

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 A DESCRIPTIVE AND NORMATIVE THEORY OF HUMAN BELIEFS IN RLHF

Anonymous authors

Paper under double-blind review

ABSTRACT

Human preferences in RLHF are typically modeled as a function of the human’s reward function or corresponding optimal state-action values. In this work, we propose that human beliefs about the capabilities of the agent being trained also play a key role in preference generation. We examine two questions related to this hypothesis, one descriptive and one normative, respectively: Do human labelers’ beliefs about agent capabilities affect the preferences that they provide? And what is the ideal set of beliefs about an agent—and resulting preferences—for humans to have? We propose a new preference model that incorporates human beliefs and provide a normative theory that bounds the error on the final learned policy based on the *mismatch* between the human’s beliefs and an idealized set of beliefs. We then confirm via a human study that beliefs about agent capabilities do, in fact, significantly affect preferences and can be influenced through simple interventions. Additionally, we empirically show through synthetic experiments that it is often suboptimal for human preference labelers to assume agent optimality. Collectively, these results theoretically and empirically demonstrate how reducing the mismatch between human beliefs and agent capabilities can lead to more performant RLHF and point toward new best practices for RLHF practitioners.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) is one of the main tools used to align powerful AI systems (Kaufmann et al., 2023). Alignment is important for numerous reasons, such as minimizing unintentional harm, ensuring safety and control, and increasing public trust and legal compliance (Ji et al., 2023; Amodei et al., 2016). In order to use RLHF for alignment more effectively, researchers require high-quality data from humans that express rational preferences. This begs the question: *How should rationality of preferences be defined within RLHF?* Standard approaches to RLHF assume that humans provide preferences based only on what actually happened in the trajectories, i.e., the return-based interpretation (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022; Brown et al., 2019). This partial return-based approach does not consider events that *could have* occurred while taking a risky action or what might happen after the end of the trajectory segment. Knox et al. (2024) show that the regret-based model addresses this by looking at the quality of actions taken, rather than just the summed reward of the observed outcomes.

However, even the regret-based approach may not fully capture the factors that humans may consider when giving preferences. The regret model assumes that humans judge the “goodness” of an action as a function of the optimal advantage function A^* that the agent should ideally be able to achieve under the assumed MDP, given enough data. But what if humans do not assume optimality when judging action quality, but instead rely on their beliefs about the agent’s capabilities—in other words $A^{\pi_{\text{belief}}}$ for some imagined policy π_{belief} rather than A^* ?

For example, consider the scenario in Figure 1, in which an agent must choose between a shorter cliff-side path to a goal or a longer, safer path far away from the cliff. Path 1 is preferable if the agent can reproduce the trajectory noiselessly and also behave optimally afterwards. However, if the agent is suboptimal, then it risks falling off the cliff when taking this path or afterwards. Conversely, Path 2 is better for a suboptimal agent, but overly conservative for an optimal agent. Suppose that a human labeler provides a preference for Path 1 based on the incorrect belief that the agent will behave

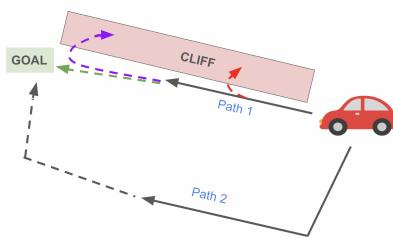


Figure 1: Illustration of scenario in which preference for a more optimal partial path can lead to a worse post-RLHF policy. (*Path 1*): The car drives along the edge of a cliff but straight to the destination. This path takes less time but requires greater capabilities (both during and after) to avoid catastrophic outcomes. (*Path 2*): The car takes a longer path far away from the cliff, reducing risk. The dotted lines indicate different possible paths that could occur when executing a post-RLHF policy: red indicates the possibility that the agent may drive off the cliff if it fails to perfectly imitate Path 1; purple indicates a suboptimal policy starting from the final state of Path 1 that also drives off the cliff; green indicates a policy that is able to safely reach the goal. If the post-RLHF policy would induce the red or purple trajectories under a Path 1 preference, then it would be better for the labeler to have preferred Path 2, despite the longer travel time.

optimally post-RLHF. If the agent is trained on these preferences and is suboptimal post-RLHF, this can lead to catastrophic outcomes.

This motivates the questions: *Should a rational preference labeler consider agent capabilities? And what is a normative ideal for labeler beliefs about agent capabilities?* There are a variety of factors that can affect an agent’s capabilities. Factors such as limited training data, incomplete or noisy data, or policy parameterization could limit the space of learnable policies. This limitation of learnable policies, by extension, limits agent performance. Furthermore, if the agent is a robot, physical limitations may also limit agent performance beyond what a human might assume. Given a fixed set of trajectory pairs, we show that the normative ideal in regret-based RLHF is for labelers to provide preferences with respect to a quantity that is related to the best possible post-RLHF policy under any labeling—as opposed to the standard assumption of absolute optimality.

Our contributions are as follows. (1) We illustrate the importance of beliefs about agent capabilities by showing an example where poor agent-labeler agreement leads to suboptimal post-RLHF policies. (2) We define a normative ideal of beliefs and theoretically investigate the impact of deviations from this ideal on the expected return of the post-RLHF policy. (3) We empirically examine the effect of the magnitude of deviation from the ideal belief by manipulating it directly in synthetic experiments, showing that the highest performance typically results from beliefs closest to our theoretical normative ideal. (4) Finally, we confirm in a human study that human beliefs about the agent’s capabilities affect preferences. Specifically we show that it is possible to change human preferences in a statistically significant manner by changing their beliefs through priming. This study also points to potential paths forward for aligning labeler beliefs with agent capabilities.

2 PRELIMINARIES

A Markov Decision Process (MDP) (Puterman, 2014; Sutton & Barto, 1998) is specified by a tuple $(\mathcal{S}, \mathcal{A}, P, \gamma, \mu, r)$. Here, \mathcal{S} is the set of possible states, and \mathcal{A} is the set of all possible actions. P is the transition function $P : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$, a probability distribution over the next state given the current state and action. γ is the discount factor, μ is the start state distribution, and $r : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$ is the scalar reward function. r_t refers to the reward received at time t for taking action a_t at state s_t and reaching s_{t+1} . Terminal states have a reward of 0, unless otherwise specified, upon reaching them and a reward of 0 forever after. Throughout this paper, r refers to the ground-truth reward function, from which preferences are generated.

A policy $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$, specifies the probability of taking an action in a given state. V_r^π is the state-value function for π under the reward function r , defined as: $V_r^\pi(s) = E_\pi[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, s_{t+1}) | s_0 = s]$. Q_r^π is the state-action value function:

108 $Q_r^\pi(s, a) = E_\pi[r(s, a, s') + \gamma V_r^\pi(s')]$. The advantage function with respect to π is defined as
 109 $A_r^\pi(s, a) = Q_r^\pi(s, a) - V_r^\pi$. $J_r^\pi = E_\pi[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, s_{t+1}) | s_0 \sim \mu]$ denotes the policy's expected
 110 discounted return. We use A^π , V^π , Q^π , and J^π to denote A_r^π , V_r^π , Q_r^π , and J_r^π respectively. An
 111 optimal policy π^* is a policy for which $V_r^{\pi^*}(s) \geq V_r^\pi(s)$ for all states and all policies. We use A^* ,
 112 V^* , and Q^* to denote A_r^* , V_r^* , and Q_r^* respectively.
 113

114 **Trajectories:** σ refers to a trajectory with starting state s_0^σ . The length of a trajectory $|\sigma|$ refers to
 115 the number of transitions in the trajectory. Each trajectory has $|\sigma| + 1$ states and $|\sigma|$ actions. In the
 116 context of our setting, trajectories do not contain any reward information as rewards are unknown
 117 and are to be inferred from preferences.
 118

119 **Preference Dataset:** We have a preference dataset $\mathcal{D}_{\text{pref}} = \{(\sigma_i^+, \sigma_i^-) | i = 1, 2, \dots, n\}$ where each
 120 pair of trajectories (σ_i^+, σ_i^-) are of equal length and $\sigma_i^+ \succ \sigma_i^-$ denotes that the first trajectory is
 121 strictly preferred over the second.
 122

123 **Preference Models:** The pairwise preferences in $\mathcal{D}_{\text{pref}}$ are assumed to be sampled from an under-
 124 lying distribution $P(\sigma^+ \succ \sigma^-)$ which is modeled using preference model (e.g. the partial-return
 125 model (Christiano et al., 2017) or the regret model (Knox et al., 2024)) obeying ground truth reward
 126 r . The partial-return preference model is given by:
 127

$$P(\sigma^+ \succ \sigma^-) = \frac{\exp(\alpha \sum_{\sigma^+} \gamma^t r_t)}{\exp(\alpha \sum_{\sigma^+} \gamma^t r_t) + \exp(\alpha \sum_{\sigma^-} \gamma^t r_t)} \quad (1)$$

128 and the regret-based preference model is given by :
 129

$$P^*(\sigma^+ \succ \sigma^-) = \frac{\exp(\alpha \sum_{\sigma^+} \gamma^t A^*(s_t, a_t))}{\exp(\alpha \sum_{\sigma^+} \gamma^t A^*(s_t, a_t)) + \exp(\alpha \sum_{\sigma^-} \gamma^t A^*(s_t, a_t))} \quad (2)$$

130 where α is an inverse temperature coefficient.
 131

133 3 RELATED WORK

136 **Reinforcement Learning from Human Feedback.** RLHF methods traditionally follow a two-step
 137 learning framework: (1) learning a reward function using preference data and (2) using RL to perform
 138 policy optimization (Christiano et al., 2017; Ouyang et al., 2022; Brown et al., 2019). Direct methods
 139 remove the RL step from this traditional approach by directly learning policies from preferences
 140 but make the same preference modeling assumptions as standard return-based RLHF (Munos et al.,
 141 2024; Rafailov et al., 2024; Hejna et al., 2024).
 142

143 **Modeling human beliefs in learning.** Prior work has aimed to model human beliefs in learning
 144 settings beyond RLHF. Reddy et al. (2018) state that the reason demonstrators deviate from near-
 145 optimal actions is because of a misunderstanding of the environment dynamics and propose an
 146 algorithm to estimate these misunderstandings. Gong & Zhang (2020) assume that humans do not
 147 maintain a correct belief about dynamics when giving preferences and propose a method to infer
 148 both the reward function and the human's beliefs about dynamics. Marklund & Roy (2024) aim to
 149 separate goals from potentially incorrect human beliefs about environmental transition dynamics.
 150 Chan et al. (2021) demonstrate that human irrationality, when correctly modeled, can be an asset to
 151 reward inference.
 152

153 **Biases in human data collection.** While RLHF assumes that humans offering preferences do so
 154 rationally and in alignment with their long-term objectives, biases in human survey data have been
 155 studied across various fields of research (Kaufmann et al., 2023; Kahneman, 2003; Kőszegi & Rabin,
 156 2008). It is widely recognized that human decisions can be swayed by biases due to irrationality,
 157 incompleteness, or inaccurate information (Gilovich T, 2002). Kőszegi & Rabin (2008) state that mistakes
 158 are systematic and can be revealed by behavior and show that previously seen small amounts of non
 159 representative data can bias preferences. Previous psychology-aware RLHF literature investigate the
 160 impact of biasing effects on preferences. Lichtenstein & Slovic (2006) discuss how preferences can
 161 be formed at the same time as the process of preference elicitation. Personality, emotions, social
 162 connections, and decision biases (such as decoy effects, serial position effects, anchoring effects,
 163 framing effects, and group think) can also affect preferences (Tran et al., 2021; Atas et al., 2021).
 164 Ziegler et al. (2019) discuss the importance of alignment between researcher goals and the labeler's
 165 labels on open ended summarization and sentiment analysis tasks.
 166

 162 **4 THEORY: EFFECTS OF AGENT-LABELER DISAGREEMENT**
 163

 164 In this section, we aim to bound the impact of agent-labeler disagreement on expected returns of an
 165 RLHF-trained policy. We first formally define the notions of agent capability belief and agent-labeler
 166 disagreement. We then present an example MDP where agent-labeler disagreement leads to agents
 167 learning suboptimal policies. Finally, we provide a formal bound on regret of the post-RLHF policy
 168 loss as a function of agent-labeler disagreement.

 169 Under the regret-based model of preferences, the labeler is assumed to provide preferences based on
 170 the advantage of actions under the optimal advantage function A^* . However, a real-world agent's
 171 performance after RLHF will not typically be optimal and instead will be limited by the amount
 172 of preference data, training time, or the learning algorithm itself. We will show that if humans do,
 173 in fact, generate preferences via the regret preference model, it can lead to catastrophically bad
 174 post-RLHF policies. This is due to the assumption of optimality following the trajectory segments
 175 for which preferences are given. For example, in Figure 1, the actual advantage of choosing Path 1
 176 depends on whether or not the car will behave optimally in future time steps during execution. Thus,
 177 when providing preferences, we posit that the quality of an action ought to be related to the agent's
 178 post-RLHF advantage function, rather than assuming optimality.

 179 Formally, we denote the labeler's estimate of the agent's post-RLHF policy as π^{belief} . $Q^{\pi^{\text{belief}}}$ and
 180 $A^{\pi^{\text{belief}}}$ denote the corresponding state-action value function and advantage function respectively. We
 181 propose a new preference model, similar to the regret-based preference model, but which aims to
 182 explicitly capture how humans might incorporate such beliefs. We call this new preference model the
 183 **belief-based preference model**:

184
$$P^{\text{belief}}(\sigma^+ \succ \sigma^-) = \frac{\exp(\alpha \sum_{\sigma^+} \gamma^t A^{\pi^{\text{belief}}}(s_t, a_t))}{\exp(\alpha \sum_{\sigma^+} \gamma^t A^{\pi^{\text{belief}}}(s_t, a_t)) + \exp(\alpha \sum_{\sigma^-} \gamma^t A^{\pi^{\text{belief}}}(s_t, a_t))} \quad (3)$$
 185

 186 where α is an inverse temperature coefficient. The remainder of the paper will examine the theoretical
 187 and empirical consequences of humans providing belief-based preferences under this model, as well
 188 as establish evidence via a human study that human preferences are, in fact, influenced by beliefs
 189 about agent capabilities. In order to do so, we must first formally define agent capabilities, as well as
 190 agent-labeler disagreement.

 191 We assume that the human has a belief about the capabilities of the agent, which they use to generate
 192 preferences. We define this belief over capabilities in terms of a Q-function that represents the quality
 193 of an imagined agent's policy:

 194 **Definition 4.1.** *Agent capability belief* is defined as the state-action value function, $Q^{\pi^{\text{belief}}}$, used to
 195 generate preferences in the belief-based preference model proposed in equation 3, via the associated
 196 $A^{\pi^{\text{belief}}}$.

 197 In other words, preferences are generated based on the assumption that, after the completion of the
 198 preferred partial trajectory, the agent will follow π^{belief} , whose state-action value function is $Q^{\pi^{\text{belief}}}$.
 199

 200 One might then ask: what π^{belief} might a human imagine when providing preferences? The standard
 201 regret-based model assumes that the human imagines optimal behavior, but our human study in
 202 Section 6 demonstrates that preferences are subject to priming effects, indicating that the human's
 203 beliefs about agent capabilities may be more closely related to the perceived current policy of
 204 the agent, or a prior over similar agents formed from past experiences, or perhaps an estimated
 205 performance ceiling for such agents.

 206 Thus, another key question is: What is the ideal $Q^{\pi^{\text{belief}}}$ for a human to hold? Assume that the human
 207 is asked to provide preferences over a fixed, finite set of pairs of partial trajectories. The normative
 208 ideal is for the human to provide preferences in a manner that results in the highest expected return
 209 of the post-RLHF policy. We denote any policy that achieves this maximum as π_{post}^* . Note that this
 210 policy is not necessarily optimal for the MDP; it is simply the best that can be achieved after an
 211 RLHF step under any assignment of preferences over the fixed set of trajectory pairs. Further, there
 212 exist a set of beliefs that lead to such maximizing policies when preferences are generated according
 213 to them. We denote these as $Q^{\pi_{\text{post}}^*}$. This optimal belief may require oracle knowledge to generate
 214 (e.g. environmental dynamics or learning rule), but it is the normative ideal.

 215 Finally, note that if an infinite number of (noiseless) preferences are to be given and any policy is
 216 representable by the agent, this implies that the labeler ought to have a belief of optimal behavior,

normatively; in this case, π_{post}^* is only suboptimal when a finite number of preferences are given. However, if preferences are noisy or the agent cannot represent an optimal policy (e.g. a weak function approximator), then this may not be true.

We now define agent-labeler disagreement, which captures the more realistic scenario of a human labeler providing preferences under some agent capability belief $Q^{\pi_{\text{belief}}}$ that is different from normative ideal, $Q^{\pi^*_{\text{belief}}}$.

Definition 4.2. We define the **agent-labeler disagreement** at a state-action pair as the magnitude of difference between an optimal belief $Q^{\pi^*_{\text{belief}}}$ and a human labeler’s belief $Q^{\pi_{\text{belief}}}$ given by $|Q^{\pi_{\text{belief}}}(s, a) - Q^{\pi^*_{\text{belief}}}(s, a)|$. When there exist multiple $Q^{\pi_{\text{belief}}}$, the minimum disagreement is used.

4.1 A CASE STUDY

Here we present an example to illustrate the effect of agent-labeler disagreement. Consider the simple MDP shown in Figure 2, which is adapted from an example in Knox et al. (2024) to capture the risk of poor decision-making *after* an action.¹ s_0 is the start state, and arrows show deterministic transitions towards the three terminal states on the far right. All rewards are 0 unless otherwise noted.

Suppose a labeler is asked to provide preferences between two partial trajectories: $(s_0, a_{\text{risk}}, s_{\text{risk}})$ and $(s_0, a_{\text{safe}}, s_{\text{safe}})$, and their beliefs are such that $A^{\pi_{\text{belief}}}(s_0, a_{\text{risk}}) > A^{\pi_{\text{belief}}}(s_0, a_{\text{safe}})$. Then, under the belief-based preference model, they would tend to label $(s_0, a_{\text{risk}}, s_{\text{risk}}) \succ (s_0, a_{\text{safe}}, s_{\text{safe}})$. If the agent-labeler disagreement is such that $A^{\pi^*_{\text{belief}}}(s_0, a_{\text{risk}}) \leq A^{\pi^*_{\text{belief}}}(s_0, a_{\text{safe}})$ —which would occur if $\pi^*_{\text{belief}}(s_{\text{risk}}, a_{\text{lose}}) > 0.5$ —then obeying the preference above results in losing more often than winning during execution, resulting in a learned policy that has lower expected return than taking a_{safe} .

Conversely, suppose the labeler’s beliefs are such that $A^{\pi_{\text{belief}}}(s_0, a_{\text{risk}}) < A^{\pi_{\text{belief}}}(s_0, a_{\text{safe}})$. Then under the belief-based preference model, they would prefer $(s_0, a_{\text{safe}}, s_{\text{safe}})$ over $(s_0, a_{\text{risk}}, s_{\text{risk}})$. Obeying this preference results in a return of 0 instead of a higher return during execution if $A^{\pi^*_{\text{belief}}}(s_0, a_{\text{risk}}) > A^{\pi^*_{\text{belief}}}(s_0, a_{\text{safe}})$. Thus, we can see that agent-labeler disagreements can lead to suboptimal preferences and resulting policies.

4.2 FORMAL BOUNDS ON IMPACT OF AGENT-LABELER DISAGREEMENTS

We now bound the impact on the expected return of the RLHF-trained policy under agent-labeler disagreements. For simplicity, we will first examine a setting where the labeler is asked to provide a preference between trajectories under an agent-labeler disagreement at a single state-action pair. We later discuss how this analysis extends to multiple agent-labeler disagreements.

Theorem 4.3. Consider an RLHF setup where a human labeler is provided with a finite number of pairs of single-transition trajectories to label. Let $Q^{\pi^*_{\text{belief}}}$ be an optimal agent capability belief (i.e. the normative ideal belief) for generating preferences using belief-based model (Eqn 3) over these pairs of trajectories, and let π_{post}^* be the corresponding post-RLHF policy. Let $Q^{\pi_{\text{belief}}}$ be the human labeler’s belief with an agent-labeler disagreement of δ at a state-action pair (s', a') w.r.t. $Q^{\pi^*_{\text{belief}}}$. Let the post-RLHF policy trained with preferences given under $Q^{\pi_{\text{belief}}}$ be $\pi_{\text{post}}^{\delta}$. Assume that preferences are noiseless under the belief-based model (i.e. $\alpha \rightarrow \infty$). Further assume that the policy

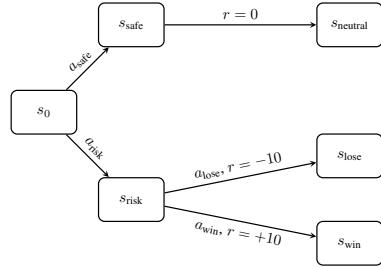


Figure 2: An MDP in which a safe and a risky action are available. If $A^{\pi_{\text{belief}}}(s_0, a_{\text{risk}}) > A^{\pi_{\text{belief}}}(s_0, a_{\text{safe}})$ when $A^{\pi^*_{\text{belief}}}(s_0, a_{\text{risk}}) \leq A^{\pi^*_{\text{belief}}}(s_0, a_{\text{safe}})$, labelers will erroneously prefer the partial trajectory $(s_0, a_{\text{risk}}, s_{\text{risk}})$ over $(s_0, a_{\text{safe}}, s_{\text{safe}})$ under the belief-based preference model in Equation 3.

¹Note that decision-making itself may not appear to be a risk from the agent’s perspective, since the agent controls its own actions at subsequent states. However, even deterministically chosen actions can be risky from the labeler’s perspective because the labeler is only able to influence the agent at the current state.

270 is tabular and RLHF produces a deterministic policy that respects all the preferences. We then have:
 271

$$272 \quad J_{\pi_{\text{post}}^{\delta}} \geq J_{\pi_{\text{post}}^*} - \frac{\delta}{1 - \gamma}, \quad (4)$$

274 where $J_{\pi_{\text{post}}^*}$ and $J_{\pi_{\text{post}}^{\delta}}$ are the expected returns of π_{post}^* and $\pi_{\text{post}}^{\delta}$ respectively.
 275

276 *Proof.* Consider preferences given over single-transition trajectories via the belief-based model
 277 (Eqn. 3). When RLHF respects the given preferences, resulting in a deterministic post-RLHF policy
 278 π_{post} , we have $\pi_{\text{post}}(s) = \arg \max_a Q^{\pi_{\text{belief}}}(s, a)$. Under perfect agent-labeler agreement, we are
 279 given the post-RLHF policy as π_{post}^* .
 280

281 Now, we examine the impact of agent-labeler disagreement at (s', a') on the post-RLHF policy. We
 282 have disagreement of

$$283 \quad \delta = \left| Q^{\pi_{\text{belief}}^*}(s', a') - Q^{\pi_{\text{belief}}}(s', a') \right|. \quad (5)$$

285 When this disagreement grows such that $\delta > Q^{\pi_{\text{belief}}}(s', \pi_{\text{post}}^*(s')) - Q^{\pi_{\text{belief}}}(s', a')$, action a' becomes
 286 the most preferred action. This results in a new post-RLHF policy $\pi_{\text{post}}^{\delta}$ as follows:
 287

$$288 \quad \pi_{\text{post}}^{\delta}(s) = \begin{cases} \pi_{\text{post}}^*(s) & \text{if } s \neq s' \\ a' & \text{if } s = s'. \end{cases} \quad (6)$$

291 Following Kakade & Langford (2002), we calculate the difference between $J_{\pi_{\text{post}}^{\delta}}$ and $J_{\pi_{\text{post}}^*}$.
 292

$$293 \quad J_{\pi_{\text{post}}^{\delta}} - J_{\pi_{\text{post}}^*} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\text{post}}^{\delta}}} \mathbb{E}_{a \sim \pi_{\text{post}}^{\delta}} \left[A^{\pi_{\text{post}}^*}(s, a) \right], \quad (7)$$

295 where $d_{\mu}^{\pi_{\text{post}}^{\delta}}$ is the discounted steady-state distribution of the MDP under policy $\pi_{\text{post}}^{\delta}$ and start state
 296 distribution μ , and $A^{\pi_{\text{post}}^*}(s, a)$ is the advantage function of policy π_{post}^* . We can further simplify
 297 equation 7 considering the deterministic nature of π_{post}^* and $\pi_{\text{post}}^{\delta}$ as:
 298

$$300 \quad J_{\pi_{\text{post}}^{\delta}} - J_{\pi_{\text{post}}^*} = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\text{post}}^{\delta}}} \left[Q^{\pi_{\text{post}}^*}(s, \pi_{\text{post}}^{\delta}(s)) - Q^{\pi_{\text{post}}^*}(s, \pi_{\text{post}}^*(s)) \right] \quad (8)$$

302 Note that the two policies differ only at a state s' . This allows us to further simplify as:
 303

$$304 \quad = \frac{d_{\mu}^{\pi_{\text{post}}^{\delta}}(s')}{1 - \gamma} \left[Q^{\pi_{\text{post}}^*}(s', \pi_{\text{post}}^{\delta}(s')) - Q^{\pi_{\text{post}}^*}(s', \pi_{\text{post}}^*(s')) \right] \geq \frac{d_{\mu}^{\pi_{\text{post}}^{\delta}}(s')}{1 - \gamma} (-\delta) \geq -\frac{\delta}{1 - \gamma} \quad (9)$$

307 The inequalities follow from the agent-labeler disagreement definition and $0 \leq d_{\mu}^{\pi_{\text{post}}^{\delta}}(s) \leq 1$. \square
 308

309 Next, we show how this proof extends to multiple agent-labeler disagreements.
 310

311 **Corollary 4.4.** *When there are multiple agent-labeler disagreements, $\{\delta_1, \delta_2, \dots, \delta_k\}$, the Theorem 312
 313 4.3 can be extended as: $J_{\pi_{\text{post}}^{\delta}} \geq J_{\pi_{\text{post}}^*} - \frac{\max\{\delta_1, \delta_2, \dots, \delta_k\}}{1 - \gamma}$.*

314 *Proof.* The proof follows similar reasoning as the single disagreement case, considering the worst-
 315 case scenario where the maximum disagreement dominates the performance loss. \square
 316

317 5 EMPIRICAL STUDY OF IMPACT OF AGENT-LABELER DISAGREEMENTS

319 In the prior section, we bounded the effects of agent-labeler disagreement for simple tabular policies
 320 without function approximation or generalization. In this section, we aim to empirically study this
 321 phenomenon for a broader class of policy representations that can exhibit generalization, as well as
 322 limit the set of representable policies. As noted earlier, when infinite noiseless preferences are given,
 323 then the normative ideal is for the labeler to give preferences with respect to an optimal policy, as long
 as the agent can represent and execute an optimal policy. However, if maximum agent performance is

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 Table 1: The effect of mismatch in belief in the agent capabilities (rows) and the agent’s actual capability (columns). Highest returns generally correspond to the most aligned beliefs, shown along the diagonal. The error intervals show the 95% confidence interval.

ϵ noise on agent capability \rightarrow	0.0	0.1	0.3	0.5	
ϵ' noise on labeler’s belief \downarrow	0.0	7.92 ± 0.05	3.11 ± 0.15	-4.07 ± 0.21	-8.45 ± 0.26
0.1	3.49 ± 0.07	1.47 ± 0.17	-4.92 ± 0.22	-10.91 ± 0.32	
0.3	1.71 ± 0.05	-0.88 ± 0.14	-3.70 ± 0.19	-8.18 ± 0.26	
0.5	3.47 ± 0.06	-0.32 ± 0.11	-4.14 ± 0.22	-7.36 ± 0.25	

limited in some manner—for example, due to a weak function approximator, regularized learning rule, or noisy actuators that don’t faithfully execute the commanded action—then the normative ideal is to give preferences with respect to the best achievable policy.

To study the impact of agent-labeler disagreement in a more realistic setting in which the agent is limited, we design an experiment using synthetic data in a gridworld domain. The agent can only represent epsilon-greedy policies for a particular value of epsilon. This policy noise is intended to serve as a stand-in for the various types of performance-capping limitations discussed above, and has the advantage of being easy to systematically manipulate. We model the labeler’s beliefs very simply as a belief over epsilon; they assume an optimal policy within the representable epsilon-greedy class. Thus, agent-labeler disagreement arises due to incorrect beliefs about the value of epsilon. We hypothesize that performance of the post-RLHF policy will degrade as the labeler’s belief over epsilon diverges from the true epsilon.

We first collect 100 random trajectories (enough to guarantee a nearly optimal-within-class post-RLHF policy) of the agent traversing the gridworld environment that terminate either in the goal state or in the cliff state. We denote ϵ as the ϵ -greedy noise impacting the post-RLHF policy of the agent and ϵ' as the ϵ -greedy noise assumed by the labeler and determining the labeler’s preferences. The values of ϵ and ϵ' may be different. We denote the labeler’s belief about agent’s capability $Q^{\pi_{\text{belief}}^{\epsilon'}}(s, a)$. We denote the post-RLHF agent capability as $Q^{\pi_{\text{post}}^{\epsilon}}(s, a)$. We vary the values of ϵ and ϵ' to show the impact of agent-labeler disagreements on the post-RLHF policy’s expected return.

We use $Q^{\pi_{\text{belief}}^{\epsilon'}}(s, a)$ to generate synthetic preference data using the belief-based preference model shown in Equation 3. We use these preferences to train the agent using Contrastive Preference Learning (CPL) (Hejna et al., 2024), a scalable algorithm for regret-based RLHF.

Table 1 shows the average returns of the post-RLHF policies. The highest return generally comes when the ϵ' -greedy noise assumed by labeler is closest to the ϵ -greedy noise impacting the agent’s policy. We see that for lower values of epsilon ($\epsilon = 0$ & 0.1), preferences given under the optimal advantage function ($\epsilon' = 0$) provide the highest returns. However, this strategy becomes a hindrance for effective RLHF as the action noise increases, as seen when $\epsilon = 0.3$ & 0.5 . This is due to the fact that the post-RLHF policy learns to walk near the dangerous cliffs, often falling off, since the labeler assumed too low of a noise level. Walking near the cliffs is only optimal when the agent has a very low epsilon value. These results serve as a proof of concept for how agent-labeler disagreements can arise in practice and how they can be exacerbated by agent limitations that may be unknown to the labeler.

6 AGENT-LABELER DISAGREEMENTS IN HUMAN PREFERENCE COLLECTION

Now that we have established that agent-labeler disagreements pose a problem in RLHF, in this section, we demonstrate that human beliefs about agent capabilities do, in fact, significantly affect the preferences given by human labelers. This is done via a human study in which priming effects are used change participants’ beliefs about the agent’s capabilities. Additionally, this result indicates that it is possible in theory to change human preferences to be better aligned with agent capabilities.

Domain: We choose a self-driving car domain, simulated using the CARLA driving simulator (Dosovitskiy et al., 2017) to collect trajectories to use for human preference collection. Since the rules and

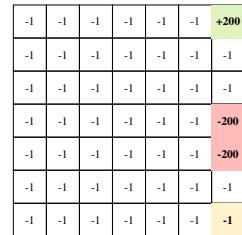


Figure 3: 7x7 GridWorld with start state (in yellow), two terminal cliff states (in red) and one terminal goal state (in green). In each cell, we mark the reward incurred for reaching the state.

378 trade-offs involved in driving are something that many people already have a strong intuition for, the
 379 choice of self-driving car setup allows us to keep the filtering of the participants minimal.
 380

381 **Priming:** Before beginning data collection, we randomly assign participants to one of three conditions:
 382 (1) no priming (control condition), (2) safe priming (confidence increasing condition), and (3) unsafe
 383 priming (confidence decreasing condition). Both safe and unsafe priming videos start from the same
 384 starting state to avoid unintended biasing effects. Participants in the safe priming group are shown a
 385 video where the car obeys all traffic laws, avoids obstacles, and successfully overtakes a slower car,
 386 whereas the participants in the unsafe priming group are shown a video where the car drifts across
 387 lanes and crashes into obstacles.

388 **Preference elicitation:** Participants are asked to provide preferences over 15 randomly chosen pairs
 389 of video data. All data pairs on which preferences are collected show legal driving. Within each
 390 pair, the car is shown to be driving on the same path for the same amount of time. In each pair, one
 391 video shows faster and more time saving behavior, which if executed imperfectly (during or after the
 392 trajectory) could lead to failure states, such as hitting a pedestrian, another car, or breaking traffic
 393 laws; the other shows more safety-conscious behavior that requires more time to execute, but for
 394 which it is easier to avoid failure states. Each pair of trajectories is designed to make the participants
 395 consider both: (a) how a learning agent might behave in the same states shown in the trajectories and
 396 (b) what the agent might do after the end of each trajectory.

397 All data pairs are randomly shuffled, and the order in which each pair of data is shown is also
 398 randomly shuffled to avoid ordering bias during preference collection. In each question, both videos
 399 in each pair are presented next to each other.

400 **Instructions for the participants:** Participants in the control group are given a standard preference
 401 collection instruction explaining that the objective of the survey is to improve a self-driving car using
 402 their preferences over behavioral data. We chose to frame this language for this group to indicate that
 403 their preferences were not meant to be a rating of the trajectories themselves, but rather a learning
 404 signal for improving a self driving car’s policy. This was designed to lead them to reflect less on the
 405 trajectories themselves and more on their beliefs about how a learning agent might behave in similar
 406 or future states. The participants in the safe and unsafe priming groups are given a similar instruction
 407 with *an addition of a video showcasing the car’s driving behaviors*. To encourage the participants
 408 to think deeply about car’s capabilities, they are then asked about which skills they think would be
 409 useful for the car to learn to become a more effective driver.

410 **Post-processing of collected data:** To maintain a high standard while finalizing the data, we
 411 construct a participant filtering step that ensures that participants are paying attention when providing
 412 preferences. First, we show a pair of videos: one in which the car drives normally and one in which
 413 the car crashes into a guardrail while making a turn. Additionally, we show a pair of videos in which
 414 one car drives normally and the other runs a red light. We remove all preference data from participants
 415 who do not strongly prefer the attention check videos that show good driving, while also reporting
 416 that they were extremely confident.

417 In total, we collected data from 259 participants. The data filtering and quality checks allowed 146
 418 (46 safe priming, 50 unsafe priming, 50 no priming) participants’ data to be used for analysis. We
 419 further balanced the data in each group to avoid unintended impacts on the statistical analysis by
 420 randomly removing 4 entries from both the unsafe and no priming groups. The final dataset contains
 421 46 participants in each of the three groups.

422 To the best of our knowledge, there is not a standard nonparametric statistical test that can test for
 423 statistical significance when there are: (1) more than two groups; (2) for which the data is Likert; (3)
 424 and for which each participant gives repeated measures data. Instead, we used the average of each
 425 participant’s responses, rather than individual question responses, to create independent data that
 426 is amenable to standard statistical tests. To reduce noise due to participant confusion, uncertainty,
 427 or misunderstandings, we used only those responses where participants reported extremely high
 428 confidence in their answers.

429 **Qualitative results:** We asked participants to provide text feedback on the car’s performance
 430 immediately after priming in order to check their beliefs after priming. We used GPT-4 OpenAI et al.
 431 (2024) to conduct a sentiment analysis for each response and provide a 1-10 star rating.

432
 433
 434
 435
 436
 Figure 4 shows that immediately after priming, participants primed with the unsafe priming had
 lower sentiment scores regarding the car’s capabilities than the participants in the safe priming group,
 suggesting that priming had an impact on their beliefs.

Quantitative results:

437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 Next, we analyzed the Likert data associated with
 the preferences of each condition group. We used
 the non-parametric Kruskal-Wallis test for statisti-
 cal analysis due to the ordinal nature of the data
 Kruskal & Wallis (1952). The Kruskal-Wallis test
 resulted in a p-value of 0.033, indicating a statisti-
 cally significant difference between at least two
 priming groups at the 5% level. In order to detect
 which of the two priming groups differ, we used
 the Dunn’s test with Bonferroni correction Dunn
 (1961). The results of the Dunn-Bonferroni test
 are shown in Table 2 and show statistically signif-
 icant ($p = 0.015$) differences between safe and un-
 safe priming groups at the 5% level. Cliff’s delta
 ($d = 0.31$) between unsafe vs safe priming shows
 that participants primed with unsafe priming were influenced toward more safe responses at
 a higher rate than participants primed with safe priming with a small effect size Cliff (1993).
 Participants in the no priming group did not exhibit statistically significant differences in their
 responses compared to either the unsafe or safe priming groups, as shown in Table 2. These results
 suggest that human preferences are influenced by their beliefs about agent capabilities. To mitigate
 this bias, practitioners should actively attempt to strengthen agent-labeler agreement during data
 collection.

6.1 RECOMMENDATIONS FOR RESEARCHERS

461
 462
 463
 464
 Table 2: P-values for Dunn-Bonferroni for re-
 sponses given with extremely strong confidence.
 P-values below 0.05 indicate statistical significance
 at the 5% level.

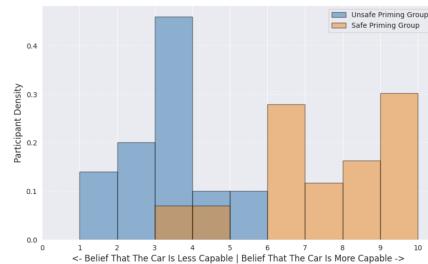
	Unsafe Priming	No Priming	Safe Priming
Unsafe Priming	1.000	0.229	0.015
No Priming	0.229	1.000	0.847
Safe Priming	0.015	0.847	1.000

465
 466
 467
 468
 469
 470
 471
 472
 473
 restrictions on agent capabilities (e.g. an unusually limited turning radius on a vehicle), or assessments
 of projected agent strengths and weaknesses. However, the success of such an approach depends
 heavily on the ability of labelers to make sense of such information, which may require varying levels
 of technical expertise.

474
 475
 476
 477
 478
 (2) **Online preference collection with intermittent priming:** Practitioners may choose to use online
 preference collection interleaved with RLHF training on the collected preferences. Here, labelers’
 beliefs about the agent’s capability may be continuous updated and aligned via priming using data
 from the agent’s most current policy. This approach may also demonstrate to labelers how their
 preferences influence policy learning.

7 CONCLUSION

481
 482
 483
 484
 485
 Current methods of preference collection do not account for participants’ beliefs about the capabilities
 of the agents learning from their preferences. We show that the preferences collected under agent-
 labeler disagreements can lead to suboptimal policies both theoretically and empirically and make
 preliminary suggestions on how to minimize such disagreements. Future work may include developing
 improved priming strategies to ensure human beliefs are as accurate as possible, as well as algorithmic
 advances that mitigate the impact of incorrect beliefs on RLHF.



479
 480
 481
 482
 483
 484
 485
 Figure 4: Sentiment analysis on participants’
 written responses about the car’s capabilities
 after priming, evaluated on a 1–10 scale by
 GPT-4. Histogram bars for both groups are
 plotted from 0, not stacked.

Our results show that having good agent-labeler agreement is important for effective policy learning in regret-based RLHF. While it is difficult to reason about an agent’s post-training performance prior to training, our results suggest potential best practices for practitioners:

(1) Inform labelers directly about known limitations: Practitioners may choose to inform labelers about agent limitations prior to preference collections. For example, this may include known data or training limitations, non-obvious

486 REFERENCES
487

488 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
489 Concrete problems in ai safety, 2016. URL <https://arxiv.org/abs/1606.06565>.

490 Müslüm Atas, Alexander Felfernig, Seda Polat-Erdeniz, Andrei Popescu, Thi Ngoc Trang Tran,
491 and Mathias Uta. Towards psychology-aware preference construction in recommender sys-
492 tems: Overview and research issues. *J. Intell. Inf. Syst.*, 57(3):467–489, December 2021.
493 ISSN 0925-9902. doi: 10.1007/s10844-021-00674-5. URL <https://doi.org/10.1007/s10844-021-00674-5>.

495 Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond
496 suboptimal demonstrations via inverse reinforcement learning from observations. In *International
497 Conference on Machine Learning*, 2019. URL <https://api.semanticscholar.org/CorpusID:119111734>.

498 Lawrence Chan, Andrew Critch, and Anca Dragan. Human irrationality: both bad and good for
499 reward inference, 2021. URL <https://arxiv.org/abs/2111.06956>.

500 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
501 reinforcement learning from human preferences. *Advances in neural information processing
502 systems*, 30, 2017.

503 Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions. *Psychological
504 Bulletin*, 114:494–509, 11 1993. doi: 10.1037/0033-2909.114.3.494.

505 Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
506 open urban driving simulator. In *Conference on robot learning*, pp. 1–16. PMLR, 2017.

507 Olive Jean Dunn. Multiple comparisons among means. *Journal of the American statistical association*,
508 56(293):52–64, 1961.

509 Kahneman D Gilovich T, Griffin D. *Heuristics and Biases: The Psychology of Intuitive Judgment*.
510 Cambridge University Press, 2002.

511 Ze Gong and Yu Zhang. What is it you really want of me? generalized reward learning with biased
512 beliefs about domain dynamics. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34:
513 2485–2492, 04 2020. doi: 10.1609/aaai.v34i03.5630.

514 Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
515 Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
516 Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
517 del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
518 Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
519 with NumPy. *Nature*, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.
520 URL <https://doi.org/10.1038/s41586-020-2649-2>.

521 Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W. Bradley Knox, and Dorsa
522 Sadigh. Contrastive preference learning: Learning from human feedback without reinforcement
523 learning. In *The Twelfth International Conference on Learning Representations*, 2024. URL
524 <https://openreview.net/forum?id=iX1RjVQODj>.

525 Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
526 Zhonghao He, Jiayi Zhou, Zhaowei Zhang, et al. Ai alignment: A comprehensive survey. *arXiv
527 preprint arXiv:2310.19852*, 2023.

528 Daniel Kahneman. Maps of bounded rationality: Psychology for behavioral economics. *The American
529 Economic Review*, 93(5):1449–1475, 2003. ISSN 00028282. URL <http://www.jstor.org/stable/3132137>.

530 Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement
531 learning. In *International Conference on Machine Learning*, 2002. URL <https://api.semanticscholar.org/CorpusID:31442909>.

540 Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A Survey of Reinforcement
 541 Learning from Human Feedback, 2023.

542

543 W. Bradley Knox, Stephane Hatgis-Kessell, Serena Booth, Scott Niekum, Peter Stone, and Alessan-
 544 dro G Allievi. Models of human preference for learning reward functions. *Transactions on Machine*
 545 *Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=hpKJkVoThY>.

546

547 WH Kruskal and WA Wallis. Use of ranks in one-criterion variance analysis. *Journal of the American*
 548 *Statistical Association*, pp. 583–621, 1952.

549

550 Botond Köszegi and Matther Rabin. *Revealed Mistakes and Revealed Preferences*, pp. 193–209.
 551 Oxford Academic, 04 2008. ISBN 9780195328318. doi: 10.1093/acprof:oso/9780195328318.003.
 552 0008.

553 S Lichtenstein and P Slovic. *The Construction of Preference*. Cambridge University Press, 2006.

554

555 Henrik Marklund and Benjamin Van Roy. Choice between partial trajectories: Disentangling goals
 556 from beliefs, 2024. URL <https://arxiv.org/abs/2410.22690>.

557

558 Remi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
 559 Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Côme Fiebel, Andrea
 560 Michi, Marco Selvi, Sertan Girgin, Nikola Momchev, Olivier Bachem, Daniel J Mankowitz, Doina
 561 Precup, and Bilal Piot. Nash learning from human feedback. In Ruslan Salakhutdinov, Zico
 562 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 563 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 564 *Proceedings of Machine Learning Research*, pp. 36743–36768. PMLR, 21–27 Jul 2024. URL
<https://proceedings.mlr.press/v235/munos24a.html>.

565

566 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 567 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
 568 Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
 569 Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
 570 Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
 571 Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
 572 Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
 573 Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
 574 Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
 575 Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
 576 Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
 577 Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
 578 Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
 579 Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
 580 Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
 581 Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
 582 Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
 583 Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
 584 Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
 585 Kirchner, Jamie Kiro, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
 586 Aris Konstantinidis, Kyle Koscic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
 587 Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
 588 Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
 589 Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
 590 Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
 591 Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
 592 Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
 593 Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
 Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
 Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
 Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
 Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,

594 Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
 595 Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
 596 Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
 597 Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
 598 Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 599 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
 600 Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
 601 Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
 602 Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
 603 Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
 604 Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
 605 Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
 606 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 607 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
 https://arxiv.org/abs/2303.08774.

608
 609 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 610 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 611 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
 612 Ryan Lowe. Training language models to follow instructions with human feedback. In *Proceedings
 613 of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red
 Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

614
 615 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John
 616 Wiley & Sons, 2014.

617 Python Software Foundation. Python: Version 3.11, 2023. URL https://www.python.org/.

618
 619 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
 620 Finn. Direct preference optimization: your language model is secretly a reward model. In
 621 *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
 622 NIPS '23, Red Hook, NY, USA, 2024. Curran Associates Inc.

623 Sid Reddy, Anca Dragan, and Sergey Levine. Where do you think you're going?: Inferring beliefs
 624 about dynamics from behavior. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
 625 Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31.
 626 Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_
 627 files/paper/2018/file/6f2268bd1d3d3ebaabb04d6b5d099425-Paper.pdf.

628 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 629 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
 630 2015.

631 R. S. Sutton and A. G. Barto. *Reinforcement Learning: An Introduction*. MIT Press, Cambridge,
 632 MA, 1998.

633 Thi Ngoc Trang Tran, Alexander Felfernig, and Nava Tintarev. Humanized recommender systems:
 634 State-of-the-art and research issues. *ACM Transactions on Interactive Intelligent Systems*, 11:1–41,
 635 07 2021. doi: 10.1145/3446906.

636
 637 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
 638 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
 639 Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
 640 Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
 641 Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
 642 Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
 643 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature
 644 Methods*, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

645 Daniel M. Ziegler, Nisan Stiennon, Jeff Wu, Tom B. Brown, Alec Radford, Dario Amodei,
 646 Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
 647 *ArXiv*, abs/1909.08593, 2019. URL https://api.semanticscholar.org/CorpusID:
 202660943.

648

A PROOFS

649
650 Proof of the corollary 4.4:
651652 *Proof.* Theorem 4.3 states that the error bound on the expected return of a post-RLHF policy learned
653 with preferences given under a single agent-labeler agreement at state (s', a') of magnitude δ is:
654

655
$$J_{\pi_{\text{post}}^{\delta}} \geq J_{\pi_{\text{post}}^*} - \frac{\delta}{1 - \gamma}.$$

656
657

658 This result can be interpreted as, in the worst case, the agent takes a sub-optimal action of magnitude
659 δ at state s' from the start of the episode until the end of horizon. Consider the case of multiple
660 disagreements where we have state-action pair (s'', a'') where we have disagreement of magnitude
661 $\max\{\delta_1, \delta_2, \dots, \delta_k\}$. In the worst case, the agent will be stuck at state (s'', a'') from the beginning of
662 the episode until the end of the horizon. This results in following bound on expected returns:
663
664

665
$$J_{\pi_{\text{post}}^{\delta}} \geq J_{\pi_{\text{post}}^*} - \frac{\max\{\delta_1, \delta_2, \dots, \delta_k\}}{1 - \gamma}.$$

666
667

□

668

B ADDITIONAL DETAILS ABOUT HUMAN STUDY

669 In this section, we provide more details about our human study and the demographics of participants.
670671

B.1 DESIGN DECISIONS

672 We chose self-driving cars as the domain on which to collect our preference dataset because the rules
673 and trade-offs of driving are something people understand without high level knowledge about any
674 language or formal higher education and allowed for minimal filtering of participants. We conducted
675 these preference collection experiments with prior IRB approval.
676677

B.2 DATA COLLECTION UI

678 Figure 5 shows the format of the survey that participants saw when giving their responses.
679

680

681

682 1. Which of the two behaviors shown above is better?

683 This side is **much better**. This side is **a bit better**. Neither side is better. This side is **a bit better**. This side is **much better**.

684

685 2. How confident are you of this answer?

686 Extremely confident
687 Very confident
688 Moderately confident
689 Not confident

690

691 3. Explain the reasoning behind your answer for the above questions.

692

693

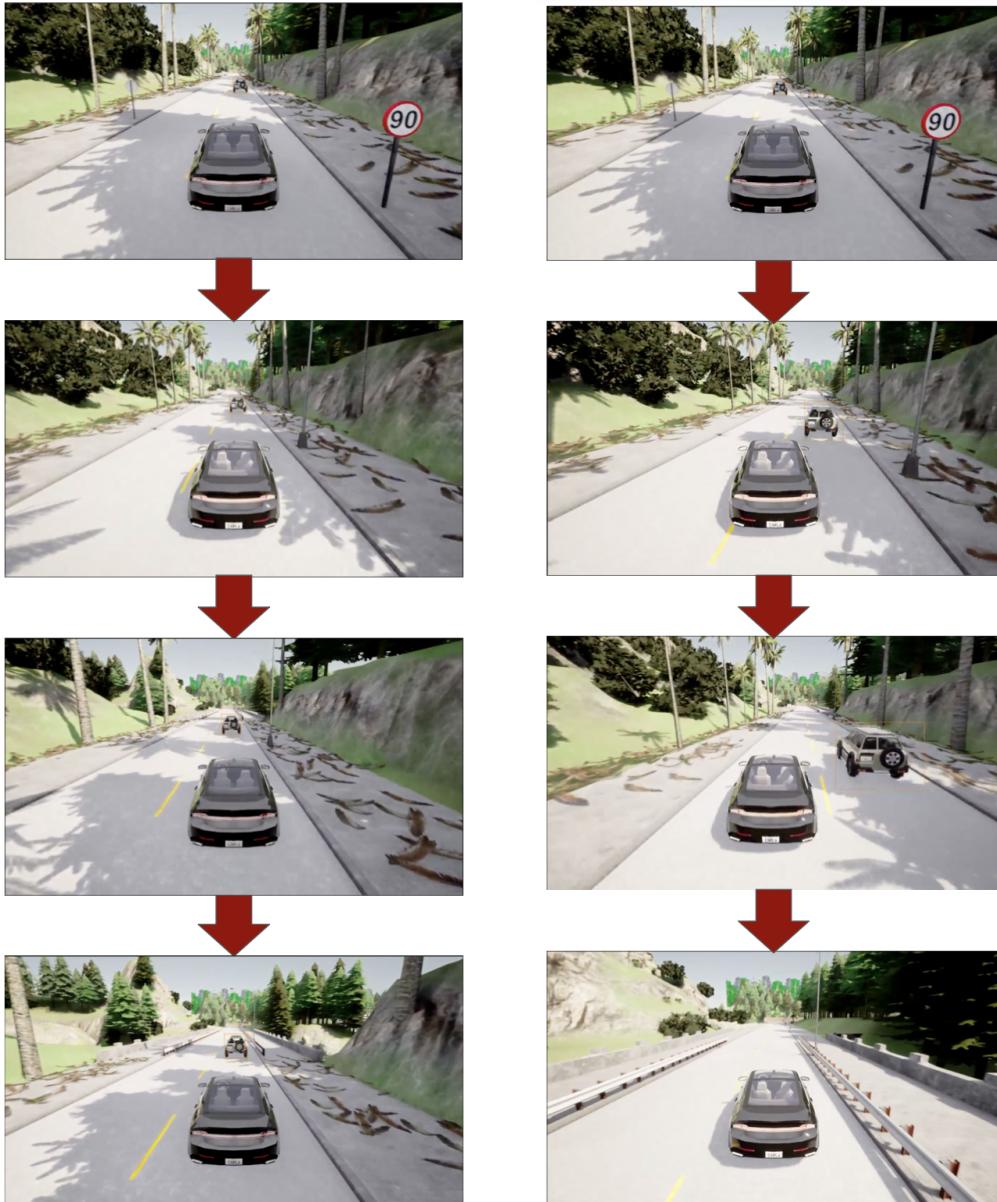
694

695 Figure 5: The format of questions asked to participants in the survey. In order to avoid order biasing,
696 we avoided terms such as “first/second”, “left/right”, or arrows and opted to use labels to indicate
697 which side they prefer more. Subjects are also asked to report confidence in their response and a
698 reasoning for their response. Subjects are required to respond to all three questions for each preference
699 pair before they are allowed to move to the next pair in order to avoid confusion.700

B.3 EXAMPLE OF A PAIR OF TRAJECTORIES SHOWN TO HUMAN LABELERS

701 All trajectories shown to participants show legal driving. Each pair of trajectories show the car
702 driving along the same route for the same amount of time so participants can easily distinguish the
703 tradeoff between safety and time savings. For example, one pair of scenarios shows a legal overtake

of a slow car in a single lane road, as shown in Figure 6. While it is legal and safe to perform the overtake, doing so requires trust in the car’s abilities to successfully return back to its lane without any accidental swerving or any other mishaps. The pair shows one trajectory where the car does not attempt this overtake and instead patiently stays behind the slow car, as shown in Figure 6a; the other shows the car overtaking successfully and getting further along the road in the same amount of time, as shown in Figure 6b. This allows room for the subject to interpret the quality of the car’s driving for the overtake and be subjective in their belief in the car’s abilities.



(a) An example of a trajectory showing safety-conscious driving behavior. Here, the car chooses to stay behind the slower driver and finishes the trajectory near the start of the bridge.

(b) An example of a trajectory showing time-saving driving behavior. Here, the car chooses to legally overtake the slow driver and finishes the trajectory near the end of the bridge.

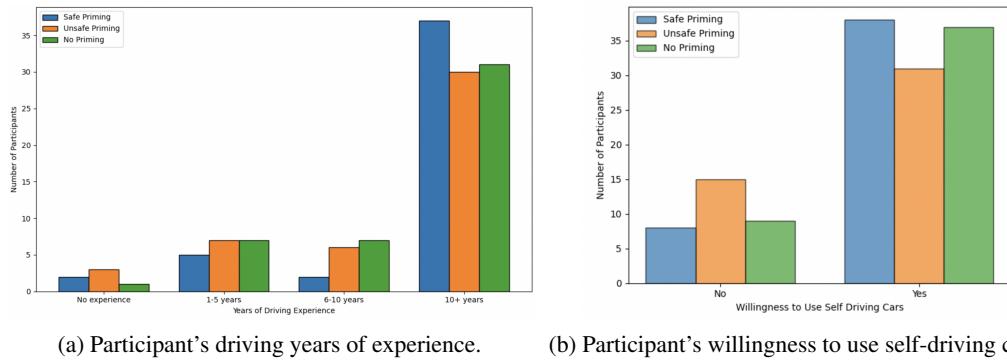
Figure 6: An example pair of trajectories as shown to human labelers. Both trajectories show the car driving along the same path for the same amount of time.

756
757

B.4 DEMOGRAPHICS

758 Figure 7a shows the distribution of driver experience among the participants of our survey and Figure
 759 7b shows participant’s willingness to ride in a self driving car. While we did not have specific filters
 760 for years of driving experience, most of the participants report a significant number of years of driving
 761 experience, meaning that they are well versed in the domain. A large portion of participants from a
 762 three priming groups reported that they would be willing to ride in a self driving car. However, out
 763 of all participants who reported that they would be unwilling to ride in a self driving car, the largest
 764 group of participants was the unsafe priming group.

765



766

(a) Participant’s driving years of experience.

767

(b) Participant’s willingness to use self-driving cars.

768

Figure 7: Demographics of human labelers

769

770

C GRIDWORLD EXPERIMENTAL DETAILS

771

772

In this section, we provide additional details about the GridWorld domain and the hyperparameters used in the learning algorithm. For this analysis, we used the following python libraries: numpy Harris et al. (2020), math and random from the standard python library Python Software Foundation (2023), and scipy Virtanen et al. (2020).

773

774

C.1 GRIDWORLD DOMAIN

775

The gridworld domain consists of a 7×7 grid of cells. We number the coordinates from 0 to 6. The agent always starts in the cell numbered (6,6). From there, the agent may move in any of the four cardinal directions. Any movement by the agent that results in the agent moving outside the boundaries of the environment results in the agent staying in its original state with an additional reward of -1. The states (0, 6), (3, 6), and (4, 6) are terminal states and result in a reward of +200, -200, and -200 respectively. The episode terminates when the agent either reaches one of the terminal states or when the number of states that the agent has visited reaches 1,000.

776

777

C.2 HYPERPARAMETERS

778

779

Here, we will discuss the hyperparameters used in the gridworld experiment for the Contrastive Preference learning algorithm:

780

Hyperparameter	Value
Discount Factor	0.7
Regularization (γ)	0.01
Learning Rate	0.5
Temperature parameter (α)	10
Number of random seeds	20
Epochs	20

800

801

802

803

804

805

806

807

808

809

Table 3: Hyperparameters used in the gridworld experiment

810 **D DISCLOSURE ABOUT LLM USAGE**
811

812 We used LLM to format the content of the paper and to make any stylistic changes to the paper.
813

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863