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Abstract

Adam has been widely adopted for training deep neural networks due to less hyperparameter tuning
and remarkable performance. To improve generalization, Adam is typically used in tandem with a
squared ℓ2 regularizer (referred to as Adam-ℓ2). However, even better performance can be obtained
with AdamW, which decouples the gradient of the regularizer from the update rule of Adam-ℓ2. Yet,
we are still lacking a complete explanation of the advantages of AdamW. In this paper, we tackle
this question from both an optimization and an empirical point of view. First, we show how to
re-interpret AdamW as an approximation of a proximal gradient method, which takes advantage of
the closed-form proximal mapping of the regularizer instead of only utilizing its gradient information
as in Adam-ℓ2. Next, we consider the property of “scale-freeness” enjoyed by AdamW and by its
proximal counterpart: their updates are invariant to component-wise rescaling of the gradients. We
provide empirical evidence across a wide range of deep learning experiments showing a correlation
between the problems in which AdamW exhibits an advantage over Adam-ℓ2 and the degree to which
we expect the gradients of the network to exhibit multiple scales, thus motivating the hypothesis that
the advantage of AdamW could be due to the scale-free updates.

1 Introduction

Recent years have seen a surge of interest in applying deep neural networks (LeCun et al., 2015) to a myriad of
areas (Krizhevsky et al., 2012; Goodfellow et al., 2014; Vaswani et al., 2017; Wu et al., 2020). While Stochastic
Gradient Descent (SGD) (Robbins & Monro, 1951) remains the dominant method for optimizing such models, its
performance depends crucially on the step size hyperparameter. To alleviate this problem, there has been a significant
amount of research on adaptive gradient methods (e.g. Duchi et al., 2010a; McMahan & Streeter, 2010; Tieleman &
Hinton, 2012; Zeiler, 2012; Luo et al., 2018; Zhou et al., 2018; Zhang et al., 2018; Li & Orabona, 2019; 2020; Li et al.,
2021). These methods provide mechanisms to automatically set stepsizes and have been shown to greatly reduce the
tuning effort while maintaining good performance. Among these adaptive algorithms, one of the most widely used is
Adam (Kingma & Ba, 2015), which achieves good results across a variety of problems even by simply adopting the
default hyperparameter setting. Motivated by its huge successes, there has been much follow-up research addressing the
theoretical convergence of Adam and its variants (Reddi et al., 2018; De et al., 2018; Zhou et al., 2018; Wang et al.,
2020; Chen et al., 2019).

On the other hand, in practice, to improve the generalization ability, Adam is typically combined with a squared ℓ2
regularization, which we will call Adam-ℓ2 hereafter. Yet, as pointed out by Loshchilov & Hutter (2019), the gradient
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of the regularizer does not interact properly with the Adam update rule. To address this, they provide a method called
AdamW that decouples the gradient of the ℓ2 regularization from the update of Adam. The two algorithms are shown in
Algorithm 1. Although AdamW is very popular (Kuen et al., 2019; Lifchitz et al., 2019; Carion et al., 2020) and it
frequently outperforms Adam-ℓ2, it is currently unclear why it works so well. Recently, however, Bjorck et al. (2021)
applied AdamW in Natural Language Processing and Reinforcement Learning problems and found no improvement of
performance over sufficiently tuned Adam-ℓ2.

In this paper, we focus on understanding how the AdamW update differs from Adam-ℓ2 from an optimization point of
view. First, we unveil the surprising connection between AdamW and proximal updates (Parikh & Boyd, 2014). In
particular, we show that AdamW is an approximation of the latter and confirm such similarity with an empirical study.
Moreover, noticing that AdamW and the proximal update are both scale-free while Adam-ℓ2 is not, we also derive a
theorem showing that scale-free optimizers enjoy an automatic acceleration w.r.t. the condition number on certain cases.
This gives AdamW a concrete theoretical advantage in training over Adam-ℓ2.

Next, we empirically identify the scenario of training very deep neural networks with Batch Normalization switched off
as a case in which AdamW substantially outperforms Adam-ℓ2 in both testing and training. In such settings, we observe
that the magnitudes of the coordinates of the updates during training are much more concentrated about a fixed value
for AdamW than for Adam-ℓ2, which is an expected property of scale-free algorithms. Further, as depth increases, we
expect a greater diversity of gradient scalings, a scenario that should favor scale-free updates. Our experiments support
this hypothesis: deeper networks have more dramatic differences between the distributions of update scales between
Adam-ℓ2 and AdamW and exhibit larger accuracy advantages for AdamW.

To summarize, the contributions of this paper are:

1. We show that AdamW can be seen as an approximation of a proximal update, which utilizes the entire
regularizer rather than only its gradient.

2. We point out the scale-freeness property enjoyed by AdamW and show the advantage of such a property on a
class of functions.

3. We find a scenario where AdamW is significantly better than Adam-ℓ2 in both training and testing performance
and report an empirical observation of the correlation between such advantage and the scale-freeness property
of AdamW.

The rest of this paper is organized as follows: In Section 2 we discuss the relevant literature. The connection between
AdamW and the proximal updates as well as its scale-freeness are explained in Section 3. We then report the empirical
observations in Section 4. Finally, we conclude with a discussion of the results, some limitations of this work, and
future directions.

2 Related Work

Weight decay By biasing the optimization towards solutions with small norms, weight decay has long been a standard
technique to improve the generalization ability in machine learning (Krogh & Hertz, 1992; Bos & Chug, 1996) and
is still widely employed in training modern deep neural networks (Devlin et al., 2019; Tan & Le, 2019). Note that
here we do not attempt to explain the generalization ability of weight decay or AdamW. Rather, we assume that the
regularization and the topology of the network guarantee good generalization performance and study training algorithms
from an optimization point of view. In this view, we are not aware of other work on the influence of regularization on
the optimization process.

Proximal updates The use of proximal updates in the batch optimization literature dates back at least to 1965 (Moreau,
1965; Martinet, 1970; Rockafellar, 1976; Parikh & Boyd, 2014) and they were used in the online setting (Kivinen &
Warmuth, 1997; Campolongo & Orabona, 2020), and also in the stochastic one (Toulis & Airoldi, 2017; Asi & Duchi,
2019). We are not aware of any previous paper pointing out the connection between AdamW and proximal updates.

Scale-free algorithms The scale-free property was first proposed in the online learning field (Cesa-Bianchi et al.,
2007; Orabona & Pál, 2015; Orabona & Pál, 2018). There, they do not need to know a priori the Lipschitz constant
of the functions, while obtaining optimal convergence rates. To the best of our knowledge, the connection between
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Algorithm 1 Adam with ℓ2 regularization (Adam-ℓ2) and AdamW Loshchilov & Hutter (2017).
All operations on vectors are element-wise.

1: Given α, β1, β2, ϵ, λ ∈ R, lr schedule {ηt}t≥0.
2: Initialize: x0 ∈ Rd, m0 ← 0, v0 ← 0
3: for t = 1, 2, . . . , T do
4: Compute a stochastic evaluation of the true gradient∇f(xt−1) denoted as∇ft(xt−1)
5: gt ← ∇ft(xt−1) +λxt−1

6: mt ← β1mt−1 + (1− β1)gt, vt ← β2vt−1 + (1− β2)g2
t

7: m̂t ←mt/(1− βt
1), v̂t ← vt/(1− βt

2)
8: xt ← xt−1 −ηtλxt−1 −ηtαm̂t/(

√
v̂t + ϵ)

9: end for

scale-freeness and the condition number we explain in Section 3 is novel, as is the empirical correlation between
scale-freeness and good performance.

Removing Batch Normalization (BN) The setting of removing BN is not our invention: indeed, there is already active
research in this (De & Smith, 2020; Zhang et al., 2019). The reason is that BN has many disadvantages (Brock et al.,
2021) including added memory overhead (Bulò et al., 2018) and training time (Gitman & Ginsburg, 2017), and a
discrepancy between training and inferencing (Singh & Shrivastava, 2019). BN has also been found to be unsuitable for
many cases including sequential modeling tasks (Ba et al., 2016) and contrastive learning algorithms (Chen et al., 2020).
Also, there are SOTA architectures that do not use BN including the Vision transformer (Dosovitskiy et al., 2021) and
the BERT model (Devlin et al., 2019).

3 Theoretical Insights on Merits of AdamW

AdamW and Proximal Updates Here, we show that AdamW approximates a proximal algorithm (Moreau, 1965;
Parikh & Boyd, 2014). A proximal algorithm is an algorithm for solving a convex optimization problem that uses
the proximal operators of the objective function. The proximal operator proxh : Rd → Rd of a convex function h is
defined for any y ∈ Rd as proxh(y) = arg minx∈Rd(h(x) + 1/2∥x− y∥2

2).

Consider that we want to minimize the objective function

F (x) = λ
2 ∥x∥

2
2 + f(x), (1)

where λ > 0 and f(x) : Rd → R is a function bounded from below. We could use a stochastic optimization algorithm
that updates in the following fashion

xt = xt−1 − ηtpt, (2)

where ηt is a learning rate schedule, e.g., the constant one or the cosine annealing (Loshchilov & Hutter, 2017) and pt

denotes any update direction. This update covers many cases, where α denotes the initial step size:

1. pt = αgt gives us the vanilla SGD;

2. pt = αgt/(
√∑t

i=1 g2
i + ϵ) gives the AdaGrad algorithm (Duchi et al., 2010a);

3. pt = αm̂t/(
√

v̂t + ϵ) recovers Adam (Kingma & Ba, 2015), where m̂t denotes the bias corrected first
moment of past gradients and v̂t denotes the bias corrected second moment of past gradients as updated in
Line 6-7 in Algorithm 1.

Note that in the above we use gt to denote the stochastic gradient of the entire objective function: gt = ∇ft(xt−1) +
λxt−1 (λ = 0 if the regularizer is not present), where ∇ft(xt−1) is a stochastic evaluation of the true gradient
∇f(xt−1).

This update rule (2) is given by the following online mirror descent update (Nemirovsky & Yudin, 1983; Warmuth &
Jagota, 1997; Beck & Teboulle, 2003):

xt = argmin
x∈Rd

λ
2 ∥xt−1∥2

2 + f(xt−1) + p⊤
t (x− xt−1) + 1

2ηt
∥x− xt−1∥2

2 . (3)
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Update (2) Update (5)
gt ∇ft(xt−1) + λxt−1 ∇ft(xt−1)

pt = αgt xt = xt−1 − αηtgt xt = 1
1+ληt

(xt−1 − αηtgt)

pt = α gt√∑t

i=1
g2

i
+ϵ

xt = xt−1 − αηt
gt√∑t

i=1
g2

i
+ϵ

xt = 1
1+ληt

xt−1 − αηt
gt√∑t

i=1
g2

i
+ϵ


pt = α m̂t√

v̂t+ϵ
xt = xt−1 − αηt

m̂t√
v̂t+ϵ

xt = 1
1+ληt

(
xt−1 − αηt

m̂t√
v̂t+ϵ

)
Table 1: Comparison of Update (2) and (5) for different pt, where m̂t and v̂t are defined in Line 7 in Algorithm 1.

This approximates minimizing a first-order Taylor approximation of F centered in xt−1 plus a term that measures
the distance between the xt and xt−1 according to the ℓ2 norm. The approximation becomes exact when pt =
∇f(xt−1) + λxt−1.

Yet, this is not the only way to construct first-order updates for the objective (1). An alternative route is to linearize only
f and to keep the squared ℓ2 norm in its functional form:

xt = argmin
x∈Rd

λ
2 ∥x∥

2
2 + f(xt−1) + p⊤

t (x− xt−1) + 1
2ηt
∥x− xt−1∥2

2 = prox ληt
2 ∥·∥2

2
(xt−1 − ηtpt), (4)

which uses the proximal operator of the convex function ληt

2 ∥ · ∥
2
2. It is intuitive why this would be a better update:

We directly minimize the squared ℓ2 norm instead of approximating it. We also would like to note that, similar to (3),
the proximal updates of (4) can be shown to minimize the objective F under appropriate conditions. However, we
do not include the convergence analysis of (4) as this is already well-studied in the literature. For example, when
pt = ∇f(xt−1) in (4) and f is convex and smooth, the update becomes a version of the (non-accelerated) iterative
shrinkage-thresholding algorithm. This algorithm guarantees F (xt)− F ∗ ≤ O(1/t), which is in the same order as
obtained by gradient descent on minimizing f alone (Beck & Teboulle, 2009).

From the first-order optimality condition, the update is

xt = (1 + ληt)−1(xt−1 − ηtpt) . (5)

When λ = 0, the update in (2) and this one coincide. Yet, when λ ̸= 0, they are no longer the same. For easier
comparison between (2) and (5), we listed in Table 1 the detailed update formulas of them.

We now show how the update in (5) generalizes the one in AdamW. The update of AdamW is

xt = (1− ληt)xt−1 − ηtαm̂t/(
√

v̂t + ϵ) . (6)

On the other hand, using pt = αm̂t/(
√

v̂t + ϵ) in (5) gives:

xt = (1 + ληt)−1(xt−1 − ηtαm̂t/(
√

v̂t + ϵ)), (7)

Its first-order Taylor approximation around ηt = 0 is

xt ≈ (1− ληt)xt−1 − ηtαm̂t/(
√

v̂t + ϵ),

exactly the AdamW update (6). Hence, AdamW is a first-order approximation of a proximal update.

The careful reader might notice that the approximation from AdamW to the update in (7) becomes less accurate when
ηt becomes too large, and so be concerned whether this approximation is practical at all. Fortunately, in practice, ηt is
never large enough for this to be an issue. The remainder term of this approximation is O(λη2

t ) which we should always
expect to be small as both λ and ηt are small. So, we can expect AdamW and the update in (7) to perform similarly for
learning rate schedules ηt commonly employed in practice, and we will indeed confirm this empirically in Section 4.3.

Let’s now derive the consequences of this connection with proximal updates. First of all, at least in the convex case, the
convergence rate of the proximal updates will depend on ∥∇f(xt)∥2

2 rather than on ∥∇f(xt) + λxt∥2
2 (Duchi et al.,
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2010b). This could be a significant improvement: the regularized loss function is never Lipschitz, so the regularized
gradients∇f(xt) + λxt could be much larger than∇f(xt) when f itself is Lipschitz.

More importantly, proximal updates are fundamentally better at keeping the weights small. Let us consider a couple of
simple examples to see how this could be. First, suppose the weights are already zero. Then, when taking an update
according to (2), we increase the weights to −ηtpt. In contrast, update (5) clearly leads to a smaller value. This is
because it computes an update using the regularizer rather than its gradient. As an even more disturbing, yet actually
more realistic example, consider the case that xt−1 is non-zero, but gt = 0. In this case, taking an update using (2)
may actually increase the weights by causing xt to overshoot the origin. In contrast, the proximal update will never
demonstrate such pathological behavior. Notice that this pathological behavior of (2) can be mitigated by properly
tuning the learning rate. However, one of the main attractions of adaptive optimizers is that we should not need to tune
the learning rate as much. Thus, the proximal update can be viewed as augmenting the adaptive methods with an even
greater degree of learning-rate robustness.

AdamW is Scale-Free We have discussed what advantages the proximal step hidden in AdamW can give but have
not yet taken into consideration the specific shape of the update. Here instead we will look closely at the pt used in
AdamW to show its scale-freeness. Our main claim is: the lack of scale-freeness seems to harm Adam-ℓ2’s performance
in certain scenarios in deep learning, while AdamW preserves the scale-freeness even with an ℓ2 regularizer. We will
motivate this claim theoretically in this section and empirically in Section 4.

An optimization algorithm is said to be scale-free if its iterates do not change when one multiplies any coordinate of all
the gradients of the losses ft by a positive constant (Orabona & Pál, 2018). It turns out that the update (6) of AdamW
and the update (7) are both scale-free when ϵ = 0. This is evident for AdamW as the scaling factor for any coordinate
of the gradient is kept in both m̂t and

√
v̂t and will be canceled out when dividing them. (In practical applications,

though, ϵ is very small but not zero, so we empirically verify in Section 4.2 that it is small enough to still approximately
ensure the scale-free property.) In contrast, for Adam-ℓ2, the addition of the weight decay vector to the gradient (Line 5
of Algorithm 1) destroys this property.

We want to emphasize the comparison between Adam-ℓ2 and AdamW: once Adam-ℓ2 adopts a non-zero λ, it loses the
scale-freeness property; in contrast, AdamW enjoys this property for arbitrary λ. The same applies to any AdaGrad-type
and Adam-type algorithm that incorporates the squared ℓ2 regularizer by simply adding the gradient of the ℓ2 regularizer
directly to the gradient of f , as in Adam-ℓ2 (as implemented in Tensorflow and Pytorch). Such algorithms are scale-free
only when they do not use weight decay.

Also, as we wrote above, AdamW can be seen as the first-order Taylor approximation on ηt = 0 of (7); in turn, the
scale-freeness of (7) directly comes from the proximal updates. Of course, there may be other ways to design scale-free
updates solving (1); yet, for AdamW, its scale-free property derives directly from the proximal update.

We stress that the scale-freeness is an important but largely overlooked property of an optimization algorithm. It has
already been utilized to explain the success of AdaGrad (Orabona & Pál, 2018). Recently, Agarwal et al. (2020) also
provides theoretical and empirical support for setting the ϵ in the denominator of AdaGrad to be 0, thus making the
update scale-free.

Below, we show how scale-freeness can reduce the condition number of a certain class of functions.

Scale-Freeness Provides Preconditioning For a twice continuously differentiable function f , its Hessian matrix is
symmetric and its condition number κ is defined as the ratio of its largest absolute value eigenvalue to its smallest one.
It is well-known that the best convergence rate when minimizing such f using a first-order optimization algorithm (e.g.,
gradient descent) must depend on the condition number (Theorem 2.1.13, Nesterov, 2004). In particular, a problem
with a small κ can be solved more efficiently than one with a big κ. One way to reduce the effect of the condition
number is to use a preconditioner (Nocedal & Wright, 2006). While originally designed for solving systems of linear
equations, preconditioning can be extended to the optimization of non-linear functions and it should depend on the
Hessian of the function (Boyd & Vandenberghe, 2004; Li, 2018). However, it is unclear how to set the preconditioner
given that the Hessian might not be constant (Section 9.4.4 Boyd & Vandenberghe, 2004) and in stochastic optimization
the Hessian cannot be easily estimated (Li, 2018).

In the following theorem, we show that scale-freeness gives similar advantages to the use of an optimal diagonal
preconditioner, for free (proof in the Appendix). Specifically, a scale-free algorithm can automatically transform solving
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(a) Condition number 1. (b) Condition number 100000.

Figure 1: Non-scale-free GD v.s. scale-free AdamW on quadratic functions with different condition numbers.

the original problem into solving a problem with a potentially much smaller κ and thus could provide substantial
improvements over non-scale-free ones, as shown in Figure 1 in the paper.

Theorem 3.1. Let f be a twice continuously differentiable function and x∗ such that ∇f(x∗) = 0. Then, let f̃Λ be
the family of functions such that ∇f̃Λ(x∗) = 0, and ∇2f̃Λ(x) = Λ∇2f(x), where Λ = diag(λ1, . . . , λd) ⪰ 0. Then,
running any scale-free optimization algorithm on f and f̃Λ will result exactly in the same iterates, assuming the same
noise on the gradients. Moreover, any dependency on the condition number of the scale-free algorithm will be reduced
to the smallest condition number among all the functions f̃Λ.

To give an example of when this is advantageous, consider when∇2f(x) is a diagonal matrix:

∇2f(x) = diag(g1(x), g2(x), . . . , gd(x)) .

Assume 0 < µ ≤ µi ≤ gi(x) ≤ Mi ≤ M for i ∈ {1, . . . , d}. Denote j = arg maxi Mi/µi. Choose λi s.t. µj ≤
λiµi ≤ λigi(x) ≤ λiMi ≤Mj then Λ∇2f(x) has a condition number κ′ = Mj/µj . This gives scale-free algorithms
a big advantage when maxi Mi/µi ≪M/µ.

Another example is one of the quadratic functions.

Corollary 3.2. For quadratic problems f(x) = 1
2 x⊤Hx + b⊤x + c, with H diagonal and positive definite, any

scale-free algorithm will not differentiate between minimizing f and f̃(x) = 1
2 x⊤x + (H−1b)⊤x + c. As the condition

number of f̃ is 1, the operation, and most importantly, the convergence, of a scale-free algorithm will not be affected by
the condition number of f at all.

Figure 1 illustrates Corollary 3.2: we compare GD (non-scale-free) with AdamW (scale-free) on optimizing two
quadratic functions with the same minimizer, but one’s Hessian matrix being a rescaled version of the other’s, resulting
in different condition numbers. The figure clearly shows that, even after tuning the learning rates, the updates of
AdamW (starting from the same point) and thus its convergence to the minimizer, is completely unaffected by the
condition number, while GD’s updates change drastically and its performance deteriorates significantly when the
condition number is large. It is not hard to imagine that such poor training performance would likely also lead to poor
testing performance.

This can also explain AdaGrad’s improvements over SGD in certain scenarios. As an additional example, in Appendix B
we analyze a variant of AdaGrad with restarts and show an improved convergence on strongly convex functions due
to scale-freeness. Note that the folklore justification for such improvements is that the learning rate of AdaGrad
approximates the inverse of the Hessian matrix, but this is incorrect: AdaGrad does not compute Hessians and there is
no reason to believe it approximates them in general.

More importantly, another scenario demonstrating the advantage of scale-freeness is training deep neural networks.
Neural networks are known to suffer from the notorious problem of vanishing/exploding gradients (Bengio et al.,
1994; Glorot & Bengio, 2010; Pascanu et al., 2013). This problem leads to the gradient scales being very different
across layers, especially between the first and the last layers. The problem is particularly severe when the model is not
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equipped with normalization mechanisms like Batch Normalization (Ioffe & Szegedy, 2015). In such cases, when using
a non-scale-free optimization algorithm (e.g., SGD), the first layers and the last layers will proceed at very different
speeds, whereas a scale-free algorithm ensures that each layer is updated at a similar pace. We will investigate these
effects empirically in the next section.

4 Deep Learning Empirical Evaluation

In this section, we empirically compare Adam-ℓ2 with AdamW. First (Section 4.1), we report experiments for deep
neural networks on image classification tasks (CIFAR10/100). Here, AdamW enjoys a significant advantage over
Adam-ℓ2 when BN is switched off on deeper neural networks. We also report the correlation between this advantage
and the scale-freeness property of AdamW. Next (Section 4.2), we show that AdamW is still almost scale-free even
when the ϵ used in practice is not 0, and how, contrary to AdamW, Adam-ℓ2 is not scale-free. Finally (Section 4.3), we
show that AdamW performs similarly to the update in (7), which we will denote by AdamProx below, thus supporting
the observations in Section 3.

Data Normalization and Augmentation: We consider the image classification task on CIFAR-10/100 datasets. Images
are normalized per channel using the means and standard deviations computed from all training images. We adopt the
data augmentation technique following Lee et al. (2015) (for training only): 4 pixels are padded on each side of an
image and a 32× 32 crop is randomly sampled from the padded image or its horizontal flip.

Models: For the CIFAR-10 dataset, we employ the Residual Network1 model (He et al., 2016) of 20/44/56/110/218
layers; and for CIFAR-100, we additionally utilize the DenseNet-BC2 model (Huang et al., 2017) with 100 layers and a
growth-rate of 12. The loss is the cross-entropy loss.

Hyperparameter tuning: For both Adam-ℓ2 and AdamW, we set β1 = 0.9, β2 = 0.999, ϵ = 10−8 as suggested
in the original Adam paper Kingma & Ba (2015). To set the initial step size α and weight decay parameter λ, we
grid search over {0.00005, 0.0001, 0.0005, 0.001, 0.005} for α and {0, 0.00001, 0.00005, 0.0001, 0.0005, 0.001} for
λ. Whenever the best performing hyperparameters lie in the boundary of the searching grid, we always extend the grid
to ensure that the final best-performing hyperparameters fall into the interior of the grid.

Training: For each experiment configuration (e.g., 110-layer Resnet without BN), we randomly select an initialization
of the model to use as a fixed starting point for all optimizers and hyperparameter settings. We use a mini-batch of 128,
and train 300 epochs unless otherwise specified.

4.1 AdamW vs. Adam-ℓ2: Influence of Batch Normalization and Correlation with Scale-freeness

With BN, Adam-ℓ2 is on par with AdamW Recently, Bjorck et al. (2021) found that AdamW has no improvement in
absolute performance over sufficiently tuned Adam-ℓ2 in some reinforcement learning experiments. We also discover
the same phenomenon in several image classification tasks, see Figure 2. Indeed, the best weight decay parameter is 0
for all cases and AdamW coincides with Adam-ℓ2 in these cases. Nevertheless, AdamW does decouple the optimal
choice of the weight decay parameter from the initial step size much better than Adam-ℓ2 in all cases.

Removing BN Notice that the models used in Figure 2 all employ BN. BN works by normalizing the input to each layer
across the mini-batch to make each coordinate have zero-mean and unit-variance. Without BN, deep neural networks
are known to suffer from gradient explosion and vanishing (Schoenholz et al., 2017). This means each coordinate of the
gradient will have very different scales, especially between the first and last layers. For non-scale-free algorithms, the
update to the network weights will also be affected and each coordinate will proceed at a different pace. In contrast,
scale-free optimizers are robust to such issues as the scaling of any single coordinate will not affect the update. Thus,
we consider the case where BN is removed as that is where AdamW and Adam-ℓ2 will show very different patterns due
to scale-freeness.

Without BN, AdamW Outperforms Adam-ℓ2 In fact, without BN, AdamW outperforms Adam-ℓ2 even when both
are finely tuned, especially on relatively deep neural networks (see Figure 3 and 4). AdamW not only obtains a much
better test accuracy but also trains much faster.

1https://github.com/akamaster/pytorch_resnet_cifar10
2https://github.com/bearpaw/pytorch-classification
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(a) 20 Layer Resnet on CIFAR10 (b) 44 Layer Resnet on CIFAR10

(c) 56 Layer Resnet on CIFAR10 (d) 110 Layer Resnet on CIFAR10

(e) 218 Layer Resnet on CIFAR10 (f) 100 layer DenseNet-BC on CIFAR100

Figure 2: The final Top-1 test error on using AdamW vs. Adam-ℓ2 on training a Resnet/DenseNet with Batch
Normalization on CIFAR10/100 (the black circle denotes the best setting). Note how close are the best performing
hyperparameter combinations and the lowest testing error each optimizer obtains between Adam-ℓ2 and AdamW for
each setting suggesting they perform similarly when BN is turned on.

AdamW’s Advantage and Scale-freeness We also observe that the advantage of AdamW becomes more evident as the
network becomes deeper. Recall that as the depth grows, without BN, the gradient explosion and vanishing problem
becomes more severe. This means that for the non-scale-free Adam-ℓ2, the updates of each coordinate will be dispersed
on a wider range of scales even when the same weight decay parameter is employed. In contrast, the scales of the
updates of AdamW will be much more concentrated in a smaller range. This is exactly verified empirically as illustrated
in the 5th & 6th columns of figures in Figure 3 and 4. There, we report the histograms of the absolute value of updates
of Adam-ℓ2 vs. AdamW of all coordinates near the end of training (for their comparison over the whole training process
please refer to the Appendix C).

This correlation between the advantage of AdamW over Adam-ℓ2 and the different spread of update scales which is
induced by the scale-freeness property of AdamW provides empirical evidence on when AdamW excels over Adam-ℓ2.

SGD and Scale-freeness The reader might wonder why SGD is known to provide state-of-the-art performance on many
deep learning architectures (e.g., He et al., 2016; Huang et al., 2017) without being scale-free. At first blush, this seems
to contradict our claims that scale-freeness correlates with good performance. In reality, the good performance of SGD
in very deep models is linked to the use of BN that normalizes the gradients. Indeed, we verified empirically that SGD
fails spectacularly when BN is not used. For example, on training the 110 layer Resnet without BN using SGD with
momentum and weight decay of 0.0001, even a learning rate of 1e− 10 will lead to divergence.

4.2 Verifying Scale-Freeness

In the previous section, we elaborated on the scale-freeness property of AdamW and its correlation with AdamW’s
advantage over Adam-ℓ2. However, one may notice that in practice, the ϵ factor in the AdamW update is typically small
but not 0, in our case 1e-8, thus preventing it from completely scale-free. In this section, we verify that the effect of
such an ϵ on the scale-freeness is negligible.
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(a) 20 Layer Resnet

(b) 44 Layer Resnet

(c) 56 Layer Resnet

(d) 110 Layer Resnet

(e) 218 Layer Resnet

Figure 3: On using AdamW vs. Adam-ℓ2 on training a Resnet without Batch Normalization on CIFAR10. (Left two)
The final Top-1 test error (the black circle denotes the best setting). (Middle two) The training loss and test accuracy
curve when employing the initial step size and the weight decay parameter that gives the smallest test error. (Right
two) The histogram of the magnitude of corresponding updates of all coordinates of the network near the end of the
training when employing the initial step size and the weight decay parameter that gives the smallest test error. Note that
as the depth of the neural network increases, Adam-ℓ2’s updates scatter more evenly over the entire spectrum while
AdamW’s updates are still concentrated in a small range, and AdamW’s advantage in both training and testing over
Adam-ℓ2 becomes more significant.

As a simple empirical verification of the scale-freeness, we consider the scenario where we multiply the loss function
by a positive number. Note that any other method to test scale-freeness would be equally good. For a feed-forward
neural network without BN, this means the gradient would also be scaled up by that factor. In this case, the updates of
a scale-free optimization algorithm would remain exactly the same, whereas they would change for an optimization
algorithm that is not scale-free.

Figure 5 shows results of the loss function being multiplied by 10 and 100 respectively on optimizing a 110-layer
Resnet with BN removed. For results of the original loss see Figure 3d. We can see that AdamW has almost the same
performance across the range of initial learning rates and weight decay parameters, and most importantly, the best
values of these two hyperparameters remain the same. This verifies that, even when employing a (small) non-zero ϵ,
AdamW is still approximately scale-free. In contrast, Adam-ℓ2 is not scale-free and we can see that its behavior varies
drastically with the best initial learning rates and weight decay parameters in each setting totally different.
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(a) 20 Layer Resnet

(b) 44 Layer Resnet

(c) 56 Layer Resnet

(d) 110 Layer Resnet

(e) 218 Layer Resnet

(f) 100 layer DenseNet-BC

Figure 4: On using AdamW vs. Adam-ℓ2 on training a Resnet/DenseNet without Batch Normalization on CIFAR100.
(Left two) The final Top-1 test error (the black circle denotes the best setting). (Middle two) The training loss and test
accuracy curve when employing the initial step size and the weight decay parameter that gives the smallest test error.
(Right two) The histogram of the magnitude of corresponding updates of all coordinates of the network near the end of
the training when employing the initial step size and the weight decay parameter that gives the smallest test error. Note
that as the depth of the neural network increases, Adam-ℓ2’s updates scatter more evenly over the entire spectrum while
AdamW’s updates are still concentrated in a small range, and AdamW’s advantage in both training and testing over
Adam-ℓ2 becomes more significant.

4.3 AdamW and AdamProx Behave very Similarly

In Section 3, we showed theoretically that AdamW is the first order Taylor approximation of AdamProx (update rule (7)).
Beyond this theoretical argument, here we verify empirically that the approximation is good. In Figure 6, we consider
the case when ηt = 1 for all t - a relatively large constant learning rate schedule. In such cases, AdamW and AdamProx
still behave very similarly. This suggests that for most learning rate schedules, e.g., cosine, exponential, polynomial,
and step decay, which all monotonously decrease from η0 = 1, AdamProx will remain a very good approximation to
AdamW. Thus, it is reasonable to use the more classically-linked AdamProx to try to understand AdamW.
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(a) Loss multiplied by 10 (b) Loss multiplied by 100

Figure 5: The final top-1 test error of AdamW vs. Adam-ℓ2 on optimizing a 110-layer Resnet with BN removed on
CIFAR-10 with the loss function multiplied by 10 (left two figures) and 100 (right two figures). Note how the best
performing hyperparameter combinations of AdamW remain the same for different loss multiplication factors as well
as the shape of the heatmap being very similar. In contrast, Adam-ℓ2’s performance as well as the best performing
hyperparameter combinations vary dramatically for different loss multiplication factors.

(a) ResNet on CIFAR-10 (b) DenseNet-BC on CIFAR-100

Figure 6: The final Top-1 test error of using AdamW vs. AdamProx on training (the black circle denotes the best
setting). (Top row) a 110-layer ResNet with BN removed on CIFAR-10 (trained for 300 epochs). (Bottom row) a
100-layer DenseNet-BC with BN removed on CIFAR-100 (trained for 100 epochs). Note how similar are the shapes of
the heatmaps, the best performing hyperparameter combinations, and the test errors between AdamW and AdamProx.

5 Conclusion and Future Work

In this paper, we provide insights for understanding the merits of AdamW from two points of view. We first show that
AdamW is an approximation of the proximal updates both theoretically and empirically. We then identify the setting of
training very deep neural networks without batch normalization in which AdamW substantially outperforms Adam-ℓ2
in both training and testing and show its correlation with the scale-freeness property of AdamW. Nevertheless, we are
aware of some limitations of this work as well as many directions worth exploring.

Figure 7: Final Top-1 test error of using AdamW vs. AdamProxL2
to train a 110-layer ResNet without BN on CIFAR10 (the black
circle denotes the best setting).

Limitations First, we only focus on investigat-
ing the effects of scale-freeness on Adam-ℓ2 and
AdamW, but it would be interesting to study scale-
freeness more generally. Also, what we showed
is just a correlation instead of causality thus we
did not rule out other possible causes beyond scale-
freeness for the success of AdamW. Indeed, rigor-
ously proving causality for any such claim is ex-
tremely difficult - even in the hard sciences. Note
that there are papers claiming that adaptive updates
have worse generalization (Wilson et al., 2017);
however, such claims have been recently partly con-
futed (see, e.g., Agarwal et al., 2020). On this note, despite its empirical success, we stress that Adam will not even
converge on some convex functions (Reddi et al., 2018), thus making it hard to prove formal theoretical convergence
and/or generalization guarantees.

Update for no-square ℓ2 regularization. Instead of using the squared ℓ2 regularization, we might think to use the ℓ2
regularization, that is without the square. This is known to have better statistical properties than the squared ℓ2 (see,
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e.g., Orabona, 2014), but it is not smooth so it is harder to be optimized. However, with proximal updates, we don’t
have to worry about its non-smoothness. Hence, we can consider the objective function F (x) = λ∥x∥2 + f(x).

The corresponding prox-SGD update was derived in Duchi & Singer (2009) for scalar learning rates and it is easy to
generalize to our setting as

xt+1 = max
(

1− ληt

∥xt−ηtpt∥ , 0
)

(xt − ηtpt) .

Its performance, named AdamProxL2, as shown in Figure 7, can be on a par with AdamW.

Distributed Training Batch normalization is not user-friendly in distributed training as it requires each machine to
collect a batch of statistics to update the model which may be inaccurate when machines do not communicate frequently
with each other Goyal et al. (2017). Since AdamW outperforms Adam-ℓ2 significantly in settings without BN, at least
in feed-forward neural networks, we can apply AdamW in distributed training to see if it still enjoys the same merits.

Broader Impact Statement

The main contribution of this paper is the study of a known optimization algorithm AdamW from the theoretical
angles of proximal updates and scale-freeness, while the experiments are done to empirically validate and support the
theoretical findings. It is a general algorithm and we do not specify in which applications should it be employed, thus
we do not foresee any direct negative societal impact our work might cause.
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Appendices
A Proof of Theorem 3.1

Proof. From the Fundamental Theorem of Calculus we have:

∇f(x) = ∇f(x∗) +
∫ 1

0
∇2f(x∗ + t(x− x∗))(x− x∗)dt =

∫ 1

0
∇2f(x∗ + t(x− x∗))(x− x∗)dt .

Thus, for any function f̃Λ(x) whose Hessian is Λ∇2f(x) and ∇f̃Λ(x∗) = 0, we have∇f̃Λ(x) = Λ∇f(x).

Now, from the definition of a scale-free algorithm, the iterates of such an algorithm do not change when one multiplies
each coordinate of all the gradients by a positive constant. Thus, a scale-free algorithm optimizing f behaves the same
as if it is optimizing f̃Λ.

B A Scale-free Algorithm with Dependency on the Condition Number

Algorithm 2 AdaGrad (Duchi et al., 2010a; McMahan & Streeter, 2010) (All operations on vectors are element-wise.)

Input: #Iterations T , a set K, x1 ∈ K, stepsize η
for t = 1 . . . T do

Receive: ∇f(xt)
Set: ηt = η√∑t

i=1
(∇f(xi))2

Update: xt+1 = ΠK (xt − ηt∇f(xt)) where ΠK is the projection onto K.
end for
Output: x̄ = 1

T

∑T
t=1 xt.

Algorithm 3 AdaGrad with Restart

Input: #Rounds N , x0 ∈ Rd, upper bound on ∥x0 − x∗∥∞ as D∞, strong convexity µ, smoothness M

Set: x̄0 = x0
for i = 1 . . . N do

Run Algorithm 2 to get x̄i with T = 32d M
µ

, x1 = x̄i−1, K = {x : ∥x − x̄i−1∥2
∞ ≤ D2

∞
4i−1 }, η = D∞/

√
2

2i−1

end for
Output: x̄N .

Theorem B.1. Let K be a hypercube with ∥x− y∥∞ ≤ D∞ for any x, y ∈ K. For a convex function f , set η = D∞√
2 ,

then Algorithm 2 guarantees for any x ∈ K:

T∑
t=1

f(xt) − f(x) ≤

√√√√2dD2
∞

T∑
t=1

∥∇f(xt)∥2 . (8)

Theorem B.2. For a µ strongly convex and M smooth function f , denote its unique minimizer as x∗ ∈ Rd. Given
x0 ∈ Rd, assume that ∥x0 − x∗∥∞ ≤ D∞, then Algorithm 3 guarantees:

∥x̄N − x∗∥2
∞ ≤

D2
∞

4N
.

Thus, to get a x such that ∥x− x∗∥2
∞ ≤ ϵ, we need at most 32d M

µ log4
(
D2

∞/ϵ
)

gradient calls.

Proof of Theorem B.2. Consider round i and assume K passed to Algorithm 2 is bounded w.r.t. ℓ∞ norm by D∞i .
When f is µ-strongly convex and M smooth, let x = x∗, Equation (8) becomes:

T∑
t=1

f(xt) − f(x∗) ≤

√√√√2dD2
∞i

T∑
t=1

∥∇f(xt)∥2 ≤

√√√√4MdD2
∞i

T∑
t=1

(f(xt) − f(x∗)) ,
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where the second inequality is by the M smoothness of f . This gives:

T∑
t=1

f(xt) − f(x∗) ≤ 4MdD2
∞i

.

Let x̄i = 1
T

∑T
t=1 xt we have by the µ-strong-convexity that:

∥x̄i − x∗∥2
∞ ≤ ∥x̄i − x∗∥2 ≤ 2

µ
(f(x̄) − f(x∗)) ≤ 2

µ

1
T

T∑
t=1

(f(xt) − f(x∗)) ≤
8MdD2

∞i

µT
. (9)

Put T = 32d M
µ in Equation (9) we have that ∥x̄i − x∗∥2

∞ ≤
D2

∞i

4 . Thus, after each round, the ℓ∞ distance between
the update x̄i and x∗ is shrinked by half, which in turn ensures that x∗ is still inside the K passed to Algorithm 2 in the
next round with D∞i+1 = D∞i

2 . This concludes the proof.

Proof of Theorem B.1.

T∑
t=1

f(xt)− f(x)

≤
T∑

t=1
⟨∇f(xt), xt − x⟩

=
T∑

t=1

d∑
j=1

∂f

∂xt,j
(xt) ∗ (xt,j − xj)

=
T∑

t=1

d∑
j=1

(xt,j − xj)2 −
(

xt,j − ηt,j
∂f

∂xt,j
(xt)− xj

)2

2ηt,j
+

T∑
t=1

d∑
j=1

ηt,j

2

(
∂f

∂xt,j
(xt)

)2

≤
T∑

t=1

d∑
j=1

(xt,j − xj)2 − (xt+1,j − xj)2

2ηt,j
+

T∑
t=1

d∑
j=1

ηt,j

2

(
∂f

∂xt,j
(xt)

)2

≤
d∑

j=1

T∑
t=1

(xt,j − xj)2

2

(
1

ηt,j
− 1

ηt−1,j

)
+

d∑
j=1

T∑
t=1

ηt,j

2

(
∂f

∂xt,j
(xt)

)2

≤ D2
∞

2η

d∑
j=1

T∑
t=1


√√√√ t∑

i=1

(
∂f

∂xi,j
(xi)

)2
−

√√√√t−1∑
i=1

(
∂f

∂xi,j
(xi)

)2
 +

d∑
j=1

T∑
t=1

η

2
√∑t

i=1

(
∂f

∂xi,j
(xi)

)2

(
∂f

∂xt,j
(xt)

)2

≤
d∑

j=1

D2
∞

2η

√√√√ T∑
t=1

(
∂f

∂xt,j
(xt)

)2
+ η

√√√√ T∑
t=1

(
∂f

∂xt,j
(xt)

)2


=
d∑

j=1

√√√√2D2
∞

T∑
t=1

(
∂f

∂xt,j
(xt)

)2

≤

√√√√2dD2
∞

T∑
t=1

d∑
j=1

(
∂f

∂xt,j
(xt)

)2

=

√√√√2dD2
∞

T∑
t=1
∥∇f(xt))∥2 .
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where the first inequality is by convexity, the second one by the projection lemma as the projection onto a hypercube
equals performing the projection independently for each coordinate, the fifth one by Lemma 5 in (McMahan & Streeter,
2010), and the last one by the concavity of

√
·.

C The Histograms of the Magnitude of each Update Coordinate during the Entire
Training Phase

In this section, we report the histograms of the absolute value of updates of Adam-ℓ2 vs. AdamW of all coordinates
divided by α during the whole training process. From the figures shown below, we can clearly see that AdamW’s
updates remain in a much more concentrated scale range than Adam-ℓ2 during the entire training. Moreover, as the
depth of the network grows, Adam-ℓ2’s updates become more and more dispersed, while AdamW’s updates are still
concentrated. (Note that the leftmost bin contains all values equal to or less than 2−27 ≈ 10−8.1 and the rightmost bin
contains all values equal to or larger than 1.)
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(a) Adam-ℓ2 (b) AdamW

Figure 8: The histograms of the magnitudes of all updates (without α) of a 20-layer Resnet with BN removed trained by
AdamW or Adam-ℓ2 on CIFAR10.
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(a) Adam-ℓ2 (b) AdamW

Figure 9: The histograms of the magnitudes of all updates (without α) of a 44-layer Resnet with BN removed trained by
AdamW or Adam-ℓ2 on CIFAR10.
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(a) Adam-ℓ2 (b) AdamW

Figure 10: The histograms of the magnitudes of all updates (without α) of a 56-layer Resnet with BN removed trained
by AdamW or Adam-ℓ2 on CIFAR10.
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(a) Adam-ℓ2 (b) AdamW

Figure 11: The histograms of the magnitudes of all updates (without α) of a 110-layer Resnet with BN removed trained
by AdamW or Adam-ℓ2 on CIFAR10.
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(a) Adam-ℓ2 (b) AdamW

Figure 12: The histograms of the magnitudes of all updates (without α) of a 218-layer Resnet with BN removed trained
by AdamW or Adam-ℓ2 on CIFAR10.
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(a) Adam-ℓ2 (b) AdamW

Figure 13: The histograms of the magnitudes of all updates (without α) of a 20-layer Resnet with BN removed trained
by AdamW or Adam-ℓ2 on CIFAR100.
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(a) Adam-ℓ2 (b) AdamW

Figure 14: The histograms of the magnitudes of all updates (without α) of a 44-layer Resnet with BN removed trained
by AdamW or Adam-ℓ2 on CIFAR100.
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(a) Adam-ℓ2 (b) AdamW

Figure 15: The histograms of the magnitudes of all updates (without α) of a 56-layer Resnet with BN removed trained
by AdamW or Adam-ℓ2 on CIFAR100.
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(a) Adam-ℓ2 (b) AdamW

Figure 16: The histograms of the magnitudes of all updates (without α) of a 110-layer Resnet with BN removed trained
by AdamW or Adam-ℓ2 on CIFAR100.
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(a) Adam-ℓ2 (b) AdamW

Figure 17: The histograms of the magnitudes of all updates (without α) of a 218-layer Resnet with BN removed trained
by AdamW or Adam-ℓ2 on CIFAR100.

28



Published in Transactions on Machine Learning Research (August/2022)

(a) Adam-ℓ2 (b) AdamW

Figure 18: The histograms of the magnitudes of all updates (without α) of a 100-layer DenseNet-BC with BN removed
trained by AdamW or Adam-ℓ2 on CIFAR100.
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