
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A DESCRIPTIVE AND NORMATIVE THEORY OF HUMAN
BELIEFS IN RLHF

Anonymous authors
Paper under double-blind review

ABSTRACT

Human preferences in RLHF are typically modeled as a function of the human’s
reward function or corresponding optimal state-action values. In this work, we
propose that human beliefs about the capabilities of the agent being trained also
play a key role in preference generation. We examine two questions related to this
hypothesis, one descriptive and one normative, respectively: Do human labelers’
beliefs about agent capabilities affect the preferences that they provide? And what
is the ideal set of beliefs about an agent—and resulting preferences—for humans
to have? We propose a new preference model that incorporates human beliefs and
provide a normative theory that bounds the error on the final learned policy based
on the mismatch between the human’s beliefs and an idealized set of beliefs. We
then confirm via a human study that beliefs about agent capabilities do, in fact,
significantly affect preferences and can be influenced through simple interventions.
Additionally, we empirically show through synthetic experiments that it is often
suboptimal for human preference labelers to assume agent optimality. Collectively,
these results theoretically and empirically demonstrate how reducing the mismatch
between human beliefs and agent capabilities can lead to more performant RLHF
and point toward new best practices for RLHF practitioners.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) is one of the main tools used to align pow-
erful AI systems (Kaufmann et al., 2023). Alignment is important for numerous reasons, such as
minimizing unintentional harm, ensuring safety and control, and increasing public trust and legal
compliance (Ji et al., 2023; Amodei et al., 2016). In order to use RLHF for alignment more effectively,
researchers require high-quality data from humans that express rational preferences. This begs the
question: How should rationality of preferences be defined within RLHF? Standard approaches
to RLHF assume that humans provide preferences based only on what actually happened in the
trajectories, i.e., the return-based interpretation (Christiano et al., 2017; Ziegler et al., 2019; Ouyang
et al., 2022; Brown et al., 2019). This partial return-based approach does not consider events that
could have occurred while taking a risky action or what might happen after the end of the trajectory
segment. Knox et al. (2024) show that the regret-based model addresses this by looking at the quality
of actions taken, rather than just the summed reward of the observed outcomes.

However, even the regret-based approach may not fully capture the factors that humans may consider
when giving preferences. The regret model assumes that humans judge the “goodness” of an action
as a function of the optimal advantage function A∗ that the agent should ideally be able to achieve
under the assumed MDP, given enough data. But what if humans do not assume optimality when
judging action quality, but instead rely on their beliefs about the agent’s capabilities—in other words
Aπbelief for some imagined policy πbelief rather than A∗?

For example, consider the scenario in Figure 1, in which an agent must choose between a shorter
cliff-side path to a goal or a longer, safer path far away from the cliff. Path 1 is preferable if the
agent can reproduce the trajectory noiselessly and also behave optimally afterwards. However, if the
agent is suboptimal, then it risks falling off the cliff when taking this path or afterwards. Conversely,
Path 2 is better for a suboptimal agent, but overly conservative for an optimal agent. Suppose that a
human labeler provides a preference for Path 1 based on the incorrect belief that the agent will behave
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Figure 1: Illustration of scenario in which preference for a more optimal partial path can lead to
a worse post-RLHF policy. (Path 1): The car drives along the edge of a cliff but straight to the
destination. This path takes less time but requires requires greater capabilities (both during and after)
to avoid catastrophic outcomes. (Path 2): The car takes a longer path far away from the cliff, reducing
risk. The dotted lines indicate different possible paths that could occur when executing a post-RLHF
policy: red indicates the possibility that the agent may drive off the cliff if it fails to perfectly imitate
Path 1; purple indicates a suboptimal policy starting from the final state of Path 1 that also drives off
the cliff; green indicates a policy that is able to safely reach the goal. If the post-RLHF policy would
induce the red or purple trajectories under a Path 1 preference, then it would be better for the labeler
to have preferred Path 2, despite the longer travel time.

optimally post-RLHF. If the agent is trained on these preferences and is suboptimal post-RLHF, this
can lead to catastrophic outcomes.

This motivates the questions: Should a rational preference labeler consider agent capabilities?
And what is a normative ideal for labeler beliefs about agent capabilities? There are a variety of
factors that can affect an agent’s capabilities. Factors such as limited training data, incomplete or
noisy data, or policy parameterization could limit the space of learnable policies. This limitation
of learnable policies, by extension, limits agent performance. Furthermore, if the agent is a robot,
physical limitations may also limit agent performance beyond what a human might assume. Given a
fixed set of trajectory pairs, we show that the normative ideal in regret-based RLHF is for labelers to
provide preferences with respect to a quantity that is related to the best possible post-RLHF policy
under any labeling—as opposed to the standard assumption of absolute optimality.

Our contributions are as follows. (1) We illustrate the importance of beliefs about agent capabilities
by showing an example where poor agent-labeler agreement leads to suboptimal post-RLHF policies.
(2) We define a normative ideal of beliefs and theoretically investigate the impact of deviations from
this ideal on the expected return of the post-RLHF policy. (3) We empirically examine the effect of
the magnitude of deviation from the ideal belief by manipulating it directly in synthetic experiments,
showing that the highest performance typically results from beliefs closest to our theoretical normative
ideal. (4) Finally, we confirm in a human study that human beliefs about the agent’s capabilities affect
preferences. Specifically we show that it is possible to change human preferences in a statistically
significant manner by changing their beliefs through priming. This study also points to potential
paths forward for aligning labeler beliefs with agent capabilities.

2 PRELIMINARIES

A Markov Decision Process (MDP) (Puterman, 2014; Sutton & Barto, 1998) is specified by a tuple
(S,A, P, γ, µ, r). Here, S is the set of possible states, and A is the set of all possible actions. P is the
transition function P : S ×A → ∆(S), a probability distribution over the next state given the current
state and action. γ is the discount factor, µ is the start state distribution, and r : S ×A× S → R is
the scalar reward function. rt refers to the reward received at time t for taking action at at state st and
reaching st+1. Terminal states have a reward of 0, unless otherwise specified, upon reaching them
and a reward of 0 forever after. Throughout this paper, r refers to the ground-truth reward function,
from which preferences are generated.

A policy π : S → ∆(A), specifies the probability of taking an action in a given
state. V π

r is the the state-value function for π under the reward function r, defined
as: V π

r (s) = Eπ[
∑∞

t=0 γ
tr(st, at, st+1)|s0 = s]. Qπ

r is the state-action value function:
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Qπ
r (s, a) = Eπ[r(s, a, s

′) + γV π
r (s′)]. The advantage function with respect to π is defined as

Aπ
r (s, a) = Qπ

r (s, a)− V π
r . Jπ

r = Eπ[
∑∞

t=0 γ
tr(st, at, st+1)|s0 ∼ µ] denotes the policy’s expected

discounted return. We use Aπ, V π, Qπ, and Jπ to denote Aπ
r , V π

r , Qπ
r , and Jπ

r respectively. An
optimal policy π∗ is a policy for which V π∗

r (s) ≥ V π
r (s) for all states and all policies. We use A∗,

V ∗, and Q∗ to denote Aπ∗

r , V π∗

r , and Qπ∗

r respectively.

Trajectories: σ refers to a trajectory with starting state sσ0 . The length of a trajectory |σ| refers to
the number of transitions in the trajectory. Each trajectory has |σ + 1| states and |σ| actions. In the
context of our setting, trajectories do not contain any reward information as rewards are unknown
and are to be inferred from preferences.

Preference Dataset: We have a preference dataset Dpref = {(σ+
i , σ

−
i ) | i = 1, 2, ..., n} where each

pair of trajectories (σ+
i , σ

−
i ) are of equal length and σ+

i ≻ σ−
i denotes that the first trajectory is

strictly preferred over the second.

Preference Models: The pairwise preferences in Dpref are assumed to be sampled from an under-
lying distribution P (σ+ ≻ σ−) which is modeled using preference model (e.g. the partial-return
model (Christiano et al., 2017) or the regret model (Knox et al., 2024)) obeying ground truth reward
r. The partial-return preference model is given by:

P (σ+ ≻ σ−) =
exp(α

∑
+
σ
γtrt)

exp(α
∑

+
σ
γtrt) + exp(α

∑
−
σ
γtrt)

(1)

and the regret-based preference model is given by :

P ∗(σ+ ≻ σ−) =
exp(α

∑
σ+ γtA∗(st, at))

exp(α
∑

σ+ γtA∗(st, at)) + exp(α
∑

σ−
γtA∗(st, at))

(2)

where α is an inverse temperature coefficient.

3 RELATED WORK

Reinforcement Learning from Human Feedback. RLHF methods traditionally follow a two-step
learning framework: (1) learning a reward function using preference data and (2) using RL to perform
policy optimization (Christiano et al., 2017; Ouyang et al., 2022; Brown et al., 2019). Direct methods
remove the RL step from this traditional approach by directly learning policies from preferences
but make the same preference modeling assumptions as standard return-based RLHF (Munos et al.,
2024; Rafailov et al., 2024; Hejna et al., 2024).

Modeling human beliefs in learning. Prior work has aimed to model human beliefs in learning
settings beyond RLHF. Reddy et al. (2018) state that the reason demonstrators deviate from near-
optimal actions is because of a misunderstanding of the environment dynamics and propose an
algorithm to estimate these misunderstandings. Gong & Zhang (2020) assume that humans do not
maintain a correct belief about dynamics when giving preferences and propose a method to infer
both the reward function and the human’s beliefs about dynamics. Marklund & Roy (2024) aim to
separate goals from potentially incorrect human beliefs about environmental transition dynamics.
Chan et al. (2021) demonstrate that human irrationality, when correctly modeled, can be an asset to
reward inference.

Biases in human data collection. While RLHF assumes that humans offering preferences do so
rationally and in alignment with their long-term objectives, biases in human survey data have been
studied across various fields of research (Kaufmann et al., 2023; Kahneman, 2003; Köszegi & Rabin,
2008). It is widely recognized that human decisions can be swayed by biases due to irrationality,
incomplete, or inaccurate information (Gilovich T, 2002). Köszegi & Rabin (2008) state that mistakes
are systematic and can be revealed by behavior and show that previously seen small amounts of non
representative data can bias preferences. Previous psychology-aware RLHF literature investigate the
impact of biasing effects on preferences. Lichtenstein & Slovic (2006) discuss how preferences can
be formed at the same time as the process of preference elicitation. Personality, emotions, social
connections, and decision biases (such as decoy effects, serial position effects, anchoring effects,
framing effects, and group think) can also affect preferences (Tran et al., 2021; Atas et al., 2021).
Ziegler et al. (2019) discuss the importance of alignment between researcher goals and the labeler’s
labels on open ended summarization and sentiment analysis tasks.
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4 THEORY: EFFECTS OF AGENT-LABELER DISAGREEMENT

In this section, we aim to bound the impact of agent-labeler disagreement on expected returns of an
RLHF-trained policy. We first formally define the notions of agent capability belief and agent-labeler
disagreement. We then present an example MDP where agent-labeler disagreement leads to agents
learning suboptimal policies. Finally, we provide a formal bound on regret of the post-RLHF policy
loss as a function of agent-labeler disagreement.

Under the regret-based model of preferences, the labeler is assumed to provide preferences based on
the advantage of actions under the optimal advantage function A∗. However, a real-world agent’s
performance after RLHF will not typically be optimal and instead will be limited by the amount
of preference data, training time, or the learning algorithm itself. We will show that if humans do,
in fact, generate preferences via the regret preference model, it can lead to catastrophically bad
post-RLHF policies. This is due to the assumption of optimality following the trajectory segments
for which preferences are given. For example, in Figure 1, the actual advantage of choosing Path 1
depends on whether or not the car will behave optimally in future time steps during execution. Thus,
when providing preferences, we posit that the quality of an action ought to be related to the agent’s
post-RLHF advantage function, rather than assuming optimality.

Formally, we denote the labeler’s estimate of the agent’s post-RLHF policy as πbelief. Qπbelief and
Aπbelief denote the corresponding state-action value function and advantage function respectively. We
propose a new preference model, similar to the regret-based preference model, but which aims to
explicitly capture how humans might incorporate such beliefs. We call this new preference model the
belief-based preference model:

P belief(σ+ ≻ σ−) =
exp(α

∑
σ+ γtAπbelief(st, at))

exp(α
∑

σ+ γtAπbelief(st, at)) + exp(α
∑

σ−
γtAπbelief(st, at))

(3)

where α is an inverse temperature coefficient. The remainder of the paper will examine the theoretical
and empirical consequences of humans providing belief-based preferences under this model, as well
as establish evidence via a human study that human preferences are, in fact, influenced by beliefs
about agent capabilities. In order to do so, we must first formally define agent capabilities, as well as
agent-labeler disagreement.

We assume that the human has a belief about the capabilities of the agent, which they use to generate
preferences. We define this belief over capabilities in terms of a Q-function that represents the quality
of an imagined agent’s policy:
Definition 4.1. Agent capability belief is defined as the state-action value function, Qπbelief , used to
generate preferences in the belief-based preference model proposed in equation 3, via the associated
Aπbelief .

In other words, preferences are generated based on the assumption that, after the completion of the
preferred partial trajectory, the agent will follow πbelief, whose state-action value function is Qπbelief .

One might then ask: what πbelief might a human imagine when providing preferences? The standard
regret-based model assumes that the human imagines optimal behavior, but our human study in
Section 6 demonstrates that preferences are subject to priming effects, indicating that the human’s
beliefs about agent capabilities may be more closely related to the perceived current policy of
the agent, or a prior over similar agents formed from past experiences, or perhaps an estimated
performance ceiling for such agents.

Thus, another key question is: What is the ideal Qπbelief for a human to hold? Assume that the human
is asked to provide preferences over a fixed, finite set of pairs of partial trajectories. The normative
ideal is for the human to provide preferences in a manner that results in the highest expected return
of the post-RLHF policy. We denote any policy that achieves this maximum as π∗

post. Note that this
policy is not necessarily optimal for the MDP; it is simply the best that can be achieved after an
RLHF step under any assignment of preferences over the fixed set of trajectory pairs. Further, there
exist a set of beliefs that lead to such maximizing policies when preferences are generated according
to them. We denote these as Qπ∗

belief . This optimal belief may require oracle knowledge to generate
(e.g. environmental dynamics or learning rule), but it is the normative ideal.

Finally, note that if an infinite number of (noiseless) preferences are to be given and any policy is
representable by the agent, this implies that the labeler ought to have a belief of optimal behavior,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

normatively; in this case, π∗
post is only suboptimal when a finite number of preferences are given.

However, if preferences are noisy or the agent cannot represent an optimal policy (e.g. a weak
function approximator), then this may not be true.

We now define agent-labeler disagreement, which captures the more realistic scenario of a human la-
beler providing preferences under some agent capability belief Qπbelief that is different from normative
ideal, Qπ∗

belief .

Definition 4.2. We define the agent-labeler disagreement at a state-action pair as the magni-
tude of difference between an optimal belief Qπ∗

belief and a human labeler’s belief Qπbelief given by
|Qπ∗

belief(s, a)−Qπbelief(s, a)|. When there exist multiple Qπ∗
belief , the minimum disagreement is used.

4.1 A CASE STUDY

s0

ssafe

srisk

sneutral

slose

swin

a saf
e

a
risk

r = 0

alose, r =
−10

awin , r = +10

Figure 2: An MDP in which a safe
and a risky action are available. If
Aπbelief(s0, arisk) > Aπbelief(s0, asafe) when
Aπ∗

belief(s0, arisk) ≤ Aπ∗
belief(s0, asafe), la-

belers will erroneously prefer the partial
trajectory (s0, arisk, srisk) over (s0, asafe, ssafe)
under the belief-based preference model in
Equation 3.

Here we present an example to illustrate the effect of agent-
labeler disagreement. Consider the simple MDP shown
in Figure 2, which is adapted from an example in Knox
et al. (2024) to capture the risk of poor decision-making
after an action.1 s0 is the start state, and arrows show
deterministic transitions towards the three terminal states
on the far right. All rewards are 0 unless otherwise noted.

Suppose a labeler is asked to provide preferences
between two partial trajectories: (s0, arisk, srisk)
and (s0, asafe, ssafe), and their beliefs are such that
Aπbelief(s0, arisk) > Aπbelief(s0, asafe). Then, under
the belief-based preference model, they would
tend to label (s0, arisk, srisk) ≻ (s0, asafe, ssafe).
If the agent-labeler disagreement is such that
Aπ∗

belief(s0, arisk) ≤ Aπ∗
belief(s0, asafe)—which would

occur if π∗
belief(srisk, alose) > 0.5—then obeying the

preference above results in losing more often than
winning during execution, resulting in a learned policy
that has lower expected return than taking asafe.

Conversely, suppose the labeler’s beliefs are such that Aπbelief(s0, arisk) < Aπbelief(s0, asafe). Then
under the belief-based preference model, they would prefer (s0, asafe, ssafe) over (s0, arisk, srisk).
Obeying this preference results in a return of 0 instead of a higher return during execution if
Aπ∗

belief(s0, arisk) > Aπ∗
belief(s0, asafe). Thus, we can see that agent-labeler disagreements can lead to

suboptimal preferences and resulting policies.

4.2 FORMAL BOUNDS ON IMPACT OF AGENT-LABELER DISAGREEMENTS

We now bound the impact on the expected return of the RLHF-trained policy under agent-labeler
disagreements. For simplicity, we will first examine a setting where the labeler is asked to provide a
preference between trajectories under an agent-labeler disagreement at a single state-action pair. We
later discuss how this analysis extends to multiple agent-labeler disagreements.

Theorem 4.3. Consider an RLHF setup where a human labeler is provided with a finite number
of pairs of single-transition trajectories to label. Let Qπ∗

belief be an optimal agent capability belief
(i.e. the normative ideal belief) for generating preferences using belief-based model (Eqn 3) over
these pairs of trajectories, and let π∗

post be the corresponding post-RLHF policy. Let Qπbelief be the
human labeler’s belief with an agent-labeler disagreement of δ at a state-action pair (s′, a′) w.r.t.
Qπ∗

belief . Let the post-RLHF policy trained with preferences given under Qπbelief be πδ
post. Assume that

preferences are noiseless under the belief-based model (i.e. α → ∞). Further assume that the policy

1Note that decision-making itself may not appear to be a risk from the agent’s perspective, since the agent
controls its own actions at subsequent states. However, even deterministically chosen actions can be risky from
the labeler’s perspective because the labeler is only able to influence the agent at the current state.
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is tabular and RLHF produces a deterministic policy that respects all the preferences. We then have:

Jπδ
post

≥ Jπ∗
post

− δ

1− γ
, (4)

where Jπ∗
post

and Jπδ
post

are the expected returns of π∗
post and πδ

post respectively.

Proof. Consider preferences given over single-transition trajectories via the belief-based model
(Eqn. 3). When RLHF respects the given preferences, resulting in a deterministic post-RLHF policy
πpost, we have πpost(s) = argmaxa Q

πbelief(s, a). Under perfect agent-labeler agreement, we are
given the post-RLHF policy as π∗

post.

Now, we examine the impact of agent-labeler disagreement at (s′, a′) on the post-RLHF policy. We
have disagreement of

δ =
∣∣∣Qπ∗

belief(s′, a′)−Qπbelief(s′, a′)
∣∣∣. (5)

When this disagreement grows such that δ > Qπbelief(s′, π∗
post(s

′))−Qπbelief(s′, a′), action a′ becomes
the most preferred action. This results in a new post-RLHF policy πδ

post as follows:

πδ
post(s) =

{
π∗

post(s) if s ̸= s′

a′ if s = s′.
(6)

Following Kakade & Langford (2002), we calculate the difference between Jπδ
post

and Jπ∗
post

.

Jπδ
post

− Jπ∗
post

=
1

1− γ
E
s∼d

πδ
post

µ

Ea∼πδ
post

[
Aπ∗

post(s, a)
]
, (7)

where d
πδ

post
µ is the discounted steady-state distribution of the MDP under policy πδ

post and start state
distribution µ, and Aπ∗

post(s, a) is the advantage function of policy π∗
post. We can further simplify

equation 7 considering the deterministic nature of π∗
post and πδ

post as:

Jπδ
post

− Jπ∗
post

=
1

1− γ
E
s∼d

πδ
post

µ

[
Qπ∗

post(s, πδ
post(s))−Qπ∗

post(s, π∗
post(s))

]
(8)

Note that the two policies differ only at a state s′. This allows us to further simplify as:

=
d
πδ

post
µ (s′)

1− γ

[
Qπ∗

post(s′, πδ
post(s

′))−Qπ∗
post(s′, π∗

post(s
′))

]
≥ d

πδ
post

µ (s′)

1− γ
(−δ) ≥ − δ

1− γ
(9)

The inequalities follow from the agent-labeler disagreement definition and 0 ≤ d
πδ

post
µ (s) ≤ 1.

Next, we show how this proof extends to multiple agent-labeler disagreements.
Corollary 4.4. When there are multiple agent-labeler disagreements, {δ1, δ2, · · · , δk}, the Theo-
rem 4.3 can be extended as: Jπδ

post
≥ Jπ∗

post
− max{δ1,δ2,··· ,δk}

1−γ .

Proof. The proof follows similar reasoning as the single disagreement case, considering the worst-
case scenario where the maximum disagreement dominates the performance loss.

5 EMPIRICAL STUDY OF IMPACT OF AGENT-LABELER DISAGREEMENTS

In the prior section, we bounded the effects of agent-labeler disagreement for simple tabular policies
without function approximation or generalization. In this section, we aim to empirically study this
phenomenon for a broader class of policy representations that can exhibit generalization, as well as
limit the set of representable policies. As noted earlier, when infinite noiseless preferences are given,
then the normative ideal is for the labeler to give preferences with respect to an optimal policy, as long
as the agent can represent and execute an optimal policy. However, if maximum agent performance is

6
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Table 1: The effect of mismatch in belief in the agent capabilities (rows) and the agent’s actual
capability (columns). Highest returns generally correspond to the most aligned beliefs, shown along
the diagonal. The error intervals show the 95% confidence interval.

ϵ noise on agent capability → 0.0 0.1 0.3 0.5

ϵ′ noise on labeler’s belief ↓
0.0 7.92± 0.05 3.11± 0.15 −4.07± 0.21 −8.45± 0.26
0.1 3.49± 0.07 1.47± 0.17 −4.92± 0.22 −10.91± 0.32
0.3 1.71± 0.05 −0.88± 0.14 −3.70± 0.19 −8.18± 0.26
0.5 3.47± 0.06 −0.32± 0.11 −4.14± 0.22 −7.36± 0.25

limited in some manner—for example, due to a weak function approximator, regularized learning
rule, or noisy actuators that don’t faithfully execute the commanded action—then the normative ideal
is to give preferences with respect to the best achievable policy.

To study the impact of agent-labeler disagreement in a more realistic setting in which the
agent is limited, we design an experiment using synthetic data in a gridworld domain. The
agent can only represent epsilon-greedy policies for a particular value of epsilon. This policy
noise is intended to serve as a stand-in for the various types of performance-capping limita-
tions discussed above, and has the advantage of being easy to systematically manipulate. We
model the labeler’s beliefs very simply as a belief over epsilon; they assume an optimal pol-
icy within the representable epsilon-greedy class. Thus, agent-labeler disagreement arises due
to incorrect beliefs about the value of epsilon. We hypothesize that performance of the post-
RLHF policy will degrade as the labeler’s belief over epsilon diverges from the true epsilon.
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Figure 3: 7x7 GridWorld
with start state (in yellow),
two terminal cliff states (in
red) and one terminal goal
state (in green). In each cell,
we mark the reward incurred
for reaching the state.

We first collect 100 random trajectories (enough to guarantee a nearly
optimal-within-class post-RLHF policy) of the agent traversing the grid-
world environment that terminate either in the goal state or in the cliff
state. We denote ϵ as the ϵ-greedy noise impacting the post-RLHF policy
of the agent and ϵ′ as the ϵ-greedy noise assumed by the labeler and deter-
mining the labeler’s preferences. The values of ϵ and ϵ′ may be different.
We denote the labeler’s belief about agent’s capability Qπϵ′

belief(s, a). We
denote the post-RLHF agent capability as Qπϵ

post(s, a). We vary the values
of ϵ and ϵ′ to show the impact of agent-labeler disagreements on the
post-RLHF policy’s expected return.

We use Qπϵ′
belief(s, a) to generate synthetic preference data using the using

the belief-based preference model shown in Equation 3. We use these
preferences to train the agent using using Contrastive Preference Learning
(CPL) (Hejna et al., 2024), a scalable algorithm for regret-based RLHF.

Table 1 shows the average returns of the post-RLHF policies. The highest return generally comes
when the ϵ′-greedy noise assumed by labeler is closest to the ϵ-greedy noise impacting the agent’s
policy. We see that for lower values of epsilon (ϵ = 0 & 0.1), preferences given under the optimal
advantage function (ϵ′ = 0) provide the highest returns. However, this strategy becomes a hindrance
for effective RLHF as the action noise increases, as seen when ϵ = 0.3 & 0.5. This is due to the fact
that the post-RLHF policy learns to walk near the dangerous cliffs, often falling off, since the labeler
assumed too low of a noise level. Walking near the cliffs is only optimal when the agent has a very
low epsilon value. These results serve as a proof of concept for how agent-labeler disagreements can
arise in practice and how they can be exacerbated by agent limitations that may be unknown to the
labeler.

6 AGENT-LABELER DISAGREEMENTS IN HUMAN PREFERENCE COLLECTION

Now that we have established that agent-labeler disagreements pose a problem in RLHF, in this
section, we demonstrate that human beliefs about agent capabilities do, in fact, significantly affect
the preferences given by human labelers. This is done via a human study in which priming effects are
used change participants’ beliefs about the agent’s capabilities. Additionally, this result indicates that
it is possible in theory to change human preferences to be better aligned with agent capabilities.

Domain: We choose a self-driving car domain, simulated using the CARLA driving simulator (Doso-
vitskiy et al., 2017) to collect trajectories to use for human preference collection. Since the rules and
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trade-offs involved in driving are something that many people already have a strong intuition for, the
choice of self-driving car setup allows us to keep the filtering of the participants minimal.

Priming: Before beginning data collection, we randomly assign participants to one of three conditions:
(1) no priming (control condition), (2) safe priming (confidence increasing condition), and (3) unsafe
priming (confidence decreasing condition). Both safe and unsafe priming videos start from the same
starting state to avoid unintended biasing effects. Participants in the safe priming group are shown a
video where the car obeys all traffic laws, avoids obstacles, and successfully overtakes a slower car,
whereas the participants in the unsafe priming group are shown a video where the car drifts across
lanes and crashes into obstacles.

Preference elicitation: Participants are asked to provide preferences over 15 randomly chosen pairs
of video data. All data pairs on which preferences are collected show legal driving. Within each
pair, the car is shown to be driving on the same path for the same amount of time. In each pair, one
video shows faster and more time saving behavior, which if executed imperfectly (during or after the
trajectory) could lead to failure states, such as hitting a pedestrian, another car, or breaking traffic
laws; the other shows more safety-conscious behavior that requires more time to execute, but for
which it is easier to avoid failure states. Each pair of trajectories is designed to make the participants
consider both: (a) how a learning agent might behave in the same states shown in the trajectories and
(b) what the agent might do after the end of each trajectory.

All data pairs are randomly shuffled, and the order in which each pair of data is shown is also
randomly shuffled to avoid ordering bias during preference collection. In each question, both videos
in each pair are presented next to each other.

Instructions for the participants: Participants in the control group are given a standard preference
collection instruction explaining that the objective of the survey is to improve a self-driving car using
their preferences over behavioral data. We chose to frame this language for this group to indicate that
their preferences were not meant to be a rating of the trajectories themselves, but rather a learning
signal for improving a self driving car’s policy. This was designed to lead them to reflect less on the
trajectories themselves and more on their beliefs about how a learning agent might behave in similar
or future states. The participants in the safe and unsafe priming groups are given a similar instruction
with an addition of a video showcasing the car’s driving behaviors. To encourage the participants
to think deeply about car’s capabilities, they are then asked about which skills they think would be
useful for the car to learn to become a more effective driver.

Post-processing of collected data: To maintain a high standard while finalizing the data, we
construct a participant filtering step that ensures that participants are paying attention when providing
preferences. First, we show a pair of videos: one in which the car drives normally and one in which
the car crashes into a guardrail while making a turn. Additionally, we show a pair of videos in which
one car drives normally and the other runs a red light. We remove all preference data from participants
who do not strongly prefer the attention check videos that show good driving, while also reporting
that they were extremely confident.

In total, we collected data from 259 participants. The data filtering and quality checks allowed 146
(46 safe priming, 50 unsafe priming, 50 no priming) participants’ data to be used for analysis. We
further balanced the data in each group to avoid unintended impacts on the statistical analysis by
randomly removing 4 entries from both the unsafe and no priming groups. The final dataset contains
46 participants in each of the three groups.

To the best of our knowledge, there is not a standard nonparametric statistical test that can test for
statistical significance when there are: (1) more than two groups; (2) for which the data is Likert; (3)
and for which each participant gives repeated measures data. Instead, we used the average of each
participant’s responses, rather than individual question responses, to create independent data that
is amenable to standard statistical tests. To reduce noise due to participant confusion, uncertainty,
or misunderstandings, we used only those responses where participants reported extremely high
confidence in their answers.

Qualitative results: We asked participants to provide text feedback on the car’s performance
immediately after priming in order to check their beliefs after priming. We used GPT-4 OpenAI et al.
(2024) to conduct a sentiment analysis for each response and provide a 1-10 star rating.

8
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Figure 4 shows that immediately after priming, participants primed with the unsafe priming had
lower sentiment scores regarding the car’s capabilities than the participants in the safe priming group,
suggesting that priming had an impact on their beliefs.

Figure 4: Sentiment analysis on participants’
written responses about the car’s capabilities
after priming, evaluated on a 1–10 scale by
GPT-4. Histogram bars for both groups are
plotted from 0, not stacked.

Quantitative results:

Next, we analyzed the Likert data associated with
the preferences of each condition group. We used
the non-parametric Kruskal-Wallis test for statisti-
cal analysis due to the ordinal nature of the data
Kruskal & Wallis (1952). The Kruskal-Wallis test
resulted in a p-value of 0.033, indicating a statis-
tically significant difference between at least two
priming groups at the 5% level. In order to detect
which of the two priming groups differ, we used
the Dunn’s test with Bonferroni correction Dunn
(1961). The results of the Dunn-Bonferroni test
are shown in Table 2 and show statistically signif-
icant (p = 0.015) differences between safe and un-
safe priming groups at the 5% level. Cliff’s delta
(d = 0.31) between unsafe vs safe priming shows
that participants primed with unsafe priming were influenced toward more safe responses at
a higher rate than participants primed with safe priming with a small effect size Cliff (1993).
Participants in the no priming group did not exhibit statistically significant differences in their
responses compared to either the unsafe or safe priming groups, as shown in Table 2. These results
suggest that human preferences are influenced by their beliefs about agent capabilities. To mitigate
this bias, practitioners should actively attempt to strengthen agent-labeler agreement during data
collection.

6.1 RECOMMENDATIONS FOR RESEARCHERS

Table 2: P-values for Dunn-Bonferroni for re-
sponses given with extremely strong confidence.
P-values below 0.05 indicate statistical significance
at the 5% level.

Unsafe Priming No Priming Safe Priming

Unsafe Priming 1.000 0.229 0.015
No Priming 0.229 1.000 0.847

Safe Priming 0.015 0.847 1.000

Our results show that having good agent-labeler
agreement is important for effective policy learn-
ing in regret-based RLHF. While it is difficult
to reason about an agent’s post-training perfor-
mance prior to training, our results suggest po-
tential best practices for practitioners:

(1) Inform labelers directly about known lim-
itations: Practitioners may choose to inform
labelers about agent limitations prior to prefer-
ence collections. For example, this may include
known data or training limitations, non-obvious

restrictions on agent capabilities (e.g. an unusually limited turning radius on a vehicle), or assessments
of projected agent strengths and weaknesses. However, the success of such an approach depends
heavily on the ability of labelers to make sense of such information, which may require varying levels
of technical expertise.

(2) Online preference collection with intermittent priming: Practitioners may choose to use online
preference collection interleaved with RLHF training on the collected preferences. Here, labelers’
beliefs about the agent’s capability may be continuous updated and aligned via priming using data
from the agent’s most current policy. This approach may also demonstrate to labelers how their
preferences influence policy learning.

7 CONCLUSION

Current methods of preference collection do not account for participants’ beliefs about the capabilities
of the agents learning from their preferences. We show that the preferences collected under agent-
labeler disagreements can lead to suboptimal policies both theoretically and empirically and make
preliminary suggestions on how to minimize such disagreements. Future work may include developing
improved priming strategies to ensure human beliefs are as accurate as possible, as well as algorithmic
advances that mitigate the impact of incorrect beliefs on RLHF.

9
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Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,

11

https://openreview.net/forum?id=hpKJkVoThY
https://openreview.net/forum?id=hpKJkVoThY
https://arxiv.org/abs/2410.22690
https://proceedings.mlr.press/v235/munos24a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Proceedings
of the 36th International Conference on Neural Information Processing Systems, NIPS ’22, Red
Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Python Software Foundation. Python: Version 3.11, 2023. URL https://www.python.org/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: your language model is secretly a reward model. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Sid Reddy, Anca Dragan, and Sergey Levine. Where do you think you're going?: Inferring beliefs
about dynamics from behavior. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_
files/paper/2018/file/6f2268bd1d3d3ebaabb04d6b5d099425-Paper.pdf.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

Thi Ngoc Trang Tran, Alexander Felfernig, and Nava Tintarev. Humanized recommender systems:
State-of-the-art and research issues. ACM Transactions on Interactive Intelligent Systems, 11:1–41,
07 2021. doi: 10.1145/3446906.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
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Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
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A PROOFS

Proof of the corollary 4.4:

Proof. Theorem 4.3 states that the error bound on the expected return of a post-RLHF policy learned
with preferences given under a single agent-labeler agreement at state (s′, a′) of magnitude δ is:

Jπδ
post

≥ Jπ∗
post

− δ

1− γ
.

This result can be interpreted as, in the worst case, the agent takes a sub-optimal action of magnitude
δ at state s′ from the start of the episode until the end of horizon. Consider the case of multiple
disagreements where we have state-action pair (s′′, a′′) where we have disagreement of magnitude
max{δ1, δ2, ..., δk} . In the worst case, the agent will be stuck at state (s′′, a′′) from the beginning of
the episode until of the horizon. This results in following bound on expected returns:

Jπδ
post

≥ Jπ∗
post

− max{δ1, δ2, ..., δk}
1− γ

.

B ADDITIONAL DETAILS ABOUT HUMAN STUDY

In this section, we provide more details about our human study and the demographics of participants.

B.1 DESIGN DECISIONS

We chose self-driving cars as the domain on which to collect our preference dataset because the rules
and trade-offs of driving are something people understand without high level knowledge about any
language or formal higher education and allowed for minimal filtering of participants. We conducted
these preference collection experiments with prior IRB approval.

B.2 DATA COLLECTION UI

Figure 5 shows the format of the survey that participants saw when giving their responses.

Figure 5: The format of questions asked to participants in the survey. In order to avoid order biasing,
we avoided terms such as “first/second”, “left/right”, or arrows and opted to use labels to indicate
which side they prefer more. Subjects are also asked to report confidence in their response and a
reasoning for their response. Subjects are required to respond to all three questions for each preference
pair before they are allowed to move to the next pair in order to avoid confusion.

B.3 EXAMPLE OF A PAIR OF TRAJECTORIES SHOWN TO HUMAN LABELERS

All trajectories shown to participants show legal driving. Each pair of trajectories show the car
driving along the same route for the same amount of time so participants can easily distinguish the
tradeoff between safety and time savings. For example, one pair of scenarios shows a legal overtake
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of a slow car in a single lane road, as shown in Figure 6. While it is legal and safe to perform the
overtake, doing so requires trust in the car’s abilities to successfully return back to its lane without
any accidental swerving or any other mishaps. The pair shows one trajectory where the car does not
attempt this overtake and instead patiently stays behind the slow car, as shown in Figure 6a; the other
shows the car overtaking successfully and getting further along the road in the same amount of time,
as shown in Figure 6b. This allows room for the subject to interpret the quality of the car’s driving
for the overtake and be subjective in their belief in the car’s abilities.

(a) An example of a trajectory showing safety-
conscious driving behavior. Here, the car chooses
to stay behind the slower driver and finishes the
trajectory near the start of the bridge.

(b) An example of a trajectory showing time-saving
driving behavior. Here, the car chooses to legally
overtake the slow driver and finishes the trajectory
near the end of the bridge.

Figure 6: An example pair of trajectories as shown to human labelers. Both trajectories show the car
driving along the same path for the same amount of time.
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B.4 DEMOGRAPHICS

Figure 7a shows the distribution of driver experience among the participants of our survey and Figure
7b shows participant’s willingness to ride in a self driving car. While we did not have specific filters
for years of driving experience, most of the participants report a significant number of years of driving
experience, meaning that they are well versed in the domain. A large portion of participants from a
three priming groups reported that they would be willing to ride in a self driving car. However, out
of all participants who reported that they would be unwilling to ride in a self driving car, the largest
group of participants was the unsafe priming group.

(a) Participant’s driving years of experience. (b) Participant’s willingness to use self-driving cars.

Figure 7: Demographics of human labelers

C GRIDWORLD EXPERIMENTAL DETAILS

In this section, we provide additional details about the GridWorld domain and the hyperparameters
used in the learning algorithm. For this analysis, we used the following python libraries: numpy
Harris et al. (2020), math and random from the standard python library Python Software Foundation
(2023), and scipyVirtanen et al. (2020).

C.1 GRIDWORLD DOMAIN

The gridworld domain consists of a 7x7 grid of cells. We number the coordinates from 0 to 6.
The agent always starts in the cell numbered (6,6). From there, the agent may move in any of the
four cardinal directions. Any movement by the agent that results in the agent moving outside the
boundaries of the environment results in the agent staying in its original state with an additional
reward of -1. The states (0, 6), (3, 6), and (4, 6) are terminal states and result in ac reward of +200,
-200, and -200 respectively. The episode terminates when the agent either reaches one of the terminal
states or when the number of states that the agent has visited reaches 1,000.

C.2 HYPERPARAMETERS

Here, we will discuss the hyperparameters used in the gridworld experiment for the Contrastive
Preference learning algorithm:

Hyperparameter Value
Discount Factor 0.7
Regularization (γ) 0.01
Learning Rate 0.5
Temperature parameter (α) 10
Number of random seeds 20
Epochs 20

Table 3: Hyperparameters used in the gridworld experiment
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D DISCLOSURE ABOUT LLM USAGE

We used LLM to format the content of the paper and to make any stylistic changes to the paper.
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