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Abstract

High-resolution satellite imagery has proven useful for a broad range of tasks, in-
cluding measurement of global human population, local economic livelihoods, and
biodiversity, among many others. Unfortunately, high-resolution imagery is both
infrequently collected and expensive to purchase, making it hard to efficiently and
effectively scale these downstream tasks over both time and space. We propose a
new conditional pixel synthesis model that uses abundant, low-cost, low-resolution
imagery to generate accurate high-resolution imagery at locations and times in
which it is unavailable. We show that our model attains photo-realistic sample
quality and outperforms competing baselines on a key downstream task – object
counting – particularly in geographic locations where conditions on the ground are
changing rapidly.

1 Introduction

Recent advancements in satellite technology have enabled granular insight into the evolution of
human activity on the planet’s surface. Multiple satellite sensors now collect imagery with spatial
resolution less than 1m, and this high-resolution (HR) imagery can provide sufficient information for
various fine-grained tasks such as post-disaster building damage estimation, poverty prediction, and
crop phenotyping [15, 3, 41]. Unfortunately, HR imagery is captured infrequently over much of the
planet’s surface (once a year or less), especially in developing countries where it is arguably most
needed, and was historically captured even more rarely (once or twice a decade) [7]. Even when
available, HR imagery is prohibitively expensive to purchase in large quantities. These limitations
often result in an inability to scale promising HR algorithms and apply them to questions of broad
social importance. Meanwhile, multiple sources of publicly-available satellite imagery now provide
sub-weekly coverage at global scale, albeit at lower spatial resolution (e.g. 10m resolution for
Sentinel-2). Unfortunately, such coarse spatial resolution renders small objects like residential
buildings, swimming pools, and cars unrecognizable.

Figure 1: Given a 10m low resolution (LR) image from 2016 and a 1m high resolution (HR) image
from 2018, we generate a photo-realistic and accurate HR image for 2016.
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In the last few years, thanks to advances in deep learning and generative models, we have seen great
progress in image processing tasks such as image colorization [43], denoising [6, 35], inpainting
[35, 27], and super-resolution [11, 21, 16]. Furthermore, pixel synthesis models such as neural
radiance field (NeRF) [26] have demonstrated great potential for generating realistic and accurate
scenes from different viewpoints. Motivated by these successes and the need for high-resolution
images, we ask whether it is possible to synthesize high-resolution satellite images using deep
generative models. For a given time and location, can we generate a high-resolution image by
interpolating the available low-resolution and high-resolution images collected over time?

To address this question, we propose a conditional pixel synthesis model that leverages the fine-
grained spatial information in HR images and the abundant temporal availability of LR images
to create the desired synthetic HR images of the target location and time. Inspired by the recent
development of pixel synthesis models pioneered by the NeRF model [26, 40, 2], each pixel in
the output images is generated conditionally independently by a perceptron-based generator given
the encoded input image features associated with the pixel, the positional embedding of its spatial-
temporal coordinates, and a random vector. Instead of learning to adapt to different viewing directions
in a single 3D scene [26], our model learns to interpolate across the time dimension for different
geo-locations with the two multi-resolution satellite image time series.

To demonstrate the effectiveness of our model, we collect a large-scale paired satellite image dataset
of residential neighborhoods in Texas using high-resolution NAIP (National Agriculture Imagery
Program, 1m GSD) and low-resolution Sentinel-2 (10m GSD) imagery. This dataset consists of
scenes in which housing construction occurred between 2014 and 2017 in major metropolitan areas
of Texas, with construction verified using CoreLogic tax and deed data. These scenes thus provide a
rapidly changing environment on which to assess model performance. As a separate test, we also pair
HR images (0.3m to 1m GSD) from the Functional Map of the World (fMoW) dataset [9] crop field
category with images from Sentinel-2.

To evaluate our model’s performance, we compare to state-of-the-art methods, including super-
resolution models. Our model outperforms all competing models in sample quality on both datasets
measured by both standard image quality assessment metrics and human perception (see example in
Figure 1). Our model also achieves 0:92 and 0:62 Pearson’s r2 in reconstructing the correct numbers
of buildings and swimming pools respectively in the images, outperforming other models in these
tasks. Results suggest our model’s potential to scale to downstream tasks that use these object counts
as input, including societally-important tasks such as population measurement, poverty prediction,
and humanitarian assessment [7, 3].

2 Related Work

Image Super-resolution SRCNN [11] is the first paper to introduce convolutional layers into a SR
context and demonstrate significant improvement over traditional SR models. SRGAN [21] improves
on SRCNN with adversarial loss and is widely compared among many GAN-based SR models for
remote sensing imagery [36, 25, 29]. DBPN [16] is a state-of-the-art SR solution that uses an iterative
algorithm to provide an error feedback system, and it is one of the most effective SR models for
satellite imagery [28]. However, [31] shows that SR is less beneficial at coarser resolution, especially
when applied to downstream object detection on satellite imagery. In addition, most SR models test
on benchmarks where LR images are artificially created, instead of collected from actual LR devices
[1, 39, 17]. SR models also generally perform worse at larger scale factors, which is closer to settings
for satellite imagery SR in real life.

SRNTT [45] applies reference-based super-resolution through neural texture transfer to mitigate
information loss in LR images by leveraging texture details from HR reference images. While SRNTT
also uses a HR reference image, it does not learn the additional time dimension to leverage the HR
image of the same object at a different time. In addition, our model uses a perceptron based generator
while SRNTT uses a CNN based generator.

Fusion Models for Satellite Imagery [12] first proposes STARFM to blend data from two remote
sensing devices, MODIS [4] and Landsat [20], for spatial-temporal super resolution to predict land
reflectance. [46] introduces an enhanced algorithm for the same task and [10] combines linear
pixel unmixing and STARFM to improve spatial details in the generated images. cGAN Fusion
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[5] incorporates GAN-based models in the solution, using an architecture similar to Pix2Pix [18].
In contrast to previous work, we are particularly interested in synthesizing images with very high
resolution (� 1m GSD), enabling downstream applications such as poverty level estimation.

NeRF and Pixel Synthesis Models Recent developments in deep generative models, especially
advances in perceptron-based generators, have yet to be explored in remote sensing applications.
Introduced by [26], neural radiance fields (NeRF) demonstrates great success in constructing 3D
static scenes. [23, 38] extends the notion of NeRF and incorporates time-variant representations
of the 3D scenes. [30] embeds NeRF generation into a 3D aware image generator. These works,
however, are limited to generating individual scenes, in contrast with our model which can generalize
to different locations in the dataset. [40] proposes a framework that predicts NeRF conditioning on
spatial features from input images; however, it requires constructing the 3D scenes, which is less
applicable to satellite imagery. [2] proposes a style-based 2D image generative model using an only
perceptron-based architecture; however, unlike our method, it doesn’t consider the task of conditional
2D image generation nor does it incorporate other variables such as time. In contrast, we propose a
pixel synthesis model that learns a conditional 2D spatial coordinate grid along with a continuous
time dimension, which is tailored for remote sensing, where the same location can be captured by
different devices (e.g. NAIP or Sentinel-2) at different times (e.g. year 2016 or year 2018).

3 Problem Setup

The goal of this work is to develop a method to synthesize high-resolution satellite images for
locations and times for which these images are not available. As input we are given two time-series
of high-resolution (HR) and low-resolution (LR) images for the same location. Intuitively, we wish to
leverage the rich information in HR images and the high temporal frequency of LR images to achieve
the best of both worlds.

Formally, let I(t)
hr 2 RC�H�W be a sequence of random variables representing high-resolution views

of a location at various time steps t 2 T . Similarly, let I(t)
lr 2 RC�Hlr�Wlr denote low-resolution

views of the same location over time. Our goal is to develop a method to estimate I(t)
hr , given K

high resolution observations fI(t0
1)

hr ; � � � ; I(t0
K )

hr g and L low-resolution ones fI(t00
1 )

lr ; � � � ; I(t00
L)

lr g for the
same location. Note the available observations could be taken either before or after the target time t.
Our task can be viewed as a special case of multivariate time-series imputation, where two concurrent
but incomplete series of satellite images of the same location in different resolutions are given, and
the model should predict the most likely pixel values at an unseen time step of one image series.

In this paper, we consider a special case where the goal is to estimate I(t)
hr given a single high-

resolution image I(t0)
hr and a single low-resolution image I(t)

lr also from time t. We focus on this
special case because while typically L� K, it is reasonable to assume I(t)

hr ?? I
(t0)
lr j I(t)

lr for t0 6= t,
i.e., given a LR image at the target time t, other LR views from different time steps provide little or
no additional information. Given the abundant availability of LR imagery, it is often safe to assume
access to I(t)

lr at target time t. Figure 1 provides a visualization of this task.

For training, we assume access to paired triplets fI(t)
hr ; I

(t)
lr ; I

(t0)
hr g collected across a geographic

region of interest where t0 6= t. At inference time, we assume availability for I(t)
lr and I(t0)

hr and the
model needs to generalize to previously unseen locations. Note that at inference time, the target time
t and reference time t0 may not have been seen in the training set either.

4 Method

Given I(t)
lr and I(t0)

hr of the target location and target time t, our method generates Î(t)
hr 2 RC�H�W

with a four-module conditional pixel synthesis model. Figure 2 is an illustration of our framework.

The generator G of our model consists of three parts: image feature mapper F : RC�H�W !
RCfea�H�W , positional encoder E, and the pixel synthesizer Gp. For each spatial coordinate (x; y)
of the target HR image, the image feature mapper extracts the neighborhood information around
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Figure 2: An illustration of our proposed framework (discriminator omitted). The input images are
processed by the image feature mapperF to obtainI ( t )

fea . Then with its spatial-temporal coordinate
(x; y; t ) encoded byE, each pixel is synthesized conditionally independently given the image feature
associated with its spatial coordinateI ( t )

fea (x; y) and a random vectorz.

(x; y) 2 f 0; 1; :::; H g � f 0; 1; :::; Wg from I ( t )
lr andI ( t 0)

hr , as well as the global information associated
with the coordinate in the two input images. The positional encoder learns a representation of the
spatial-temporal coordinate(x; y; t ), wheret is the temporal coordinate of the target image. The pixel
synthesizer then uses the information obtained from the image feature mapper and the positional
encoding to predict the pixel value at each coordinate. Finally, we incorporate an adversarial loss in
our training, and thus include a discriminatorD as the �nal component of our model.

Image Feature Mapper Before extracting features, we �rst perform nearest neighbor resampling
to the LR imageI ( t )

lr to match the dimensionality of the HR image and concatenateI ( t )
lr andI ( t 0)

hr

along the spectral bands to form the inputI ( t )
cat = concat[I ( t )

lr ; I ( t 0)
hr ] 2 R 2C � H � W . Then the mapper

processesI ( t )
cat with a neighborhood encoderFE : R 2C � H � W ! R C fea � H 0� W 0

, a global encoder
FA : R C fea � H 0� W 0

! R C fea � H 0� W 0
and a neighborhood decoderFD : R C fea � H 0� W 0

!
R C fea � H � W . The neighborhood encoder and decoder learn the �ne structural features of the images,
and the global encoder learns the overall inter-pixel relationships as it observes the entire image.

FE uses sliding window �lters to map a small neighborhood of each coordinate into a value stored
in the neighborhood feature mapI ( t )

ne 2 R C fea � H 0� W 0
andFD uses another set of �lters to trans-

form the global feature mapI ( t )
gl 2 R C fea � H 0� W 0

back to the original coordinate grid.FA is a

self-attention module that takesI ( t )
ne as the input and learns functionsQ; K : R C fea � H 0� W 0

!
R C fea =8� H 0W 0

; V : R C fea � H 0� W 0
! R C fea � H 0W 0

and a scalar parameter to mapI ( t )
ne to I ( t )

gl .

The image feature mapperF = FE � FA � FD and we denoteI ( t )
fea = F (I ( t )

cat ) and the image feature

associated with coordinate(x; y) asI ( t )
fea (x; y) 2 R C fea . Details are available in Appendix A.

Positional Encoder Following [2], we also include both the Fourier feature and the spatial coor-
dinate embedding in the positional encoderE . The Fourier feature is calculated asef o (x; y; t ) =
sin(B f o ( 2x

H � 1 � 1; 2y
H � 1 � 1; t

u )) whereB f o 2 R 3� C fea is a learnable matrix andu is the time
unit. This encoding oft allows our model to handle time-series with various lengths and to ex-
trapolate to time steps that are not seen at training time.E also learns aCfea � H � W matrix
eco and the spatial coordinate embedding for(x; y; t ) is extracted from the vector at(x; y) in eco.
The positional encoding of(x; y; t ) is the channel concatenation ofef o (x; y; t ) andeco(x; y; t ),
E (x; y; t ) = concat[ef o (x; y; t ); eco(x; y; t )] 2 R 2C fea .

Pixel Synthesizer Pixel SynthesizerGp can be viewed as an analogy of simulating a conditional
2 + 1D neural radiance �eld with �xed viewing direction and camera ray using a perceptron based
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model. Instead of learning the breadth representation of the location,Gp learns to scale in the time
dimension in a �xed spatial coordinate grid. Each pixel is synthesized conditionally independently
givenI ( t )

fea , E (x; y; t ), and a random vectorz 2 R Z . Gp �rst learns a functiongz to mapE(x; y; t )

to R C fea , then obtains the input to the fully-connected layerse(x; y; t ) = gz (E (x; y; t ))+ I ( t )
fea (x; y).

Following [2, 19], we use am-layer perceptron based mapping networkM to map the noise vectorz
into a style vectorw, and usen modulated fully-connected layers (ModFC) to inject the style vector
into the generation to maintain style consistency among different pixels of the same image. We map
the intermediate features to the output space for every two layers and accumulate the output values as
the �nal pixel output.

With all components combined, the generated pixel value at(x; y; t ) can be calculated as

Î ( t )
hr (x; y) = G(x; y; t; z jI ( t )

lr ; I ( t 0)
hr ) = Gp(E (x; y; t ); F (I ( t )

cat ); z)

Loss Function The generator is trained with the combination of the conditional GAN loss andL 1
loss. The objective function is

G� = arg min
G

max
D

L cGAN (G; D ) + � L L 1 (G)

L cGAN (G; D ) = E[logD(I ( t )
hr ; X; I ( t )

lr ; I ( t 0)
hr )] + E[1 � logD(G(X; z jI ( t )

lr ; I ( t 0)
hr ); X; I ( t )

lr ; I ( t 0)
hr )]

whereX is the temporal-spatial coordinate gridf (x; y; t )j0 � x � H; 0 � y � W g for I ( t )
hr .

L L 1 (G) = E[jj I ( t )
hr � G(X; z jI ( t )

lr ; I ( t 0)
hr )jj1].

5 Experiments

5.1 Datasets

Texas Housing Dataset We collect a dataset consisting of 286717 houses and their surrounding
neighborhoods from CoreLogic tax and deed database that have an effective year built between 2014
and 2017 in Texas, US. We reserve 14101 houses from 20 randomly selected zip codes as the testing
set and use the remaining 272616 houses from the other 759 zip codes as the training set. For each
house in the dataset, we obtain two LR-HR image pairs, one from 2016 and another from 2018. In
total, there are 1146868 multi-resolution images collected from different sensors for our experiments.
We source high resolution images from NAIP (1m GSD) and low resolution images from Sentinel-2
(10m GSD) and only extract RGB bands from Google Earth Engine [14]. More details can be found
in Appendix C.

FMoW-Sentinel2 Crop Field Dataset We derive this dataset from the crop �eld category in
Functional Map of the World (fMoW) dataset [9] for the task of generating images over a greater
number of time steps. We pair each fMoW image with a lower resolution Sentinel-2 RGB image
captured at the same location and a similar time. We prune locations with fewer than 2 timestamps,
yielding 1752 locations and a total of 4898 fMoW-Sentinel2 pairs. Each location contains between
2-15 timestamps spanning from 2015 to 2017. We reserve 237 locations as the testing set and the
remaining 1515 locations as the training set. More details can be found in Appendix C.

5.2 Implementation Details

Model Details We chooseH = W = 256, C = 3 (the concatenated RGB bands of the input
images),Cfea = 256, m = 3 , n = 14 and� = 100 for all of our experiments. We use non-
saturating conditional GAN loss forG andR1 penalty forD , which has the same network structure
as the discriminator in [19, 2]. We train all models using Adam optimizer with learning rate
2 � 10� 3; � 0 = 0 ; � 1 = 0 :99; � = 10 � 8. We train each model to convergence, which takes around
4-5 days on 1 NVIDIA Titan XP GPU. Further details can be found in Appendix A and B.

We provide two versions of the image feature mapper. In version "EAD", we use convolutional
layers and transpose convolutional layers with stride> 1 in FE andFD . In version "EA", we use
convolutional layers with stride= 1 in FE and an identity function inFD . For version "EA", we use
a patch-based training and inference method with a patch size of64because of memory constraints,
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