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ABSTRACT

Fleets of robots ingest massive amounts of heterogeneous streaming data silos
generated by interacting with their environments, far more than what can be stored
or transmitted with ease. At the same time, teams of robots should co-acquire
diverse skills through their heterogeneous experiences in varied settings. How
can we enable such fleet-level learning without having to transmit or centralize
fleet-scale data? In this paper, we investigate policy merging (PoMe) from such
distributed heterogeneous datasets as a potential solution. To efficiently merge
policies in the fleet setting, we propose FLEET-MERGE, an instantiation of dis-
tributed learning that accounts for the permutation invariance that arises when
parameterizing the control policies with recurrent neural networks. We show that
FLEET-MERGE consolidates the behavior of policies trained on 50 tasks in the
Meta-World environment, with good performance on nearly all training tasks at test
time. Moreover, we introduce a novel robotic tool-use benchmark, FLEET-TOOLS,
for fleet policy learning in compositional and contact-rich robot manipulation tasks,
to validate the efficacy of FLEET-MERGE on the benchmark.1

1 INTRODUCTION

With the fast-growing scale of robot fleets deployed in the real world, learning policies from the
diverse datasets collected by the fleet (Osa et al., 2018; Bagnell, 2015; Kumar et al., 2020; 2022)
becomes an increasingly promising approach to training sophisticated and generalizable robotic
agents (Jang et al., 2022; Levine et al., 2020). We hope that both the magnitude of the data —
streamed and actively generated by robots interacting with their surroundings — and the diversity of
the environments and tasks around which the data are collected, will allow robot fleets to acquire rich
and varied sets of skills. However, the data heterogeneity and total amount of the data are becoming
as much of a challenge as a benefit. Real-world robot deployments often run on devices with real-time
constraints and limited network bandwidth, while generating inordinate volumes of data such as video
streams. Hence, a “top-down” scheme of centralizing these data (Grauman et al., 2022; Collaboration,
2023), and training a single policy to handle all the diverse tasks, can be computationally prohibitive
and violate real-world communication constraints. At the same time, we wish to consolidate the skills
each robot acquires after being trained on its local datasets via various off-the-shelf robot learning
approaches. Thus, it is natural to ask: How can the entire fleet efficiently acquire diverse skills,
without having to transmit the massive amount of heterogeneous data that is generated constantly in
silos, when each one of the robots has learned some skills from its own interactions?

To answer this question, we propose policy merging (Figure 1), PoMe, a “bottom-up” approach for
fleet policy learning from multiple datasets. Specifically, we consider neural-network-parameterized
policies that are already trained separately on different datasets and tasks, and seek to merge their
weights to form one single policy, while preserving the learned skills of the original policies. Policy
merging acquires skills efficiently with drastically reduced communication costs, by transmitting
only the trained weights of neural networks but not the training data. Such a bottom-up merging
scheme is agnostic to and thus compatible with any local training approaches used in practice.

Merging the weights of neural networks has been studied in various contexts, including finetuning
foundation models (Wortsman et al., 2022a;b), multi-task learning (He et al., 2018; Stoica et al.,
2023), and the investigation of linear mode connectivity hypothesis for (feedforward) neural networks
(Frankle et al., 2020; Entezari et al., 2021; Ainsworth et al., 2022). Distributed and federated learning

1Code is available at https://github.com/liruiw/Fleet-Tools.
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Figure 1: We consider the problem of merging multiple policies trained on potentially distinct and
diverse tasks, which can be more computation and communication efficient than pooling all data
together for joint training. Instead of acquiring astronomical size of data from the top-down (red arrow,
requiring terabytes-per-day worth of data transfer), we demonstrate that the bottom-up approach
(green arrow, megabytes-per-day): merging from locally trained policies, can also produce general
policies that incorporate skills learned by the individual constituent policies. Moreover, local training
and sharing weights are more suitable for agents that actively generate data, which is especially the
case in robotic control, and are more efficient in communicating with the other agents. We aim to
achieve the following objective in fleet learning: One robot learns, the entire fleet learns.

(McMahan et al., 2017; Wang et al., 2020a; Konečnỳ et al., 2016), which iteratively update central
model weights from decentralized updates, can be viewed as an iterative form of model merging;
these approaches have achieved tremendous success in learning from diverse datasets, especially in
solving supervised learning tasks (McMahan et al., 2017; Wang et al., 2020a; Mansour et al., 2020).
However, such an approach has not yet demonstrated its power in solving robot learning and control
tasks, which are generally more challenging due to their dynamic and sequential nature, and the
richness of the tasks and environments. Notably, with the commonly used sensors in robot learning,
e.g., cameras, one has to handle the partial observability in learning such visuomotor policies (Levine
et al., 2016), which necessitates the use of latent state in parameterizing the policies, and is usually
instantiated by recurrent neural networks (RNNs) (Elman, 1990). Indeed, policies with latent state
dynamics are known to be theoretically necessary for partially-observed linear control problems
(Bertsekas, 2012), and outperform policies parameterized by stateless policies in practice, i.e., those
using feedforward neural networks, in perception-based robotic tasks (Andrychowicz et al., 2020).

In this work, we address policy merging in robotic fleet learning, with a focus on RNN-parameterized
policies. A naive approach of averaging the weights would easily fail because multiple configurations
of network weights parametrize the same function. One reason behind this is the known permutation
invariance of neural networks, i.e., one can swap any two units of a hidden layer in a network,
without changing its functionality (Hecht-Nielsen, 1990; Entezari et al., 2021). We have to account
for such invariance in merging multiple policies. Indeed, such a fact has been accounted for recently
in merging the weights of trained neural networks, with extensive focuses on aligning the weights of
feedforward neural networks, and solving supervised learning tasks (Entezari et al., 2021; Ainsworth
et al., 2022; Peña et al., 2022). We generalize these insights to the RNN setting, where permutation
symmetries not only appear between layers, but also between timesteps, in solving robotic control
tasks. Compared with one of the few federated learning methods that also explicitly account for
permutation symmetry in merging RNNs (Wang et al., 2020a), we develop a new merging approach
based on “soft” permutations (see Section 3 for a formal introduction) of the neurons, with more
efficient implementation and an application focus on robotic control tasks. We detail our main
contributions as follows, and defer a detailed related work overview in Appendix A.

• We design a new policy-merging approach, FLEET-MERGE, that outperforms baselines by
over 50%, by accounting for the permutation symmetries in RNN-parameterized policies,
and also extend the approach to the training stage, by allowing multiple rounds of merging
between each training update, and also extend to merging multiple (more than two) models.

• We evaluate our proposed approach with different input modalities such as states, images,
and pointclouds, in linear control and the Meta-World benchmark (Yu et al., 2020) settings.

• We develop and evaluated on a novel robotic tool-use benchmark, FLEET-TOOLS, for policy
merging and fleet robot learning in compositional and contact-rich manipulation tasks.
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2 PRELIMINARIES

Model. We consider the general setting of policy learning for controlling a dynamical system, when
the system state may not be fully observed. Specifically, consider a sequential decision-making
setting with time index t ≥ 1, where at time t, a robot makes observations ot ∈ O of a latent state
st ∈ S, and then selects a control action at ∈ A. Dynamics and observations are characterized by
probability distributions Pobs and Pdyn, such that ot ∼ Pobs(· | st) and st+1 ∼ Pdyn(· | st, at). In
the special case with full state observability, we have O = S and ot = st. In the special setting of
linear control, both the dynamics and observations can be characterized by linear functions (with
additional noises), see Appendix G for a formal and detailed introduction.

Feedforward and recurrent policies. For simplicity, we consider the case where the robot agent exe-
cutes deterministic recurrent policies π. Specifically, we parameterize these policies by maintaining a
policy state ht, updated as ht = π(ot, ht−1). As a special case, we consider static feedback policies
π : O → A that select at = π(ot) as a function of only the instantaneous observation. Given a non-
linear activation function σ(·), which is applied to vectors entry-wise, we can parameterize the static
feedback policies by an L-layer feedforward neural networks with parameter θ = (Wℓ

ff ,b
ℓ)0≤ℓ≤L−1,

where Wℓ
ff and bℓ denote the weight and bias at layer ℓ, respectively. The action at = πθ(ot) given

observation ot is then given by

h0 = ot, at = hL, hℓ+1 = σ
(
Wℓ

ffh
ℓ + bℓ

)
, 0 ≤ ℓ ≤ L− 1, (2.1)

where above hℓ are the hidden layer activations. For the general case with recurrent policies,
we parameterize them with Elman recurrent neural networks (Elman, 1990), with parameter θ =
(Wℓ+1

rec ,Wℓ
ff ,b

ℓ)0≤ℓ≤L−1. Let ht = (hℓ
t)1≤ℓ≤L be a sequence of hidden states, such that ht =

πθ(ot, ht−1) is given by

h0
t = ot, at = hL

t , hℓ+1
t = σ(Wℓ+1

rec hℓ+1
t−1 +Wℓ

ffh
ℓ
t + bℓ), 0 ≤ ℓ ≤ L− 1. (2.2)

The presence of the recursive term Wℓ+1
rec hℓ+1

t−1 that incorporates the hidden state at the previous time
t− 1 distinguishes the RNN architecture in Eq. (2.2) from the feedforward architecture in Eq. (2.1).
Notice here that at time t, the action at is just the last layer of the hidden state hL

t .

Permutation invariance. As well-understood for supervised learning (Frankle et al., 2020; Wortsman
et al., 2022b; Ainsworth et al., 2022), policies trained separately – even on the same dataset – can
exhibit similar behavior whilst having very different weights. This is in large part due to the
invariances of neural network architectures to symmetry transformations. For an L-layer neural
network with layer-dimensions d0, d1, . . . , dL, let Gperm denote the set of hard permutation operators.
These are sequences of matricesP = (P0,P1, . . . ,PL), where we always take P0 = Id0

, PL = IdL
,

and take Pℓ as a dℓ × dℓ permutation matrix for 1 ≤ ℓ ≤ L− 1. We let Glin ⊃ Gperm denote the set
of linear transformation operators that are sequences of matrices P = (P0,P1, . . . ,PL), where we
still have P0 = Id0 , PL = IdL

, but now we allow (P1, . . . ,PL−1) to be general invertible matrices.
Elements of Glin (and thus Gperm) act on feedforward models θ via

(Wℓ
ff ,b

ℓ) 7→ (Pℓ+1Wℓ
ff(P

ℓ)−1,Pℓ+1bℓ). (2.3)
It is known that the feedforward architecture Eq. (2.1) is invariant, in terms of input-output behavior,
to all hard permutation transformations P ∈ Gperm, but not to general P ∈ Glin. When the activation
function is an identity mapping, i.e., the neural networks are linear, it becomes invariant to Glin.

Imitation learning. As a basic while effective imitation learning method, we here focus on behavior
cloning (Osa et al., 2018; Bagnell, 2015) for the purpose of introducing the policy-merging framework
next. Note that our merging framework and algorithms will be agnostic to, and can be readily applied
to other imitation learning algorithms. In behavior cloning, one learns a policy πθ, parameterized
by some θ ∈ Rd, that in general maps the observation-action trajectories to actions, by imitating
trajectories generated by expert policies. Let D = (τ (i))1≤i≤M denote a set of M trajectories, with
τ (i) = (o

(i)
t , a

(i)
t )1≤t≤T denoting the i-th trajectory of length T . As an example, we study behavior

cloning with the ℓ2-imitation loss, instantiated by L̄bc(θ;D) :=
∑M

i=1 Lbc(θ; τ
(i)), where for a

given τ = (ot, at)1≤t≤T ,

Lbc(θ; τ ) :=
∑T

t=1 ∥âθ,t − at∥2 , where ĥθ,t := πθ(ot, ĥθ,t−1), âθ,t = ĥL
θ,t, (2.4)
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where ĥθ,t denotes the hidden state that arises from executing the recurrent policy πθ on the observa-
tion sequence o1, o2, . . . , ot, via the Elman recurrent updates in Eq. (2.2), and the action is part of the
hidden state corresponding to the last layer. Note that in the special case where πθ is a static feedback
policy, we can drop ĥθ,t from the above display, and generate each âθ,t using ot based on Eq. (2.1).

Policy merging framework. We now introduce policy merging, our framework for fleet policy
learning from diverse datasets. Consider N datasets collected by a fleet of N robots from possibly
different tasks and environments, and can potentially be highly heterogeneous and non-i.i.d. Each
robot agent i = 1, 2, · · · , N only has access to the dataset Di of itself, in the form given in Section 2.
Ideally, if the robot designer can pool all the data together, then the objective is to minimize the
following imitation loss across datasets

min
θ

∑N
i=1 L̄bc(θ;Di). (2.5)

Let θpool denote the solution2 to Eq. (2.5), i.e., the best policy parameter one can hope for when
seeing all the data, and will provide an upper bound for the performance we will compare with
later. Let θi denote the policy parameter of robot i by minimizing the loss associated with Di, i.e.,
θi ∈ argminθ L̄bc(θ;Di). The goal of policy merging is to find a single policy parameter θmrg, as
some aggregation of the local policy parameters (θ1, · · · , θN ), without sharing the datasets.

An example of this aggregation is direct averaging, i.e., θmrg = θ̄ := 1
N

∑N
i=1 θi. We propose more

advanced policy merging methods in Section 3 by accounting for the symmetries of RNN weights.
Note that the above merging process can also occur multiple times during training: at round 1, we
first merge the trained policies (θ(1)1 , · · · , θ(1)N ) to obtain θ

(1)
mrg, and send it back to the robots to either

conduct more training and/or collect more data. At round 2, the newly trained local policy parameters
(θ

(2)
1 , · · · , θ(2)N ) are then merged to obtain θ

(2)
mrg. This iteration can proceed multiple times, and we

will refer to it as the iterative merging setting. When the merging is instantiated by direct averaging,
this iterative setting exactly corresponds to the renowned FedAvg algorithm in federated learning
(McMahan et al., 2017). When there is only one such iteration, we refer to it as the one-shot merging
setting. Fewer iterations lead to fewer communication rounds between the robots and the designer,
and note that no data is transmitted between them.

3 METHODOLOGY

Given the invariance properties introduced in Section 2, merging by naive averaging the parameters
θmrg ← 1

N

∑N
i=1 θi may not perform well. Prior work has instead proposed merging aligned

feedforward neural network models θmrg ← 1
N

∑N
i=1 Pi(θi), where the elements P1, . . . ,PN are

weight transformations which are often, but not necessarily, hard permutation operators (i.e., elements
of Gperm). The GITREBASIN algorithm (Ainsworth et al., 2022) iteratively computes the weight
permutations (Pi). At each step, agent index i is drawn uniformly from [N ], and one constructs
θ′i =

1
N−1

∑
j ̸=i θj by averaging the parameters of indices j ̸= i. It then solves a series of linear

assignment problems (LAPs) (Kuhn, 1955; Jonker & Volgenant, 1988; Bertsekas, 1998) for each layer
ℓ to find some Pℓ, which is derived by matching the activations between two models via ordinary least
squares regression. The algorithm then repeats the sampling from (θ1, . . . , θN ) and the computation
of θ′i, until convergence.

Peña et al. (2022) instead propose a gradient-based variant to merge two models by relaxing the rigid
constraint of using a hard permutation matrix. The direct extension of their algorithm to our setting is
as follows: given two models (θ, θ′), iteratively trajectories τ from a common dataset D, and update
the aligning parameters P by following the gradient of Lbc(αP(θ) + (1− α)θ′; τ ), where Lbc is as
given in Eq. (2.4). Thus, for each iteration s ≥ 1

P̃s ← Ps − η∇PLbc(αP(θ) + (1− α)θ′; τ )
∣∣
P=Ps

, α ∼ Unif[0, 1], τ ∼ D (3.1)

with some stepsize η > 0. Note that the updated matrices in P̃s = (P̃0
s, . . . , P̃

L
s ) are not necessarily

(even close to) permutation matrices. We define a soft permutation projection with regularization

2For convenience, we speak heuristically of exact minimizers in this section. In practice, we understand
“minimizer” as “model trained to minimize the given loss”.
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Algorithm 1 FLEET-MERGE: Fleet Learning of Policies via Weight Merging
1: Input: Models θ1, ..., θN , datasets Dlocal,i for each i ∈ [N ]
2: Parameters: Epoch length E, iteration number S, soft-projection parameter τ > 0, stepsize

η > 0
3: Initialize: Permutations Phard,1, . . . ,Phard,N ,Psoft,1, . . . ,Psoft,N ← Identity
4: for Epoch s = 1, . . . , E do
5: Average models: θ̄ ← 1

N

∑N
i=1 Phard,i(θi)

6: Sample indices I ⊂ [N ]
7: for i ∈ I do
8: for Iteration t = 1 . . . , T do
9: Sample data pair (o, a) ∼ Dlocal,i to form a trajectory τ , and sample interpolation

parameter α ∼ Unif[0, 1]

10: Update with gradient: P̃soft,i ← Psoft,i − η∇PLbc(αP(θ) + (1− α)θ̄; τ )
∣∣
P=Psoft,i

11: Update Psoft,i ← Projτ (P̃soft,i) by applying the soft projection step Eq. (3.2)
12: Update Phard,i ← Projhard(Psoft,i)

13: Return: θ̄ = 1
N

∑N
i=1 Phard,i(θi)

τ > 0 as:
Projτ (P̃) = P1:L−1, where Pℓ ∈ argmax

P∈Bdℓ

⟨P̃ℓ,P⟩F + τH (P), (3.2)

and the associated hard permutation projection Projhard := Projτ
∣∣
τ=0

, where Bd is the Birkhoff
polytope of doubly-stochastic matrices, H (P) = −

∑
i,j Pij log(Pij) is the matrix entropy (Cuturi,

2013; Mena et al., 2018), and τ > 0 is some hyperparameter that weights the strength of the
entropy regularization. Computation of Projhard can be implemented efficiently via solving a linear
assignment problem, and the solution with τ > 0 can be solved approximately via a Sinkhorn
iteration (Eisenberger et al., 2022; Peña et al., 2022), which also allows gradient computation on any
differentiable objective. The operators are then updated as Ps+1 ← Projτ (P̃s). Note that for ℓ = 0
and L, we directly set Pℓ

s+1 to be identity matrices. At the final step, Peña et al. (2022) conducts a
hard projection onto the space of permutation matrices.

To measure the performance of model alignment, we study the (imitation) loss barrier, as defined
previously in the supervised learning setting (Frankle et al., 2020; Ainsworth et al., 2022). Specifically,
given two policy parameters θ, θ′ such that L̄bc(θ;D) ≈ L̄bc(θ

′;D), the loss barrier of the policies,
defined as maxλ∈[0,1] L̄bc((1− λ)θ + λθ′;D)− 1

2 (L̄bc((θ;D) + L̄bc(θ
′;D)), evaluates the worst

performing policy linearly interpolating between θ and θ′, where we recall the definition of L̄bc

above Eq. (2.4). More amenable to the control and policy learning setting, we can also define the
task performance barrier, which replaces the behavior cloning loss L̄bc with any suitable measure
T of task performance (e.g., the accumulated rewards or the success rates of task completion):
maxλ∈[0,1]

1
2 (T (θ)+ T (θ

′))−T ((1−λ)θ+λθ′); the sign is flipped to model the rewards achieved
in accomplishing the tasks. These metrics will be used in our experiments in Section 5.

3.1 MERGING MANY RECURRENT POLICIES

In this section, we describe our new algorithm for merging many RNN-parameterized policies.

Permutation invariance of RNNs. Given a recurrent neural network with parameter θ =
(Wℓ+1

rec ,Wℓ
ff ,b

ℓ)0≤ℓ≤L−1 as parameterized in Eq. (2.2), we let weight transformations P =
(P0,P1, . . . ,PL) ∈ Glin act on it through

(Wℓ
rec,W

ℓ−1
ff ,bℓ−1) 7→

(
PℓWℓ

rec(P
ℓ)−1, PℓWℓ−1

ff (Pℓ−1)−1, Pℓbℓ−1
)

(3.3)
for each layer ℓ with 1 ≤ ℓ ≤ L− 1. In Appendix B, we verify that RNNs are invariant to the above
operation when P ∈ Gperm ⊂ Glin are hard permutation operators.

Proposition 3.1. Any recurrent neural network given by Eq. (2.2) is invariant to any transformation
of P ∈ Gperm.

5



Published as a conference paper at ICLR 2024

In Appendix B, we also expand upon the group structure of Gperm, to the larger sets of invariance
groups, for the special architecture with ReLU activations. Moreover, we also argue that permutations
are in essence the only generic invariances of ReLU and polynomial networks whose weights
minimize the ℓ2 norm, which might be of independent interest.

Merging many models with a single reference. Rather than sequentially merging N = 2 models,
we merge all models to a common reference model θ̄. Inspired by the update rules in federated
learning, this approach has the following advantages: (a) it removes the dependence of sequential
merging on the order of the merging sequence; (b) it allows better pooling of weights from many
models to guide each merging step; (c) we align only a subset of models per iteration, which becomes
more efficient when N is very large. We show the benefits of our approach over sequential merging
in ablation studies (Appendix F). In addition, unlike the two-model-merging setting of Peña et al.
(2022), we do not have access to a common dataset D for the aligning updates. Instead, each model is
updated by sampling trajectories from its local dataset Dlocal,i, obviating the need for dataset sharing.

Algorithm description. Our algorithm, FLEET-MERGE, is depicted in Algorithm 1. We maintain
hard transformation operators Phard,1, . . . ,Phard,N ∈ Gperm, initialized by identity matrices. At
each epoch, we compute the reference model θ̄ by averaging each model under the associated
transformation (Line 5). We then select a subset of models I, and initialize the “soft” permutation
Psoft,i ← Phard,i as the hard permutation operator. For each i ∈ I , we update the “soft” permutation
Psoft,i for T steps. Importantly, because each θi corresponds to a recurrent neural network model, the
action of Psoft,i(θi) in the gradient step in Line 10 is given by Eq. (3.3). Of equal significance (and
as noted above), the trajectories τ in Line 9 are sampled not from a common dataset, but rather from
a local dataset Dlocal,i associated with the i-th agent. We conclude by re-projecting each Psoft,i onto
Gperm to obtain a new Phard,i (Line 12), which are used to update θ̄ accordingly in the next epoch.
In particular, our algorithm allows iterative merging, i.e., merging multiple times during the course
of training, compared to other (feedforward) neural network merging approaches (Ainsworth et al.,
2022; Peña et al., 2022; Stoica et al., 2023), which allows tradeoffs between communication cost and
merged-model performance. At test time, the merged policy πθ̄ is deployed for the test task. In the
multi-task setting, we consider the cases where the task identity can be inferred from observations.

4 FLEET-TOOLS: A ROBOTIC TOOL-USE SIMULATION BENCHMARK

To validate the performance of our policy-merging framework, we develop a new robotic tool-use
benchmark, FLEET-TOOLS, in the robotic simulator Drake (Tedrake & the Drake Development Team,
2019). The benchmark FLEET-TOOLS focuses on robotic manipulation tasks with rich contact-
dynamics, and category-level composition, as in several existing literature in robotic manipulation for
tool-use (Toussaint et al., 2018; Holladay et al., 2019).

Expert tasks. To scale the generation of expert demonstrations for the tool-use tasks, we specify
the tasks via keypoints (Manuelli et al., 2022) when generating the expert trajectories. We mainly
consider four skills as examples (or task families): {wrench, hammer, spatula, and knife} –
consisting of tasks involving the eponymous tool-type. Specifically, we consider use a spanner
to apply wrenches, use a hammer to hit, use a spatula to scoop, and use
a knife to split. All of these tasks can be solved to reasonable performance by specifying a
few keypoints. For instance, in the wrench tasks as shown in Figure 5, the wrench needs to reach the
nut first and then rotate by 45 degrees while maintaining contact. The same strategy can be applied
to a set of nuts and wrenches. We choose these tasks because they provide a balance of common
robotic tasks that require precision, dexterity, and generality in object-object affordance. We use the
segmented tool and object point-cloud as the observation ot, and the translation and rotation of the
robot end effector (6-dof) as the action at. At test time of a multi-task setting, the task would be
identified by the observations, i.e., the (combination of) a tool and an object, which can be inferred
from the point could as the input of the test policy, identifies the task being tested on.

Keypoint transformation & trajectory optimization. We denote the end effector frame and world
frame as E and W , respectively. For each tool, we specify n keypoints, for example, when n = 3,
we can specify one point on the tool head, one point on the tool tail, and one point on the side.
We define a rigid transformation X ∈ SE(3) ⊂ R4×4, the current locations of the n keypoints
on the tool in the world frame W as Wptool =

[
Wptool,1, · · · ,Wptool,n

]
, and the poses in the
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spatula knife hammer wrench

Figure 2: FLEET-TOOLS Benchmark. We develop several tool-use tasks that focus on contact-rich
motions and category-level compositions in the Drake simulator.

end-effector frame as Eptool =
[
Eptool,1, · · · ,Eptool,n

]
, respectively. For the object, we specify

m keypoints in the world frame as Wpobj =
[
Wpobj,1, · · · ,Wpobj,m

]
. Then, one can solve an

optimization problem, referred to as kPAM-Opt (where kPAM stands for KeyPoint Affordance-based
Manipulation) (Manuelli et al., 2022), to find the transformation X (see Eq. (C.1)-Eq. (C.3) for the
detailed formulation). However, recovering the joint angle from the transformation X via inverse
kinematics can be computationally challenging. Hence, we propose to solve the kPAM optimization
in the joint space, i.e., optimize over the joint angles q that parameterize the transformation through
forward kinematics (i.e., forward-kinematics(q)), and only add constraints to the keypoints
in the transformed frame. Specifically, we solve the following joint-space optimization problem:

Joint-Space-kPAM-Opt min
q, X

∥∥XEptool −Wptool
∥∥2
F

(4.1)

s.t.
∥∥XEptool,i −Wpobj,j

∥∥
2
≤ ϵ, ∀ i, j (4.2)

αi,j − ϵ ≤ β⊤
i,jX(Eptool,i − Eptool,j) ≤ αi,j + ϵ, ∀ i, j (4.3)

X = forward-kinematics(q) (4.4)

where we choose i ∈ {1, · · · , n} and j ∈ {1, · · · ,m}, and βi,j ∈ R4 is a vector on the unit sphere
with the fourth dimension βi,j(4) = 0, αi,j is some constant that represents the target angle alignment,
and ϵ > 0 is some relaxation level. We provide a detailed explanation of the constraints in §C.1.
After finding the optimal joint angle, one can find pre-actuation and the post-actuation trajectories by
solving a trajectory planning problem (see Eq. (C.8)-Eq. (C.10) for more details).

The benchmark can be easily extended to new tool-use tasks by labeling a few keypoints and providing
a configuration for constraints and costs for the desired task. The overall pipeline can also easily
represent “category-level” composition and generalization, across various (combinations of) tools
and objects, providing a systematic and scalable way to create “local and distributed demonstration
datasets”. This makes FLEET-TOOLS a great fit for evaluating large-scale fleet policy learning. More
details of the benchmark can be found in Appendix C.

5 EXPERIMENTS: POLICY MERGING

We evaluate the performance of various algorithms in several benchmark environments: FLEET-
TOOLS, as described in Section 4, Meta-World (Yu et al., 2020), which has 50 distinct robotic
manipulation tasks, and linear control. This section summarizes results on FLEET-TOOLS and Meta-
World, deferring additional experimental details with different network architectures and results to
Appendix C.2 and Appendix D. Details for our results on linear control problems can be found in
Appendix G. Ablation studies have also been conducted for supervised learning settings including
classification (Deng, 2012) and language generation (Caldas et al., 2018); these are deferred to
Appendix F. To summarize, the ablations validate the benefits of: (a) merging to a common reference
model (Line 5) and (b) performing hard projections (Line 12) in Algorithm 1, as well as other
algorithm-design choices.

Baselines. We compare our FLEET-MERGE against the following baselines {NAIVEAVERAGE,
GITREBASIN, SINGLEDATASET}: NAIVEAVERAGE and GITREBASIN denote the method of naive
averaging and that in Ainsworth et al. (2022), respectively, i.e., for NAIVEAVERAGE, it directly
averages θ̄ = λθ+ (1− λ)θ′, and for GITREBASIN, it computes an aligning permutation P from the
ReBasin algorithm in Ainsworth et al. (2022) and merges θ̄ = λθ+ (1− λ)P(θ′). SINGLEDATASET
trains on a single dataset which differs from the test dataset, and thus measures the performance
of “zero shot adaptation” in contrast to model merging. Each merging method is applied only once
after training is complete. We study how the performance of these methods varies as the source
distributions of datasets on which the different models are trained become more diverse.
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(a) Mode Connectivity on Fleet-Tools (b) Mode Connectivity on Meta-World

(c) Merging as Warmstarting on Fleet-Tools (d) Multi-task Merging Performance on Meta-World

Figure 3: Results on One-Shot Merging. (a & b) FLEET-MERGE attains better mode connectivity for
policies in both FLEET-TOOLS and Meta-World. (c) One-shot merging performance is predictive of
relative performance after finetuning. (d) FLEET-MERGE succeeds in multitask settings with varying
data heterogeneity for 5 data sources, as measured by the Dirichlet parameter α.

Data heterogeneity. We also validate the performance of policy merging by varying the levels of
data heterogeneity, an important metric in distributed and federated learning (McMahan et al., 2017;
Hsieh et al., 2020). We adopt a popular approach in federated learning (Hsieh et al., 2020) to create
data heterogeneity: for each experiment, we begin with K component distributions D⋆

1 , . . . ,D⋆
K

(e.g., imitation learning from a hammer task v.s. a spatula task). We then sample N source
distributions by sampling a mixture weights p1, . . . , pN ∈ △(K) ∼ Dirichlet(α1K) from an evenly-
weighted Dirichlet distribution with parameter α in dimension K. Smaller α biases toward “peakier”
probability distributions, encouraging greater dataset heterogeneity. By default, we use N = 5 and
each data source has the same number of data points.

5.1 ONE-SHOT MERGING

We first study one-shot model merging, and validate the presence of mode connectivity between
the policy models, as in the weight-merging literature for feedforward NNs (Frankle et al., 2020;
Entezari et al., 2021). We consider two policy models θ, θ′ trained on the same dataset, and measure
the performance of NAIVEAVERAGE and GITREBASIN (as described above), and SOFTUPDATE,
which computes the aligning perturbation using the soft-projection updates as described in Section 3.

FLEET-TOOLS. As a preliminary test, we first train multiple feedforward policies on a single dataset
with distinct tasks with behavior cloning. In Figure 3 (a), we evaluate the performance barrier for
every pair of the trained policies. We observe that the algorithm that accounts for permutation
alignment has a significantly smaller performance barrier when interpolating along the segment in
parameter space between two aligned weights. This implies that it is possible to acquire a policy by
merging the policies trained on separate datasets, without sharing data or changing the input-output
behavior of each individual model. We extend this merging setting to multiple datasets and multiple
tasks. In Figure 3 (c), we show that the merged model can also serve as a warm start for policy
finetuning, which can be further finetuned on downstream tasks with a held-out small dataset. In
this case, FLEET-MERGE enjoys superior performance compared to naive averaging, git-rebasin
Ainsworth et al. (2022)’s extension to multiple models, and Sinkhorn rebasin Peña et al. (2022)’s.

Meta-World. We use the frozen ResNet features on the images as policy inputs. In Figure 3
(b), we compare different merging algorithms by measuring the mode connectivity in the one-shot
merging regime. We observe that there are almost no barriers for certain tasks. See Appendix D for
more experiments with different network architectures. In Figure 3 (d), we show FLEET-MERGE
outperforms baseline methods in the challenging multitask setting, across all settings of the Dirichlet
parameter α (which, we recall, controls the local dataset heterogeneity).

Linear control. Lastly, we evaluate on Linear Quadratic Gaussian (LQG) control tasks with high-
dimensional observations. We briefly summarize our findings here and defer a detailed description
of the setting, algorithms, and experiments to Appendix G, together with the implications of policy
merging on the topology of the LQG landscape. In short, we compare three baselines: direct
averaging of policy parameters, permutation-based averaging computed via linear sum assignment,
and a gradient-based alignment approach that aligns over all invertible matrices. First, we discover
that our framework can still be effective for merging linear control policies, in both single-task and
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(a) Robustness to Merging Frequencies on Fleet-Tools (b) Robustness to Heterogeneity on Fleet-Tools

(c) Robustness to Merging Ratios on Meta-World (d) Robustness to Merging Frequencies on Meta-World

Figure 4: Results on Iterative Merging. We showed that FedAvg with our merged algorithm achieves
better performance on both FLEET-TOOLS and Meta-World benchmarks, when changing (b) Dirichlet
parameters, (c) partial participation ratios (25 tasks), and (a,d) communication epochs. The perfor-
mance is upper-bounded by joint training (which pools all the data together for training).

certain multi-task settings. Additionally, because control policies exhibit symmetries to general
invertible linear transformations, we find that the gradient-based alignment approach performs the
best. This directly contrasts what we find when merging RNN policies with nonlinear activations.
Indeed, in the ablations depicted in Figure 12 in Appendix F, we find that failing to project the “soft
permutation” matrices back to hard permutations leads to non-trivial degradation in performance
when merging a variety of neural network architectures. Thus, our linear experiments demonstrate
that the group structure of policy invariances can be essential for proper algorithm design.

5.2 ITERATIVE MERGING

We also evaluate the performance of our framework when merging models over the course of training,
i.e., iterative merging. We focus on multi-task problems in this setting and try to minimize the
merging frequencies and ratios under high non-IIDness. Specifically, at every M epoch, we merge
models according to different methods, and then reinitialize all the individual models θi at the merged
model θmrg. This scheme allows more communication rounds between the robots and the designer,
trading-off the biases caused by local training when there is a high data heterogeneity across robots.
This scheme connects to the popular distributed learning protocol of federated learning (McMahan
et al., 2017). See also Section 3.1 and Algorithm 1 for more details of this setting.

FLEET-TOOLS. We first evaluate the performance of the full FLEET-MERGE algorithm in FLEET-
TOOLS, as plotted in Figure 4 (a)&(b). We find that the performance of our method degrades
gradually as the frequency of iterative merging decreases (i.e., the number of epochs between merging
increases), which is essential in fleet-learning applications. We also have real-world demos for tool-
use using the merged policy from FLEET-MERGE in simulation, which are deferred to Appendix C.2.
In Figure 4 (b), we show that FLEET-MERGE also has the best absolute performance and resilience to
dataset heterogeneity in the Meta-World benchmark.

Meta-World. Figure 4 (c)&(d) study iterative merging in Meta-World. We find that FLEET-MERGE
is resilient to a lower frequency of weight merging (which allows more epochs of local training
between merges) and to a smaller fraction of models being merged per round (which we refer to as
the “participation ratio” of the agents in the fleet). These two together show that communication
between agents in the fleet can be reduced without significantly harming the performance of the
merged model. We observe similar results across different neural network architectures, different
inputs and metrics, and in large-scale settings. We defer the detailed results to Appendix D. Notably,
we can learn a multi-task learning policy to solve all 50 manipulation tasks jointly in Meta-World,
without pooling the data together.

6 CONCLUSION

We studied policy merging, a framework for fleet learning of control policies from distributed and
potentially heterogeneous datasets, by aggregating the parameters of the (trained) policies. We
developed new algorithms to merge multiple policies by taking into account their parameterization
ambiguity using recurrent neural networks. Finally, we proposed a novel robotic manipulation
benchmark, FLEET-TOOLS, in generalizable tool-use tasks, which might be of broader interest.
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A DETAILED RELATED WORK

Parameter invariance in neural networks and control. It has long been known that neural
networks are invariant under certain transformations or symmetries, of their weights (Hecht-Nielsen,
1990). In particular, permutation symmetries arise because the ordering of hidden neurons in neural
networks does not affect their input-output behavior. This has been an important topic of recent
studies of neural networks loss landscapes (Brea et al., 2019; Entezari et al., 2021; Tatro et al., 2020;
Ainsworth et al., 2022) and of methods that process the weights of other networks (Deutsch et al.,
2019; Navon et al., 2023; Zhou et al., 2023). On the other hand, in the controls literature, it is
known that the input-output behavior of a linear dynamical system is invariant under any similarity
transformations on the system matrices (Åström & Murray, 2021; Åström, 2012). Recent works have
further studied the optimization landscape of classical linear controllers (Fazel et al., 2018; Zheng
et al., 2021; Umenberger et al., 2022; Hu et al., 2023), especially for dynamic controllers that have
recurrent latent states (Zheng et al., 2021; Umenberger et al., 2022). In our work, we consider the
symmetry of general nonlinear policies parametrized by neural networks, particularly recurrent neural
networks, and how to leverage this property to merge multiple policies in robotic fleet learning.

Model merging & Mode connectivity. There have been a variety of approaches to merging neural
networks by interpolating their weights. For deep neural networks, this typically requires aligning
hidden neurons using techniques similar to those in sensor fusion (Poore, 1994). One line of work
uses optimal transport to align the weights of distinct models prior to merging (Singh & Jaggi, 2020;
Tan et al., 2022), while related works have investigated removing permutation symmetries to align
neurons before interpolation (Tatro et al., 2020; Entezari et al., 2021; Ainsworth et al., 2022; Peña
et al., 2022). The connectivity property of the landscape when optimizing linear controllers has also
been a resurgent research interest (Feng & Lavaei, 2020; Zheng et al., 2021; Bu et al., 2019). Notably,
Bu et al. (2019) shows that the parameters of stabilizing static state-feedback linear controllers
form a single connected component, and Zheng et al. (2021) shows that output-feedback dynamical
controllers can form at most two connected components. Merging neural networks has also been
studied in recent years in the context of finetuning foundation models (Wortsman et al., 2022a;b),
federated learning (McMahan et al., 2017; Wang et al., 2020a; Yurochkin et al., 2019; Konečnỳ et al.,
2016; Wang et al., 2023), multi-task learning (He et al., 2018; Stoica et al., 2023), and studying linear
mode connectivity hypothesis for (feedforward) neural networks (Frankle et al., 2020; Entezari et al.,
2021; Ainsworth et al., 2022). Most of these works focused on the feedforward NN architecture. A
few works have studied model merging for recurrent NNs in the context of federated learning (Hard
et al., 2018; McMahan et al., 2018; Wang et al., 2020a). However, they either used direct averaging
without accounting for the permutation symmetries (Hard et al., 2018; McMahan et al., 2018), or
focused on supervised learning tasks (Wang et al., 2020a). In our work, we aim to study how well
these insights can be applied to policy learning and control settings, with recurrent neural network
parameterization, and awareness of permutation invariance. Compared with the most related work
Wang et al. (2020a), we also develop a new merging approach based on “soft” permutations (see
Section 3 for a formal introduction) of the neurons, allowing a more efficient implementation and
focus on robotic control tasks.

Multi-task policy learning. Multi-task learning and models that exhibit multi-task behaviors have
shown impressive successes in computer vision (Zhang & Yang, 2018; Standley et al., 2020) and
natural language processing (Radford et al., 2019; Collobert & Weston, 2008; Bubeck et al., 2023).
Indeed, multi-task learning (Ruder, 2017; Yu et al., 2020), meta-learning (Vilalta & Drissi, 2002;
Nichol et al., 2018; Finn et al., 2017), and few-shot learning (Wang et al., 2020b) have long lines of
literature. Despite some promising recent attempts in robotics (Brohan et al., 2022; Shridhar et al.,
2023), the dominant paradigm in robotics is still to conduct single-task data collection and training
on a single domain. Recently, such multi-task paradigms have also been extended to linear control
settings, see e.g., Zhang et al. (2022); Wang et al. (2022a). Our work is also related to the studies on
the effects of distribution shifts and diverse data distributions (Agarwal et al., 2021; Koh et al., 2021).
Inspired by the increasing scale of robot fleets deployed in the real-world, building a policy learning
framework at scale requires us to handle distribution heterogeneity and communication efficiency
(Kalashnikov et al., 2021; Herzog et al., 2023; Driess et al., 2023). Also note that the setting we
consider, with multiple datasets, include but are not limited to multi-tasks settings, as the datasets
may come from different experts in imitation learning, or different time or operating conditions of the
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same agent/policy in the same task. While provable guarantees exist for imitation in the single-task
setting Block et al. (2023), understanding the implications of behavior cloning in multi-task settings
from a theoretical angle is an exciting direction for future work.

B PERMUTATION INVARIANCE FOR RNNS

B.1 PROOF OF PROPOSITION 3.1

In this section, we prove Proposition 3.1 in the main paper. Recall that when P =
(P0,P1, . . . ,PL) ∈ Gperm, it acts on RNN models via

(Wℓ
rec,W

ℓ−1
ff ,bℓ−1) 7→

(
PℓWℓ

rec(P
ℓ)⊤, PℓWℓ−1

ff (Pℓ−1)⊤, Pℓbℓ−1
)
, (B.1)

where we note that we replace the matrix inverse in Eq. (B.1) with matrix transpose because the two
coincide for permutation matrices. We now note that the group operation of P on weights can be
decomposed as the computation of applying operators as follows

(P0,P1, . . . ,PL) ◦ (θ) = (P0, I, . . . , I) ◦ (I,P1, . . . , I) ◦ · · · ◦ (I, I, . . . ,PL) ◦ θ
= (I,P1, . . . , I) ◦ (I,P2, . . . , I) ◦ · · · ◦ (I, I, . . . ,PL−1) ◦ θ, (B.2)

where for the second equality, we recall that Gperm is defined so that its elements P =
(P0,P1, . . . ,PL) ∈ Gperm, have P0 and PL equal to the identity (i.e., we do not permute in-
puts or outputs). It suffices to show that the RNN model is invariant to applying this operation on a
specific layer, i.e.,

P = (I, I, . . . , I,Pℓ, I, . . . , I). (B.3)

We now prove the following claim.

Claim B.1. Let ℓ be such that 0 < ℓ < L, and let P be of the form Eq. (B.3), i.e., Pℓ is the only
non-identity. Let hℓ′

t be the hidden state at time t and layer 0 ≤ ℓ′ ≤ L of model θ, starting at
hℓ′

0 = 0.3 Let h̃t
ℓ denote the same, but for the permuted model θ̃ = P(θ). Then, for all t,

h̃ℓ′

t =

{
hℓ′

t ℓ′ ̸= ℓ

Pℓhℓ
t ℓ′ = ℓ

. (B.4)

Note that this claim implies Proposition 3.1 because (B.2) shows that any P can be decomposed
into permutations of the form (B.3) for 0 < ℓ < L. In particular, because ℓ ̸= L, (B.4) means that
hL
t = h̃L

t , as needed.

Proof of Claim B.1. It is clear that h̃ℓ′

t = hℓ′

t for layers ℓ′ < ℓ and t ≥ 0. It remains to consider
layers ℓ′ = ℓ and ℓ′ > ℓ.

Let’s start with ℓ′ = ℓ. We argue by induction on t that h̃ℓ
t = Pℓhℓ

t . Let’s start with t = 0. By
assumption we have that h̃ℓ

t = 0 = Pℓ0 = Pℓ
th

ℓ
t . This proves the base case. For general t > 0, by

specializing (B.1) to permutation of the form (B.3), we have

h̃ℓ
t = σ(PℓWℓ

rec(P
ℓ)⊤h̃ℓ

t−1 +PℓWℓ−1
ff h̃ℓ−1

t +Pℓbℓ−1)

= Pℓσ(Wℓ
rec(P

ℓ)⊤h̃ℓ
t−1 +Wℓ−1

ff h̃ℓ−1
t + bℓ−1)

because any entry-wise activation σ(·) commutes with Pℓ. As noted above, we have h̃ℓ−1
t = hℓ−1

t .
Moreover, by the inductive hypothesis, h̃ℓ

t−1 = Pℓhℓ
t−1. Thus, we have

h̃ℓ
t = Pℓσ(Wℓ

rec(P
ℓ)⊤Pℓhℓ

t−1 +Wℓ−1
ff h̃ℓ−1

t + bℓ−1)

= Pℓσ(Wℓ
rech

ℓ
t−1 +Wℓ−1

ff h̃ℓ−1
t + bℓ−1)

= Pℓhℓ
t.

This proves what we need for ℓ′ = ℓ.

3This condition can be generalized to requiring that h̃ℓ′
0 = Pℓhℓ′

0 for 0 < ℓ′ < L and h̃ℓ′′
0 = hℓ′′

0 for
ℓ′′ ∈ {0, L}.
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For ℓ > ℓ′, it suffices to prove the case when ℓ′ = ℓ+1, because the weights for all subsequent layers
are not changed by (B.3) and all layers above ℓ + 1 depend only on the ℓ + 1’s input. Again, we
induct over t. By assumption hℓ+1

t = 0 = h̃ℓ+1
t . Moreover, permutations of the form (B.3) mean that

h̃ℓ+1
t = σ(Wℓ+1

rec h̃ℓ+1
t−1 +Wℓ

ff(P
ℓ)⊤h̃ℓ

t + bℓ).

Using the inductive hypothesis that h̃ℓ+1
t−1 = hℓ+1

t and the fact that h̃ℓ
t = Pℓhℓ

t proven above, we have

h̃ℓ+1
t = σ(Wℓ+1

rec hℓ+1
t−1 +Wℓ

ff(P
ℓ)⊤Pℓhℓ

t + bℓ)

= σ(Wℓ+1
rec hℓ+1

t−1 +Wℓ
ffh

ℓ
t + bℓ) = hℓ+1

t ,

concluding the proof of the claim.

B.2 INVARIANCE FOR RELU ACTIVATIONS

For RNNs with common activation functions, we can study a more general group of symmetries
beyond just the permutations of Proposition 3.1. Again, consider the action of a general P =
(I,P1,P2, . . . ,PL−1, I) ∈ Glin, acting as

(Wℓ
rec,W

ℓ−1
ff ,bℓ−1) 7→

(
PℓWℓ

rec(P
ℓ)−1, PℓWℓ−1

ff (Pℓ−1)−1, Pℓbℓ−1
)
. (B.5)

Proposition B.1. Let σ(·) be any activation function, and considerP ∈ Glin acting as above. Suppose
that, for each ℓ, Pℓ commutes with σ, in the sense that Pℓσ(·) = σ(Pℓ(·)). Then, the output of the
RNN is invariant to the transformation induced by P . In particular, if σ(·) = ReLU(·), then the RNN
output is invariant to the set P ∈ Gscaled, where Gscaled ⊂ Glin is the set of transformations such that
Pℓ = P̃ℓDℓ are scaled permutations, with P̃ℓ being a permutation matrix and Dℓ being a diagonal
matrix with strictly positive elements.4

The proof of Proposition B.1 follows exactly as in the proof of Proposition 3.1 above, by replacing
transposes with inverses for the general case. The special case of the ReLU network follows from
checking that the ReLU operation commutes with scaled permutations.

Even though RNNs are invariant to scaled permutations of their weights, we follow previous model
merging work and focus only on the permutations (i.e., ignoring the scaling) (Ainsworth et al.,
2022; Cuturi, 2013). As argued by the linear mode connectivity hypothesis (Entezari et al., 2021),
scaling symmetries should not appear in practice because the implicit regularization of the training
algorithms, e.g., stochastic gradient descent (Neyshabur et al., 2014; Smith et al., 2021), controls the
scale of the resulting weights. Here, we formalize the argument by proving that implicit regularization
uniquely determines the scaling matrix.

Proposition B.2. For an RNN θ, define the norm

∥θ∥22 = ∥WL−1
ff ∥2F + ∥bL−1∥2 +

∑
0<ℓ<L

∥Wℓ
rec∥2F + ∥Wℓ−1

ff ∥2F + ∥bℓ−1∥2. (B.6)

Let θ be any model for which every bias term bℓ has strictly nonzero entries. Define the set
X (θ) = argmin

θ′,P∈Gscaled

∥θ′∥2 s.t. θ′ = P(θ), (B.7)

of minimal norm models which correspond to transforming θ by a scaled permutation. Then, for every
θ′, θ′′ ∈ X (θ), there exists a transformation consisting only of (non-scaled) permutations P ∈ Gperm
such that θ′ = P(θ′′).

Proof. Note that if θ′ ∈ X (θ), X (θ′) = X (θ) because Gscaled is a group. Thus, it suffices to prove a
slightly simpler claim:

Claim B.2. Suppose θ ∈ X (θ) and θ′ ∈ X (θ), and let P be such that P =

(I, P̃1D1, . . . , P̃L−1DL−1, I), where P̃-matrices are permutation matrices and D matrices are
diagonal matrices with positive diagonal elements. Then, we must have

Dℓ = Idℓ
, 0 < ℓ < L, (B.8)

where dℓ is the dimension of the Dℓ.

4Note that this is a group because P̃ℓDℓ = P̃ℓD̃ℓ for some other D̃ℓ.
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We now prove the claim. We expand
∥P(θ)∥22
= ∥WL−1

ff (P̃L−1DL−1)−1∥2F + ∥bL∥2

+
∑

0<ℓ<L

∥(P̃lDl)Wℓ
rec(D

ℓ)−1(P̃lDℓ)−1∥2F + ∥(P̃lDℓ)Wℓ−1
ff (P̃lDℓ−1)−1∥2F + ∥(P̃ℓDl)bℓ−1∥2

= ∥WL−1
ff (DL−1)−1(P̃L−1)−1∥2F + ∥bL−1∥2

+
∑

0<ℓ<L

∥(P̃lDl)Wℓ
rec(D

ℓ)−1(P̃l)−1∥2F + ∥(P̃lDℓ)Wℓ−1
ff (Dℓ−1)−1(P̃l)−1∥2F + ∥(P̃ℓDl)bℓ−1∥2

= ∥WL−1
ff (DL−1)−1∥2F + ∥bL−1∥2

+
∑

0<ℓ<L

∥DlWℓ
rec(D

ℓ)−1∥2F + ∥DℓWℓ−1
ff (Dℓ−1)−1∥2F + ∥Dlbℓ−1∥2

= ∥bL−1∥2 +
dL∑
i=1

dL−1∑
j=1

WL−1
ff [i, j]2DL−1[j, j]−2

+
∑

0<ℓ<L

dℓ∑
i,j=1

Dl[i, i]2Wℓ
rec[i, j]

2Dl[j, j]−2

+
∑

0<ℓ<L

dℓ∑
i=1

dℓ−1∑
j=1

Dℓ[i, i]2Wℓ−1
ff [i, j]2Dℓ−1[j, j]−2 +

∑
0<ℓ<L

dℓ∑
i=1

Dl[i, i]2bℓ−1[i]2,

where [i, j] indexes matrices and [i] indexes vectors, and where we use that Dℓ are diagonal matrices.
Next, let us represent the diagonals of the matrices Dℓ[i, i] = exp(τℓ,i) as exponentials, which is
valid because they are strictly positive. In this representation, we have

∥P(θ)∥22 = ∥bL−1∥2 +
dL∑
i=1

dL−1∑
j=1

WL−1
ff [i, j]2e−2τL−1,j +

∑
0<ℓ<L

dℓ∑
i,j=1

Wℓ
rec[i, j]

2e2(τℓ,i−τℓ,j)

+
∑

0<ℓ<L

dℓ∑
i=1

dℓ−1∑
j=1

Wℓ−1
ff [i, j]2e2(τℓ,i−τℓ−1,j) +

∑
0<ℓ<L

dℓ∑
i=1

e2τℓ,ibℓ−1[i]2

:= F ({τℓ,i}1≤i≤dℓ,0<ℓ<L).

We now observe that the function F (·) is convex in its arguments, because it is the sum over
exponentials of linear functions of {τℓ,i}1≤i≤dℓ,0<ℓ<L with positive coefficients. In fact, it is strictly
convex, because all but the last terms are convex, and the term

∑
0<ℓ<L

∑dℓ

i=1 e
2τℓ,ibℓ−1[i]2 is

strictly convex under our assumption that none of the bias weights are zero.

Therefore, there is a unique {τ⋆ℓ,i}1≤i≤dℓ,0<ℓ<L which minimizes F (·). Thus, by assumption that
θ′ ∈ X (θ), we must have that

Dℓ[i, i] = exp(τ⋆ℓ,i), 1 ≤ i ≤ dℓ, 0 < ℓ < L.

But similarly, since θ ∈ X (θ), then by writing and θ = (I, I, . . . I) ◦ θ as the identity transformation
applied to itself, we must have that

exp(τ⋆ℓ,i) = (Idℓ
)[i, i] = 1.

Thus, we conclude that
Dℓ[i, i] = 1,

as needed.
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C FLEET-TOOLS BENCHMARK

C.1 IMPLEMENTATION DETAILS

In this section, we introduce more details of our newly developed tool-use benchmark for fleet policy
learning, based on the Drake simulator (Tedrake & the Drake Development Team, 2019).

Expert tasks. To scale the generation of expert demonstrations for the tool-use tasks, we specify
the tasks via key points (Manuelli et al., 2022) when generating the expert trajectories. We mainly
consider four skills as examples (or task families): {wrench, hammer, spatula, and knife}
– consisting of tasks involving the eponymous tool-type. Specifically, we use use a spanner
to apply wrenches, use a hammer to hit, use a spatula to scoop, and use
a knife to split. All of these tasks have a common feature that the skills can be reasonably,
certainly not perfectly, solved by specifying a few sparse keypoints. For instance, in the wrench tasks
as shown in Figure 5, the wrench needs to reach the nut first and then rotate by 45 degrees while
maintaining contact. The same strategy can be applied to a set of nuts and wrenches. We pick these
tasks because they provide a balance of common robotic tasks that require precision, dexterity, and
generality in object-object affordance.

Keypoint transformation optimization. We denote the end effector frame and world frame as E
and W , respectively. For each tool, we specify n keypoints, for example, when n = 3, we can specify
one point on the tool head, one point on the tool tail, and one point on the side. We define a rigid
body transformation X ∈ SE(3) ⊂ R4×4, the current locations of the n keypoints on the tool in the
world frame W as W ptool =

[
W ptool,1, · · · ,W ptool,n

]
, and the poses in the end effector frame as

Eptool =
[
Eptool,1, · · · ,Eptool,n

]
, respectively. For the object, we specify m keypoints in the world

frame as W pobj =
[
W pobj,1, · · · ,W pobj,m

]
. Each point p (either p = Eptool,i or p = W pobj,j) lies

in R4, and is expressed in (x, y, z, 1)-homogeneous coordinates. Then, one can solve the following
optimization problem, referred to as kPAM-Opt (where kPAM stands for KeyPoint Affordance-based
Manipulation) (Manuelli et al., 2022), to find the transformation X:

kPAM-Opt min
X

∥∥XEptool −W ptool
∥∥2
F

(C.1)

s.t.
∥∥XEptool,i −W pobj,j

∥∥
2
≤ ϵ, ∀ i, j (C.2)

αi,j − ϵ ≤ β⊤
i,jX(Eptool,i − Eptool,j) ≤ αi,j + ϵ, ∀ i, j (C.3)

where we choose i ∈ {1, · · · , n} and j ∈ {1, · · · ,m}, and βi,j ∈ R4 is a vector on the unit sphere
with the fourth dimension βi,j(4) = 0, αi,j is some constant that represents the target angle alignment,
and ϵ > 0 is some relaxation level. Constraint Eq. (C.5) restricts the distance between the keypoints
on the tool to be close to some target ones on the object to be ϵ-small. For example, when i = 1 and
m = 1, where we use Eptool,1 to denote the keypoint corresponds to the head of the tool, then this
constraint ensures the head of the tool, e.g., the hammer head, to be close to the object, e.g., the pin.
The composition of (αi,j , βi,j , ϵ) in Eq. (C.6) describes some constraints related to the orientations of
the tool (e.g., the hammer head needs to be vertical to the world and stay flat), up to some ϵ-relaxation.
The overall formulation in Eq. (C.1)-Eq. (C.3) instantiates the general one in Manuelli et al. (2022).

Although the kPAM procedure above can solve for the desired transformation X , it can be computa-
tionally challenging to recover the joint angle from X via inverse kinematics. Hence, we propose to
solve kPAM optimization in the joint space, i.e., optimize over the joint angles q that parameterize
the transformation through forward kinematics (i.e., forward-kinematics(q)), and only add
constraints to the keypoints in the transformed frame. Specifically, we solve the following joint-space
optimization problem:

Joint-Space-kPAM-Opt min
q, X

∥∥XEptool −W ptool
∥∥2
F

(C.4)

s.t.
∥∥XEptool,i −W pobj,j

∥∥
2
≤ ϵ, ∀ i, j (C.5)

αi,j − ϵ ≤ β⊤
i,jX(Eptool,i − Eptool,j) ≤ αi,j + ϵ, ∀ i, j (C.6)

X = forward-kinematics(q), (C.7)
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Figure 5: Visualization of the kPAM-based (Manuelli et al., 2022) expert generation pipeline. There
are three keypoints defined on the tool and one keypoint defined on the object. The kPAM objective
and constraints define an actuation pose for each specific tool-use task. We then optimize for the
pre-actuation trajectory and the post-actuation trajectory jointly.

where constraint Eq. (4.4) relates the rigid body transformation X and the output of
forward-kinematics(q) under a joint angle q, to better contrast the formulation in Eq. (C.1)-
Eq. (C.3).

We create the optimization problem Eq. (C.4)-Eq. (C.6) in Drake, which is then solved using nonlinear
programming solvers as SNOPT (Gill et al., 2005). The intuition of this joint-space optimization is
to leverage the multiple solutions in the manipulation tasks to simplify the constraint satisfaction
problem in inverse kinematics. For instance, when solving the wrench tasks, the entire rotation space
around the z axis in the world frame is free, so solving for joint angle directly on these constraints
defined on keypoints can be easier than solving the pose-space KPAM problem and then solve inverse
kinematics.

Pre-/Post-actuation optimization. After finding the joint angle solution q⋆, we can work out the
pre-actuation and the post-actuation poses (Figure 5). For instance, for wrench tasks, there is a
standoff pose that is a few centimeters in the negative z axis of the end effector, which are treated as
keyframes. Once we construct the trajectory of pose keyframes in the pre-actuation and post-actuation
trajectories, we can solve the joint-space trajectory as an optimization problem that further improves
the smoothness (by minimizing the norm of joint difference with fixed endpoints), while satisfying
the keyframe pose constraints.

Specifically, let ξ = [ξ[1], ξ[2], ..., ξ[T ]] denote a joint-space trajectory of length T , including
trajectory before actuation at some timestep t⋆ < T , and the post-actuation trajectory from t⋆ + 1
until T . Choose m ≤ T indices {I1, · · · , Im} ⊆ {1, 2, · · · , T}, and specify the corresponding
pose keyframe trajectory as [pI1 , pI2 , ..., pIm ]. Let q1 be the current joint position, and q⋆ be the
solution to the previous joint-space KPAM problem Eq. (C.4)-Eq. (C.7). We then solve the following
optimization problem:

min
ξ

T−1∑
t=1

∥ξ[t+ 1]− ξ[t]∥22 (C.8)

s.t. ξ[1] = q1, ξ[t⋆] = q⋆ (C.9)
forward-kinematics(ξIk) = pIk , ∀ k = 1, 2, · · · ,m, (C.10)

which is also solved by nonlinear solvers as SNOPT (Gill et al., 2005) in Drake. This final solution
gives a planned trajectory ξ⋆ and we can then track this trajectory with low-level controllers to provide
demonstrations.

Discussions. Our tool-use benchmark and the pipeline above provide a natural and easy way to
create (new) tasks in Drake, with only a configuration file of the actuation pose optimization and a
few keypoints labels that can be easily obtained via a 3D visualizer. The overall pipeline, which is
deterministic by design, is also general enough to act as the expert in the imitation learning settings
to represent “category-level” composition and generalization. The convenience of category-level
generalization can be an important application domain to study out-of-support distribution shift,
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Figure 6: The real-world setup that the benchmark recreates in the simulation with segmented point
cloud visualizations.

which can be formulated as combinatorial extrapolation/generalization problems, i.e., generalizing to
the unseen tool-object (or tool-task) combinations at test time, despite only being able to see specific
tools and objects separately (while not such joint combinations) at training time. See a more formal
treatment in Simchowitz et al. (2023).

There are certain limitations of our pipeline. For example, it creates only hand-scripted experts, and
there is no feedback in the execution loop, which can be necessary for some dynamic and contact-rich
motions (Gao & Tedrake, 2021). Moreover, tool-object and tool-hand contact dynamics modeled
in the simulation but are not considered in the current expert formulation. These are all important
directions we will address in the future. We believe tool-use tasks, which often involve rich force and
contact interactions (?Holladay et al., 2019; Toussaint, 2009), represent one of the key challenging
tasks in dexterous manipulation.

C.2 ENVIRONMENT SETUP AND IMPLEMENTATION DETAILS

We set up two cameras to mimic the real-world setting of Panda robotic arms (see Figure 6). One
overhead camera is mounted on the table and the other camera is mounted on the wrist. We have 4
tool-object pairs for each tool in the benchmark (more assets available). At each scene initialization,
we randomize the camera extrinsics, robot initial joints, object frictions, mass, and the tool-in-hand
pose. We also randomize object texture when using colors and support offline blender rendering. We
weld the tool to the robot end effector which forms a kinematic chain. We assume RGB-D images
with masks as inputs to the robots. Specifically, we can use this information to fuse pointclouds (Seita
et al., 2023; Wang et al., 2022b) for both the tools and the objects, which we resample to contain
1024 points. We also measure joint torques and end effector wrench in the environment. We use
the bounded relative end effector motion as the action output. Notably, in the simulation we have
a perfect dynamics model that can potentially improve the contact-rich motions in tool-use, which
enables us to use a customized operation-space controller (OSC) (Khatib, 1987) with tuned gains to
achieve high success rates in solving the tasks. We use hydroelastic contact model with SAP contact
solver (Masterjohn et al., 2022) in drake. The environment timesteps are 6Hz and the simulation
dynamics step is 250Hz. We use the Ray library to support multiple rollouts in parallel.

We combine the segmented point cloud from a wrist camera and an overhead camera into the tool
and object pointcloud, and feed them as observations to the policy. We train the policy using Adam
optimizer (Kingma & Ba, 2014) with 200 epochs. The dataset contains 50000 data points for each
tool instance, and the batch size is 512. We use 5 users across the merging experiments. Each test
trial has 30 different scenes and we take average over 10 trials.
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Figure 7: We deployed the merged policies in the real world for the hammering task.

D META-WORLD EXPERIMENTS

D.1 FURTHER EXPERIMENTAL DETAILS

In this section, we provide the experiment details on the Meta-World benchmark (Yu et al., 2020).

Implementation. For state-based input, we use a 4-layer network architecture with 512 hidden
dimensions, including multilayer perceptron (MLP), RNN, and Transformer, to parameterize the
policies. For image-based input, we use ResNet18 (He et al., 2016) as the default vision encoder and
a similar 4-layer MLP for the policy head. We use Adam optimizer with a learning rate of 1e− 3
and batch size of 256. We use 3, 5, and 10 users respectively for the single-shot merging, merging
while training, and merging with participation ratio experiments in Figure 10. For validating mode
connectivity, we use the same dataset for training two models, but we find that training on different
datasets (generated by the same expert) will work as well.

Evaluation across tasks. We evaluate and compare the performance of our methods on large-scale
experiments, notably, in the MT-50 tasks in Meta-World. In Figure 10, we provide the comparison of
our policy merging methods with two baselines: joint multi-task training and task-specific training.
In particular, in joint training, we pool the data from multiple tasks to train a task-conditioned policy;
in task-specific training, we train a policy for each task separately. As shown in Figure 10, in terms
of success rates, joint training, and task-specific training can achieve similar performance. We also
observed that the more data is used, the gap between the two is smaller. More importantly, it is shown
that our policy merging methods can perform on par with these two baselines, by outputting only one
single policy (instead of in task-specific training), while without sharing the training data (instead of
in joint multi-task training).

Evaluation across network architectures. We also evaluate our policy-merging methods and
corresponding baselines across different neural network architectures. In Figure 9, we observe
similar performance connectivity behaviors across network architectures, including MLP, RNN, and
Transformers. This indicates that our policy merging formulation and algorithms can be general, and
not specifically tied to the neural network architectures.

Norm variations. Since RELU neural network’s weights are also symmetric up to scaling in
between layers, it’s a common question to ask whether we need to explicitly account for that. In
Figure 8, we show that the network’s weights of RNN policies and neural net models at each layer are
relatively stable, across different runs on training on the same dataset. The y-axis shows the relative
ratio of the weight different norm compared to the weight norm, which is less than 1% in general.
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Shakespeare Dataset Meta-World Button Press Meta-World Door Open

Figure 8: The weight norm ratio (weight difference between runs, compared to weight norms of the
first run) of trained RNNs on multiple benchmarks.

Transformer

RNN

MLP

Figure 9: Performance connectivity across architectures. Git rebasin and train matching work
consistently across many tasks for every architecture.
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Figure 10: Comparison of joint multi-task training, task-specific training, and policy merging on 50
tasks in Meta-World (MT-50).
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Figure 11: We show that fleet learning can also apply to online reinforcement learning settings where
agents continue to gather new data for training. The performance is robust to the communication
epochs ranging from 10 to 1000 trajectories between every averaging. The merged model also
outperforms the average of each individual model in this case.

E ONLINE REINFORCEMENT LEARNING ABLATION

To apply fleet learning to online reinforcement learning, we use the REINFORCE (Sutton et al., 1999)
algorithm in the CartPole environment in OpenAI Gym as a proof of concept. In this experiment,
we train 5 different policies on 5 instances of the CartPole environment with different random seeds,
and average the policies after a certain number of episodes. The experiment (Figure 11) shows that
simple averaging can be used when each agent collects more data online and uploads model weights
to compose a policy. Note that no data is shared during the learning process.

F ALGORITHM ABLATION ON SUPERVISED LEARNING TASKS

In this section, we ablate on different components of our proposed methods of merging multiple
models in the one-shot setting, i.e., we only merge the models once, on benchmark supervised
learning tasks with different neural network architectures. Specifically, we split the MNIST dataset
into N local datasets, with Dirichlet parameters α to create data non-IIDness (see ?? for more details),
and we use L-layer MLPs to parameterize the models. We lay out the methods we ablate on as
follows:

1. average: This method naively averages all the weights of the trained model on each local
dataset and then tests on the MNIST test set.

2. git-rebasin: This method uses the MergeMany algorithm in Ainsworth et al. (2022) to merge
all the locally trained models. Specifically, the MergeMany algorithm is an alternation-based
procedure: at each round, it first randomly samples one model, and then aligns it with the
average of the rest of the models, by using coordinate descent on the aligning loss; the
procedure continues until convergence.

3. sinkhorn-data: This method similarly applies the alternation-based algorithm above, and
replaces the alignment step from Ainsworth et al. (2022) to sinkhorn-rebasin in Peña et al.
(2022). Specifically, we use the validation dataset for the alignment. The difference between
this alternation-based method and our FLEET-MERGE algorithm (Algorithm 1) is whether
we reinitialize the permutation with the hard permutation matrix at each round or not.

4. FLEET-MERGE (ours): This is our main algorithm FLEET-MERGE (Algorithm 1) where
we use a FedAvg style algorithm to update the permutation parameters in sinkhorn rebasin.

5. fleet-merge-soft: This is an ablation method on our algorithm where we replace the hard
permutations at line 6 in Algorithm 1 by soft permutation matrices that are computationally
more tractable.

6. fleet-merge-simplex: This is an ablation method on our algorithm where instead of trying
to interpolate between each local model and the averaged model, we randomly sample in
the convex hull of N local models and compute the gradients.
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(a) MLP (b) RNN (c) CNN

(d) Model Number (e) Ablation (f) Model Number (RNN)

Figure 12: Algorithm Ablation Study on MNIST. Each model owns a shard of the total dataset and
our Mani-Rebasin algorithm outperforms all baseline methods.

Single-Task Dynamic FeedbackMulti-Task Static Feedback Multi-Task Dynamic Feedback Single-Task Dynamic Feedback
With Disconnected Components 

Figure 13: Linear Single Task Results. (Left) We observe that even averaging linear policies can
often improve performance to almost match joint training on the pooled data for single-task settings,
and match task-specific training for multi-task settings. (Right) We observe that gradient-based
methods to find general invertible matrices perform better than finding permutation matrices with
alternations.

7. fleet-merge-average: This is an ablation method on our algorithm where instead of trying
to interpolate between each local model and the averaged model, we use the average of these
N local models and compute the gradients.

As we show in the figure, our methods outperform all the baselines across various neural network
architectures, such as MLP on MNIST dataset, RNN on Shakespear dataset from LEAF (Caldas
et al., 2018) (sub-figure f), as well as CNN on CIFAR-10 dataset (Krizhevsky et al., 2009) (sub-figure
c). We also ablate against the design choices in the algorithm (sub-figure e) and ablate against both
non-IIDness (sub-figure a,b,c) and model numbers in the multiple model merging setting (sub-figure
d, f).

G LINEAR POLICY MERGING

G.1 PROBLEM SETUP

Linear quadratic control. A classical sub-setting of the policy setup setting described in Section 2,
and one whose optimal policy is recurrent, is that of linear quadratic Gaussian (LQG) control (Åström
& Murray, 2021). To respect the notational convention in control theory, we use (xt,yt,ut) to denote
the (state, observation, action) tuple of (st, ot, at) in Section 2. Let n be the dimension of the state,

29



Published as a conference paper at ICLR 2024

p the dimension of the observations, and m the dimension of the control input; that is, xt ∈ Rn,
yt ∈ Rp and ut ∈ Rm. The LQG problem is defined by a linear time-invariant (LTI) dynamical
system parameterized by dynamical matrices (A,B,C) of appropriate dimenion, evolving according
to the following dynamics:

xt+1 = Axt +But +wt

yt = Cxt + vt.
(G.1)

Above, for t ≥ 0, wt and vt are noise vectors drawn i.i.d. Gaussian from N (0,Σw) and N (0,Σv)
respectively. The initial state x0 is also drawn from a Gaussian distribution N (0,Σ0). The classical
LQR cost is a positive definite quadratic cost

c(x,u) := x⊤Qx+ u⊤Ru, Q ≻ 0,R ≻ 0.

The goal of LQG is to minimize the following long-term average cost over policies π :
(x1:t,u1:t−1)→ ut:

π⋆ ∈ argmin
π

J(π), J(π) := lim sup
T→∞

1

T
Eπ

[
T−1∑
t=0

x⊤
t Qxt + u⊤

t Rut

]
, (G.2)

where above Eπ denotes expectation under the closed loop dynamics induced by π and the dynamics
Eq. (G.1) In the special case with full state observability, we have C = I and Σv = 0, and the
problem is also referred to as linear quadratic regulator (LQR) control.

Policy parameterization. It is now classical that under standard controllability and observability
assumptions5, the optimal π⋆ in Eq. (G.2) is dynamic linear policy, i.e. the specialization of a
recurrent policy to this linear setting.

On finite horizons, the optimal control law roughly correspond takes the form ut = K⋆,tx̂t, where
the time-varying gain matrices K⋆,t solves a finite-time LQR problem, and where x̂t = E[xt | ht],
where ht is the observations (y1:t,u1:t−1) up to time t. Passing to the infinite horizon, the optimal
policy takes a form we now describe.

First, we compute an optimal control gain matrix K⋆ can be computed as

K⋆ = −(B⊤P⋆B+R)−1B⊤P⋆A (G.3)
where P⋆ solves the discrete algebraic Riccati equation:

P = A⊤PA+A⊤PB(B⊤PB+R)−1B⊤PA+Q. (G.4)
Similarly, we compute matrices L⋆ and Σ⋆ are solve Ricatti equations dual to those for which K⋆

and P⋆ are the solutions:
L⋆ = Σ⋆C

⊤(CΣ⋆C
⊤ +Σv)

−1

Σ⋆ = AΣ⋆A
⊤ −AΣ⋆C

⊤(CΣ⋆C
⊤ +Σv)

−1CΣ⋆A
⊤ +Σw.

(G.5)

Because of the similarities between the equations defining L⋆ and K⋆, L⋆ is usually referred to as
the Kalman gain. Under the optimal policy, the latter is used to define an optimal reccurent estimate
x̂t of the true state xt, obtained via the Kalman filter equation:

x̂t = Ax̂t−1 +But−1 + L⋆(yt −C(Ax̂t−1 +But−1)). (G.6)
The optimal control policy can then be expressed as

x̂t = Aθ⋆ x̂t−1 +Bθ⋆yt, ut = K⋆x̂t =: Cθ⋆ x̂t,

Aθ⋆ := (A+BK⋆ − L⋆C(A+BK⋆)), Bθ⋆ := L⋆,Cθ⋆ := K⋆
(G.7)

which itself is a linear dynamical system, with inputs (yt)t≥1, states (x̂t)t≥1, and outputs (ut)t≥1;
i.e. inputs of the control policy are outputs of the system, and vice versa.

This motivates considering a policy class of policies parametrized by θ := (Aθ,Bθ,Cθ) where
Aθ ∈ Rn×n (i.e., the same dimensions as A), Cθ has the same dimension as B⊤, and Bθ the same
dimensions as C⊤. Following the formula in Eq. (G.7):

x̂t = Aθx̂t−1 +Bθyt, ut = Cθx̂t, (G.8)
and we can regard θ⋆ := (Aθ⋆ ,Bθ⋆ ,Cθ⋆) as the optimum of such a set of parameters. Thus, in our
behavior cloning objective, we optimize over θ of the form (G.8). Again, we stressed can be viewed

5More generally, under stabilizability and detectability assumptions.
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as a special case as the RNN parameterization introduced in Section 2, with one hidden layer and
no activation functions. We let πθ denote the corresponding policy, i.e., J(πθ) is the cost associated
with executing the policy induced by θ.

Feedforward controller. In the special case where C = I and Σv = 0, yt = xt optimal controller
because the static (i.e., one-layer feedforward) control law ut = K⋆xt, where K⋆ is exactly as in
(G.3) above. This corresponds to the case of (Aθ,Bθ,Cθ) = (0, In,K⋆). Notice that only with
C = I (but Σv ̸= 0), feedforward policies are no longer optimal, because a better estimate x̂t of the
system state xt can be obtained by taking the history into account. Nevertheless, we can still view the
policy xt 7→ K⋆ut as an imperfect expert that one would like to imitate, as studied by Zhang et al.
(2022).

G.2 SYMMETRIES IN NONLINEAR CONTROL

It is both well-known and straightforward that linear control policies are invariant under invertible
linear transformations acting as follows

(Aθ,Bθ,Cθ) 7→ (TAθT
−1,TBθ,CθT

−1) : det(T) ̸= 0. (G.9)
As an example, the policies (Aθ,Bθ,Cθ) and (Aθ,−Bθ,−Cθ) are equivalent, maintaining an
internal state which are sign-flips of the other. In the special case of imitating a feedforward expert,
there are no symmetries. Indeed, if Kx = K′x for all x, then K = K′.

G.3 DETAILS FOR TRAINING IMITATION LEARNING

In this section, we describe the details for training the imitation learning policy, given in Algorithm 2
below. We begin with the training of dynamic policies. We assume access to a dataset of expert
trajectories τ (i). An important point is initialization. We initialize Aθ = 0 which ensures that
the dynamics defining x̂ are stable We also ensure that Bθ,Cθ have unit Gaussian entries. Note
that Aθ = 0 is not necessarily a critical point of the loss. Indeed, when because when Aθ = 0,
x̂t = Aθx̂t−1 + Bθyt = Bθyt, so x̂t does not vanish, that thus gradients with respect to Aθ

can be incorporated. Note that Line 10 in the update requires differentiating through the entire
dynamics. Notice that while LQG policy optimization is still unsolved, gradient descent for imitation
learning is dual to policy search over Kalman filters, and can be solved in a model-free manner
due to Umenberger et al. (2022). Feedforward imitation learning is achieved by direct least squares
Algorithm 3.

Algorithm 2 Dynamic Linear Policy Learning

1: Input: Expert dataset D = {τ (i) = (y
(i)
1 ,u

(i)
1 , ...,y

(i)
T−1,u

(i)
T−1,y

(i)
T ,u

(i)
T )}

2: Initialize Aθ ← 0, and Bθ,Cθ to have unit Gaussian entries
3: for iter = 1, ..., itermax do
4: Sample one trajectory τ = (y1,u1, ...,yT−1,uT−1,yT ,uT )
5: Initiate: x̂1 ← 0, ℓ← 0
6: for t ∈ {1, ..., T} do
7: Update step: x̂t ← Aθx̂t−1 +Bθyt

8: Compute control: ût ← Cθx̂t

9: Update loss: ℓ← ℓ+ ∥ut − ût∥22
10: Gradient Update: θ ← θ − η dℓ

dθ , where gradients are taking through the entire dynamics.
11: Return: θ = (Aθ,Bθ,Cθ)

Algorithm 3 Static Linear Policy Learning

1: Input: Expert dataset D = {(u(i),y(i))}
2: Solve K̂ ∈ argminK

∑
i ∥y(i) −Ku(i)∥2 by least squares

3: Return: K̂
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G.4 METHODS FOR LINEAR POLICY MERGING

In the linear setting, we propose two different types of policy merging algorithms to combine
the policies. Both algorithms alternate between updating each model’s transformation matrix
and the merged policy parameters, in order to avoid the problem caused by the nonconvexity of
the loss. The first algorithm leverages closed-form solutions such as linear assignments (see this
subsection, Appendix G.4.1), whereas the second algorithm is based on gradient-descent updates (see
Appendix G.4.2).

G.4.1 METHOD 1: PERMUTATION-BASED ALIGNMENT

Our first approach is to focus on finding permutation transformations to merge the models, despite that
for linear dynamic policies, they are invariant to general invertible transformation matrices. This type
of approach has also been used in the nonlinear setting, as we introduced in Section 3.1. Specifically,
we propose to minimize the sum of the distances of each individual model θi = (Aθi ,Bθi ,Cθi) to
the merged model θ̄ = (Aθ̄,Bθ̄,Cθ̄) through permutations {Pi}i∈[N ]

6:

min
θ̄,{Pi}N

i=1∈GN
perm

g
(
θ̄, {Pi}Ni=1

)
:=

N∑
i=1

∥∥Aθ̄ −P⊤
i AθiPi

∥∥2
F
+
∥∥Bθ̄ −P⊤

i Bθi

∥∥2
F
+∥Cθ̄ −CθiPi∥2F .

(G.10)
Despite the loss in Eq. (G.10) being jointly nonconvex in the variables (θ̄, {Pi}Ni=1), we notice that
the problem becomes tractable by fixing one set of the variables and solving for the other. Hence, we
propose a two-step alternating procedure to solve Eq. (G.10): the Merging step and the Aligning step.

Merging step. In the merging step, we fix {Pi}Ni=1 and optimize for θ̄. This is equivalent to
computing the mean of all individual transformed θi to estimate the merged model θ̄. Specifically,
we solve (

Ā, B̄, C̄
)
← argmin

θ̄
g
(
θ̄; {Pi}

)
, where

Ā =
1

N

N∑
i=1

A⊤
θiPiAθi , B̄ =

1

N

N∑
i=1

P⊤
i Bθi , C̄ =

1

N

N∑
i=1

CθiPi.

Note that this is essentially the solution to some least-square problem.

Aligning step. In the aligning step, for each local dataset i, we fix the Aθi and Ā, and compute
the permutation matrix Pi by solving a linear assignment problem to align the local model with the
merged model. To avoid the two-sided linear assignment problem that is not tractable, we reuse the
permutation matrix from the previous iteration P′

i for the current iteration, so that we can solve it as a
regular linear assignment problem (Bertsekas, 1998):

min
Pi∈Gperm

∥∥Aθ̄ − (P′
i)

⊤AθiPi

∥∥2
F
+

∥∥Bθ̄ −P⊤
i Bθi

∥∥2
F
+ ∥Cθ̄ −CθiPi∥2F (G.11)

which can be simplified to solving

max
Pi∈Gperm

⟨Pi,A
⊤
θiP

′
iAθ̄ +BθiB

⊤
θ̄ +C⊤

θiCθ̄⟩. (G.12)

We note that there are a finite number (N2 pair) of pairs (Pi,P
′
i), and the objective ⟨Pi, θ1Pi−1θ2

⊤⟩
is non-decreasing. Therefore this alternating procedure is guaranteed to converge.

6Since there is only one hidden layer, for notational convenience, we use Pi as the permutation matrix for
each local dataset i, instead of using P as in Section 2, which denotes a sequence of transformation matrices
across layers. With a slight abuse of notation, we still use Gperm to denote the set of such permutation matrices
and Pi ∈ Gperm. A similar convention applies to Pi ∈ Glin later to denote Pi belonging to the set of all
invertible matrices.
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G.4.2 METHOD 2: UNCONSTRAINED GRADIENT DESCENT

Our second approach for policy merging is to find a solution in the set of general invertible matrices,
through gradient descent for the objective as in Eq. (G.10) directly, i.e., now we allow Pi ∈ Glin:

min
θ̄,{Pi}N

i=1∈GL(n)N
g
(
θ̄, {Pi}Ni=1

)
:=

N∑
i=1

∥∥Aθ̄ −P−1
i AθiPi

∥∥2
F
+
∥∥Cθ̄ −P−1

i Bθi

∥∥2
F
+∥Cθ̄ −AθiPi∥2F .

(G.13)
We consider a simpler loss, which is obtained by right-multiplying the expression inside the first and
second terms by Pi:

min
θ̄,{Pi}N

i=1∈GL(n)N
g
(
θ̄, {Pi}Ni=1

)
:=

N∑
i=1

∥PiAθ̄ −AθiPi∥2F+∥PiBθ̄ −Bθi∥
2
F+∥Cθ̄ −CθiPi∥2F .

(G.14)
Note that the losses (G.13) and (G.14) are equivalent in spirit in the sense that, if there exists matrices
{Pi} which perfectly align all θi, then those same matrices are the global optima for both expressions.
The second expression (G.14) has the advantage of admitting simpler gradients, and is indvidually
convex with respect to either {Pi} or (Aθ̄,Bθ̄,Cθ̄), holding the other fixed. Therefore, for N
models, we run alternating gradient descent to update those parameters to update the averaged model
parameters θ̄ and the transformation matrices P = (P1, · · · ,PN ).
Remark G.1 (Possibility of Degenerate Solutions). Note that Eq. (G.14), as long as Bθi are non-zero,
the degenerate solution with Pi = 0 will not be optimal even in Eq. (G.14). More generally, we
find that gradient descent on Eq. (G.14) works well in practice. An alternate approach would be
to alternate gradient updates on {Pi} with exactly solving for the optimal θ̄ = (Aθ̄,Bθ̄,Cθ̄) in
Eq. (G.14) (which is a well-conditioned least squares problem whenever the singular values of each
Pi are bounded away from zero). In our experiments, we find this is not necessary.

G.5 EXPERIMENT SETUP DETAILS

We set up a linear system in the experiment with state dimension n = 4, input dimension m = 2, and

To model different tasks, we choose R = I2,Q = α(h)I4 with α(h) ∈ log space(−2, 2, H + 1) and
H = 9.

We consider such 10 different system realizations, and depending on whether it is partially observable
(LQG case) or fully observable (LQR case), we choose the observation matrix C as a randomized
matrix (but fixed for each task) by sample each entries from a unit gaussian or C = I, respectively.
For the former, the entries in C ∈ R50×4 are independently sampled from a Gaussian distribution.
We run 10 trials for each experiment. The rollout horizon is 100. The system dynamics follow
from that in Hong et al. (2021), and the setup of R,Q follows from that in Zhang et al. (2022) on
multi-task imitation learning in linear control. We generate expert data with the optimal LQG/LQR
controller, and train the policies with imitation learning. Policy performance is evaluated in terms of
the closed-loop rollout cost. Finally, in both the settings of learning static and dynamic policies, the
parameterized controllers are trained with a standard gradient descent algorithm.

For the last experiment, we set up the following systems with 10 systems where half of them are
positive and half of them are negative, following the disconnected component constructions in the
next section. We show that under disconnected component settings, we need general invertible
matrices to successfully merge different linear policies.

Aunstab =

[
1.1 0.03 −0.02
0.01 0.47 4.7
0.02 −0.06 0.40

]
, B =

 0.01 0.99
−3.44 1.66
−0.83 0.44
−0.47 0.25

 .

G.6 RESULTS AND DISCUSSIONS

G.6.1 BASIC EXPERIMENTAL RESULTS

As shown in Figure 13, with static feedback policies (i.e., “feedforward” policies), average can
sometimes match the performance of policies that are trained with shared data (multi-task) or task-
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specific data (task-specific). We then compare the performance in cases with dynamic policies (i.e.,
“recurrent” policies), and observe that the gradient-based method can outperform the alternation-based
method that searches in only the space of permutation matrices. These two methods, by accounting
for the similarity invariance in merging, outperform the naive averaging method (average). They
also outperform single-task, where policies are only trained with local datasets, since more data has
been (implicitly) used by merging multiple policies. More interestingly, when there are disconnected
components in the landscape (as constructed in odd-dimensional systems, see more details in the next
subsections), we observe that only searching for permutation will not mitigate the issues.

G.6.2 GRADIENT-BASED APPROACH V.S. LQG LANDSCAPE

In this subsection, we reconcile the effectiveness of gradient-based policy alignment with the topo-
logical properties of the the LQG cost landscape. First, recall that we parameterize controllers by
π = (Aθ,Bθ,Cθ), where Aθ maintains a latent state x̂ of the same dimension as the system state.
Let Cn denote the set of policies π = (Aθ,Bθ,Cθ) such that the cost J(π) is finite, or equivalently,
the set of controllers which stabilize the dynamics (Zhou et al., 1996). Zheng et al. (2021) show that
this set is either (a) fully connected, or (b) disconnected, but has only two connected components
C(1)n , C(2)n . Case (a) occurs if either

(i) the open loop system is stable, i.e. the spectral radius ρ(A) < 1, that is i.e. maximum
eigenvalue magnitude) of the system dynamic matrix is strictly less than 1. This is equivalent
to saying that JT (0) is finite for the zero controller (Aθ,Bθ,Cθ) = (0,0,0).

(ii) there exists a policy π with rank(Aθ) < n such that π ∈ Cn.

And, in case (b), Zheng et al. (2021, Theorem 3.2) shows that any two connected components can be
realized by any mapping of the form

(Aθ,Bθ,Cθ) 7→ (TAθT
−1,TBθ,CθT

−1) : det(T) < 0. (G.15)
For example, in odd dimensions, the matrix T = −I has det(T) = −1. Thus, we find a simple
corollary:

Proposition G.1. Let the state dimension n be odd. Then, if Cn is disconnected and θ =
(Aθ,Bθ,Cθ) is stabilizing, then the policies (Aθ,Bθ,Cθ) and (Aθ,−Bθ,−Cθ) lie in different
connected components of Cn. More generally, consider any block diagonalization of a[

A
(1,1)
θ A

(1,2)
θ

A
(2,1)
θ A

(2,2)
θ

]
,

[
B

(1,1)
θ

B
(2,1)
θ

]
,
[
C

(1,1)
θ C

(1,2)
θ

]
, (G.16)

where the block dimensions are chose such that “1” dimension has odd dimension. Then, if the
above is stabilizing and Cn is disconnected, then the following equivalent controller lies in the other
connected component of Cn:[

A
(1,1)
θ −A(1,2)

θ

−A(2,1)
θ A

(2,2)
θ

]
,

[
−B(1,1)

θ

B
(2,1)
θ

]
,
[
−C(1,1)

θ C
(1,2)
θ

]
. (G.17)

As a second example, note that when T is an “odd” permutation, det(T) = −1, placing the
transformed parameters into separate components.

G.6.3 INSUFFICIENCY OF NAIVE AND PERMUTATION BASED MERGING

Importantly, path connectedness does not mean connectedness by linear paths, the latter being pre-
cisely the definition of convexity. Indeed, consider the equivalence transformation (Aθ,Bθ,Cθ) 7→
(Aθ,−Bθ,−Cθ). The mid point between these controllers if (Aθ,0,0) which, one can check, is
equivalent to the zero controller (0,0,0). Not only is the zero controller essentially never optimal,
if A is not stable, then this controller is not stabilizing. Similarly, permutations can be insufficient
to merge as well: indeed, permutation based mergin coincides with naive merging in dimension
n = 1 one, which the above shows will fail if A is unstable (i.e., in dimension one, |A| ≥ 1). These
examples highlight the important of aligning using all invertible matrices, and not simply permutation
matrices.
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G.6.4 AVOIDING PATH-DISCONNECTNESS OF STABILIZING CONTROLLERS

In addition to the insufficiency of linear and permutation-based merging, it may seem that the
possible path disconnectedness of the set Cn may pose a challenge to weight merging. However,
are experiments do not seem to suggest that this is an issue for the unconstrained gradient descent
method proposed in Appendix G.4.2. The reason for this is our choice of merging cost in (G.14). This
cost penalizes only differences between the controller parameters. It does not, as in FLEET-MERGE
(Algorithm 1), use a cost depending on the policy error. Therefore, even if one of the iterates lies
outside of the stabilizing set Cn (and therefore has infinitely large infinite-horizon LQR cost J), we
can still compute gradients with respect to the parameter error (G.14). In other words, merging in
parameter loss allows us to pass through disconnectedness in the landscape of control cost J .

This can be seen in the following simplified variant of (G.14) for the merging of two LQG policies
θ1 = (A1,B1,C1) and θ2 = (A2,B2,C2). Define

L(P) = ∥PA1 −A2P∥2F + ∥B1P−B2∥2F + ∥C1 −C2P∥2F. (G.18)
Then note that this loss is convex in P. Under natural conditions, it is in fact strongly convex,
and thus admits a unique global minimizer P. If θ1 and θ2 are equivalent, i.e., (A2,B2,C2) =
(TA1T

−1,TB1,TC1) for some transformation T, then this unique minimizer must be P = T, as
this has zero loss in (G.18). This is true regardless of whether or not θ1, θ2 lie in separate connected
components of Cn. Hence, we see how merging based on parameters alone circumvents possible loss
disconnectedness.

35


