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Abstract

We formulate a stochastic process, FILEX, as a mathematical model of lexicon1

entropy in deep learning-based emergent language systems. Defining a model2

mathematically allows it to generate clear predictions which can be directly and3

decisively tested. We empirically verify across four different environments that4

FILEX predicts the correct correlation between hyperparameters (training steps,5

lexicon size, learning rate, rollout buffer size, and Gumbel-Softmax temperature)6

and the emergent language’s entropy in 20 out of 20 environment-hyperparameter7

combinations. Furthermore, our experiments reveal that different environments8

show diverse relationships between their hyperparameters and entropy which9

demonstrates the need for a model which can make well-defined predictions at a10

precise level of granularity.11

1 Introduction12

The methods of deep learning-based emergent language provide a uniquely powerful way to study13

the nature of language and language change. In addressing these topics, some papers hypothesize14

general principles describing emergent language. For example, Resnick et al. [2020] hypothesize a15

predictable relationship exists between compositionality and neural network capacity, and Kharitonov16

et al. [2020] hypothesize a general entropy minimization pressure in deep learning-based emergent17

language. In many cases, these hypotheses are derived from intuitions and stated in natural language;18

this can lead to ambiguous interpretation, inadequate experiments, and ad hoc explanations. To this19

end, we study a general principle of emergent language by proposing a mathematical model which20

generates a testable hypothesis which can be directly evaluated through the empirical studies, akin to21

what we find prototypically in natural science.22

We formulate a stochastic process, FILEX, as a mathematical model of lexicon entropy in deep23

learning-based emergent language systems1 (ELS). We empirically verify across four different24

environments that FILEX predicts the correct correlation between hyperparameters (training steps,25

lexicon size, learning rate, rollout buffer size, and Gumbel-Softmax temperature) and the emergent26

language’s entropy in 20 out of 20 environment-hyperparameter combinations.27

There are three primary reasons for using an explicitly defined model for studying a topic like28

emergent language: clarity, testability, and extensibility. A mathematical model yields a clear,29

unambiguous interpretation since its components have precise meanings; this is especially important30

when conveying such concepts in writing. It is easier to test a model than a hypothesis articulated31

in natural language because the model yields clear predictions which can be shown to be accurate32

or inaccurate; as a result, models can also be directly compared to one another. Our experiments33

1Emergent language system or ELS refers to the combination of agents (neural networks), the environment,
and the training procedure used as part of an emergent language experiment.
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reveal that different environments show diverse relationships between their hyperparameters and34

entropy which demonstrates the need for such clarity in making well-defined predictions at a precise35

level of granularity. Finally, mathematical models hypothesize a mechanism for an observed effect36

and not simply the effect itself (with a possibly ad hoc explanation). This is what facilitates their37

extensibility since a multitude of hypotheses can be derived from these mechanisms; furthermore,38

this “mechanical” nature allows future work to build directly on top of the model.39

As mathematical models are seldom used to their full potential in studying emergent language, this40

paper is meant to serve as a reference and starting point for entire methodology of developing and41

testing such models. We articulate our contributions as follows:42

• Defining a mathematical model of lexicon entropy in emergent language systems which we43

demonstrate to be accurate in predicting hyperparameter-entropy correlations.44

• Presenting a case study of defining and empirically evaluating a mathematical model in45

emergent language.46

• Provide a direct, intuitive comparison of the effects of hyperparameters on lexicon entropy47

across different environments.48

We briefly discuss related work in Section 2. In Section 3, we introduce the mathematical model,49

FILEX, as well as the ELSs. Empirical evaluation is presented in Section 4 and discussed in50

Section 5, concluding with Section 6. Code is available at https://example.com/reponame (in51

supplemental material while under review).52

2 Related work53

For a survey of deep learning-based emergent language work, please see Lazaridou and Baroni54

[2020]. Contemporary deep learning-based emergent language research often aims at establishing and55

refining general principles about emergent language. In large part, these principles can be expressed56

as relationships between certain characteristics of the environment or agents (e.g., model capacity57

[Resnick et al., 2020], population size [Rita et al., 2022]) and properties of the emergent language58

(e.g., compositionality [Resnick et al., 2020, Rodríguez Luna et al., 2020], entropy [Kharitonov et al.,59

2020, Chaabouni et al., 2021, Rita et al., 2022], and generalizability [Chaabouni et al., 2020, Guo60

et al., 2021, Słowik et al., 2020]). Some of these works [Kharitonov et al., 2020, Khomtchouk and61

Sudhakaran, 2018, Resnick et al., 2020] make use of mathematical models to describe parts of the62

hypotheses and/or experiments, but these fall short of establishing a clear model which generates a63

testable hypothesis which is then evaluated through the empirical studies.64

Pre-deep learning emergent language research frequently relied on mathematical models [Skyrms,65

2010, Kirby et al., 2015, Brighton et al., 2005], but such models played a different role. Whereas66

these models were meant to account for some property of language observed in human language, the67

model presented in this paper is accounting for emergent language directly (and human language68

only indirectly). Thus, this paper presents a (mathematical) model of a (computational) model which,69

in the future, will be used to more directly study human language.70

3 Methods71

3.1 Model72

FILEX (“fixed lexicon stochastic process”) is a mathematical model developed from the Chinese73

restaurant process [Blei, 2007, Aldous, 1985], a stochastic process where each element in the sequence74

is a stochastic distribution over the positive integers (i.e., a distribution over distributions). The75

analogy for the Chinese restaurant process is a restaurant with tables indexed by the natural numbers;76

as each customer walks in, they sit at a random table with a probability proportional to the number of77

people already at that table. The key property here is that the process is self-reinforcing; tables with78

many people are likely to get even more. By analogy to language, the more a word is used the more79

likely it is to continue to be used. For example, speakers may develop a cognitive preference for it, or80

it gets passed along to subsequent generations as a higher rate [Francis et al., 2021].81
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Algorithm 1 FILEX pseudocode

1 alpha: float > 0
2 beta: int > 0
3 N: int > 0
4 S: int > 0
5
6 weights = array(size=S)
7 weights.fill(1 / S)
8 for _ in range(N):
9 W += sample_multinomial(W / sum(W), beta) / beta

10 w_copy = weights.copy()
11 for _ in range(beta): # equivalent to normalized multinomial
12 i = sample_categorical(w_copy / sum(w_copy ))
13 weights[i] += alpha / beta
14 return weights / sum(weights)

Formulation FILEX is defined as a sequence of stochastic vectors indexed by N ∈ N+ given by:82

FILEX(α, β, S,N) =
w(N)

∥w(N)∥1
(1)

w(n+1) = w(n) + α
x(n)

β
(2)

x(n) ∼ Multi
(
β,

w(n)

∥w(n)∥1

)
(3)

w(1) =
1

S
· (1, 1, . . . , 1) ∈ RS (4)

where w(n) is a vector of weights, α ∈ R>0 controls the weight update magnitude, β ∈ N+ controls83

the variance of the updates, S ∈ N+ is the size of the weight vector (i.e., lexicon), and Multi(k,p) is84

a k-trial multinomial distribution with probabilities p ∈ RS . The pseudocode describing FILEX is85

given in Algorithm 1. Conceptually, the process starts with an S-element array of weights initialized86

to 1/S. At each iteration we draw from a β-trial multinomial distribution parameterized by the87

normalized weights.2 This multinomial sample is multiplied by α/β and added to the weights so that88

the update magnitude is α. This proceeds N times. Since the sequence elements are the normalized89

weights, the elements are themselves probability distributions; thus, FILEX is technically a sequence90

of distributions over distributions.91

The two key differences between FILEX and the Chinese restaurant process are the hyperparameters92

S and β.3 FILEX has a fixed number of parameters so as to match the fact that the agents in the ELS93

have a fixed-size bottleneck layer, that is, a fixed lexicon. Secondly, β is introduced to modulate94

the smoothness of parameter updates. It is closely connected to the fact that certain RL algorithms95

like PPO accumulate a buffer of data points from the environment with the same parameters before96

performing gradient descent.97

3.2 Environments98

To evaluate , we use four different reinforcement learning environments in our experiments. These99

are inhabited by two deep learning-based agents: (1) a sender agent which receives an observation100

and produces a message and (2) a receiver agent which receives a message (and possibly additional101

observation) and takes an action. The agent architecture and optimization are detailed Section 3.3.102

NODYN The “no dynamics” environment is a proof-of-concept environment which is not intended103

to be realistic but rather to match as closely as possible the simplifying assumptions which FILEX104

2The β-trial multinomial sample is written as β i.i.d. samples from a categorical distribution to draw parallels
to PPO in Algorithm 2.

3Note that α in FILEX is actually equivalent to the inverse of α in the Chinese restaurant process.
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makes while keeping the same neural architecture in the environments below. As the name suggests,105

the primary simplification in this environment is that there are trivial dynamics, that is, every episode106

immediately ends with reward of 1 no matter what the sender or receiver do. The sender input and107

receiver output are identical to those of NAV, defined below. Just as FILEX assumes that every108

instance of word use is reinforced, this process reinforces every message which the sender produces.109

RECON The reconstruction game [Chaabouni et al., 2020], in the general case, mimics a discrete110

autoencoder: the input value is translated into a discrete message by the sender, and the receiver111

tries to output the original input based on the message. For a given episode, the sender observes112

x ∼ U(−1, 1) and produces a message; the receiver’s action is a real number x̂, yielding a reward113

(x− x̂)2.114

SIG The signaling game environment comes from Lewis [1970] and has been frequently used115

in the literature [Lazaridou et al., 2017, Bouchacourt and Baroni, 2018]. In this setup, the data is116

partitioned into a fixed number of discrete classes. The sender observes a datum from one of the117

classes and produces a message; the receivers observes this message, the sender’s datum, and data118

points from other classes (i.e., “distractors”). The reward for the environment is 1 if the receiver119

correctly identifies the sender’s datum among the distractors and 0 otherwise.120

To eliminate the potential confounding factors from using natural inputs (e.g., image embeddings121

[Lazaridou et al., 2017]), we use a synthetic dataset. For an n-dimensional signaling game, we have122

2n classes. Each class is represented by an isotropic multivariate normal distribution with mean123

(µ1, µ2, . . . , µn) where µi ∈ {−3, 3}. Observations of a given are samples of its corresponding124

distribution. For example, in the 2-dimensional game, the 4 classes would be represented by the125

distributions: N ((−3,−3), I2), N ((3,−3), I2), N ((−3, 3), I2), and N ((3, 3), I2) (we use a 5-126

dimensional signaling game for our experiments with 32 classes). The motivation for this setup is127

minimal need for feature extraction while still using real-valued, stochastic inputs.128

NAV For a multi-step environment, we use a 2-dimensional, obstacle-free navigation task. The129

sender agent observes the (x, y) position of a receiver and produces a message; the receiver moves130

by producing an (x, y) vector. For a given episode, the receiver is initialized uniformly at random131

within a circle and must navigate towards a smaller circular goal region at the center. The agents are132

rewarded for both reaching the goal and for moving towards the center. An illustration is provided in133

Appendix A. The receiver’s location and action are continuous variables.134

3.3 Agents135

Architecture Our architecture comprises two agents, conceptually speaking, but in practice, they136

are a single neural network. The sender and receiver are randomly initialized at the start of training,137

are trained together, and are tested together. The sender itself is a 2-layer perceptron with tanh138

activations. The sender’s input is environment-dependent. The output of the second layer is passed to139

a Gumbel-Softmax bottleneck layer [Maddison et al., 2017, Jang et al., 2017] which enables learning a140

discrete, one-hot representation.4 The activations of this layer can be thought of as the words forming141

the lexicon of the emergent language. Messages consist only of a single one-hot vector (word) passed142

from sender to receiver. At evaluation time, the bottleneck layer functions deterministically as an143

argmax layer, emitting one-hot vectors. The receiver is a 1-layer perceptron which takes the output of144

the Gumbel-Softmax layer as input. The receiver’s output is environment-dependent. An illustration145

and precise specification are provided in Appendices A and B.146

Optimization Although only our NAV environment involves multi-step episodes, using a full147

reinforcement learning algorithm across all environments benefits comparability and extensibility148

in future work. Specifically, we use proximal policy optimization (PPO) [Schulman et al., 2017]149

paired with Adam [Kingma and Ba, 2015] to optimize the neural networks. PPO is widely used RL150

algorithm which selected primarily for its stability (e.g., training almost always converges, minimal151

hyperparameter tuning); attempts to train with “vanilla” advantage actor critic did not consistently152

4Using a Gumbel-Softmax bottleneck layer allows for end-to-end backpropagation, making optimization
faster and more consistent than using a backpropagation-free method like REINFORCE [Kharitonov et al., 2020,
Williams, 1992]. Nevertheless, future work may want to use REINFORCE for its more realistic assumptions
about communication.
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Algorithm 2 PPO pseudocode

1 n_updates: int >= 0
2 buffer_size: int > 0
3
4 for _ in range(n_updates ): # outer loop
5 rollout_buffer = []
6 for _ in range(buffer_size ): # inner loop
7 episode = run_episode(model , environment)
8 rollout_buffer.append(episode)
9 update_parameters(model , rollout_buffer)

converge. We use the PPO implementation of Stable Baselines 3 (MIT license) built on PyTorch153

(BSD license) [Raffin et al., 2019, Paszke et al., 2019].154

One relevant characteristic of PPO and similar algorithms is that in their training they contain an155

inner and outer loop analogous to FILEX (Algorithm 1); this is illustrated in Algorithm 2. The (main)156

outer loop consists of two steps: the inner loop which populates a rollout buffer with “experience”157

from the environment and the updating of parameters based on that buffer. What is important to note158

is that the buffer is populated with data from the same model parameters, and it is not until after this159

that model parameters change.160

3.4 Hypothesis161

Here we state the hypothesis used to evaluate FILEX. The sign of hyperparameter-entropy correlation162

observed in FILEX will be the same as what we observe for a corresponding hyperparameter in the163

ELSs. We can state this more formally as: for each pair of corresponding hyperparameters (h, h′) in164

FILEX and an ELS respectively,165

sgn(corr(D)) = sgn(corr(D′)) (5)
D = {(x,H(y)) | x ∈ Xh, y ∼ FILEXh=x} (6)

D′ = {(x,H(y)) | x ∈ Xh′ , y ∼ ELSh′=x} (7)

H(y) = −
S∑

i=1

yi log2 yi (8)

where corr(·) is the Kendall rank correlation coefficient (τ ) [Kendall, 1938], FILEXh=x is the distri-166

bution over frequency vectors yielded by the model for hyperparameter h set to x (assume likewise167

for ELSh′=x), H is Shannon entropy, and Xh is the set of experimental values for hyperparameter168

h. A “sample” from an ELS consists of training the agents in the environment, and estimating word169

frequencies by collecting the sender’s messages over a random sample of inputs. Accordingly, our170

null hypothesis is that FILEX does not meaningfully correspond to the ELSs, and thus the signs of171

correlation would be expected to match with a probability 0.5.172

We intentionally formulate our hypothesis at this level of granularity: equality of direction (sign)173

of correlation rather stronger claims such as raw correlation: |corr(D) − corr(D′)| < ϵ or mean174

squared error: 1/|X| ·
∑

x∈X(D(x)−D′(x))2. We select this level of direction of correlation for a175

few reasons. The level of simplicity of FILEX compared to the ELSs means that the unaccounted for176

factors would make supporting stronger hypotheses too difficult; furthermore, even if the hypothesis177

were defended, it would be less widely applicable for the same reasons. Additionally, the current178

literature tends to speak of the general principles of emergent language at the level of “relationships”179

and “effects” rather than exact numeric approximations [Kharitonov et al., 2020, Resnick et al., 2020].180

Corresponding Hyperparameters A key component of the hypothesis is the correspondence of181

hyperparameters of the ELSs with those of FILEX. These correspondences are the foundation for182

applying reasoning about FILEX to the ELSs; accordingly, they also determine how the model will be183

empirically tested. We present five pairs of corresponding environment-agnostic hyperparameters in184

Table 1. Although environment-specific hyperparameters can easily correspond with those of FILEX185

we chose the agnostic for ease of experimentation and comparison.186
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Table 1: Corresponding hyperparameters in the ELSs and FILEX.

ELS FILEX

Time steps N
Lexicon size S
Learning rate α
Buffer size β
Temperature β

Table 2: Kendall’s τ ’s for various configurations. All values have a significance of p ≤ 0.01.

Environment Time Steps Lexicon Size Learning Rate Buffer Size Temperature

FILEX −0.53 +0.67 −0.87 +0.93 +0.93
NODYN −0.81 +0.12 −0.74 +0.07 +0.58
RECON −0.17 +0.93 −0.35 +0.84 +0.68
SIG −0.49 +0.15 −0.16 +0.30 +0.49
NAV −0.81 +0.36 −0.84 +0.20 +0.68

To identify these correspondences, it is important to understand the intuitive similarities between the187

ELSs and FILEX. Firstly, the weights of FILEX correspond the learned likelihood with which a given188

bottleneck unit is used in the ELS; in turn, both of these correspond to the frequency with which a189

word is used in a language. Each iteration of FILEX’s outer loop is analogous to a whole cycle in190

the ELS of simulating episodes in the environment, receiving the rewards, and performing gradient191

descent with respect to the rewards (compare Algorithms 1 and 2).192

Based on this analogy, we can explain the corresponding hyperparameters as follows. N corresponds193

the number of parameter updates taken throughout the course of training the ELS (i.e., the outer loop194

of PPO). S corresponds the size of the bottleneck layer in the ELS. α corresponds to the learning195

rate (i.e., magnitude of parameter updates) in the ELS. The ELS has two analogs of β. First, β196

corresponds to the rollout buffer size of PPO because both control the number of iterations of the197

inner loop of training where episodes are collected before updating the weights. Second, β, more198

generally, control how smooth the updates to FILEX’s weights are which makes it analogous to the199

temperature of the Gumbel-Softmax distribution in the ELS since a higher temperature results in200

smoother updates to the bottleneck’s parameters.201

4 Experiments202

Our experiments consist of comparing the correlation between the hyperparameters of FILEX and203

the ELSs and the Shannon entropy of lexicon at the end of training. The entropy for the ELSs is204

calculated based on the bottleneck unit (word) frequencies gathered by sampling from the sender’s205

input distribution. To gather data for FILEX, we run a Rust implementation of a sampling algorithm.206

Each experiment consists of a logarithmic sweep of a hyperparameter plotted against the entropy207

yielded by those hyperparameters (see Appendix B for details).208

Each point in the resulting scatter plots corresponds to an independent run of the model or ELS209

with the hyperparameter on the x-axis and entropy on the y-axis. The plots also include a Gaussian210

convolution of the data points (the solid line) to better illustrate the general trend of the data. The211

plots are presented in Figure 1 with the rank correlation coefficients in Table 2.212

5 Discussion213

5.1 Model evaluation214

Looking at the signs of correlations shows that FILEX makes the correct prediction 20 out of 20 times.215

Given a simple one-sided binomial test, the empirical data rejects the null hypothesis at p < 0.001.216
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Time Steps Lexicon Size Learning Rate Buffer Size Temperature

FI
LEX

: 0.53 : +0.67 : 0.87 : +0.93 : +0.93

N
O

D
Y

N

: 0.81 : +0.12 : 0.74 : +0.07 : +0.58

R
EC

O
N

: 0.17 : +0.93 : 0.35 : +0.84 : +0.68

SI
G

: 0.49 : +0.15 : 0.16 : +0.30 : +0.49

N
AV

: 0.81 : +0.36 : 0.84 : +0.20 : +0.68

Figure 1: Plots of hyperparameters (x-axis, log scale) vs. entropy (y-axis) . Each row corresponds to
a particular environment. Each column corresponds to a particular hyperparameter. All y-axes are on
the same scale with the dashed lines representing min/max entropy. The points are individual runs
and the lines are a Gaussian convolution of the points.

Although this number drops to 15 out of 20 if we require |τ | ≥ 0.2, the binomial test rejects the null217

hypothesis with p = 0.02 for this stronger hypothesis.218

Though the directions of correlations predicted by FILEX are correct, looking at the plots show that219

ELSs do not always demonstrate the monotonicity predicted by the model. This is especially evident220

in Time Steps for RECON: moving left-to-right, the plot follows a similar path to the other environment221

and FILEX at first but then diverges halfway through with increasing entropy. A possible explanation222

of this is that RECON allows learning new, useful words more easily than SIG or NAV, meaning that223

additional training can lead to further improvement. The conclusion we draw from these plots is that224

FILEX correctly predicts a sort of baseline correlation between the hyperparameters and entropy.225

Other works, Kharitonov et al. [2020], Chaabouni et al. [2021] for example, find similar correlations226

between entropy and bottleneck temperature. Nevertheless, this correlation can be overridden by the227

specifics of the environment.228

5.2 Environment variability229

When looking beyond just the direction of correlation at the slopes and shapes of the curves, the four230

ELSs all present unique set of relationships between entropy their hyperparameters. This implies231

that none of these environments are reducible to each other, that is, we cannot make observations232

about one environment and automatically assume they apply to other environments. Certainly this233

makes an researcher’s task harder as learning general principles would not be possible from a single234

environment. Furthermore, there is a sensitivity to hyperparameters within a given environment,235

which would imply that discovering general principles within single environment could not be done236

with just a single set of hyperparameters.237
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Although this diversity in behavior makes modeling it more difficult, it also shows the importance238

of precision we get from a mathematical model. For example, say RECON has not been empirically239

tested and we wanted to predict the lexicon size-entropy relationship in RECON. It is the case that240

we could simply observe the positive correlations in the other environments and predict the same241

RECON, but we could easily over-extrapolate and predict a relatively shallow slope when RECON’s242

slope is relatively steep. What this paper’s model, hypothesis, and evaluation offer in this situation is243

not a more detailed prediction but a “prepackaged” prediction which is precisely stated and supported244

by data.245

5.3 Applications to future work246

There are two primary ways in which FILEX can be applied in future research. First, the model247

can be applied to and tested against further phenomena in emergent language (i.e., it is extensible).248

The fact that it is formulated mathematically means that it does not just predict correlations but249

mechanisms which account for the correlations. For example, FILEX’s β hyperparameter was250

designed to account for Buffer Size and the Temperature experiment was conducted after the fact. The251

fact that FILEX describes both Buffer Size and Temperature with the same hyperparameter suggests252

that similar mechanisms account for their positive correlations with entropy. This statement about253

similar mechanisms, on the other hand, is not present set of one-off hypotheses about hyperparameter-254

entropy correlations derived from intuition. Second, FILEX and accompanying experiments provide255

an easy way for future research to discover confounding factors in their experiments. For example,256

an experiment might show that entropy decreases as rewards are scaled up, yet FILEX would suggest257

that this might be equivalent to simply increasing the learning rate rather than being its own unique258

cause of the effect on entropy.259

5.4 Methodological difficulties260

The greatest challenge in the methodology of this work is not the formulation of the model but rather261

evaluating the quality of the model. In part, this is on account of a lack of established baseline262

model—comparative analysis (“which is better?”) is significantly easier than absolute analysis (“how263

good is this?”) yet requires an adequate baseline to compare against. But more significantly, the264

granularity of experimentation is a design decision with no obvious answer.265

For example, merely comparing the signs of rank correlations is very coarse-grained as it makes266

minimal assumptions about the data (e.g., linearity, absence of outliers) and captures very little267

information about the data. Naturally, it is easier to apply such an analysis, and as mentioned before,268

researcher typically phrase hypotheses in terms of such correlations, but it can only offer minimal269

support for applicability of the model to the actual system. On the other hand, evaluating the model’s270

ability to predict exact behavior of the system (e.g., measuring mean squared error of the model’s271

predictions) can establish a more precise link between model and system but might miss more general272

but important similarities. For example, Lexicon Size for FILEX and NAV might show similar trends,273

but be different by a constant, yielding a high mean squared error.274

A subtle but significant methodological difficulty is the selection of hyperparameters. In RECON’s275

Time Steps plot, it is easy to see that changing the range of hyperparameters could easily yield either276

a positive or a negative correlation when in reality there are both. To a certain extent, this can be277

resolved be choosing a “reasonable” range of hyperparameters based on values are typically, but this278

is of little help to selection of FILEX’s hyperparameters as there is no “typical usage.” For example,279

FILEX for β = 1 and β = 100 yield significantly different distributions, but there is no obvious280

a priori reason to say that one value of β should be preferred over the other for comparing to the281

ELSs. Although additional hyperparameters increase the range of phenomena which the model can282

account for, the additional degrees of freedom can weaken the model’s predictions by introducing283

confounding variables (cf. overparameterization).284

One of the primary contributions of this work is to serve as a case study and example of working285

with explicitly defined models in studying deep learning-based emergent language. Thus, this paper286

is starting point for future work to improve upon. One of the most important improvements would be287

finding a more rigorous way to select “reasonable” experimental hyperparameters. Additionally, it288

would be better to develop the hypothesis and experimental in full before performing any evaluation;289

the process was somewhat iterative in this paper.290
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6 Conclusion291

We have presented FILEX as a mathematical model of lexicon entropy in deep learning-based292

emergent language systems and demonstrated that, at the level of correlations, it accurately predicts293

the behavior of our emergent language environments. Opting for a mathematical model possesses294

the benefits of having a clear interpretation, making testable predictions, and being reused for new295

predictions in future studies. Although the model’s hypothesis was testable, the process is not free296

from non-trivial design decisions which affect the quality of evaluation. Nevertheless, this paper297

serves as starting point and example of how more rigorous models can be applied to the study of298

emergent language.299
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A Emergent language system illustration439

Goal

(a) The receiver (pictured) is rewarded for
moving towards the goal region at the center
in the NAV environment.

S-agent
(perceptron)

R-agent
(perceptron)

(x, y)
action

(x, y)
location

Gumbel-Softmax

(b) The agent architecture for NAV.

Figure 2

B Experiment parameters440

Each experiment uses a logarithmic sweep across hyperparameters; the sweep is defined by Equation 9,441

where x and y are the inclusive upper and lower bounds respectively and n is the number steps to442

divide the interval into. The floor function is applied if the elements must be integers.443

LS(x, y, n) =
{
x ·

(y
x

) i
n−1

∣∣∣∣ i ∈ {0, 1, . . . , n− 1}
}

(9)

Hyperparameter Default Low High Steps

N 103 100 103 1000
S 26 23 28 1000
α 1 10−3 103 1000
β 8 100 103 1000

Table 3: Hyperparameters for the empirical evaluation of FILEX. “Low” and “High” refer to the
logarithmic sweep used for that experiment; default values used for all other experiments.

Hyperparameter Default Low High Steps

Time steps 2 · 105 102 106 600
Bottleneck size 26 23 28 600
Learning rate 3 · 10−3 10−4 10−1 600
Buffer size 28 23 210 600
Temperature 1.5 10−1 101 600

Table 4: Hyperparameters for the empirical evaluation of FILEX. “Low” and “High” refer to the
logarithmic sweep used for that experiment; default values used for all other experiments. Please see
code for further details and default values.
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