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Abstract

The current state-of-the-art single-cell pre-trained models are greatly inspired by1

the success of large language models. They trained transformers by treating genes2

as tokens and cells as sentences. However, three fundamental differences between3

single-cell data and natural language data are overlooked: (1) scRNA-seq data are4

presented as bag-of-genes instead of sequences of RNAs; (2) Cell-cell relations5

are more intricate and important than inter-sentence relations; and (3) The quantity6

of single-cell data is considerably inferior to text data, and they are very noisy.7

In light of these characteristics, we propose a new pre-trained model CellPLM,8

which takes cells as tokens and tissues as sentences. In addition, we leverage9

spatially-resolved transcriptomic data in pre-training to facilitate learning cell-cell10

relationships and introduce a Gaussian mixture prior distribution as an additional11

inductive bias to overcome data limitation. CellPLM is the first single-cell pre-12

trained transformer that encodes cell-cell relations and it achieves state-of-the-art13

performance in various downstream tasks.14

1 Introduction15

Next-generation sequencing technologies such as single-cell RNA sequencing (scRNA-seq [1]) have16

produced vast amounts of data, sparking a surge of interest in developing large-scale pre-trained17

models for single-cell analysis [2, 3, 4, 5]. These models seek to capture underlying structures and18

patterns from unlabeled scRNA-seq data, and can be fine-tuned on specific downstream datasets19

to deliver accurate predictions and nuanced insights into cellular mechanisms. Particularly, these20

pre-trained models have been inspired by the success of large language models, such as BERT and21

GPT [6, 7], and treat genes as words (tokens) and cells as sentences to train transformers [8]. However,22

we argue that these approaches may have limitations due to the fundamental differences between23

single-cell data and natural language data, which have been largely overlooked in existing literature:24

First, unlike sentences, the scRNA-seq data utilized by existing pre-trained models are not sequential.25

Before the training stage, RNA sequences have been identified as functional units, i.e., genes. Instead26

of original sequences, data is denoted as a cell-by-gene count matrix that measures the abundance27

of individual genes within each cell. This is analogous to bag-of-words model in natural languages,28

where the set of genes is fixed, and there is no sequential relationship among them.29

Second, the relationship between cells is remarkably more intricate and important than that of30

sentences, since cell-cell interactions play an essential role in determining cell states and cell31

development [9]. Additionally, within tissues, there are numerous cells from the same or similar cell32

lineage, which grants them similar gene expression profile and hence provides valuable supplementary33

information for denoising and identifying cell states [10, 11, 12]. As a result, many recent methods [13,34

14, 15, 16] have constructed cell-cell graphs to advance representation learning for single-cell data.35
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Figure 1: An illustration of the difference in the language models between existing single-cell
pre-trained models and CellPLM. Existing pre-trained models only consider conditional probability
between gene expressions within the same cell, while in CellPLM, gene expression distribution is
also conditioned on other cells. See details in Section 3.

Such evidence demonstrates the importance of cell-cell relationship, which is usually neglected by36

existing pre-trained models.37

Third, the quantity and quality of single-cell datasets are significantly lower than those of natural38

language data. For comparison, the high-quality filtered English dataset extracted from Common39

Crawl corpora [17] consists of 32 billion sentences, whereas the largest collection of single-cell40

datasets, namely the Human Cell Atlas [18], includes less than 50 million cells. To make things41

worse, single-cell data often suffer from technical artifacts and dropout events [19, 20], as well as42

significant batch effects between sequencing platforms and experiments [21, 22].43

The aforementioned differences introduce distinct challenges which call for new pre-training strategies44

tailored for single-cell data. To bridge this gap, we propose a novel single-Cell Pre-trained Language45

Model (CellPLM), which addresses these challenges from following perspective: First, As shown46

in Figure 1, CellPLM proposes a cell language model to account for cell-cell relations. The cell47

embeddings are initialized by aggregating gene embeddings since gene expressions are bag-of-word48

features. Second, CellPLM leverages a new type of data, spatially-resolved transcriptomic (SRT)49

data, to gain an additional reference for uncovering cell-cell interactions. Compared to scRNA-seq50

data, SRT data provide additional positional information for cells. Both types of data are jointly51

modeled by transformers. Third, CellPLM introduces inductive bias to overcome the limitation of52

data quantity and quality by utilizing a Gaussian mixture model as the prior distribution in the latent53

space. This design can lead to smoother and better cell latent representations [23, 15, 24]. To the best54

of our knowledge, the proposed CellPLM is the first pre-trained transformer framework that encodes55

inter-cell relations, leverages spatially-resolved transcriptomic data, and adopts a reasonable prior56

distribution. It is evident from our experiments that CellPLM demonstrates superior performance in57

various downstream tasks.58

2 Single-cell Pre-trained Models59

Deep learning methods for single-cell data have garnered significant research interest in recent60

years [11]. However, due to the distinct model architectures, the knowledge learned by models is61

not transferable across tasks. To address this issue, there is an emerging effort [2, 3, 4, 5] from the62

research community to explore the potential of a foundation model that first extracts latent knowledge63

from unlabeled scRNA-seq data and subsequently generalizes this knowledge to a variety of tasks.64

The first such pre-trained model for single-cell data, scBERT [2], takes genes as tokens and leverages65

an efficient transformer [25] to encode over 16,000 gene tokens for each cell. By randomly masking a66

fraction of non-zero gene expression values and predicting them based on the remaining data, scBERT67

effectively learns intricate relationships between genes, leading to improved cellular representation.68

Later, xTrimoGene [3] made two key enhancements to scBERT: pruning zero-expressed genes and69

improving expression binning strategies by an auto-discretization strategy. These modifications70

notably enhance scalability and feature resolutions. Another latest preprint, scGPT [5], introduces a71

variant of masked language modeling that mimics the auto-regressive generation in natural language72

processing, where the masked genes are iteratively predicted according to model’s confidence. Unlike73

the aforementioned models, tGPT [4] completely abandons masked language modeling. It constructs74

sequences of genes based on the ranking of gene expressions within each cell, and the model is trained75

to autoregressively predict the name of the next gene. Despite discarding the precise expressions,76
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this approach demonstrates enhanced robustness against batch effects and can be generalized to bulk77

RNA data.78

The aforementioned models all regard genes as tokens and focus solely on modeling gene relationships79

within individual cells, neglecting the intercellular information in an organism. In contrast, CellPLM80

overcomes this limitation by introducing a cell language model that extends beyond single cells.81

Furthermore, by leveraging the spatial information of cells acquired from SRT data, along with a82

prior Gaussian mixture distribution, the model achieves unparalleled performance on a range of83

downstream tasks.84

3 Cell Language Model Beyond Single Cells85

In this section, we introduce the concept of the cell language models and detailed implementation86

of the proposed CellPLM. As illustrated in Figure 2, CellPLM consists of four modules: a gene87

expression embedder, an encoder, latent space, and a decoder, which we will demonstrate in Sec-88

tion 3.2. At a higher level, there are two stages in our framework: pre-training and fine-tuning. During89

pre-training, the model is trained on unlabeled data with a masked language modeling objective. For90

fine-tuning, the model is first initialized with the pre-trained parameters, and then all of the parameters91

are fine-tuned using data and labels (if available) from the downstream datasets. We demonstrate the92

pre-training and fine-tuning framework in Section 3.3 and 3.3, respectively.93

3.1 Cell Language Model94

Due to the recent achievements of large language models [7], several studies [2, 3, 4, 5] have drawn95

inspiration from natural language processing in an attempt to establish a foundational model for96

single-cell analysis. These studies consider genes as tokens and train transformers on them, aiming to97

model the conditional probability between gene expressions. Concretely, previous pre-trained models98

are trained on scRNA-seq data, which are stored in the format of a cell-by-gene matrix X ∈ RN×k,99

where N is the number of cells, and k is the number of distinct gene types. The value of Xi,j denotes100

the count of gene j observed in cell i, also known as gene expression. The pre-training goal of these101

models is to estimate a conditional probability distribution, which can be formulated as:102

p
(
Xi,j |{Xi,o}o∈O(i)

)
, j ∈ U(i), (1)

where i refers to the i-th cell and O(i) is the set of observed genes in cell i whose expressions are103

known; U(i) denotes the set of unobserved genes in cell i whose expression will be predicted by the104

model, typically referring as masked genes. If we consider genes as words, this objective is analogous105

to the language model in computational linguistics [26], and thus can be named a “gene language106

model”. In this way, the model is trained to capture the intrinsic relations between genes, which can107

provide prior knowledge for downstream analysis.108

However, in Eq. (1), the distribution of unobserved gene expressions only depends on genes within109

the same cell, while disregarding the information of other cells within the same tissue, which does not110

align with the inherent nature of biology. Therefore, in CellPLM, we provide a different perspective111

to model scRNA-seq data by treating cells as tokens:112

p
(
Xi,j |{Xu,v}(u,v)∈MC

)
, (i, j) ∈ M, (2)

where we denote M as the set of masked gene expressions in X, and MC is the complement, i.e., the113

set of unmasked expressions. The distribution of a masked entry Xi,j depends on both the observed114

genes in cell i and genes from other cells that are not masked. We hereby name it as “cell language115

model”, which models the distribution of cellular features beyond single cells. By estimating the116

conditional probability distribution in Eq. (2), CellPLM is trained to capture the intricate relationships117

that exist between not only genes but also cells.118

From a biology perspective, there are particularly two types of inter-cell relations that can be beneficial119

to CellPLM. First, within tissues, there are numerous cells from the same or similar cell lineage, which120

mutually provide valuable supplementary information for denoising and identifying cell states [10,121

11, 12]. The other type of relations, cell-cell interactions (a.k.a, cell-cell communications), plays122

an essential role in determining cell development and cell states [9]. Existing analysis methods [27,123

28, 29] have already explored the cell-cell communications on the cell type or cluster levels, while124
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Figure 2: An illustration of the pre-training framework of CellPLM. CellPLM is pre-trained with
cell-level masked language modeling task. The model consists of four modules: a gene expression
embedder, a transformer encoder, a gaussian mixiture latent space, and a batch-aware decoder.

CellPLM aims to capture the intricate “language” of cell-cell communications between single cells.125

Overall, CellPLM presents a novel cell language model that aligns well with biological principles126

and holds great potentials to enhance downstream tasks by extracting valuable cellular knowledge127

from unlabeled single-cell data.128

3.2 Model Architecture129

Gene Expression Embedder. The first module in CellPLM model is a gene expression embedder,130

which projects input gene expressions into a low-dimensional cellular feature space. In light of the131

nature that scRNA-seq is profiled as bag-of-genes features, CellPLM learns an embedding vector for132

each type of gene, and then aggregates these gene embeddings according to their expression levels133

in each cell. Formally speaking, for gene j ∈ {1, ..., k}, a learnable embedding vector hj ∈ Rd134

is assigned, where d is the hidden dimension of the encoder layers. hj can be either randomly135

initialized or initialized by prior knowledge, e.g., gene2vec [30]. The gene expression embedding136

matrix E ∈ RN×d is then generated by aggregating gene embeddings according to their expressions:137

Ei =

k∑
j=1

Xi,jhj , (3)

where Ei is the i-th row vector of E, corresponding to the gene expression embedding for cell i.138

Note that the gene expression matrix X is a sparse matrix since the zero-rate of scRNA-seq can be up139

to 90% [31]. In addition, unmeasured genes (per sequencing platforms) also lead to zero entries in X.140

Therefore, when implementing Eq. (3), CellPLM leverages a sparse linear layer instead of a regular141

fully connected layer. This significantly improves memory and computational efficiency.142

Transformer Encoder. The proposed CellPLM follows an encoder-decoder structure, where the143

encoder is based on transformers [8]. The transformer model was originally developed for processing144

textual data. It leverages multi-head self-attention mechanisms to capture relationships between145

input tokens and incorporates positional encoding to represent the token positions. In CellPLM,146

by considering cells as tokens, we can readily apply the transformer model to capture intercellular147

relationships. When applying the transformer, we consider the embedding at l-th layer H(l) ∈ RN×d148

as a set of N tokens, where N is the total number of cells in a tissue sample, and d is the hidden149

dimension. By stacking L transformer layers, CellPLM gradually encodes cellular and inter-cellular150
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information into cell embeddings, formulated as:151

H(l) = TransformerLayer(l)(H(l−1)). (4)

In practice, N can scale up to ten thousands, which is out of the capacity of an ordinary transformer.152

Therefore, we adopt an efficient variant of transformers with linear complexity (i.e., Performer [25])153

for the implementation of transformer layers.154

To further inform inter-cellular relations, we incorporate spatial positional information of individual155

cells from a novel type of data, spatially-resolved transcriptomic (SRT) data. Specifically, SRT data156

consist of two parts. One is a gene expression matrix X ∈ RN×k same as scRNA-seq data, and157

the other part is a 2D coordinate matrix C ∈ RN×2. The coordinates denote the center position of158

each cell within a field-of-view (FOV) where the cells are located (an illustration can be found in159

Appendix A). This feature helps locate the microenvironment surrounding each cell, providing an160

additional reference for identifying cell lineage and cell communications, which were introduced in161

Section 3.1. To encode this extra positional information, we leverage the idea of positional encodings162

(PE) in transformers. Since sinusoidal PE achieves competitive performance and has lower complexity163

on SRT data [16], we generate a 2D sinusoid PE for cells in SRT data, denoted as P ∈ RN×d, where164

Pi is the d dimensional PE vector for cell i (see details in Appendix B). For scRNA-seq data,165

a randomly initialized d-dimensional vector p′ is shared among all cells, which also results in a166

placeholder PE matrix P. The initial cell embeddings are now formulated as H(0) = E+P, where167

E is the expression embeddings from Eq. (3) and P is the positional embeddings.168

Gaussian Mixture Latent Space. One of the highlights of CellPLM is the design of probabilistic169

latent space. Prior studies have employed variational autoencoders for single-cell analysis, which170

typically assumes an isotropic Gaussian distribution as the prior distribution of the latent space [32,171

33]. While this approach can effectively remove batch effects, it may also result in a loss of172

information regarding the underlying biological structure of cell groups. To address this limitation,173

CellPLM incorporates the concept of Gaussian mixture variational encoder [34, 35, 15], which utilizes174

a mixture of Gaussians to capture the information of distinct functional groups of cells. Formally, for175

i ∈ {1, . . . , N}, the generative model of cell i can be formulated as:176

p(yi;π) = Multinomial(π),

p (zi | yi) =

L∏
i=1

N
(
µyi,l

,diag
(
σ2

yi,l

))
,

pθdec (xi | zi) = N
(
µzi

, σ2I
)
,

(5)

where yi ∈ RL represents the one-hot latent cluster variable and π is its prior; yi,l denotes the177

l-th entry of yi; µyl
∈ Rdz and σ2

yl
∈ Rdz×dz denote the mean and variance of the l-th Gaussian178

component, respectively; and µzi ∈ Rk and σ2I ∈ Rk×k denote the posterior mean and variance of179

expression xi, respectively. In this work, we assume that σ2 is a constant and the posterior mean is180

parameterized by µzi = fdec(zi; θdec).181

To estimate the posterior of zi and yi, we parameterize the inference process with neural networks.182

Specifically, we assume that the cluster variables y are independent of the expression xi condition on183

latent variables zi. The inference model can be formulated as:184

qηµ,ησ
(zi | xi) = N

(
µ̂i,diag

(
σ̂2

i

))
,

qηπ (yi | zi) = Multinomial(π̂i),
(6)

where the estimations are given by185

hi = fenc(xi; ηenc),

µ̂i = fµ (hi; ηµ) ,

log
(
σ̂2

i

)
= fσ (hi; ησ) ,

π̂i = fπ (zi; ηπ) .

(7)

Here fenc(·; ηenc) represents the transformer encoder, fµ(·; ηµ), fσ(·; ησ) and fπ(·; ηπ) are neural186

networks. A log-evidence lower bound (ELBO) can be derived from this generative model for187

the optimization purpose [34]. However, as mentioned in Section 3.1, our pre-training framework188
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incorporates a cell language model, where parts of the input gene expression matrix X are masked.189

This will result in a modified objective. To formalize the problem, recall that previously we defined190

the masked set as M. On top of that, we denote M ∈ RN×k as a mask indicator matrix such that191

Mi,j =

{
1 if (i, j) ̸∈ M,
0 if (i, j) ∈ M.

Let X̃ ∈ RN×k be the masked gene expression matrix given by the element-wise multiplication192

X̃ = M⊙X. The objective of cell language model with Gaussian mixture prior, i.e., a denoising193

variational lower bound [36], can be formulated as:194

LCellLM =Eq(Z,Y|X̃)Ep(X̃|X)

[
ln

pθ(X,Z,Y)

qη(Z,Y | X̃)

]
(8)

=Eqηenc (Z|X̃)Ep(X̃|X) [log pθdec(X | Z)]︸ ︷︷ ︸
Lrecon

−Eqηπ (Y|Z)

[
KL

(
qηenc

(Z | X̃)∥p(Z | Y)
)]

︸ ︷︷ ︸
Lcond

− Eqηenc (Z|X̃) [KL (qηπ (Y | Z)∥p(Y))]︸ ︷︷ ︸
LY

.

Similar to previous works [34], we refer to the three terms in Eq. (8) as reconstruction term Lrecon,195

conditional prior term Lcond and Y prior term LY. The approximation and estimation of the denoising196

variational lower bound are specified in Section 3.3.197

Batch-aware Decoder. The decoder in CellPLM operates by decoding each cell individually, given198

that the tissue context has already been encoded into the latent space by the encoder. The decoder’s199

purpose is twofold: to reconstruct masked features and to help remove batch effects from the latent200

space. In order to accomplish this goal, the decoder stacks several feed-forward layers (FFLayers)201

atop the input of latent variables z, and a batch embedding, denoted as b ∈ Rdz . Specifically, for202

each cell, the batch embedding is loaded from a learnable lookup table as b = LookUp(b), where b203

is the label indicating the specific tissue sample (or FOV for SRT data) from which the cell has been204

drawn. By feeding the batch label to the decoder, a batch-effect-free latent space can be achieved, as205

empirically evidenced in scVI [32]. The decoder can thus be formulated as:206

h(0) = z+ b, h(l) = FFLayer(l)(h(l−1)),

where l indicates the number of the layer, h(l) is the hidden vector of layer l ∈ (1..L − 1), and L207

is the total number of fully connected layers. The dimension of the last layer is different from the208

previous layers because the last layer is considered as an output layer, with hL ∈ Rk, where k is the209

size of gene sets in the gene expression matrix X ∈ RN×k.210

3.3 Model Pre-training & Fine-tuning211

Pre-training. The pre-training of CellPLM follows a cell language modeling objective, as demon-212

strated in Eq. (8). Specifically, given a batch of cell tokens as input, we first decide which cells213

should be masked. Instead of completely masking these cell tokens, we selectively mask a certain214

percentage of the gene expressions within them. This allows the model to recover underlying cor-215

relations between cells, as proposed in a recent preprint, SpaFormer [16]. A significant concern216

in CellPLM is the disparity in the number of genes measured by different sequencing platforms.217

Notably, the gap between scRNA-seq and SRT can be substantial, ranging from 1,000 to 30,000.218

Taking this into consideration, CellPLM only masks the expression of genes that are measured in219

each dataset, implying that the reconstruction loss is calculated exclusively on these measured genes.220

When optimizing the denoising variational lower bound in Eq. (8), we apply reparameterization trick221

and Monte Calo sampling, as proposed in VAE [37]. Furthermore, under the independent Gaussian222

assumption, we reformulate and estimate the reconstruction term Lrecon in Eq. (8) with a mean223

squared error (MSE). Therefore, the pre-training loss function of CellPLM can be formulated as:224

LMSE =
∥∥∥M⊙

(
H(L) − (1−M)⊙X

)∥∥∥2
F
,Lpretrain = LMSE + Lcond + LY, (9)

where ⊙ signifies element-wise multiplication, H(L) ∈ RN×k is the output from the decoder, X and225

M are the ground-truth gene expression matrix and the mask indicator matrix respectively, as defined226

above. Lcond and LY are derived from Eq. (8).227
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Task-specific Fine-tuning. When fine-tuning CellPLM, the model is first initialized with the pre-228

trained parameters. In downstream tasks that require gene expressions as output, the pre-trained229

decoder is fine-tuned on the downstream datasets. Otherwise, the decoder will be replaced with230

a task-specific head. The entire model is then fine-tuned with task-specific loss functions, which231

helps align the general knowledge of the model to the specific downstream task. For example, in the232

spatial transcriptomic imputation task, the model is fine-tuned on a query SRT dataset and a reference233

scRNA-seq dataset, where two datasets are sampled from the same type of tissue. In this case, the234

loss function remains the same as Eq.(9). After fine-tuned on these datasets, CellPLM fit the data235

distribution of the target tissue and can readily perform imputation. The design and implementation236

of heads and loss functions for some downstream tasks are elucidated in Appendix E.237

4 Experiment238

CellPLM is first pre-trained on more than 9 Million scRNA-seq cells and 2 Million SRT cells, with239

the masked language modeling objective demonstrated in Section 3.3. To explore an appropriate240

model size, we created three different sizes of pre-trained models, with 5M, 10M and 40M parameters,241

respectively. All experiments were finished within 24 hours on a GPU server with 8 Nvidia Tesla242

v100 16GB cards. The hyperparameters, datasets, and reproduciability information for pre-trained243

models are detailed in Appendix D. Our preliminary results (See Appendix D) show that the 10M244

model achieved the best parameter efficiency. Therefore, in the downstream evaluation, we take245

CellPLM 10M as the base model without special mentioning.246

In the following sections, we evaluate the performance of CellPLM 10M on various downstream247

tasks, including scRNA-seq denoising, spatial transctiptomic imputation, and perturbation prediction.248

With the selected tasks, we aim to answer the following research questions:249

RQ1: Does CellPLM present extraordinary denoising power compared to non-pretrained models?250

RQ2: Does CellPLM succeed in jointly modeling scRNA-seq and SRT data, thus benefiting from251

both the spatial information of SRT and the abundant transcriptomic profiles of scRNA-seq?252

RQ3: Although being trained on a cell language model beyond single cells, does CellPLM also253

perform well on gene-level task?254

4.1 Task 1: scRNA-seq Denoising255

Given that single-cell RNA-Seq protocols capture only a subset of the mRNA molecules within256

individual cells, the resulting measurements exhibit substantial technical noise [38]. Therefore, we257

consider denoising power as the most desired and essential power for a single-cell foundation model.258

The goal of the denoising task is to estimate the true expression level of each gene in each cell from259

a noisy observation. To assess the denoising efficacy of CellPLM, we conduct an evaluation on260

two single-cell RNA-Seq datasets, i.e., PBMC 5K and Jurkat from 10x Genomics [39]. Following261

the setting of scGNN [13] and scGNN2.0 [40], we apply a random flipping process to a subset262

of non-zero entries, transforming them into zeros in order to simulate the effects of dropout. In263

order to establish a performance benchmark for CellPLM, we conduct a comparative analysis with264

contemporary approaches, including DeepImpute [41], scGNN2.0 [40], SAVER [42], DCA [43],265

MAGIC [44] and scImpute [45], which are considered state-of-the-art methods in the field. We266

evaluate scRNA-seq denoising performance based on two popular regression metrics, i.e., Root267

Mean Square Error (RMSE) and Mean Absolute Error (MAE), to measure the degree of similarity268

between predicted gene expression and the actual ones. More details pertaining to these methods, the269

fine-tuning of CellPLM, and the evaluation metrics under the task of scRNA-seq denoising can be270

found in Appendix E.1.271

It is evident that the fine-tuned CellPLM consistently exhibits superior performance compared to272

all baseline models on both datasets. Note that even under the zero-shot setting, CellPLM shows273

satisfactory results that surpass five baselines on the Jurkat dataset. These observations support that274

our proposed CellPLM outperforms the state-of-the-art denoising techniques, which answers the275

question of RQ1. This superiority can be attributed to the knowledge it acquires from unsupervised276

pre-training.277
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Table 1: (Task 1) The scRNA-seq denoising performance on the PBMC 5K and Jurkat datasets.
PBMC 5K Jurkat

Model RMSE (↓) MAE (↓) RMSE (↓) MAE (↓)

DeepImpute 1.168 ± 0.018 1.051 ± 0.025 0.786 ± 0.006 0.557 ± 0.003
scGNN 2.0 1.376 ± 0.015 1.237 ± 0.019 1.001 ± 0.016 0.917 ± 0.021
GraphSCI 1.068 ± 0.007 0.924 ± 0.009 0.659 ± 0.030 0.481 ± 0.024
SAVER 0.884 ± 0.001 0.748 ± 0.001 0.569 ± 0.001 0.472 ± 0.001

DCA 0.775 ± 0.002 0.621 ± 0.002 0.423 ± 0.001 0.351 ± 0.001
MAGIC 0.793 ± 0.001 0.639 ± 0.001 0.424 ± 0.001 0.351 ± 0.002
scImpute 1.170 ± 0.003 1.002 ± 0.001 0.624 ± 0.002 0.529 ± 0.001

CellPLM (Zero-shot) 0.920 0.754 0.543 0.448
CellPLM (Fine-tuned) 0.657 ± 0.002 0.485 ± 0.001 0.421 ± 0.002 0.336 ± 0.001

4.2 Task 2: Spatial Transcriptomic Imputation278

Spatially resolved transcriptomics has revolutionized single-cell analysis by incorporating physical279

locations along with gene expression, leading to exciting breakthroughs. However, due to the highly280

detailed spatial resolution, spatial transcriptomic data at the cellular level often encounter substantial281

missing values, which pose challenges in data analysis. To assess the potential benefits of the282

pre-trained model in the given task, we evaluate CellPLM on two spatial transcriptomic datasets283

at single-cell resolution, i.e., Lung2 and Liver2 [46]. Following the setting of baselines including284

SpaGE [47], stPlus [48], gimVI [49] and Tangram [50], we impute the unseen genes of the SRT285

dataset utilizing a scRNA-seq dataset as reference. We identify the testing gene set in SRT data286

by stratified sampling according to gene sparsity [51] and holdout those genes in fine-tuning stage.287

To evaluate the accuracy of spatial transcriptomic imputation, we employ Root Mean Square Error288

(RMSE), Pearson correlation coefficient (Corr), and cosine similarity (Cosine) to measure the degree289

of similarity between the predicted spatial gene expressions and the corresponding ground-truth290

expression values.291

Remarkably, the fine-tuned CellPLM takes the lead in all three metrics on both datasets. In addition,292

the impressive zero-shot performance indicates that CellPLM can leverage pre-training information293

to impute the SRT data, effectively addressing the research question RQ2. For additional information294

regarding baselines, the fine-tuning of the CellPLM, and the evaluation metrics under this task, please295

refer to Appendix E.2.296

Table 2: (Task 2) The results of spatial tanscriptomic imputation on the Lung2 and Liver2 datasets.
Lung2 Liver2

Model RMSE (↓) Corr (↑) Cosine (↑) RMSE (↓) Corr (↑) Cosine (↑)

SpaGE 0.617 ± 0.032 0.227 ± 0.011 0.352 ± 0.015 0.656 ± 0.012 0.253 ± 0.014 0.376 ± 0.005
stPlus 0.678 ± 0.038 0.177 ± 0.021 0.360 ± 0.014 0.801 ± 0.044 0.224 ± 0.010 0.399 ± 0.012
gimVI 1.230 ± 0.081 0.130 ± 0.010 0.325 ± 0.010 1.596 ± 0.551 0.163 ± 0.019 0.338 ± 0.010

Tangram 1.259 ± 0.193 0.123 ± 0.005 0.285 ± 0.008 1.209 ± 0.157 0.168 ± 0.024 0.309 ± 0.008

CellPLM (Zero-shot) 0.620 0.237 0.395 0.686 0.228 0.408
CellPLM (Fine-tuned) 0.612 ± 0.013 0.251 ± 0.011 0.402 ± 0.019 0.641 ± 0.011 0.278 ± 0.008 0.427 ± 0.004

4.3 Task 3: Perturbation Prediction297

The perturb-seq technology has been established to examine the gene expression response at the single-298

cell level when subjected to pooled perturbations [52]. By comparing the gene expression before and299

after perturbation, downstream analysis of differential expression (DE) enables the identification of300

genes that play a crucial role in disease progression. To assess the potential benefits of CellPLM in301

the given task, we conduct experiments to predict the expression value of genes after perturbation.302

Following the setting of GEARS [53], we partition the perturbations into training, validation, and303

test sets, ensuring that none of the test perturbations are encountered during the optimization process.304

Two perturbation datasets are employed for evaluation: (1) the Adamson Perturb-Seq dataset [54],305

consisting of 87 one-gene perturbations; and (2) the Norman Perturb-Seq dataset [55], containing 131306

two-gene perturbations and 105 one-gene perturbations. To evaluate the performance of perturbation307

prediction, we employ Root Mean Square Error (RMSE) to measure the degree of similarity between308

the predicted gene expressions and the corresponding ground-truth expression values. In addition,309
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Figure 3: (Task 3) The RMSE performance (↓) on Adamson Perturb-Seq and the Norman Perturb-Seq
datasets. The Norman Perturb-seq dataset consists of two settings: one-gene perturbations and
two-gene perturbations, denoted as Norm.0 and Norm.1, respectively.

Figure 4: The ablation study of different pre-training settings. Zero-shot RMSE performance (↓) on
PBMC 5K denoising task and Lung2 SRT imputation task, respectively.
following previous settings in GEARS [53], we also present the RMSE calculated on the top 20310

deferentially-expressed genes.311

We compare the performance between CellPLM and two baselines, i.e., a recent preprint GEARS312

method [53], and scGen [56]. The results in Figure 3 imply that CellPLM achieves the lowest313

RMSE values across all settings, which successfully tackles research question RQ3. For additional314

information regarding baselines, the fine-tuning of the CellPLM, and the evaluation metrics, please315

refer to Appendix E.3.316

4.4 Ablation study317

To verify the contribution of our model design, we conduct an ablation study on SRT data, Gaussian318

mixture prior and transformer encoder. Specifically, we remove SRT data from the pre-training319

dataset, replace transformer encoder with an MLP encoder and remove the Gaussian mixture prior, to320

examine its impact on the zero-shot performance in downstream tasks. All three models are modified321

based on CellPLM 10M. Our results demonstrate that, on the whole, the full 10M model exhibits the322

best performance, and its individual components display notable significance. Specifically, in the SRT323

imputation task, the GMM latent model contributes the most, while the removal of SRT data or the324

transformer component leads to the most substantial decrease in scRNA-seq denoising performance.325

The ablation study provides additional support, indicating that all elements within CellPLM offer326

valuable assistance in specific tasks.327

5 Discussion328

In this work, we propose cell language model, a novel paradigm of single-cell pre-trained model,329

which aligns well with the fundamental characteristics of single-cell data. This has leaded to330

CellPLM, the first pre-trained transformer framework that encodes inter-cell relations, leverages331

spatially-resolved transcriptomic data, and adopts a reasonable prior distribution. Our experiments on332

three downstream tasks demonstrate the power of CellPLM, which has a great potential to facilitate333

future research in single-cell biology.334

Limitations and future directions: Despite the superior performance and results from the abla-335

tion study suggesting that our model has learned complex cell-cell relationships, extracting explicit336

knowledge and insights from the model remains a challenging task. Therefore, enhancing model337

interpretability is one foremost future objective. Moreover, due to the unavailability of implemen-338

tations, we could not compare our model with existing pre-trained models. However, we intend to339

conduct a more comprehensive comparison in future studies.340
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