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ABSTRACT

Segment anything model (SAM) and its variants have recently shown promising
performance as foundation models. However, existing SAM-based models can
only handle scenarios seen during training, and usually suffer unstable perfor-
mance when transferring to real-world unseen data, such as low-light, rainy or
blurred images, which is crucial for applications such as autopilot. Therefore,
adapting SAM-based models for real-world degradation while not impairing its
original ability remains an open challenge. In this work, we propose a novel gated
Mixture-of-Experts (MoE) structure, called RouGE, to improve the robustness of
SAM-based models. Specifically, RouGE uses multiple lightweight probability
gates to decompose complex real-world image conditions and judge whether the
feature needs to be adjusted as well as to what extent the adjustment needs to be
done, then handle them differently with a set of low-rank experts. During the in-
ference stage, RouGE processes input images in a completely blind manner thus
improving the model’s performance in real-world scenarios. Extensive experi-
ments demonstrate that RouGE consistently achieves state-of-the-art results on
both degraded and clean images compared with other methods while tuning only
1.5% of parameters.

1 INTRODUCTION

Segment anything model (SAM) (Kirillov et al., 2023; Ravi et al., 2024) and its variants have re-
cently shown impressive performance and have been widely applied in various downstream appli-
cations, e.g., autopilot and medical image segmentation. However, existing SAM-based methods
are usually trained on clean images without degradation. Given that degradations such as low light,
rain and blur are almost unavoidable in real-world scenarios, existing models consequently suffer
unstable performance when transferring to real-world unseen data. Therefore, how to improve the
robustness of SAM-based models to deal with real-world diverse scenarios poses an open challenge.

To allow for a robust SAM-based model for real-world applications, several methods have been ex-
plored. For instance, one simple solution may use a two-step workflow with another image restora-
tion model (Li et al., 2022; Wang et al., 2024a; Potlapalli et al., 2023) before segmentation to remove
undesired degradations. Such methods rely heavily on the reconstruction results of pretrained image
restoration models and cannot handle various types of degradation (e.g., noise, blur or rain). More
importantly, restored images may not benefit high-level visual tasks as they are initially designed for
human eyes and may generate artifacts which has negative impacts on downstream tasks (Cui et al.,
2021; Chen et al., 2024). To relieve such issues, other methods involve fine-tuning segmentation
models that are tailored for specific degradation (Cui et al., 2021; Chen et al., 2023b). However,
fine-tuning on specific degradation requires prior knowledge of the degradation type of input im-
age, which is hard to achieve in real-world applications. Recently, Chen et al. (2024) proposed
RobustSAM using a post-processing module to handle real degradation, but still suffers from heavy
computational cost by increasing the model’s parameters by about 32%.

Despite attempts have been made to obtain robust SAM models, current methods still face the fol-
lowing challenges. First, fine-tuning the foundation model can inherently degrade its original per-
formance and lead to catastrophic forgetting problems. Second, the diversity of real-world degrada-
tion leads to significant variations in degradation types and a robust model needs to handle various
degradation and clean images in a completely blind manner. Third, manually labeled real-world
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Figure 1: Comparison of Three Methods. Both the 2-step approach and using specialized models
approach require obtaining prior knowledge of image categories for corresponding processing, and
their workflow is complex. A robust model that can directly handle all types of images is evidently
the optimal solution. Therefore, we propose a novel approach to empower a less-robust SAM-based
model to become a robust model.

degradation data is scarce, and practical applications often require specific scene and degradation
types, complicating model training further.

To maintain the original performance of the model, a good way is to minimize changes applied to
the pretrained model weights with the Parameter Efficient Fine-Tuning (PEFT) techniques. By fine-
tuning with almost all model parameters frozen, PEFT methods can adapt models to new domains
while preserving the model’s generalization ability at marginal cost and are widely used in both
vision and natural language fields (Houlsby et al., 2019; Jie & Deng, 2022; Chen et al., 2022; Pfeiffer
et al., 2020a; Wang et al., 2022; Yu et al., 2024). To tackle diverse data types, a natural approach
is to break down complex tasks into multiple simpler tasks. By using mixture-of-expert (MoE)-like
methods, we can decompose the complexity of real-world environments into multiple conditions,
enabling us to use a set of smaller modules to solve the complex problem. Considering the third
point, training with unlabeled images can better reduce the challenges of industrial applications.

Based on the above observations, we introduce a novel module RouGE, a plug-in Robustness-Uplift
module using Gated Experts to perform differentiated processing on degraded and non-degraded
inputs within a pretrained network. RouGE module comprises lightweight multiple probability gates
and their corresponding low-rank experts (including lazy and trainable experts), to efficiently select
suitable experts for input data and perform effective combined processing. The probability gates
provide the model with interpretable classification capabilities to handle blind input, while the design
of lazy and trainable experts endows the module with the ability to not disturb the distribution of the
model’s original parameters. Meanwhile, we propose an unsupervised imitation learning method
designed for RouGE. We use unlabeled clean images to synthesize degraded images and let the
model learn to narrow the gap between them. Through imitation learning, RouGE can be trained
using a small amount of unlabeled images (approximately 2k images for each type of degradation),
making it more suitable for industrial applications.

The main contributions of this work are summarized as follows: (i) We propose RouGE, a PEFT
module designed for making pretrained less-robust SAM-based model a robust all-in-one model
with marginal cost. The design of RouGE ensures the capability to maintain the model’s origi-
nal output features unchanged and only conduct selective feature modifications, thus avoiding the
catastrophic forgetting issue associated with fine-tuning. (ii) We propose an unsupervised imita-
tion learning approach, utilizing unlabeled images and synthesized degraded images for training,
thereby circumventing the problem of missing labeled data and facilitating easier training of ro-
bust models for industrial applications. (iii) Our comprehensive experiments demonstrate that the
RouGE method significantly enhances model robustness. Compared to the original model, RouGE
can improve segmentation accuracy for degraded inputs by 4-13% in mAP with hardly any negative
effects on results for non-degraded inputs. RouGE also outperforms other fine-tuning methods by a
significant margin, even with a low trainable parameter ratio (about 1.56%).
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2 RELATED WORKS

2.1 SAM AND ITS VARIANTS

Since the introduction of SAM, there has been a continuous emergence of derivative works (Zhang
et al., 2023b; Zhang & Jiao, 2023). Researchers in the field of medical image segmentation are
focused on fine-tuning SAM for high-quality medical image segmentation tasks (Zhang et al., 2023d;
Mohapatra et al., 2023; de Oliveira et al., 2023; Li et al., 2024; Wu et al., 2023; Hu et al., 2023; Gao
et al., 2023). In addition, there is a wealth of work fine-tuning SAM to adapt to other types of
segmentation tasks such as satellite image segmentation (Ren et al., 2024), shadow Detection (Jie
& Zhang, 2023; Chen et al., 2023c), marine animal segmentation (Zhang et al., 2024), and so on
(He et al., 2024; Williams et al., 2023; Cao et al., 2023). Considering the vast parameter count of
SAM, in real-world applications, compressed SAM models capable of real-time segmentation hold
a higher value. Through knowledge distillation and model pruning, (Zhang et al., 2023a; Zhao et al.,
2023; Xiong et al., 2023) have successfully compressed SAM models to a fraction of their original
size. The EfficientSAM (Xiong et al., 2023) uses the MEA (He et al., 2022) method to distillate
the pretrained SAM model and retains the performance of the SAM model most comprehensively.
Recently, RobustSAM (Chen et al., 2024) has similarly noted the sensitivity of SAM to real-world
degradation and used a post-processing module to handle this problem. However, their model still
has a high learnable parameter count, which demands significant computational resources for both
inference and training. By employing PEFT methods, we can effectively leverage the performance
of the base model to achieve efficient model adjustments, thereby reducing computational costs.

2.2 PARAMETER EFFICIENT FINE-TUNING

The PEFT method has been widely applied to SAM-based models (Sahay & Savakis, 2024), primar-
ily fall into prompt tuning (Wang et al., 2024b; Jia et al., 2022), adapter-like tuning (Houlsby et al.,
2019; Jie & Deng, 2022; Chen et al., 2022; Wang et al., 2020; Pfeiffer et al., 2020a; Wang et al.,
2022; Yu et al., 2024), partial tuning (Basu et al., 2024; Zaken et al., 2021) and reparameterization
fine-tuning (Jie & Deng, 2023; Lian et al., 2022; Hu et al., 2021) categories. However, the primary
application scenario of PEFT methods is fine-tuning models for downstream tasks and the original
model’s feature distribution would undergo significant disruption. To mitigate this issue, knowledge
injection (Zhang et al., 2023e;c; Wang et al., 2020) and MoE-based (Shazeer et al., 2017; Kim et al.,
2020; Yu et al., 2021) PEFT methods have been proposed. However, the former (Wang et al., 2020)
requires explicit task annotations, while the latter (Wang et al., 2022; Chen et al., 2022) yields sub-
optimal results due to the lack of clear classification methods. These methods all fail to effectively
enhance robustness.

3 METHODOLOGY

3.1 MOTIVATION

Figure 3: Impact of different type
of real-world degradation on Effi-
cientSAM

Segmentation models are sensitive to image degradation.
When facing various types of degradation, SAM and SAM-
based models may experience varying degrees of performance
loss (Ji et al., 2024; Huang et al., 2023; Qiao et al., 2023; Wang
et al., 2023). This is because degradation alters the overall or
local distribution of image features, leading the model to erro-
neous perceptions. For instance, the texture of rainwater may
cause black objects and shadows to be perceived as one en-
tity, low-light environments may render object edges difficult
to distinguish, and motion blur may lead to the cohesion of dif-
ferent objects. The SAM model exhibits relative robustness,
whereas EfficientSAM performs comparatively worse. In Fig-
ure 2, we depict the segmentation performance degradation of
SAM and the SAM-based EfficientSAM model when encoun-
tering three types of real-world degradation: low-light, motion
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Figure 2: Presentation of the impact of various degradation on SAM and SAM-based Model

blur, and rainy conditions. How to mitigate the impact of real-world degradation on SAM-based
models becomes an open challenge.

3.2 ROBUSTNESS-UPLIFT GATED EXPERTS

Fine-tuning pretrained models often leads to parameter drift, potentially resulting in models that
only achieve domain adaptation rather than robustness improvement. Adapting the model to multiple
domains simultaneously is the key point to achieving targeted robustness enhancement. Designs like
that of Adapter-Hub (Poth et al., 2023; Pfeiffer et al., 2020b) can provide manual domain switching
for models. From this, we conceive integrating multiple adapters into a single module, enabling the
module to learn automatic switching, thereby achieving performance improvements across multiple
domains. Therefore, we propose RouGE model and its unsupervised training process. RouGE
utilizes lightweight probability gates within the module to control the weights of various experts,
achieving diverse processing for different images by assigning corresponding expert proportions.

3.2.1 OVERALL FRAMEWORK

The design of the RouGE model follows three key principles: (i) Automatically differentiate differ-
ent inputs without type labels; (ii) The module should have the ability to “do nothing” to ensure that
the original performance of the base model remains undisturbed; (iii) Utilize a minimal number of
trainable parameters to ensure the module’s parameter efficiency.

To achieve the above three objectives, we present a module with multiple independent probability
gates, lazy expert (Expert 0), and trainable experts (Expert i), as shown in Figure 4. During both
training and inference stages, RouGE takes image features Ft and input features xt as inputs. Ft are
fed into the probability gates to obtain the proportions of each expert. xt are passed into each expert,
and the predicted results generated by experts are multiplied by their respective proportions before
being summed up and outputted. During the training process, synthetic image pairs of degraded and
clean images are used, aiming to enhance model robustness by aligning the model predictions of
degraded images with those of clean images. During the inference phase, arbitrary types of images
can be used without the need to distinguish whether they are degraded images or not. Next, we will
proceed to introduce each module separately.
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Figure 4: Structure of RouGE. RouGE module is inserted after the MLP layer of the transformer
block, taking the MLP output features as input. The output result of the module is merged with
the previous layer’s features to obtain the output of the transformer block. This figure shows the
structure of RouGE with 6 experts. Expert 0 is the lazy expert which directly multiplies the input
data by G0 and outputs the result. The other experts are trainable experts, composed of a dimension-
reducing linear layer, a non-linear layer, and a dimension-restoring linear layer.

3.2.2 PROBABILITY GATES

The role of the probability gates is to distinguish between different types of input data and select the
appropriate experts for processing. To reduce the noise in gate decisions, probability gates only take
the image features Ft as input. In practical applications, we use global Ft extracted from the input
image and the same Ft are used throughout the inference process for a single image. The probabil-
ities generated by the probability gates are processed to serve as the output proportion parameters
for each expert. The gate employs a lightweight structure of dual-layer fully connected layers, out-
putting a floating-point number between zero and one representing the acceptance probability.

To maintain the stability of the output features, the outputs of gates are concatenated and undergo
a softmax function. In the case of having n experts, the number of gates is n − 1. The acceptance
probability of gate i is Gi. The total rejection probability G0 is obtained by summing up the rejec-
tion probabilities of all gates and dividing by the total number of gates. After undergoing softmax
processing, the sum of all probabilities equals one, meaning the proportions of each expert sum up
to one. So we define the output of the probability gates as probability vector G.

G = Softmax([
1

n− 1

n−1∑
i

1−Gi, G1, G2, ..., Gn−1]). (1)

3.2.3 BOTTLENECK STRUCTURE EXPERTS

The probability vector G generated by the probability gates controls the weights of the experts and
makes experts specializing in the current type of degradation exert their maximum impact. Each
expert possesses its processing expertise after training and experts are divided into a lazy expert and
multiple trainable experts. Lazy expert directly forwards input features to avoid introducing any bias
and trainable experts introduce trainable parameters to fix different types of degradation.

To limit the number of trainable parameters in the model, we adopt the adapter (Houlsby et al.,
2019)-like bottleneck structure, which includes a down-projection layer with parameters WD ∈
Rm×n and an up-projection layer with parameters WU ∈ Rn×m. m is the input dimension and nis
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the bottleneck middle dimension, with n ≪ m . The experts take xt as input and output Ei(xt) of
the same size. Experts can be formulated as

Ei(xt) =

{
GeLU(xt · Wi

D) · Wi
U , i ∈ [1, n− 1]

xt, i = 0
(2)

Experts utilize a very small number of trainable parameters to ensure the efficiency of the mod-
ule’s parameters. We also compared the effectiveness of using other low-rank expert structures, as
described in section 4.4. After being weighted by G, the output yt of the module can be defined as

E = [xt, E1(xt), E2(xt), ..., En−1(xt)], (3)

yt = GET . (4)

Parameters of all experts and probability gates are updated during the entire training stage. We do
not manually specify experts for each type of input data. Instead, we allow the model to finely
decompose task types, and use combinations of multiple experts to achieve better processing results
through fully end-to-end training. By analyzing G, we show it in section 4.3.2 that the trained
RouGE model can differentiate between different types of input data and process them in a targeted
manner. Additionally, we experimentally validated the effectiveness of the lazy expert in section 4.5.

Through ablation studies, we conclude that RouGE does not need to be added to every transformer
block. Instead, adding them only to the final few blocks of the model can achieve better results and
more details can be found in appendix A.1.

3.3 LOSS FUNCTION FOR UNSUPERVISED IMITATION LEARNING

To better train the lightweight probability gate and experts and mitigate the absence of labeled de-
graded image data, we employ a method based on imitation learning to minimize noise during
training. In the field of image restoration, a significant amount of artificially synthesized degraded
datasets (such as rainy or foggy images) are proposed for restoration models. These datasets include
pairs of clean images and degraded images generated by adding specific types of degradation. Our
training method precisely leverages these datasets to teach the model how to “ignore” these degra-
dations. Since the content in the images is consistent, the segmentation of the same object should
yield identical ground truth results.

During training, we utilize models that do not include RouGE ( Mori) and use clean images Iclean
as input to obtain clean outputs Mori(Iclean) as targets T .

T = Mask(Mori(Iclean)). (5)

Next, we feed both clean images Iclean and degraded images Ideg into models containing RouGE
( MRouGE), respectively. We then compute losses by comparing the results with T separately and
perform backpropagation. The training objective is to ensure that models containing RouGE produce
consistently high-quality results when faced with a set of clean images and degraded images with
the same content. In the segment anything task, we employed the combination of Dice Loss and
Sigmoid Focal Loss as the loss function Lossdice&focal. The training loss can be described as

Lclean = Lossdice&focal(T,MRouGE(Iclean)), (6)

Ldeg = Lossdice&focal(T,MRouGE(Ideg)). (7)

4 EXPERIMENTS

We evaluated the effectiveness of RouGE on image segmentation tasks. First, we introduce the
experimental settings in section 4.1, covering the use of datasets, backbone selection, and the settings
of other baseline methods. In section 4.2, we compare RouGE with other baseline models and
provide a comprehensive analysis of the results. Next, in section 4.3, we empirically validate the
automatic classification capability and out-of-domain performance of RouGE, and also compare the
performance of restore-then-segment with RouGE. Finally, in section 4.4, we conduct other ablation
experiments to explain its superiority.
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4.1 EXPERIMENTAL SETTINGS

Datasets. We obtained the Rain200L (Yang et al., 2017), DDN (Fu et al., 2017), GoPro (Nah et al.,
2017), LIS (Chen et al., 2023a), and Snow100k (Liu et al., 2018) datasets from the image restoration
domain and split them to serve as training and testing data for the model. Additionally, we used
CityRain and CityFoggy (Cordts et al., 2015; 2016), as additional test data for experimentation.
Among these, Rain200L and DDN consist of rainy weathered image pairs created using different
methods, GoPro comprises dynamic blurry image pairs, LIS includes low-light image pairs, and
Snow100k consists of snowy weathered image pairs.

All these datasets include artificially synthesized degraded images of varying degrees as well as
their original clean images. Since the segment anything task requires a point prompt or bounding
box as input, we selected the clean images from all image pairs and obtained bounding boxes in
the images using a state-of-the-art object detection model. Subsequently, we inputted the bounding
boxes and clean images into the Segment Anything model (Kirillov et al., 2023) to obtain the ground
truth masks for the quantitative test. To avoid selecting points that are off-center from the object, we
performed an erosion operation on the ground truth mask and then randomly selected a point as the
point prompt. A set of image pairs uses the same point prompt and ground truth mask because the
non-noise information on the image pairs is identical. We utilized CLIP’s image encoder (Radford
et al., 2021) as the image feature extractor in the experiment and pre-extracted image features for
each in. The ablation study on image feature selection is in Appendix 10.

Pretrained backbone. We adopt the EfficientSAM-Ti (Xiong et al., 2023) as the backbone model
and we utilized the pretrained parameters provided by the authors of EfficientSAM. The model
comprises a transformer-based image encoder and a mask decoder. It takes the input image and
point prompt and outputs the mask of the object pointed to by that point on the image.

baseline models. We selected 8 baseline models from 4 categories of methods for comparative ex-
periments and the replicated RobustSAM on the EfficientSAM-Ti. Categorized by type, we selected
(i) full fine-tuning. (ii) adapter-based: Adapter (Houlsby et al., 2019), Convpass (Jie & Deng, 2022),
Adaptformer (Chen et al., 2022). (iii) partial fine-tuning: LN (Basu et al., 2024), Bitfit (Zaken et al.,
2021). (iv) mixture-of-adapter: Adamix (Wang et al., 2022), AdapterFusion (Pfeiffer et al., 2020a)
(v) RobustSAM (Chen et al., 2024): employing AMFG-F, AOTG, and ROT on base model, as our
baseline methods. Additionally, while the RobustSAM paper employed supervised learning, we
opted for unsupervised learning to ensure fairness.

Hyperparameter settings. In all experiments, we use AdamW as the optimizer with lr = 1e −
4, weightdecay = 5e − 2. We use the combination of dice loss and sigmoid focal loss as the loss
function and each accounts for 50%. In the absence of specific instructions, we set the number
of experts in the RouGE model to 6. Additionally, the RouGE model is only added to the last
two layers of the transformer block in the image encoder. During training, we utilized a NVIDIA
GeForce RTX 3090 GPU and the five datasets were alternated sequentially to train a robust model
capable of handling five types of degradation simultaneously.

4.2 COMPARISON WITH SOTA METHODS

4.2.1 QUANTITATIVE EXPERIMENT

We performed unsupervised training on the Rain200L, DDN, GoPro, LIS, and Snow100k datasets si-
multaneously and compared different fine-tuning methods, as shown in Table 1. As can be observed,
our proposed RouGE method demonstrates strong robustness improvement capabilities. RouGE can
significantly enhance the model’s mean average precision on both degraded and non-degraded data.
Compared to other methods, the RouGE model exhibits the greatest improvement in mAP and re-
duces the performance degradation between degraded and non-degraded data. From the table, it can
be observed that other methods fail to balance the segmentation performance between degraded and
non-degraded inputs, thus validating our argument. Moreover, the full fine-tuning method performs
poorly when the available dataset size is small. The trainable parameters of the RouGE model ac-
count for only 1.56% of the total fine-tuning parameters. In summary, the RouGE model surpasses
other methods, achieving state-of-the-art performance in enhancing robustness.

7
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Figure 5: Presentation of the Segmentation performance

Table 1: Comparison with other methods on Robustness-uplift benchmark. We report the mean
average precision (mAP) of various methods on the test set. Bold number indicates the best value
for that data type.

Rain200L DDN GoPro LIS Snow100k

Method Params Clean Rainy Clean Rainy Clean Blurry Clean Low-light Clean Snowy

Base model - 74.13 72.82 72.23 61.40 78.48 69.48 79.12 60.02 63.92 59.37
Full fine-tune 100% 69.57 67.85 65.09 62.52 61.05 59.55 64.60 59.45 58.85 59.98
LN 0.18% 75.44 74.48 72.9 69.05 78.62 71.73 78.71 65.47 64.02 62.51
Bitfit 0.51% 75.95 74.15 73.43 65.99 73.84 69.03 78.29 63.17 63.17 61.74
Adapter 1.47% 74.19 74.96 75.94 69.78 76.93 71.51 77.72 64.09 63.75 62.08
Convpass 2.00% 74.50 73.52 72.06 60.11 73.85 70.34 69.21 62.01 63.80 61.43
Adaptformer 8.61% 74.58 75.01 75.58 70.76 76.52 71.66 77.19 64.93 63.98 62.55
Adamix 3.67% 72.38 71.02 75.73 63.96 79.85 75.22 75.96 63.85 63.72 60.91
AdapterFusion 7.47% 73.92 72.67 73.71 71.61 77.72 70.61 73.19 64.45 63.62 60.09
RobustSAM 32.11% 75.66 75.82 77.47 73.33 79.75 75.74 77.06 65.20 65.00 63.19
RouGE (Ours) 1.56% 76.61 76.99 77.75 74.85 80.01 75.17 78.77 65.62 65.34 63.14

4.2.2 QUALITATIVE EXPERIMENT

In Figure 5, we show the robustness enhancement ability of RouGE. For clean image inputs, the
insertion of RouGE only brings minimal changes in segmentation outcomes. Conversely, for inputs
with various types of degradation, the insertion of RouGE significantly improved model segmenta-
tion results. This aligns with our previously conducted quantitative experiments. More segmentation
results can be found in appendix A.4

8
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Table 2: Restore-then-Segment experiments. We report the mean average precision (mAP). Bold
indicates better result.

Method Rain200L-Rainy DDN-Rainy GoPro-Blurry LIS-Low-light Snow100k-Snowy

Base model 72.82 61.40 69.48 60.02 59.37
AirNet+Base model 73.56 66.31 69.94 53.53 60.18
RouGE+Base model 76.99 74.85 75.17 65.62 63.14

4.3 DISCUSSION

4.3.1 RESTORE THEN SEGMENT?

The goal of image restoration tasks is to restore images to a form that is more friendly to the human
eye instead of downstream visual tasks. We used AirNet (Li et al., 2022) as the image restoration
model and conducted segmentation experiments on degraded images after restoration. From Table 2,
we can see that the improvement of image restoration on downstream segmentation tasks is limited.

4.3.2 TASK DISCRIMINATION CAPABILITY OF ROUGE

Figure 6: t-SNE visualization of proba-
bility vector G.

RouGE model utilizes probability gates to distinguish in-
put data, thereby achieving automatic classification and
processing of unlabeled data. The outputs of these gates
demonstrate strong interpretability and can be utilized
for feature analysis. By using the output of the proba-
bility gates in the RouGE model as features for t-SNE
clustering, we obtained a visualization that demonstrates
how the RouGE model classifies and processes the in-
put. From the clustering results, it is evident that there
is a clear distinction between degraded and non-degraded
data. Moreover, due to varying degrees of degrada-
tion, some degraded data may bear similarities to non-
degraded data, while others exhibit significant differ-
ences.

4.3.3 OUT-OF-DOMAIN EXPERIMENTS

Table 3: Out-of-domain experiments. We report the
mean average precision (mAP). Bold indicates better
result.

Cityrain Cityfoggy

Method Clean Rainy Clean Foggy

Base model 69.49 61.23 71.21 56.14
RouGE 70.27 66.60 75.38 71.29

To further demonstrate that the RouGE
model does not disrupt the original model’s
parameter distribution, we conducted out-
of-domain data experiments. We conducted
tests using the CityRain and CityFoggy
datasets, which contain road images under
normal weather conditions as well as rainy
and foggy weather conditions. We compared
the segmentation performance of the RouGE
model with that of the base model.

From Table 3, the RouGE model exhibits equally outstanding performance in out-of-domain sce-
narios, preserving the model’s original performance intact. Moreover, it demonstrates performance
improvements for similar degradation types like rainy images(Cityrain) and exhibits commendable
zero-shot performance for unseen degradation types like foggy images(Cityfoggy).

4.4 ABLATION STUDIES

4.4.1 EXPERT DESIGN

In addition to Adapter-like experts, we also explored the effectiveness of other types of experts. In
previous experiments, we found that the LN method, which fine-tunes the affine transformation pa-
rameters of the LN layers, could achieve relatively good results. Therefore, we considered testing
the use of affine-based experts. The affine expert we designed contains a set of affine transform

9
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Table 4: Test the performance of Adapter-like expert and Affine-based expert.
Rain200L DDN GoPro LIS Snow100k

Method Clean Rainy Clean Rainy Clean Blurry Clean Low-light Clean Snowy

Affine expert 74.86 75.57 75.28 70.68 80.26 73.75 78.89 65.57 65.49 63.26
Adapter expert 76.61 76.99 77.75 74.85 80.01 75.17 78.77 65.62 65.34 63.14

Table 5: Ablation study on lazy expert
Rain200L DDN GoPro LIS Snow100k

Method Clean Rainy Clean Rainy Clean Blurry Clean Low-light Clean Snowy

w/o lazy expert 75.76 77.27 76.04 71.96 79.06 75.24 77.64 64.46 63.98 63.43
w lazy expert 76.61 76.99 77.75 74.85 80.01 75.17 78.77 65.62 65.34 63.14

Table 6: Comparison between supervised and unsupervised RouGE model
Rain200L DDN GoPro LIS Snow100k

Method Clean Rainy Clean Rainy Clean Blurry Clean Low-light Clean Snowy

Base model 74.13 72.82 72.23 61.40 78.48 69.48 79.12 60.02 63.92 59.37
Unsupervised 75.44 74.48 72.9 69.05 78.62 71.73 78.91 65.47 64.02 62.51
Supervised 77.08 84.10 77.60 78.62 84.39 84.41 80.16 76.21 67.39 67.56

parameters, γ and β, similar to the trainable parameters of the layer normalization layer. The com-
parative experimental results are presented in Table 4. Based on the results, the performance of the
Adapter-like expert is better than that of the Affine-based expert.

4.5 LAZY EXPERT

The presence of lazy experts facilitates the model’s ability to handle clean images and reduces train-
ing complexity. In the experiments, we maintained the same number of trainable experts. The results
in Table 5 reflect the positive effects brought by the lazy expert.

4.5.1 SUPERVISED VS. UNSUPERVISED LEARNING

The unsupervised learning training of the RouGE model greatly reduces the cost of data acquisition.
However, at the same time, unsupervised learning also makes RouGE relatively ineffective when
faced with severely degraded types of data such as the LIS dataset. Using more accurate data la-
bels for supervised learning can further enhance the model’s capabilities. Based on unsupervised
imitation learning and switching to using ground truth labels to train degraded images instead, We
conducted a comparative experiment with supervised learning using labels generated by SAM, as
shown in Table 6.

As observed, the model’s detection accuracy on degraded images has significantly improved. There-
fore, under circumstances where obtaining data labels is feasible, you can weigh the cost and benefit
of obtaining labels to choose a more suitable training method.

5 CONCLUSION

In this paper, we propose a plugin robustness enhancement module, RouGE, which can enhance the
robustness of pretrained SAM-based models at marginal cost. Experiments conducted both within
and outside the domain demonstrate RouGE’s capability to selectively modify degraded images
while preserving the original performance of the model for clean images. Compared with existing
PEFT methods and reproduction of RobustSAM, RouGE demonstrates superiority in both robust-
ness enhancement capability and efficiency in terms of trainable parameters. RouGE model exhibits
high versatility, as it can be seamlessly integrated into any transformer block. This renders it with
the potential to be applied across various types of visual models. In the future, we will continue to
explore the application of RouGE in a broader range of visual models and tasks.
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A APPENDIX

A.1 HOW MANY EXPERTS AND ROUGES ARE NEEDED?

The number of experts and the number of RouGE directly affect the trainable parameter count.
Usually, fine-tuned models of like adapter are inserted into each transformer block. However, the
RouGE model is more of a widening rather than a deepening model, so inserting it into all trans-
former blocks may not necessarily be advantageous. The base model’s has 11 transformer layers,
and we experimented with inserting the RouGE model starting from ith layer, as shown in 7. Train-
ing was conducted for 10 epochs in all cases. The experimental results indicate that the RouGE
model is not suitable for being added to all blocks but rather for being added to the final few lay-
ers. In our previous experiments, we used the optimal configuration, adding RouGE to the last two
layers.

For the number of experts, we conducted a comparative experiment as shown in 8.When the number
of experts degrades to 2, the RouGE model becomes an adapter that can adjust fusion coefficients.
As the number of experts increases, the effectiveness of RouGE improves. After balancing the
parameter count and effectiveness, we chose N = 6 as the experimental hyperparameters setting.
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Table 7: Inserting RouGE from ith layer.
Rain200L DDN GoPro LIS Snow100k

i Clean Rainy Clean Rainy Clean Blurry Clean Low-light Clean Snowy

i = 0 76.04 73.73 73.21 71.02 79.09 75.31 78.28 62.71 65.05 63.46
i = 5 75.65 76.46 76.50 72.55 79.40 73.95 78.34 69.07 65.82 63.83
i = 9 75.91 75.03 77.34 74.02 79.41 75.13 78.23 64.98 65.41 63.17
i = 10 76.61 76.99 77.75 74.85 80.01 75.17 78.77 65.62 65.34 63.14
i = 11 75.49 77.30 73.51 69.93 78.99 73.01 78.35 65.08 65.11 63.38

Table 8: RouGE with N experts
Rain200L DDN GoPro LIS Snow100k

N Clean Rainy Clean Rainy Clean Blurry Clean Low-light Clean Snowy

N = 2 74.99 74.97 73.12 68.01 78.13 71.71 78.52 61.39 63.75 60.11
N = 4 75.93 76.01 77.63 74.81 78.96 73.12 78.14 64.21 65.02 63.11
N = 6 76.61 76.99 77.75 74.85 80.01 75.17 78.77 65.62 65.34 63.14
N = 8 76.73 76.51 77.32 73.92 79.69 75.41 78.72 65.59 65.31 62.98

A.2 ROUGE WITH LN

Considering the compatibility between the LN method and Rouge, we conducted additional exper-
iments by fine-tuning the LayerNorm layer within the blocks while adding RouGE, as shown in 9.
The experimental results indicate that adding a small number of parameters, the LN-RouGE model
can bring about a slight improvement in accuracy, but it cannot surpass the RouGE model itself en-
tirely. Moreover, adding LN trainable parameters does not reduce the accuracy difference between
degraded and non-degraded data groups.

Table 9: Test the combination of LN and the RouGE method.
Rain200L DDN GoPro LIS Snow100k

Method Clean Rainy Clean Rainy Clean Blurry Clean Low-light Clean Snowy

LN 75.44 74.48 72.9 69.05 78.62 71.73 78.91 65.47 64.02 62.51
RouGE 76.61 76.99 77.75 74.85 80.01 75.17 78.77 65.62 65.34 63.14
LN-RouGE 76.86 77.54 77.23 71.55 81.11 75.18 79.65 66.98 66.45 63.98

A.3 COMPARISON OF USING GLOBAL FEATURE Ft AND LOCAL FEATURE xt

In experiment, we utilize the global feature Ft as a signal to control the gating weights in the proba-
bility gate input. The role of Ft is to provide the probability gate with more distinguishable features,
thereby reducing the interference of intermediate variables in the model. As a comparison, we con-
ducted additional experiments to compare the effectiveness of using xt and Ft.

Table 10: Performance of RouGE with xt and Ft

Rain200L DDN GoPro LIS Snow100k

feature Clean Rainy Clean Rainy Clean Blurry Clean Low-light Clean Snowy

xt 76.57 76.94 77.60 73.40 79.44 74.75 79.72 64.53 64.19 63.06
Ft 76.61 76.99 77.75 74.85 80.01 75.17 78.77 65.62 65.34 63.14

A.4 MORE SEGMENTATION RESULT
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Figure 7: Presentation of the Segmentation performance on Rain200L dataset
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Figure 8: Presentation of the Segmentation performance on DDN dataset
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Figure 9: Presentation of the Segmentation performance on LIS dataset
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Figure 10: Presentation of the Segmentation performance on GoPro dataset
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Figure 11: Presentation of the Segmentation performance on Snow100k dataset
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