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ABSTRACT

Deep residual architectures, such as ResNet and the Transformer, have enabled
models of unprecedented depth, yet a formal understanding of why depth is so ef-
fective remains an open question. A popular intuition, following Veit et al. (2016),
is that these residual networks behave like ensembles of many shallower models.
Our key finding is an explicit analytical formula that verifies this ensemble per-
spective, proving that increasing network depth is mathematically equivalent to
expanding the size of this implicit ensemble. Furthermore, our expansion reveals
a hierarchical ensemble structure in which the combinatorial growth of compu-
tation paths leads to an explosion in the output signal, explaining the historical
necessity of normalization layers in training deep models. This insight offers a
first-principles explanation for the historical dependence on normalization layers
and sheds new light on a family of successful normalization-free techniques like
SkipInit and Fixup. However, while these previous approaches infer scaling fac-
tors through optimizer analysis or a heuristic analogy to Batch Normalization,
our work offers the first explanation derived directly from the network’s inherent
functional structure. Specifically, our Residual Expansion Theorem reveals that
scaling each residual module provides a principled solution to taming the combi-
natorial explosion inherent to these architectures. We further show that this scaling
acts as a capacity controls that also implicitly regularizes the model’s complexity.

1 INTRODUCTION

The introduction of deep residual networks (He et al., 2016a) marked a pivotal moment in deep learn-
ing, enabling the stable training of architectures with unprecedented depth. A central intuition for
their success, proposed by Veit et al. (2016), is the “unraveled view,” which suggests that a ResNet
functions not as a single, monolithic entity, but as an implicit ensemble of many shallower networks.
This perspective, however, has remained largely conceptual, supported by empirical lesion studies
rather than a precise mathematical framework.

In this work, we move beyond analogy to provide a rigorous analytical foundation for this ensemble
interpretation. Our main contribution is the Residual Expansion Theorem, which derives an explicit
formula for the exact functional form of the implicit ResNet ensemble. This expansion reveals a
hierarchical structure where increasing network depth directly corresponds to increasing the number
of models in the ensemble, which are combined in a combinatorially growing number of ways. A
direct consequence of this finding is a new, first-principles explanation for the instability of very
deep networks: a “combinatorial explosion” in the number of functional paths leads to an explosion
in the output magnitude, a problem historically managed by normalization layers.

This theoretical insight also sheds new light on a family of successful techniques for training very
deep networks without normalization. Methods like Fixup (Zhang et al., 2019) and SkipInit (De
& Smith, 2020) have empirically demonstrated that scaling down residual branches is crucial for
stability. Their scaling factors, however, were derived from analyzing optimizer dynamics or by
analogy to Batch Normalization. Our Residual Expansion Theorem provides an underlying theo-
retical justification, based on the network’s functional structure, explaining that these methods are
effective precisely because they implicitly counteract the combinatorial explosion of the paths that
we formally identify.

Our theorem not only explains why scaling is necessary but also establishes a principled framework
when training residual architectures. We show that scaling each residual module by the inverse of

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the total network depth (i.e., scaling by 1/n for a network of depth n) is an immediate mathemati-
cal consequence of our ensemble characterization, specifically designed to tame this combinatorial
growth. However, while this 1/n scaling architecturally ensures stable, normalization-free training,
experimentally we notice that scaling factors beyond 1/n and closer to 1/

√
n, consistently lead to

higher test accuracy without reintroducing the need for normalization. This suggests treating the
scaling of the residual branch as an hyper-parameter λ to be tuned around the value 1/

√
n. In the

last part of our paper, we dive into both experimental and theoretical analysis, demonstrating that
λ functions as a form of regularized capacity control that simultaneously enhances model capacity
and promotes simpler solutions.

In summary, this paper makes the following contributions:

• We introduce the Residual Expansion Theorem, formally establishing the ensemble nature
of ResNets and providing an explicit formula that links network depth to ensemble size;
see Theorem 3.1.

• We pinpoint the combinatorial explosion of functional paths as the root cause of instability
in deep, unnormalized residual networks, offering a unifying theoretical explanation for the
efficacy of existing scaling-based methods; see Section 3.1.

• We derive a principled scaling method for residual branches, parameterized by λ, which di-
rectly counteracts the combinatorial explosion identified by our theorem, thereby enabling
stable, normalization-free training of deep networks; see Section 4.1.

• We show that our proposed scaling acts as a novel form of capacity control and implicitly
regularizes the model’s geometric complexity; see Section 4.2 and Appendix B.

In Appendix C we provide a geometric analysis showing that the loss surfaces of shallower residual
networks are naturally embedded within those of deeper ones, providing a different but complemen-
tary angle on the impact of residual depth on the optimization of residual models.

2 RELATED WORK

Residual Architectures and Ensembles. The remarkable success of deep residual networks
(ResNets), first introduced by He et al. (2016a), has prompted a significant body of research aimed
at understanding the mechanisms that enable their training at extreme depths. The core architectural
innovation (the identity shortcut or skip connection) was designed to address the degradation prob-
lem observed in very deep plain networks. A follow-up analysis by He et al. (2016b) further refined
the architecture, arguing that unimpeded information propagation through “identity mappings” in
both the forward and backward passes is crucial for stable training.

Building on this foundation, a pivotal contribution in this area is the work of Veit et al. (2016), who
proposed an “unraveled view” of ResNets, interpreting them not as a single, monolithic deep model,
but as an implicit ensemble of a combinatorial number of shallower networks. Each possible path
that data can take through the network by either passing through a residual block or bypassing it via
the identity connection constitutes a distinct member of this ensemble. The primary evidence for
this interpretation came from lesion studies, which demonstrated that removing individual residual
blocks at test time led to a graceful degradation in performance, akin to removing models from a con-
ventional ensemble, whereas removing layers from a plain network caused catastrophic failure. This
perspective also offered a compelling explanation for how ResNets mitigate the vanishing gradient
problem: rather than preserving gradient flow through the entire network depth, gradients during
backpropagation are dominated by the collection of relatively short paths, which remain trainable.

While this ensemble analogy has been highly influential, it is not exact, as the constituent paths are
not independent but share parameters across layers, a key distinction from traditional ensembling
methods. Our work builds directly upon this intuition by moving beyond empirical observation and
analogy to provide a precise mathematical characterization. We derive an explicit formula for the
exact functional form of this implicit ensemble, revealing a hierarchical structure where models of
increasing complexity are combined, thereby providing an analytical foundation for the ensemble
nature of residual architectures.
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Mathematical Formalisms of the Ensemble View. Building on the conceptual foundation laid
by Veit et al. (2016), other lines of research have sought to formalize the ensemble nature of resid-
ual networks through different mathematical frameworks. Huang et al. (2018) framed the ResNet
architecture through the lens of boosting theory, proposing a “telescoping sum boosting” of weak
learners. In their work, the final output of a ResNet is shown to be equivalent to a summation of
“weak module classifiers” derived from each residual block, providing a rigorous mathematical ba-
sis for the ensemble interpretation that is analogous to the first-order term in our expansion. Another
theoretical approach (Lu et al., 2020) views ResNets in a continuous limit, treating them as a dis-
cretization of an ordinary differential equation (ODE). This analysis also uncovers a combinatorial
structure, showing that at order k, the function contains O(kL) terms, with the contribution of the
k-th order term decaying as O(1/k!). More recently, a parallel line of work by Chen et al. (2024)
introduced “Jet Expansions,” a framework that also decomposes a residual network’s computation
into a sum of its constituent paths . This method uses jets, which generalize Taylor series, to system-
atically disentangle the contributions of different computational paths to a model’s final prediction.
While our expansion is used to derive a scaling law for stable training, the Jet Expansion framework
is primarily motivated by model interpretability, enabling data-free analysis of model behavior such
as extracting n-gram statistics or indexing a model’s toxicity. The concurrent development of these
expansion-based theories highlights a trend toward understanding network function by analyzing its
underlying computational paths.

The Role of Width and Depth. The architectural design of neural networks involves a funda-
mental trade-off between depth (the number of layers) and width (the number of neurons per layer).
Theoretical work has provided strong evidence for the primacy of depth in terms of expressive
power. Raghu et al. (2017) demonstrated, through an analysis of activation patterns and a novel
metric called “trajectory length,” that the complexity of the function a network can represent grows
exponentially with depth but only polynomially with width. This suggests that for a fixed parameter
budget, deeper networks are theoretically capable of approximating a far richer class of functions
than their shallower counterparts. However, this theoretical advantage is challenged by empiri-
cal findings. Zagoruyko & Komodakis (2016) introduced Wide Residual Networks (WRNs) and
showed that a significantly wider but much shallower ResNet could outperform a very deep and
thin one, while also being substantially more computationally efficient to train. They argued that
extremely deep networks suffer from “diminishing feature reuse,” where additional layers provide
marginal benefits at a high computational cost. While depth is theoretically potent and a minimum
width is necessary for universal approximation (Lu et al., 2017), the practical benefits of extreme
depth have been questioned.

Our work offers a new lens through which to view this debate for residual architectures. The derived
ensemble expansion reveals that increasing depth n is mathematically analogous to increasing the
number of experts in the model mixture. This reframes the discussion from a simple trade-off
between depth and width to one between the size of the ensemble and the capacity of its individual
members, offering a potential synthesis of these competing perspectives.

Normalization Layers and Depth. A key practical challenge in training very deep networks is
maintaining stable signal propagation and avoiding the explosion of activation magnitudes. Histor-
ically, this has been addressed by normalization layers, which have become a standard component
in deep learning architectures. The seminal work on Batch Normalization by Ioffe & Szegedy
(2015) proposed normalizing layer inputs over a mini-batch to reduce “internal covariate shift,”
which dramatically stabilized training and allowed for higher learning rates. Subsequently, Layer
Normalization (Ba et al., 2016) was introduced, which normalizes over the features within a single
example, making it independent of batch size and particularly effective for recurrent architectures
and Transformers. More recently, a line of research has explored the possibility of training deep net-
works without any normalization layers. Notable successes in this area include Fixup initialization
Zhang et al. (2019) and SkipInit De & Smith (2020), which use careful, static rescaling of weights
or branches at initialization to ensure stable dynamics. A different perspective is offered by recent
work from Bordelon & Pehlevan (2025), which uses dynamical mean-field theory to analyze train-
ing in the infinite-depth limit of deep linear networks. Their analysis suggests that for the training
dynamics to have a well-defined limit, residual branches must be scaled by 1/

√
depth.
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3 THE RESIDUAL EXPANSION THEOREM

To analyze the functional properties of deep residual networks, we consider a slightly modified but
representative architecture. Most modern residual models can be described by the following general
form, which separates the network into an encoding block Eξ, a tower of residual blocks Rθ and a
final decoding layer Dη as follows:

f(x) = Dη ◦Rθ ◦ Eξ(x) (1)

where

• Eξ : Rdin → Rde is an encoding network that maps the input into a representational space.

• Rθ : Rde → Rde is a residual tower composed of n blocks that transforms the representa-
tion of the encoded input:

Rθ = (1 + λFn) ◦ · · · ◦ (1 + λF1), (2)

with each block having the form (1 + λFi)(z) = z + λFi(z) where Fi : Rde → Rde is
a function representing the residual branch (e.g., a sequence of linear, normalization, and
activation layers). The scalar λ controls the contribution of each residual branch, which is
the slight modification we introduce.

• Dη : Rde → Rdout is a decoding network that maps the final representation to the output
space, which we assume to be an affine map, Dη(z) = Wηz + bη .

This structure allows us to derive an exact expansion for the network’s function, formalizing the
intuition that a ResNet behaves as an ensemble of shallower networks.
Theorem 3.1 (The Residual Expansion Theorem). Consider a residual network with n blocks of the
form given in Equation 1. First of all, the residual tower admits the following expansion:

Rθ(z) = z + λ

n∑
i=1

Fi(z) + λ2
∑

1≤i<j≤n

F ′
j(z)Fi(z) +O(λ3) (3)

Moreover the residual network can be expressed as a infinite sum of increasingly larger ensembles
of models as a result:

f(x) = Dη

(
Eξ(x)

)︸ ︷︷ ︸
Order 0: Base Model M0

+λ

n∑
i=1

WηFi

(
Eξ(x)

)
︸ ︷︷ ︸

Order 1: Ensemble M1

+λ2
∑

1≤i<j≤n

WηF
′
j(Eξ(x))Fi(Eξ(x))︸ ︷︷ ︸

Order 2: Ensemble M2

+ . . .

(4)
Moreover, if we further assume that the encoding network is an affine map Eξ(x) = Wξx + bξ,
then the base model is also an affine map Dη

(
Eξ(x)

)
= W0x + b0 with W0 = WηWξ and b0 =

Wηbξ + bη .

Proof. Let us start by showing the expansion for the residual tower as in Equation 3. We proceed by
induction. For the base case, n = 1, this is trivial. Suppose now that this is true for any composition
of n− 1 operators of the form (1 + λFi(z)). By definition, we have that

(1 + λFn) ◦ · · · ◦ (1 + λF1)(z) = (1 + λFn)
(
(1 + λFn−1) · · · (1 + λF1)(z)

)
= X + λFn(X)

with X = (1 + λFn−1) · · · (1 + λF1)(z). Now by induction hypothesis we have that

X = z + λ

n−1∑
i=1

Fi(z) + λ2
∑

1≤i<j≤n−1

F ′
j(z)Fi(z) +O(λ3)

Therefore, taking a Taylor series for the second term of X + λFn(X), we obtain

λFn(X) = λFn(z) + λ2
n−1∑
i=1

F ′
n(z)Fi(z) +O(λ3).
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Summing up X and λFn(X), we obtain that the composition (1 + λFn) ◦ · · · ◦ (1 + λF1)(z) has
the form

z + λ

n∑
i=1

Fi(z) + λ2
∑

1≤i<j≤n

F ′
j(z)Fi(z) +O(λ3)

which completes the proof for ther residual tower expansion. The residual network expansion in
Equation 4 follows immediately from assuming that Eξ(x) = Wξx + bξ and Dη(z) = Wηz + bη .
Namely, we have that

f(x) = Dη

(
Rθ

(
Eξ(x)

))
(5)

= Wη

(
Eξ(x) + λ

n∑
i=1

Fi(Eξ(x)) (6)

+λ2
∑

1≤i<j≤n

F ′
j(Eξ(x))Fi(Eξ(x)) +O(λ3)

)
+ bη (7)

=
(
WηEξ(x) + bη

)
+ λ

n∑
i=1

WηFi(Eξ(x)) (8)

+λ2
∑

1≤i<j≤n

WηF
′
j(Eξ(x))Fi(Eξ(x)) +O(λ3) (9)

= Dη

(
Eξ(x)

)
+ λ

n∑
i=1

WηFi(Eξ(x)) (10)

+λ2
∑

1≤i<j≤n

WηF
′
j(Eξ(x))Fi(Eξ(x)) +O(λ3) (11)

Moreover, if Eξ(x) = Wξx+ bξ is an affine map we have that the base model is also an affine map:

Dη

(
Eξ(x)

)
= Wη(Wξx+ bξ) + bη = W0x+ b0 (12)

with W0 = WηWξ and b0 = Wηbξ + bη .

3.1 INTERPRETATION AND THE COMBINATORIAL EXPLOSION

The Residual Expansion Theorem provides a precise mathematical foundation for the “ensemble
view” of residual networks and a first-principles explanation for their instability at extreme depths.

Hierarchical Ensemble. The expansion reveals a structured hierarchy of models of increasing
capacity. For instance, when the encoding network is linear, then the zero-order term,

M0(x) = W0x+ b0,

is a simple linear model with a factorized parametrization W0 = WηWξ and b0 = Wηbξ + bη .
This serves as the foundational model, whose loss landscape is embedded within all deeper variants
(for a more detailed discussion on the geometric intuition behind this viewpoint, see Appendix C).
Assuming an average scaling λ = 1/n of the residual modules, the first-order term

M1(x) =
1

n

n∑
i=1

WηFi

(
Eξ(x)

)
becomes an ensemble of n models, each passing through one residual block. The second-order term

M2(x) =
1

n2

∑
1≤i<j≤n

WηF
′
j(Eξ(x))Fi(Eξ(x))

is an ensemble of
(
n
k

)
≃ n2 more complex models made of two residual blocks. Note that in this

ensemble the modules Fj and Fi are not simply composed as Fj(Fi(x)) but rather the linear approx-
imation F ′

j(Eξ(x)) of Fj at Eξ(x) instead is applied to Fi(Eξ(x)). Beyond M2 the higher-order
ensembles are significantly harder to describe and interpret as they involve all higher-derivatives of
the residual branches.

5
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Combinatorial Explosion. The number of terms in the residual ensemble at order k is bounded
below by the binomial coefficient

(
n
k

)
. For a fixed k, this count grows polynomially with the depth

n (as O(nk)). Summing across all orders, the total number of terms grows exponentially as 2n.
Without any constraints on λ, this leads to a “combinatorial explosion”; i.e., as the depth n increases,
the output magnitude can grow uncontrollably due to the rapidly increasing number of terms. This
provides a fundamental explanation for the historical reliance on normalization layers to stabilize
training in very deep residual networks. This insight directly motivates the strategy of scaling the
residual branches by a factor λ < 1 to counteract this combinatorial explosion, which we explore in
the next section.

4 THE IMPACT OF λ

In this section we discuss the effect of the scale parameter λ on trainable depth, model capacity, and
model complexity.

4.1 THE IMPACT OF λ ON THE TRAINABLE DEPTH

Our Residual Expansion Theorem 3.1 shows that the number of terms at order λn grows combinato-
rially as the number of residual layers n increases. Specifically, at first order we have only n terms,
each of which has similar magnitude. However, already at second order in λ, the number of terms
in the ensemble is of order O(n2), and, more generally, the number of terms of similar magnitude
at order k is of order O(nk). The overall combinatorial explosion of terms is exponential, and we
can expect a corresponding explosion in magnitude in the model output as the number of layers
increases. This fundamental issue explains why deep residual architectures have historically relied
on some form of normalization layers, such as Batchnorm Ioffe & Szegedy (2015) or LayerNorm
Ba et al. (2016), for stable training.

On the other hand, from Theorem 3.1, we can predict that scaling the residual branch by a factor
λ < 1 will counteract the combinatorial explosion of the higher-ensemble terms at each order,
provided λ is chosen sufficiently small. Following this intuition, we should then be able to train deep
residual networks without normalization but only by scaling the residual branches. As we verify in
Table 1, this is indeed the case. Deeper networks become untrainable without normalization, but
remain stably trainable with comparable test accuracy when their residual branches are appropriately
scaled.

Our Residual Expansion Theorem 3.1 directly yields a specific choice for λ that controls this combi-
natorial growth, ensuring that the magnitude of higher-order ensemble contributions remains inde-
pendent of network depth. For example, if we set λ = 1/n, the magnitudes of the first two residual
ensembles (M1 and M2) become independent of the number of layers, effectively converting the
exploding sums into stable averages across multiple implicit paths. Note that, we then have

M1(x) =
1

n

n∑
i=1

WηFi

(
Eξ(x)

)
(13)

M2(x) =
1

n2

∑
1≤i<j≤n

WηF
′
j(Eξ(x))Fi(Eξ(x)). (14)

Table 1 shows that it becomes difficult to train a standard residual network (i.e., λ = 1) without
normalization as depth grows. However, with a simple scaling like λ = 1/n, it is possible to
effectively train thousands of layers without any use of normalization layers.

Remark 4.1. The scaling λ = 1/n is very natural since it makes the number of terms at each
λk independent of the network length n, essentially replacing a sum with an average. Interest-
ingly, however, while the 1/n scaling factor enables stable, normalization-free training of very deep
residual networks, we empirically observe a decrease in test performance compared to normalized
architectures. Nevertheless, by setting λ = 1/

√
n instead, we not only maintain stable training but

also recover a substantial portion, if not all, of the performance loss attributable to the absence of
normalization layers. Perhaps one reason for this is that that the average scaling λ = 1/n may
suppress the contribution of the higher-ensemble too much. Namely, if we take into account k in the

6
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estimation of the number of terms at order λk, we have that the number of terms grows as O(nk/k!).
Using λ = 1/n is then produces an output-magnitude growth of order O(1/k!), which rapidly be-
comes small. On the contrary, setting λ = 1/

√
n leaves a growth of order O(nk/2/k!) which may

counteract the rapid decay of the higher-order ensemble. This finding points toward a need to tune
λ or to leave it as parameter to be learned in the spirit of SkipInit (De & Smith, 2020). In the next
section, we examine the impact of λ on the learned model.

Table 1: Optimal test accuracies (with error bars) on CIFAR-10 for a deep residual model of n con-
volutional layers. We evaluate three scaling factors for the residual branches: λ ∈ {1, 1/

√
n, 1/n}.

For the λ = 1 case, results are shown with and without Batch Normalization. Note, entries are omit-
ted where training was frozen or diverged at random initialization. See Appendix A for experiment
details.

Number of layers (n)
10 100 1000

λ = 1.0 with BatchNorm 90.0± 0.1 89.02± 0.1 88.33± 0.1
λ = 1.0 without BatchNorm 85.19± 0.3 – –
λ = 1/n without BatchNorm 87.87± 0.1 87.53± 0.2 81.52± 0.4
λ = 1/

√
n without BatchNorm 88.0± 0.1 89.02± 0.09 86.82± 0.3

4.2 THE IMPACT OF λ ON CAPACITY AND COMPLEXITY

Perhaps unsurprisingly, λ acts a capacity control forcing the model to coincide with the base model
M0 when λ = 0 and increasingly allowing more contribution of the higher-ensembles with higher
capacity as λ increases. This behavior as capacity control is clearly seen in our experiment of
training CIFAR-10 on a simple variant of the ResNet architecture as described in Appendix A. In
Figure 1, the training loss shows that the base model (for λ = 0) is underfitting with a training
loss value plateauing above 1. However, increasing λ produces training losses that are increasingly
able to fully fit the data, leading to interpolation (over-parametrized regime), consistent with the
interpretation of λ as a form of capacity control.

This increase of interpolation power as λ increases goes with a corresponding increase of test ac-
curacy as in Figure 2 (left). In fact, paradoxically, the capacity increase achieved by higher-values
of λ produces models that are less complex (see Figure 2, right), as measured by the geometric
complexity introduced in Dherin et al. (2022). (See Appendix B for a definition of the geometric
complexity and an approximation corollary to Theorem 3.1 for residual networks). In that sense, λ
acts simultaneously as a regularizer on the model complexity and as a control on the model capacity,
with higher λ leading to better test performance as well as to simpler models (up to the point of
divergence).

A closer analysis of the learning curves for the geometric complexity in Figure 1 shows that, in a
first part of the training, higher values of λ also come with an increase of the model complexity,
as we would expect by increasing the contribution of the higher-order ensembles. However after a
certain number of steps this expected behavior exactly reverses as the model enters a second stage,
reminiscent of a similar phenomena observed in deep double descent as identified in Belkin et al.
(2019). This reversal manifests in Figure 2 (right) as well by a decrease in geometric complexity
after an initial increase as λ goes up. We leave a precise investigation of the deeper nature of this
relationship to future work.

5 CONCLUSION

In this work, we have introduced the Residual Expansion Theorem, a formal mathematical frame-
work that moves the understanding of deep residual networks from the conceptual analogy of an
ensemble to a precise mathematical statement. Our theorem provides an explicit formula for the
network’s function, revealing that its depth is mathematically equivalent to the size of a hierarchical
ensemble of models. The primary insight from this expansion is the identification of a combinatorial
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Figure 1: CIFAR-10 trained on residual network with n = 16 residual blocks. We plot the learning
curves for the experiments in Figure 2 for a sweep λ ∈ {0, n−2, n−1.5, n−1.2, n, n−0.8, n−0.5}.
Training with λ > 1/

√
n (e.g., we also tried λ ∈ {1/n0.3, 1/n0.4, 1}) all failed.
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Figure 2: Maximum test accuracy and geometric complexity at time of maximum test accuracy for
various values of λ. Left: As λ increases, maximum test accuracy increases. Right: However,
increasing λ leads to decreased model complexity after a first phase of increase.
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explosion of functional paths, which we posit as the fundamental cause of the training instability that
has historically necessitated the use of normalization layers.

This theoretical lens provides a new, unifying explanation for the success of a family of exist-
ing normalization-free training methods. Techniques such as Fixup and SkipInit have empirically
demonstrated the need for scaling down residual branches to achieve stability. However, their scal-
ing factors were derived from analyzing optimizer dynamics or by analogy to Batch Normalization.
Our work provides the first justification grounded in the network’s functional structure, showing that
these methods are effective precisely because they serve as practical implementations of a necessary
principle: taming the combinatorial growth of paths.

This work opens several promising avenues for future research. The contrast between our finite-
depth 1/n scaling and the 1/

√
n scaling derived from infinite-depth mean-field theories (for deep

linear networks Bordelon & Pehlevan (2025)) suggests a rich spectrum of principled scaling laws
that warrant further investigation. Applying this function-first scaling paradigm to other critical
architectures, particularly Transformers, stands as a crucial next step. Ultimately, by providing a
unifying theoretical foundation, this work paves the way for a more principled design of robust and
extremely deep neural networks.
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A EXPERIMENT DETAILS

A.1 RESNET ARCHITECTURE DETAILS

For the values reported in Table 1 and the plots in Figures 1 and 2, we train a deep residual network
consisting of n convolutional blocks. Similar to a traditional ResNet model He et al. (2016a), each
layer consists of two convolutions with (3, 3) kernels and ReLU activations. Our architecture differs
from the standard ResNet in that we keep the number of channels fixed at 256 and we only use
strides of size (1, 1). These two changes ensure that the shape remains fixed as information flows
through the network between layers. Also, for our model to be consistent with the theory, we remove
the final ReLU in each residual block. Therefore, a single version of our residual block takes the
form

ResNetBlock(x) = x+ λF (x), where F (x) = Conv3×3(ReLU(Conv3×3(x)))

Our residual tower consists of stack of n of these Residual Blocks. For those models trained with
Batch Normalization, we modify the transformation F so that

F (x) = BatchNorm(Conv3×3(ReLU(BatchNorm(Conv3×3(x)))).

This describes the residual tower Rθ as discussed in Section 3. For the encoding Eξ and decoding Dη

networks, we use the same architecture as that of a traditional ResNet model as implemented in Heek
et al. (see for instance https://github.com/google/flax/blob/main/examples/
imagenet/models.py).

A.2 EXPERIMENT DETAILS FOR TABLE 1

All results in Table 1 are obtained by training the CIFAR-10 dataset Krizhevsky (2009) on the
residual network described above. The only exception is for models of depth n = 1000, where the
architecture’s width (or channel size) was set to 128 instead of 256 because of memory limitation;
all other aspects remained identical. Each model was trained with a batch size of 64 for 160,000
steps (i.e., approximately 200 epochs) using SGD with momentum 0.9 and on a sweep of learning
rates ranging from {2−10, 2−9, . . . , 2−1}. We apply data augmentation in the form of data scaling,
random cropping and random flips. We do not employ any learning rate schedule or weight decay
during training.

For each learning rate in the sweep, we train the model with 5 random seeds which are used for
model initialization and data shuffling. We then measure and report the mean and standard error for
the best average test accuracy achieved for a given learning rate.

A.3 EXPERIMENT DETAILS FOR FIGURE 1 AND FIGURE 2

All results in Figure 1 (and Figure 2) are obtained by training the CIFAR-10 dataset Krizhevsky
(2009) on the residual network described in Section A.1. The number of residual blocks was set
to n = 16. Each model was trained with a batch size of 64 for 100,000 steps (i.e., approximately
80 epochs) using SGD with momentum 0.9 and learning rate 0.3. We apply data augmentation in
the form of data scaling, random cropping and random flips. We do not employ any learning rate
schedule or weight decay during training.

For each λ ∈ {0, n−2, n−1.5, n−1.2, n, n−0.8, n−0.5, n−0.4, n−0.3, 1} in the sweep (with n = 16),
we train the model with 5 random seeds which are used for model initialization and data shuffling.
All the values of λ above 1/

√
n diverged in that setting.
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B GEOMETRIC COMPLEXITY

The geometric complexity (Dherin et al., 2022) is a measure of how much a model’s output changes
in response to small changes in its input. Models with high geometric complexity can represent
intricate, jagged functions, which are prone to overfitting, whereas models with lower complexity
are constrained to learn smoother, simpler functions that often generalize better.

More precisely, the geometric complexity of a model f over a dataset D is defined as the average
squared Frobenius norm of its input-output Jacobian:

⟨f,D⟩G :=
1

|D|
∑
x∈D

||∇xf(x)||2F

The Residual Expansion Theorem allows us to approximate how the geometric complexity changes
with λ. In fact, the following corollary shows that for a residual models as in Equation 1, the model
geometric complexity corresponds to the geometric complexity of the base model M0 plus a term
depending on λ. The fact that this latter term can be negative (as it is an inner product in matrix
space) shows the theoretical possibility that models with higher λ can be geometrically less complex
than model with smaller λ (see Figure 2, right).
Corollary B.1. The geometric complexity of a residual network as defined in Equation 1 is given at
first orders by:

⟨f,D⟩G = ⟨M0, D⟩G + 2λ
1

|D|
∑
x∈D

Tr

((
WηE

′
ξ(x)

)T n∑
i=1

WηF
′
i (Eξ(x))E

′
ξ(x)

)
+O(λ2)

Proof. To evaluate the geometric complexity of f over the dataset D, we need to evaluate the deriva-
tive of f . We can write it as

∇xf(x) = A(x) + λB(x) +O(λ3), (15)

where

A(x) = ∇x

(
Dη ◦ Eξ

)
(x) = WηE

′
ξ(x) (16)

B(x) = ∇x

(
n∑

i=1

WηFi

(
Eξ(x)

))
=

n∑
i=1

WηF
′
i

(
Eξ(x)

)
E′

ξ(x). (17)

Now the Frobenius norm of the model derivative can be written as

∥∇xf(x)∥2F = Tr
(
f ′(x)T f(x)

)
(18)

= Tr
((

AT + λBT +O(λ2)
)(
A+ λB +O(λ2)

))
(19)

= Tr(ATA) + 2λTr(ATB) +O(λ2) (20)

= ∥∇x

(
Dη ◦ Eξ(x)

)
∥2F (21)

+2λTr

((
WηE

′
ξ(x)

)T n∑
i=1

WηF
′
i (Eξ(x))E

′
ξ(x)

)
+O(λ2), (22)

where we used that Tr(BTA) = Tr(ATB). We now obtain the desired result by averaging
∥∇xf(x)∥2F over the data D.

C THE GEOMETRIC COUNTERPART TO THE RESIDUAL EXPANSION

In this section, we provide the geometric intuition that underpins the functional analysis presented
in the main paper. We show how the structure of the parameter space and the corresponding loss
landscape provides a complementary perspective on why deep residual networks are effective and
how our proposed scaling ensures their stability. The analysis in this section stems from the same
fundamental property that enables the Residual Expansion Theorem: a residual block, (1+λFθi)(z),
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becomes an identity map when its parameters are set to zero (i.e., Fθi=0(z) = 0). While the main
paper uses this property to derive a functional expansion, here we explore its profound implications
for the geometry of the optimization problem as network depth increases. First, let us establish our
setting. For a fixed dataset D, we consider a loss function L(y, fθ(x)) that depends only on the
network’s prediction. The total loss is the average over the dataset:

L(θ) = 1

|D|
∑

(x,y)∈D

L(y, fθ(x))

Crucially, this means that if two networks with different parameters, θ and η, compute the same
function (fθ(x) = gη(x) for all x), their losses are identical (L(θ) = L(η)). We also assume
the loss is zero for any parameter set that perfectly interpolates the data. A residual network of
depth n, denoted fn

ωn
(x), has parameters ωn = (η, ξ, θ1, ..., θn) in a parameter space Ωn. Because

any residual block becomes an identity map when its parameters θi are zero, a network of depth
n contains all shallower networks of depth k < n within its parameter space. For instance, by
setting the parameters of the final block to zero ( θn = 0), the n-layer network becomes functionally
identical to an (n− 1)-layer network:

fn
(η,ξ,θ1,...,θn−1,0)

(x) = fn−1
(η,ξ,θ1,...,θn−1)

(x)

This structural embedding has a direct consequence on the loss landscape. The loss of the deeper
network on this embedded subspace is identical to the loss of the shallower network:

Ln(η, ξ, θ1, ..., θn−1, 0) = Ln−1(η, ξ, θ1, ..., θn−1)

This provides a powerful geometric explanation for why increasing depth is an effective optimization
strategy. Adding a new layer does not force the optimizer to find a solution in an entirely new
landscape; instead, it expands the search space while preserving all solutions found by shallower
networks. This is particularly true for the set of global minima (the zeros of the loss function),
denoted Zn. If a parameter set ωn−1 is a global minimum for the (n − 1)-layer network (i.e.,
ωn−1 ∈ Zn−1), then the point ωn = (ωn−1, 0) must also be a global minimum for the n-layer
network. This guarantees a natural embedding of the sets of optimal solutions:

Zn−1 ↪→ Zn

This hierarchical structure of the loss landscape is the geometric counterpart to the Residual Expan-
sion Theorem. The zero-order term of our expansion, Pη ◦ Eξ(x), corresponds to the base shallow
network whose optimal solutions are preserved and embedded within all deeper networks. This
connection also clarifies the crucial role of the 1/n scaling proposed in the main paper. The embed-
ded geometry guarantees that as we add layers, “good” solutions from shallower networks continue
to exist. However, the Residual Expansion Theorem shows that without proper scaling, the land-
scape around these solutions becomes increasingly unstable due to the combinatorial explosion of
higher-order terms. The 1/n scaling tames this explosion, effectively smoothing the loss landscape
and ensuring that the theoretically guaranteed optimal regions remain practically accessible to the
optimizer, even at extreme depths.

D DISCLOSURE OF LLM USAGE

We used Gemini 2.5 Pro to help us with the editing and polishing of this paper. Our approach was
to first write paragraphs and sections manually and ask Gemini for a clearer rewrite. We then merge
both versions manually. We also used Gemini to help us to identify similarities between the results
in this paper to other papers in the literature, as a form of discovery engine and summarizing tool.
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