3 HERO (ours) 50.49 44.03 34.81 36.14

Table 5: Comparison with Fully Trained Supervised Models.

Objective: Your task is Event Argument Extraction. In this task, you will be provided with a document
that describes an event and the goal is to extract the event arguments that correspond to each argument
role associated with the event. The terminologies for this task is as follows: Key Terminologies: Event
argument: an entity mention, temporal expression or value that serves as a participant or attribute with
a specific role in an event. Event arguments should be quoted exactly as the it appears in the given
document. Argument role: the relationship between an argument to the event in which it participates.
Specifically, based on your existing knowledge, provide explanations for the argument roles. These
explanations will be regarded as argument extraction rules and should be presented in the following
format:

Rule output format:
**Role Semantics Rule**
[Argument Role]: “Role Semantics Rule”
**Argument Validity Rule**
[Argument Role]: “Argument Validity Rule”
**Argument Span Rule**
[Argument Role]: “Argument Span Rule”

Table 6: Prompt for inducing LLMs to generate initial rules based on pretrained knowledge.

Feedback information: You made a mistake in predicting the roles of arguments that do not exist in the
text. You need to focus on updating the Argument Validity Rule for these argument roles: Date.
There are no missing predicted argument roles.
Argument roles are predicted correctly but event arguments are wrong. Details:
For Age, you incorrectly predicted the following 1 text fragments: “38 years old” as event arguments.
Additionally, you missed 1 correct event arguments: “38-year-old”
For Location/Hospital, you incorrectly predicted the following 2 text fragments: “Santiago” and “Nuevo
Leon” as event arguments.
Additionally, you missed 2 correct event arguments: “a local road in the municipality of Santiago, some
30 km (18.6 miles) away from Monterrey” and “a rural road early on Wednesday outside his town of
Santiago”
For Perpetrator, you incorrectly predicted the following 1 text fragments: “drug cartels” as event
arguments.

Table 7: A complete example of an error feedback prompt.
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Objective: Your task is to further refine the three corresponding rules for each argument role based on the
predicted results and real annotations of the current example. In the process of refining rules, you need
to pay attention to two points:

The meanings of three fine-grained hierarchical rules: 1.Each argument role has three rules, and the
definition and objectives of each rule are as follows:
Role Semantics Rule: Elaborate on the mean of argument roles in the context of {EVENT_TYPE}
event. The definition should specify its role within the event rather than being a generic concept. For
example, if the argument is “Fire Date,” define it as “the date when the fire occurred” rather than just “a
date expression.”
Argument Validity Rule: Define the conditions or give examples of trigger words that often trig-
ger the existence of the argument character for deciding whether this argument role is present in
{EVENT_TYPE} event. You need to provide strict rules, that is, only if there are argument correspond-
ing to the argument role in the main descriptive text fragment about the {EVENT_TYPE} event, the
argument role will exist. If some words in the text frequently trigger the existence of a certain argument
role, the trigger word can be added to the corresponding rule of that argument role; For example, the
word “against” often triggers the role of the Protest Reason of Protest events.
Argument Span Rule: Guide the model to extract complete arguments spans that are consistent with the
actual annotations, helping the model determine the start and end spans of argument. (e.g., “197 deaths
and 165 injuries” instead of “197 deaths, 165 injuries”).

Update rule guidance: 2.Ensure that each rule is clear and concise. Please note that the rules you refine
must have generalization, not just be customized for the current example. You should focus more on
obtaining more detailed and accurate argument extraction rules from the predicted results of the current
example, so that the final rules can better perform document level event argument parameter extraction
tasks; You will be provided with three current rules for each argument role, which are rules summarized
by accumulating previous examples. When further refining based on the current example, you need to
pay more attention to the argument roles with prediction errors, analyze the differences between the
predicted results and the true annotations, and further refine the corresponding rules for this erroneous
argument role on the basis of existing rules.

Document context: The text content is omitted here.
Detailed information on error feedback: Below are the validation details showing the discrepancies

between the predicted results and the correct annotations:
Current rules:

{“Role Semantics Rule”: {“Age”: , “Date”: , “Deceased”: , “Location/Hospital”: , “Perpetrator”: },
“Argument Validity Rule”: {“Age”: , “Date”: , “Deceased”: , “Location/Hospital”: , “Perpetrator”: } ,
“Argument Span Rule”: {“Age”: , “Date”: , “Deceased”: , “Location/Hospital”: , “Perpetrator”: }}

Rule output format: Output Format (Follow Exactly) The phrase **Role Semantics Rule**, **Argument
Validity Rule**, **Argument Span Rule** is part of the output. It is not a placeholder or a title—it is a
required part of the final output and must be included exactly as shown. And Each [Argument Role]
must be written exactly as given in the provided argument roles. Your final output **must** strictly
follow this structure: Please make sure to use this format -[Argument Role] instead of any other format.
Rule output format:
**Role Semantics Rule**
[Argument Role]: “Role Semantics Rule”
**Argument Validity Rule**
[Argument Role]: “Argument Validity Rule”
**Argument Span Rule**
[Argument Role]: “Argument Span Rule”

Table 8: The complete prompt for refined hierarchical rules incorporating error feedback.
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Objective: Your task is Event Argument Extraction. In this task, you will be provided with a document
that describes an event and the goal is to extract the event arguments that correspond to each argument
role associated with the event. The terminologies for this task is as follows:
Key Terminologies:
Event argument: an entity mention, temporal expression or value that serves as a participant or attribute
with a specific role in an event. Event arguments should be quoted exactly as the it appears in the given
document.
Argument role: the relationship between an argument to the event in which it participates.
rules list: serving as guiding principles or strategies to aid the extraction of event arguments, tailored to
specific argument roles.
Specifically, you will use a set of given rules for argument roles to complete the event argument
extraction task for the provided document.

Example task:
Question: Extract the event arguments of giver, beneficiary, and recipient in the “transac-
tion.transaction.giftgrantprovideaid” event in the provided document, with the trigger word being
“granted”, highlighted between “<t>” and “</t>”. When pinpointing each event argument, it’s crucial to
quote the entity exactly as it appears in the text. If an event argument is not explicitly mentioned or
cannot be directly associated with the event indicated by the trigger word, please respond with “not
specified”.
Document: a news document
Trigger sentence: “The access to the research center in the city was <t>granted</t> by the administrator.
The man, Ripley Johnson, earned it.”
Answer: Elaborate the meaning of event type:
“transaction.transaction.giftgrantprovideaid”: The event involves a transfer of money or resources in the
form of a gift, grant, or provision of aid, signaled by the action of granting.
Recognizing [giver] in the given document:
Step 1: Identify the argument of [giver] based on Optimal Hierarchical Rules. The given rules of [giver]
in the Optimal Hierarchical Rules is: “Here is the content of the given rules of [giver] in the Optimal
Hierarchical Rules”.
Step 2: Applying Optimal Hierarchical Rules to the document, the argument of [giver] is “administra-
tor”.
Recognizing [recipient] in the given document:
Step 1: Identify the argument of [recipient] based on Optimal Hierarchical Rules. The given rules of
[recipient] in the Optimal Hierarchical Rules are: “Here is the content of the given rules of [recipient]
in the Optimal Hierarchical Rules”.
Step 2: Applying Optimal Hierarchical Rules to the document, the argument of [recipient] is “Ripley
Johnson”.

Target task:
Question: Extract the event arguments of place, and participant in the “contact.discussion.meet” event
in the provided document, with the trigger word being “debate”, highlighted between “<t>” and “</t>”
in the news document. When pinpointing each event argument, it’s crucial to quote the entity exactly as
it appears in the text. If an event argument is not explicitly mentioned or cannot be directly associated
with the event indicated by the trigger word, please respond with “not specified”.

Document: The text content is omitted here.
Trigger sentence: “ ”
Prioritize the identification of event arguments within the specified trigger sentence. If an event
argument is not explicitly mentioned, please answer “not specified”.

rules list:
{“Optimal Hierarchical Rules”: {“place”: , “participant”: }}

Answer: (adapting the format of the answer in the example):

Table 9: The Demonstration for RAMS Dataset.
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Objective:
Objective: Your task is Event Argument Extraction. In this task, you will be provided with a document

that describes an event and the goal is to extract the event arguments that correspond to each argument
role associated with the event. The terminologies for this task is as follows:
Key Terminologies:
Event argument: an entity mention, temporal expression or value that serves as a participant or attribute
with a specific role in an event. Event arguments should be quoted exactly as the it appears in the given
document.
Argument role: the relationship between an argument to the event in which it participates.
rules list: serving as guiding principles or strategies to aid the extraction of event arguments, tailored to
specific argument roles.
Specifically, you will use a set of given rules for argument roles to complete the event argument
extraction task for the provided document.

Example task:
Question: Extract the event arguments of “Date”, “Casualties and Losses”, “Magnitude”, “Number of
Destroyed Building” in the “Fire” event in the provided news document. When pinpointing each event
argument, it’s crucial to quote the entity exactly as it appears in the text. Note that if an event argument
is not explicitly mentioned or cannot be directly associated with its argument role in question, please
respond with “not specified”.
Document: a news, the content is omitted here
Answer: Elaborate the meaning of event type:
“Fire”: The event involves the rapid combustion of materials, resulting in the release of heat, light, and
flame, often accompanied by smoke.
Recognizing [Date] in the given document:
Step 1: Identify the argument of [Date] based on Optimal Hierarchical Rules. The given rules of [Date]
in the Optimal Hierarchical Rules is: “Here is the content of the given rules of [Date] in the Optimal
Hierarchical Rules”.
Step 2: Applying Optimal Hierarchical Rules to the document, the argument of [Date] is “not specified”.
Recognizing [Casualties and Losses] in the given document:
Step 1: Identify the argument of [Casualties and Losses] based on Optimal Hierarchical Rules. The
given rules of [Casualties and Losses] in the Optimal Hierarchical Rules are: “Here is the content of the
given rules of [Casualties and Losses] in the Optimal Hierarchical Rules”.
Step 2: Applying Optimal Hierarchical Rules to the document, the argument of [Casualties and Losses]
is “claimed 142 deaths” and “800 houses were damaged”.
Recognizing [Magnitude] in the given document:
Step 1: Identify the argument of [Magnitude] based on Optimal Hierarchical Rules. The given rules
of [Magnitude] in the Optimal Hierarchical Rules are: “Here is the content of the given rules of
[Magnitude] in the Optimal Hierarchical Rules”.
Step 2: Applying Optimal Hierarchical Rules to the document, the argument of [Magnitude] is “6.6”.

Target task:
Question: Extract the event arguments of “Suspect”, “Criminal Evidence”, “Police”, “The Charged

Crime”, “Arrest Location” in the “CommitCrime - Arrest” event in the provided news document below.
When pinpointing each event argument, it’s crucial to quote the entity exactly as it appears in the text.

Document: The text content is omitted here.

rules list:
{“Optimal Hierarchical Rules”: {“Suspect”: , “Criminal Evidence”: , “Police”: , “The Charged Crime”:
, “Arrest Location”: }}

Answer: (adapting the format of the answer in the example):

Table 10: The Demonstration for DocEE Dataset.

16


	Introduction
	Preliminary Study
	Hierarchical Rules
	Role Semantics Rule
	Argument Validity Rule
	Argument Span Rule

	Impact of Hierarchical Rules Towards ICL Performance

	Approach
	Task Definition
	Overview
	Inference
	Hierarchical Rule Optimization Framework

	Experiments
	Experimental Setup
	Overall Experimental Results
	Ablation Study

	Analysis
	Results from Different Iterations
	Error Analysis and Case Study

	Related Work
	Document-level EAE
	In-context learning

	Conclusion
	Dataset and Model
	Dataset statistics
	Implementation Details
	Details of baseline models

	Comparison with Fully Supervised Methods
	Full Prompts

