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ABSTRACT

Self-supervised representations excel at many vision and speech tasks, but their
potential for audio-visual deepfake detection remains underexplored. Unlike prior
work that uses these features in isolation or buried within complex architectures,
we systematically evaluate them across modalities (audio, video, multimodal) and
domains (lip movements, generic visual content). We assess three key dimensions:
detection effectiveness, interpretability of encoded information, and cross-modal
complementarity. We find that most self-supervised features capture deepfake-
relevant information, and that this information is complementary. Moreover, the
models attend to semantically meaningful regions rather than spurious artifacts.
Yet none generalize reliably across datasets. This generalization failure likely
stems from dataset characteristics, not from the features themselves latching onto
superficial patterns. These results expose both the promise and fundamental chal-
lenges of self-supervised representations for deepfake detection: while they learn
meaningful patterns, achieving robust cross-domain performance remains elusive.

1 INTRODUCTION

Generative models now produce text, images, audio, video, all rivaling human creations. This
progress brings a new challenge: detect whether content is authentic or machine-generated (deep-
fake). Reliable detection prevents obvious risks such disinformation and fraud, but also serves a
simple need: users want to know what they can trust. We tackle the detection problem in the video
domain, the internet’s most consumed medium. Video is uniquely challenging because it spans both
visual and audio modalities, demanding methods that can reason across them.

Many approaches are being continuously proposed for the task of audio-visual deepfake detection:
these range from powerful discriminative classifiers (Koutlis & Papadopoulos, 2024a) to techniques
that exploit inconsistencies between modalities (Feng et al., 2023). Yet, the backbone features un-
derlying these models often determine their effectiveness. Recent work shows strong results of
self-supervised learning in this context: image-based detectors benefit from CLIP (Ojha et al., 2023;
Cozzolino et al., 2024), audio-based detectors from Wav2Vec2 (Wang & Yamagishi, 2022; Pascu
et al., 2024), and audio-visual models from AV-HuBERT (Reiss et al., 2023; Liang et al., 2024).
The self-supervised representations capture rich, modality-specific structure without requiring task-
specific supervision, making them especially attractive for deepfake detection.

In this paper, we evaluate a wide range of self-supervised features (audio-only, image-only, multi-
modal) for the task of audio-visual deepfake detection. Our aim is to understand what these features
capture and how they contribute to detection performance. We center our work around three research
questions:

• RQ1. Do self-supervised features encode useful information for deepfake detection?
Do they also generalize across domains and to the related task of anomaly detection?

• RQ2. Where do self-supervised features look? Does the model attend to the manipulated
regions? Does it align with human annotations?

• RQ3. How complementary are different features? If multiple feature types succeed at
detection, do they rely on similar cues or do they encode distinct information?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To answer these questions, we adapt linear probing (Alain & Bengio, 2017; Hupkes et al., 2018;
Belinkov, 2022) to the video domain: we extract self-supervised representations, apply frame-level
linear classifiers on top, and aggregate their predictions at the video level. By keeping the classifier
minimal, we can directly measure the information already encoded in the feature representations.
We find that a broad set of features (from visual encoders trained on generic images to speech-only
models) encode deepfake information.

To assess whether this information is relevant, we conduct a multi-faceted evaluation. One way
we probe the model’s behavior is by extracting implicit localizations from the classifier. We use
temporal and spatial explainability techniques to test whether these explanations align with regions
that were actually manipulated. We further compare them to human annotations provided by Hondru
et al. (2025). A second more conventional measure of effectiveness is out-of-domain generalization:
we evaluate on three additional datasets, including in-the-wild data (Chandra et al., 2025). Finally,
since even subtle distribution shifts between real and fake samples can lead to spurious correlations
(Chai et al., 2020; Müller et al., 2022; Smeu et al., 2025), we also consider two tasks that rely on
real data only: (i) density estimation via next-token prediction, and (ii) audio-video synchronization,
which measures how well representations capture cross-modal alignment.

Our results show that many of the features align reasonably well with manipulation boundaries,
and there is no obvious reliance on spurious features, such as background regions or silence in the
audio. Still, out-of-domain performance remains inconsistent: even the strongest features struggle
on the challenging in-the-wild dataset. The reasons for this generalization gap are likely tied to
dataset characteristics, e.g. fundamentally different types of manipulations or uncertainty regarding
the labels of the in-the-wild data.

2 RELATED WORK

Self-supervised learning in audio and visual domains. Self-supervised learning (SSL) learns
powerful representations by solving pretext tasks on large-scale unlabeled data (Balestriero et al.,
2023). These representations transfer effectively to many downstream tasks, such as classification
or anomaly detection. In the visual domain (Uelwer et al., 2025), many approaches use contrastive
learning to align images to their augmented version (MoCo, He et al. 2020; SimCLR, Chen et al.
2020) or images to their caption (ALIGN, Jia et al. 2021; CLIP, Radford et al. 2021). Alternatives
include masked image modeling (MAE; He et al. 2022) or discriminative self-distillation (DINO,
Oquab et al. 2023; Siméoni et al. 2025). For video, spatio-temporal information is used to build
SSL representations (CVRL, Qian et al. 2021; VideoMAE, Tong et al. 2022). In the audio domain
(Liu et al., 2022), the Wav2Vec family (Baevski et al., 2020; Babu et al., 2022) and HuBERT (Hsu
et al., 2021) introduced predictive coding and masked prediction for speech signals, significantly
improving ASR with limited labeled data. For audio-visual data, AV-HuBERT (Shi et al., 2022)
extends HuBERT to learn joint speech and lip representations, while Auto-AVSR (Ma et al., 2023)
integrates Conformer encoders for audio-visual speech recognition. These representations have been
primarily used for speech-related tasks, but when trained on generic video they are also useful for
localization (Akbari et al., 2021) or music classification (Wang et al., 2021).

Self-supervised representations in deepfake detection. Self-supervised representations have suc-
cessfully transferred to deepfake detection. In the visual domain, Ojha et al. (2023) showed that a
frozen CLIP backbone with only a linear layer yields state-of-the-art generalization performance.
CLIP remains the most popular SSL encoder for image deepfake detection (Cozzolino et al., 2024;
Srivatsan et al., 2023; Zhu et al., 2023; Khan & Dang-Nguyen, 2024; Koutlis & Papadopoulos,
2024b; Liu et al., 2024a; Reiss et al., 2023; Smeu et al., 2024), but others have explored other vision-
language encoders (e.g., BLIP2 by Reiss et al. 2023; Keita et al. 2025, InstructBLIP by Chang et al.
2023) or vision-only models (e.g., DINO by Nguyen et al. 2024, MoCo by You et al. 2024). Sim-
ilarly, the audio deepfake detection community has adopted large SSL representations, with most
popular ones being Wav2Vec (Martı́n-Doñas & Álvarez, 2022; Wang & Yamagishi, 2022; Wang
et al., 2022; Tak et al., 2022; Xie et al., 2023; Pianese et al., 2024; Pascu et al., 2024), followed
by HuBERT (Kheir et al., 2025) and WavLM (Combei et al., 2024). For audio-visual deepfake
detection, AV-HuBERT representations have shown strong performance not only in a fully super-
vised paradigm (Shahzad et al., 2023), but also in zero-shot (Reiss et al., 2023; Liang et al., 2024)
or unsupervised (Smeu et al., 2025) settings.
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Audio-visual deepfake detection. Audio–visual deepfake detection exploits inconsistencies be-
tween modalities or leverages joint representation learning for improved robustness. Early meth-
ods focused on cross-modal inconsistencies, such as phoneme–viseme mismatches (Agarwal et al.,
2020) or emotional incongruence between speech and facial expressions (Mittal et al., 2020). An-
other line of work detects forgeries by modeling audio–visual synchrony, where misalignment be-
tween the two modalities signals manipulation (Feng et al., 2023; Smeu et al., 2025). More recent
approaches emphasize joint learning and multimodal fusion: AVFF (Oorloff et al., 2024) aligns au-
dio and video features with contrastive objectives, while SpeechForensics (Liang et al., 2024) use
pretrained speech and lip representations. Other architectures combine modality-specific encoders
via attention or transformers (Guo et al., 2023) or employ contrastive inter-modality differentiation
(Koutlis & Papadopoulos, 2024a).

3 METHODOLOGY

Deepfake detection is a binary classification task that attempts to map an input video x to a binary
label y (1 if the video is fake and 0, otherwise). We build deepfake detection models that rely
mostly on self-supervised features and learn a minimal amount of parameters on top of the features
to perform the task of deepfake detection. The models have three steps: 1. extract locally temporal
features (e.g., an embedding ϕ(xt) for each frame t); 2. apply a learnable linear classifier w; 3.
aggregate the predictions using a pooling function (such as log-sum-exp). Formally, the per-video
score s is defined as:

s(x;w) = log
∑
t

exp
{
w⊺ϕ(xt)

}
(1)

Since the log-sum-exp approximates the max function, the model learns to predict that a video is
fake if only a single region of the model is fake. The parameters of the linear layer are trained by
minimizing the cross-entropy loss on video-level labels. See App. A.1 for implementation details.

Our approach is related to linear probing (Alain & Bengio, 2017; Hupkes et al., 2018; Belinkov,
2022): we keep the self-supervised backbones frozen and train only a simple model on top. This
makes it possible to assess the quality of the representations in a comparable setting. While more
complex models could be explored for downstream performance, prior work shows that simple linear
models often suffice (Ojha et al., 2023; Pascu et al., 2024).

3.1 EXPLANATIONS

To understand how deepfake detection classifiers make decisions, we generate both temporal and
spatial explanations.

Temporal explanations. Since the pooling function (log-sum-exp) is a simple transformation of
its inputs, the final video-level prediction can be regarded as an aggregation of local frame-level
predictions. We therefore compute per-frame scores st = w⊺ϕ(xt) to measure which time segments
contribute most to the final prediction.

Spatial explanations. Given that the per-frame classifier is linear, we can further decompose each
frame-level decision into patch-level contributions. If the per-frame feature is computed by aver-
aging patch features, we propagate the linear classifier down to the patch level (Zhou et al., 2016).
If non-linear aggregation is used, we instead apply Grad-CAM (Selvaraju et al., 2017) to obtain
patch-level relevance maps.

Evaluation. We compare the resulting temporal and spatial explanations against the annotated ex-
tent of local manipulations or human annotations. Since the classifiers are trained only with video-
level supervision, this comparison also serves as a form of weakly-supervised localization.

3.2 PROXY TASKS

Instead of training a binary classifier, which risks latching onto spurious features, we explore two
tasks that rely on real data only: next-token prediction and audio-video synchronization. These
are proxy tasks because they do not address deepfake detection directly; rather, they model the
distribution of real data, and assume that that deviations from this distribution indicate fakes. Both
approaches have shown promising performance (Feng et al., 2023; Smeu et al., 2025).
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Pretraining

Model Modality Content Dataset Params. Dim.

Audio features
Wav2Vec XLS-R 2B audio speech MLS and others 2159M 1920
Auto-AVSR (ASR) audio speech LRS3 243M 768
AV-HuBERT (A) multimodal lips + speech VoxCeleb + LRS3 310M 1024

Visual features
Auto-AVSR (VSR) visual (video) lips LRS3 250M 768
FSFM visual (video) faces VGGFace2 86M 768
Video-MAE-large visual (video) generic Kinetics-400 303M 1024
CLIP VIT-L/14 visual (images) generic WebImageText 303M 768
AV-HuBERT (V) multimodal lips + speech VoxCeleb + LRS3 322M 1024

Audio-visual features
Auto-AVSR multimodal lips + speech LRS3 443M 768
AV-HuBERT multimodal lips + speech VoxCeleb + LRS3 322M 1024

Table 1: Overview of the self-supervised models studied in the paper. The “modality” column indi-
cates the input streams used for the training objective. Note that this may differ from the modalities
actually encoded.

Next-token prediction models the probability of the next frame’s representation xt given the pre-
vious frames x1, . . . ,xt−1. The assumption is that frames that cannot be predicted well are more
likely to indicate manipulations. We use a decoder-only Transformer trained with the mean squared
error on real videos. At test time, the model predicts each frame given its corresponding history, and
we obtain a per-video fakeness score as the maximum frame-level mean squared error. The models’
architecture has 4 layers each containing 4 heads, a feature dimension of 512 and a feedforward
dimension of 1024. In order to match the input encoding dimension, projection layers are applied
before and after the Transformer.

Audio-video synchronization models how well the audio and video frame-level representations
match. The assumption is that mismatches between the two modalities indicate manipulations. We
use an alignment network Φ (Smeu et al., 2025), where L2-normalized audio features a and visual
features v are concatenated and passed through a four-layer MLP with Layer Normalization and
ReLU activations. The network is trained to maximize the probability that an audio frame ai aligns
with its corresponding video frame vi, rather than with neighboring frames N(i):

p(vi | ai) =
exp (Φ(ai,vi))∑

k∈N(i) exp (Φ(ai,vk))
. (2)

At test time, the per-frame alignment scores Φ(ai,vi) are inverted to estimate fakeness, and then
pooled across the video using a log-sum-exp operator to produce the final detection score.

4 MODELS

We study a wide range of self-supervised representation: from models trained on audio-visual data
to models trained on visual-only or audio-only data. For the visual-only models, the content range
from face models to generic images or video. Tab. 1 summarizes the models used in the paper.

4.1 VISION-ONLY ENCODERS

CLIP (Radford et al., 2021) is an image-text model trained on general images collected from the
internet. For CLIP we use the ViT/L-14 model, and take the CLS token produced the image encoder.
The CLS token performs a non-linear aggregation of patch features using attention and a MLP.

FSFM (Wang et al., 2024) is a foundation model trained on faces and reconstruction tasks. FSFM
uses a ViT/B-14 model and performs average feature pooling. The model operates only on the face
region, so it relies on a face detector.

4
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VideoMAE (Tong et al., 2022) is a vision transformer model trained to reconstruct patches of
generic video. The model is typically used for action recognition. It extracts features on spatio-
temporal patches of size 2 × 16 × 16 in a window of 16 frames. The window is moved with strides
of 16. We discard the last window if its length is shorter than 16 frames.

4.2 AUDIO-ONLY ENCODERS

Wav2Vec XLS-R 2B (Baevski et al., 2020) is a speech model trained on 436k hours of multilingual
data. The model employs a convolutional feature encoder followed by a Transformer, and learns
to match context representations to the corresponding local quantized representations. We use the
representations extracted from the last layer. Wav2Vec2 extracts features every 20 ms (50 Hz); to
match a 25 FPS video, we concatenate each two consecutive feature vectors.

4.3 AUDIO-VISUAL ENCODERS

AV-HuBERT (Shi et al., 2022) is a Transformer that jointly models audio and visual features. Visual
features are extracted with a 3D ResNet on lip regions, while audio features come from a feedfor-
ward network applied to log filterbanks. The model is trained with masked multimodal cluster pre-
diction: masked audio-visual inputs used to predict automatically discovered and iteratively refined
hidden units. We also extract modality-specific representations by masking one stream: audio-only
features by masking the visual input (AV-HuBERT (A)), and visual-only features by masking the
audio input (AV-HuBERT (V)).

Auto-AVSR (Ma et al., 2021; 2023) is an audio-visual speech recognition model. The model en-
codes the two modalities with a Conformer (Gulati et al., 2020): visual features are extracted with
a 3D Resnet on lip regions, while audio features come from a 1D ResNet-18 followed by another
Conformer. We also obtain modality-specific representations using independently-trained models:
the visual-only branch trained exclusively on visual data (VSR), and the audio-only branch trained
solely on audio data (ASR).

5 EXPERIMENTAL SETUP

5.1 DATASETS

We consider four audio-visual datasets varying in terms of generation methods, manipulation scope
(full or local manipulation), source domain (controlled scientific settings or real-world media).

FakeAVCeleb (FAVC, Khalid et al. 2021) contains 500 real videos from VoxCeleb2 (Chung et al.,
2018) and 19.5k fake videos, generated using face swapping methods (Faceswap, Korshunova et al.
2017; FSGAN, Nirkin et al. 2019), lip-syncing (Wav2Lip, Prajwal et al. 2020), and voice cloning
(SV2TTS, Jia et al. 2018). Since the dataset does not come with a predefined split, in line with
previous works we split the dataset in 70% (training and validation) and 30% testing samples.

AV-Deepfake1M (AV1M, Cai et al. 2024) comprises over one million videos of approximately 2k
subjects. The videos are locally manipulated by modifying one or several words in the transcriptions
with ChatGPT. Corresponding fake video segments are generated with TalkLip (Wang et al., 2023),
while fake audio segments are generated with VITS (Kim et al., 2021) or YourTTS (Casanova et al.,
2022). We select a subset of training and validation samples from the original training set (see
App. A.1), and evaluate on 10k samples taken from the original validation set.

DeepfakeEval 2024 (DFE-2024, Chandra et al. 2025) is a real-world dataset collected from 88
websites through social media and the TrueMedia.org platform. The dataset contains deepfakes
circulating online in 2024 across multiple media (audio, video, images) and in 52 different lan-
guages; the types of manipulations are unknown. We use the video subset, comprising 45 hours of
content, which we preprocess into single-speaker segments (see App. A.2). This process yields for
the test set 86 real and 507 fake samples, averaging 13.92 seconds.

AVLips (AVLips, Liu et al. 2024b) is composed of 7557 videos (3373 real samples, 4184 fake
samples). The real videos are obtained from LRS3 (Afouras et al., 2018), FF++ (Rossler et al.,
2019) and DFDC (Dolhansky et al., 2020), while fake videos are generated using multiple methods

5
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ID (AV1M) OOD

Model classif. local. FAVC DFE-2024 AVLips mean

Audio features
AV-HuBERT (A) 99.95 92.00 99.95 45.68 57.18 67.60
Auto-AVSR (ASR) 50.14 51.10 76.01 50.65 49.62 58.76
Wav2Vec2 XLS-R 2B 99.97 96.81 99.87 58.17 56.28 71.44
Visual features
AV-HuBERT (V) 93.67 94.53 95.53 60.74 90.45 82.24
Auto-AVSR (VSR) 58.98 65.14 77.53 59.48 70.13 69.08
FSFM 95.25 52.68 40.88 47.96 36.75 41.86
CLIP VIT-L/14 96.54 80.17 95.18 48.66 53.26 65.70
Video-MAE-large 99.80 78.54 70.37 43.75 47.15 53.75

Audio-visual features
AV-HuBERT (random init.) 51.32 51.45 40.13 44.28 45.37 43.26
AV-HuBERT 99.88 96.80 99.52 50.87 84.35 78.24
Auto-AVSR 91.58 90.20 68.28 52.41 54.64 58.44

Table 2: Performance in terms of AUC of linear probes trained on AV1M and evaluated both in-
domain (ID) and out-of-domain (OOD). For the in-domain setting, apart from classification we
also consider the localization of the temporal explanations. Grayed-out values correspond to audio
models evaluated on datasets with video-only manipulations, where labels may be unreliable.

such as MakeItTalk (Zhou et al., 2020), Wav2Lip (Prajwal et al., 2020), TalkLip (Wang et al., 2023)
and SadTalker (Zhang et al., 2023). We use the whole dataset for testing.

5.2 EVALUATION AND BASELINES

Classification. To measure how well fake samples can be distinguished from real ones, we report
the area under receiver operator characteristic curve (AUC). This metric has the advantages of being
threshold-independent and having a clear baseline: a random model achieves 50% AUC, regardless
of the class distribution. We also report average precision results in App. A.3, Tabs. A.3 & 5.

Temporal localization. We evaluate how well temporal explanations align with ground-truth an-
notations. For this, we consider the videos from the AV1M test set that contain at least one fake
segment, and compute a localization score per video. The localization score is computed in terms
of AUC by treating each frame as an independent sample: the model’s frame-level score serves as
the prediction, while annotated fake segment specifies the groundtruth label. The final localization
score is the average of the AUC values across all fake test videos.

Random baseline. To understand how much information is encoded implicitly in the architecture,
we report results of the the untrained (randomly initialized) AV-HuBERT model.

6 EXPERIMENTAL RESULTS

6.1 MAIN RESULTS

Tab. 2 shows the main results for the linear probes across the selected self-supervised features. We
see that most representations perform strongly in-domain, with performances of over 90% AUC (the
“classif.” column). This result suggests that these features are able to encode the subtle information
needed to differentiate between real and fake samples, and that these differences can be picked
from different angles: from audio (Wav2Vec2, AV-HuBERT (A)), from motion information (Video-
MAE), from static vision content (CLIP). The architecture does not have an implicit bias, as the
randomly initialized AV-HuBERT model performs at random chance. There are only two other
representations that do not perform well: the ASR and VSR models from Auto-AVSR.
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AV-HuBERT (V) · score: 9.54 CLIP · score: 7.17 VideoMAE · score: 11.89

t: 1.9s t: 2.2s t: 2.3s t: 7.8s t: 8.0s t: 8.2s t: 12.5s t: 13.1s t: 13.4s

real · p: 0.0 fake · p: 1.0 real · p: 1.0 real · p: 0.0 fake · p: 1.0 real · p: 0.0 real · p: 0.0 fake · p: 1.0 real · p: 0.4

Figure 1: Temporal explanations of the top video predictions for three of the visual SSL repre-
sentations: AV-HuBERT (V), CLIP, VideoMAE. The fakeness predictions are given in terms of
unnormalized scores (logits), as well as as in terms of probabilities. Red regions indicate fake seg-
ments, and gray dashed lines corresponds to the decision boundary (0.5 probability). For each case,
we show three frames: the central one taken from the fake region, and two that fall just outside the
fake region (the precise locations are shown as triangles on the prediction plot).

Many of the features perform well in-domain, but is this information transferable? Or do the models
overfit to some spurious biases? We tackle this question from three different perspectives: localiza-
tion, out-of-domain performance, proxy tasks.

Localization of temporal explanations. Tab. 2 (column “local.”) reports the alignment between
the temporal explanations and local manipulations from AV1M. We see that many features still
produce strong results (performance over 80% AUC), indicating that linear probes extract reasonable
information from the representations. An exception is FSFM, for which there is a big drop, but visual
inspection of the results didn’t reveal an obvious bias that was picked up. Three other features are
investigated qualitatively in Fig. 1. The explanations for the top scoring videos appear reasonable
for these models, but the predictions of AV-HuBERT (V) are much cleaner than those of CLIP and
VideoMAE. Individual samples reveal that the models attend to different cues: for example, CLIP
tends to focus on blurry regions, while VideoMAE emphasizes speed-up or slow-down differences.
However, these observations are difficult to quantify, since the perceptual differences are subtle and
hard to gauge. Even between adjacent frames, which look very similar, the score can vary widely.

Out-of-domain performance. Tab. 2 (columns “OOD”) reports results on three out-of-domain
(OOD) datasets. Both ranking of features and the gap to the in-domain performance vary strongly
across OOD datasets. In terms of feature ranking: on FAVC, which contains both audio and vi-
sual manipulations, audio features (Wav2Vec2, AV-HuBERT (A)) and audio-aligned features (AV-
HuBERT) perform well; on DFE-2024 and AVLips, which primarily involve visual manipulations,
the visual models perform best, with lip-focused models (AV-HuBERT (V), Auto-AVSR (VSR))
achieving the highest scores. In terms of generalization gap: on FAVC, some of the models produce
performance that is comparable to what is reported on the in-domain case. However, the gap widens
on the AVLips and DFE-2024 datasets. So while the models (like CLIP or AV-HuBERT) seem to
learn reasonable features, they are not transferable to completely new datasets, likely because they
contain different types of artifacts than those from AV1M or because they are harder (App. A.3,
Tab. 6). Similar patterns are observed when FAVC is the source dataset (App. A.3, Tab. 7).

Proxy tasks. Tab. 3 presents the results on deepfake detection when models are trained on proxy
tasks. Since the synchronization task involves two types of features, we also include those feature
combinations for the supervised case (through late fusion) and for next-token prediction (through
concatenation). Overall, proxy-task training performs worse than direct supervised training. This
indicates that (i) the supervised classifier is not simply exploiting a spurious cue, and (ii) the proxy
objectives themselves are less effective for the downstream task. Even on the harder DFE-2024
dataset, proxy tasks fail to provide an improvement (results not shown in the table). In terms of
features, the AV-HuBERT (A) + (V) combination is the best, and the only one that is close to the
supervised setting. For next-token prediction, AV-HuBERT (A) features are very strong, while for
synchronization CLIP features are not enough, highlighting the importance of temporal dynamics.
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AV1M FAVC

Model Sup. NTP Sync. Sup. NTP Sync.

Single features
AV-HuBERT (A) 99.95 90.57 N/A 99.95 80.54 N/A
Wav2Vec2 99.97 56.62 N/A 99.87 59.36 N/A
AV-HuBERT (V) 93.67 46.14 N/A 95.53 55.32 N/A
CLIP 96.54 47.30 N/A 95.18 60.18 N/A

Combinations of features
AV-HuBERT (A) + AV-HuBERT (V) 99.97 84.47 87.28 99.95 91.23 96.11
AV-HuBERT (A) + CLIP 99.99 86.90 49.99 99.97 79.64 54.40
Wav2Vec2 + AV-HuBERT (V) 99.98 60.61 86.51 99.97 79.39 94.60
Wav2Vec2 + CLIP 99.99 57.17 49.66 99.96 69.75 21.67

Table 3: AUC performance on the AV1M and FAVC datasets for models trained with supervision
(sup.), next-token prediction (NTP), and audio-video synchronization (sync.). The supervised mod-
els are trained on AV1M, so AV1M/Sup. results are in-domain (grayed out). The proxy models
(NTP and sync.) are trained on a subset of VoxCeleb.

6.2 COMBINATIONS OF FEATURES

To understand how the different self-supervised representations relate, we examine two aspects.
First, we measure the correlation between predictions produced by pairs of models. This evalua-
tion provides insight into the similarity of their learned decision boundaries. Second, we evaluate
downstream performance when combining multiple models. This offers a more direct assessment of
the feature combination effectiveness toward our final goal. Results on FAVC are in Fig. 2 and on
DFE-2024 in App. A.3, Fig. 4.

Model correlation. We measure the correlation between their predictions. We consider a subset of
the linear models trained on various features from the previous section. For each pair of models,
we generate predictions on a shared test dataset and calculate the Pearson correlation coefficient
between their outputs.
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Figure 2: Correlations between models (left) and down-
stream performance (right). The downstream performance
is presented in absolute values for the unimodal models
(AUC column) and as relative improvement for feature com-
binations. Training was done on AV1M, testing on FAVC.

We observe that the cross-model cor-
relations are generally weak to mod-
erate; this suggests that the em-
beddings encode different informa-
tion. The strongest correlations occur
within modalities: audio models (AV-
HuBERT (A) and Wav2Vec2) show
high correlation with each other, as
do vision models (CLIP and Video-
MAE). Notably, AV-HuBERT (V)
correlates more strongly with audio
models than with other video models.
This happens because AV-HuBERT
(V) focuses solely on lip movements
and is trained jointly with the audio
component.

Downstream performance. The
largest gains from feature combina-
tion occur for Video-MAE. This is
expected, as Video-MAE has the low-

est performance and thus has the most room for improvement. Also, unsurprisingly, Video-MAE
benefits most from audio features, which are both stronger and more complementary than the visual
ones. However, among similarly performing features, Video-MAE benefits more from CLIP (with
which is more aligned) than from AV-HuBERT (V) (with which is more complementary). This
suggests that the impact of feature combination is more nuanced than solely their complementarity.
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Figure 3: Alignment of spatial explanations to human annotations. Left: Alignment error in terms of
mean absolute error (MAE) as a function of the model confidence (fakeness score). The explanations
align better to human annotations as the model is more confident in its predictions. Right: Qualitative
samples human annotation shown as the center of the red circle on top frame, and explanation of the
CLIP-based model shown on bottom frame (maximum value indicated by the green circle).

6.3 ALIGNMENT TO HUMAN ANNOTATIONS

We saw that deepfake detection models tend to find temporarily modified regions. But do they
also look at the same artifacts as humans? To answer this question, we analyze the recently in-
troduced ExDDV dataset (Hondru et al., 2025), which provides click annotations indicating where
humans identified generation artifacts. We compare these annotations with explanations produced
by a CLIP-based model trained on the ExDDV training set (this model achieves 71.3% AUC on
the ExDDV test set). We generate explanations for the fake test videos using GradCAM applied
to the final LayerNorm layer of the CLIP visual encoder. We quantify the human-machine align-
ment as the mean absolute error (MAE) between the relative coordinates of human click annotations
and the maximum values in the GradCAM attention maps. To contextualize these results, we com-
pare against several baselines: random position within each frame, frame center, face center, and a
predictive click model trained on click annotations (the ViT model from Hondru et al. 2025).

Fig. 3 (left) presents quantitative results: MAE as a function of the minimum fakeness score. We
observe that error decreases with the minimum fakeness score, suggesting better alignment for con-
fident predictions (these predictions are also correct, since we consider only fake samples). The vari-
ance increases correspondingly due to fewer samples exceeding the higher score thresholds. Com-
pared to baseline methods, the explanations achieve better alignment than frame center (0.117 MAE)
or random locations (0.270 MAE, not shown). However, alignment remains lower than what a pre-
dictive model achieves (0.055 MAE). Notably, the predictive click model performs only marginally
better than face center prediction (0.058 MAE), suggesting that human annotations may not contain
substantially more localization information beyond indicating that artifacts occur somewhere on the
face. Fig. 3 (right) shows qualitative results. In these samples, most model predictions concentrate
on the forehead region, while human annotations focus on eyes and lips. Crucially, the model ap-
pears to avoid relying on spurious background features, with explanations consistently concentrating
on facial regions.

7 CONCLUSIONS

In this paper, we examined a wide array of self-supervised representations for audio-visual deepfake
detection. We found that many of these features, varying by modality or training focus, perform
strongly in-domain, with performance often aligning with temporal explanations. Moreover, the in-
formation captured by the representations is both complementary and often semantically meaning-
ful. Among the tested representations, we have found that audio features (in particular Wav2Vec2)
perform strongly when datasets contained speech-level manipulations, while AV-HuBERT provided
the strongest overall performance. Nonetheless, even the best features degraded significantly as data
distribution shifts, likely due to the presence of new types of artifacts. Taken together, our findings
suggest that self-supervised features hold considerable promise for deepfake detection, but closing
the generalization gap will likely require advances beyond feature representations alone.
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Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without
supervision. CoRR, abs/2304.07193, 2023.

Octavian Pascu, Adriana Stan, Dan Oneata, Elisabeta Oneata, and Horia Cucu. Towards general-
isable and calibrated synthetic speech detection with self-supervised representations. In Inter-
speech, 2024.

Alessandro Pianese, Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva. Training-free deep-
fake voice recognition by leveraging large-scale pre-trained models. In ACM Workshop on Infor-
mation Hiding and Multimedia Security, 2024.

K R Prajwal, Rudrabha Mukhopadhyay, Vinay P. Namboodiri, and C.V. Jawahar. A lip sync expert
is all you need for speech to lip generation in the wild. In ACM MM, 2020.

Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang, Serge Belongie, and
Yin Cui. Spatiotemporal contrastive video representation learning. In CVPR, pp. 6964–6974,
2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Tal Reiss, Bar Cavia, and Yedid Hoshen. Detecting deepfakes without seeing any. arXiv preprint
arXiv:2311.01458, 2023.

Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias
Nießner. FaceForensics++: Learning to detect manipulated facial images. In CVPR, 2019.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-based local-
ization. In CVPR, pp. 618–626, 2017.

Sahibzada Adil Shahzad, Ammarah Hashmi, Yan-Tsung Peng, Yu Tsao, and Hsin-Min Wang. AV-
Lip-Sync+: Leveraging AV-HuBERT to exploit multimodal inconsistency for video deepfake de-
tection. arXiv preprint arXiv:2311.02733, 2023.

Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Abdelrahman Mohamed. Learning audio-visual
speech representation by masked multimodal cluster prediction. In ICLR, 2022.

Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Linear probing. The linear probing model is trained for 100 epochs with early stopping (the train-
ing process is stopped if no loss improvement on the validation set is observed for 10 consecutive
epochs). The optimizer used is Adam with a learning rate of 10−3. In terms of data, for AV1M we
select a subset of 45k videos as our training set and a subset of 5k videos for validation. Both subsets
are sampled from the official training set. In the case of FAVC, we split the entire dataset into 63%
training, 7% validation, and 30% testing samples.

Next-token prediction. We use similar training settings to linear probing. The main difference is
that we anneal the learning rate using a cosine scheduler. To train the model we sampled 50k real
videos from the training set of AV1M (45k for training, which includes the real ones from the train
set of the linear probing experiments, and 5k for validation).

Audio-video synchronization. For the task of audio-video synchronization, we used the code made
available from Smeu et al. (2025) with the default parameters. We utilized a temporal neighborhood
of 30 frames and a learning rate scheduler with a patience of 5 epochs and a factor of 0.1, with a
starting learning rate of 10−5. We used the same training set as for next-token prediction.

A.2 DATASETS

DeepfakeEval 2024 preprocessing. We use TalkNet-ASD Tao et al. 2021 to identify which seg-
ments in an audio-video media file contain a single person speaking. We selected audio-video seg-
ments that met these criteria: (i) each video segment that has an associated audio stream; (ii) a video
segment should contain a single speaking face that was tracked in every frame. (Some videos had
static images or background music instead of speech and these were discarded); (iii) the identified
face is larger than 100px×100px; (iv) the duration of audio-video segment is between 3 and 60
seconds.
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Figure 4: Correlations between models (left) and downstream performance (right). Training was
done on AV1M, testing on DFEval-2024.

A.3 FURTHER RESULTS

Average precision results. We complement the results from Tab. 2 and 3 with the average precision
(AP) scores reported in Tab. A.3 and Tab. 5, respectively.

Combinations of features. In Fig. 4 we show the results for combinations of features when testing
is done on DFE-2024. Compared to Fig. 2 (testing done on FAVC), certain trends are much better
highlighted: first, the performance of every model greatly increases when combined with Wav2Vec2
or AV-HuBERT (V); second, the correlations between models’ results are weaker, suggesting that
the models capture more distinct patterns.

In-domain performance. In addition to the in-domain results on AV1M, we provide similar in-
domain results on FAVC and DFE-2024. For DFE-2024, we use a training set composed of 532
videos (58 reals and 474 fakes) and a validation set of 134 samples (15 reals and 119 fakes). The
average duration is 14.24 seconds. The performance obtained on the corresponding test splits is
reported in Tab. 6. On FAVC, we observe high performance throughout (over 97% AUC), whereas
on DFE-2024, performance hovers around 60% AUC across features, with FSFM features reaching
the highest score of 69.68% AUC. These results indicate that DFE-2024 poses a considerably greater
challenge even under in-domain evaluation.

Out-of-domain performance. We perform out-of-domain evaluation using a different source
dataset: FAVC. The results are reported in Tab. 7. In comparison to Tab. 2, we see a greater gener-
alization towards AVLips, especially in the visual-only features. Overall, the best features remain
those extracted with AV-HuBERT.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

ID (AV1M) OOD

Model classif. FAVC DFE-2024 AVLips mean OOD

Audio features
AV-HuBERT (A) 99.95 99.99 85.25 62.88 82.70
Auto-AVSR (ASR) 51.47 98.43 87.53 55.30 80.42
Wav2Vec2 XLS-R 2B 99.97 99.99 89.91 64.32 84.74
Visual features
AV-HuBERT (V) 94.68 99.58 88.40 88.59 92.19
Auto-AVSR (VSR) 60.25 98.68 89.48 74.33 87.49
FSFM 95.53 95.15 83.29 47.14 75.19
CLIP VIT-L/14 96.78 99.76 84.17 60.86 81.59
Video-MAE-large 99.73 98.09 83.08 53.17 78.11

Audio-visual features
AV-HuBERT (random init.) 52.46 94.22 84.00 51.66 76.62
AV-HuBERT 99.88 99.97 84.94 82.10 89.00
Auto-AVSR 92.79 97.67 87.31 58.39 81.12

Table 4: Performance in terms of AP of linear probes trained on AV1M and evaluated both in-domain
(ID) and out-of-domain (OOD). We opt to omit the localization AP as this metric is sensitive to class
imbalance, which makes it unreliable. Grayed-out values correspond to audio models evaluated on
datasets with video-only manipulations, where labels may be unreliable.

AV1M FAVC

Model sup. ntp sync sup. ntp sync

Single features
AV-HuBERT (A) 99.95 91.81 N/A 99.99 98.76 N/A
Wav2Vec2 99.97 56.40 N/A 99.99 96.58 N/A
AV-HuBERT (V) 94.68 49.16 N/A 99.58 97.13 N/A
CLIP 96.78 49.68 N/A 99.76 96.77 N/A

Audio-visual features
AV-HuBERT (A) + AV-HuBERT (V) 99.97 83.42 85.74 99.99 99.48 99.67
AV-HuBERT (A) + CLIP 99.99 87.98 50.02 99.99 98.55 96.14
Wav2Vec2 + AV-HuBERT (V) 99.98 59.43 83.31 99.99 98.57 99.61
Wav2Vec2 + CLIP 99.99 56.58 50.54 99.99 97.64 90.73

Table 5: AP performance on the AV1M and FAVC datasets for models trained with supervision
(sup.), next-token prediction (NTP), and audio-video synchronization (sync.). The supervised mod-
els are trained on AV1M, so AV1M/Sup. results are in-domain (greyed out). The proxy models
(NTP and sync.) are trained on a subset of VoxCeleb.

Model AV1M FAVC DFE-2024

AUC AP AUC AP AUC AP

Audio features
AV-HuBERT (A) 99.95 99.95 100 100 65.53 90.78
Auto-AVSR 50.14 51.47 99.66 99.98 63.96 91.74
Wav2Vec2 XLS-R 2B 99.97 99.97 100 100 60.88 90.72

Visual features
AV-HuBERT (V) 93.67 94.68 100 100 66.32 92.08
Auto-AVSR (VSR) 58.98 60.25 97.83 99.89 61.43 90.12
FSFM 95.25 95.53 97.13 99.86 69.68 92.31
CLIP VIT-L/14 96.54 96.78 99.77 99.98 64.37 89.54
Video-MAE-large 99.79 99.73 99.96 99.99 56.15 87.51

Table 6: Linear probes trained and evaluated in-domain (ID), reporting AUC and AP.
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ID OOD

Model FAVC AV1M DFE-2024 AVLips mean

Audio features
AV-HuBERT (A) 100 99.01 48.05 50.03 65.69
Auto-AVSR (ASR) 99.66 50.34 49.31 52.90 50.85
Wav2Vec2 XLS-R 2B 100 96.58 57.77 51.27 68.54
Visual features
AV-HuBERT (V) 100 64.08 64.47 98.33 75.62
Auto-AVSR (VSR) 97.83 51.25 50.56 83.29 61.70
FSFM 97.13 52.69 64.36 84.29 67.11
CLIP VIT-L/14 99.77 71.13 58.77 60.30 63.40
Video-MAE-large 99.96 60.01 44.19 71.31 58.50

Audio-visual features
AV-HuBERT 100 94.50 57.41 78.47 76.79
Auto-AVSR 94.70 53.18 43.71 59.62 52.17

Table 7: Performance in terms of AUC of linear probes trained on FakeAVCeleb and evaluated both
in-domain (ID) and out-of-domain (OOD). Grayed-out values correspond to audio models evaluated
on datasets with video-only manipulations, where labels may be unreliable.
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