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ABSTRACT

Resolving conflicts is essential to make the decisions of multi-view classification
more reliable. Much research has been conducted on learning consistent and infor-
mative representations among different views, often assuming that all views are
equally important and perfectly aligned. However, real-world multi-view data may
not always conform to these assumptions, as some views may express distinct infor-
mation. To address this issue, we develop a computational trust-based discounting
method to enhance the existing Evidential Multi-view framework in scenarios
where conflicts between different views may arise. Its belief fusion process con-
siders the reliability of predictions made by individual views via an instance-wise
probability-sensitive trust discounting mechanism. We evaluate our method on six
real-world datasets, using Top-1 Accuracy, Fleiss’ Kappa, and a new metric called
Multi-View Agreement with Ground Truth that takes into consideration the ground
truth labels, to measure the reliability of the prediction. We also evaluate whether
uncertainty measures can effectively indicate prediction correctness by calculating
the AUROC. The experimental results show that computational trust can effectively
resolve conflicts, paving the way for more reliable multi-view classification models
in real-world applications.

1 INTRODUCTION

Figure 1: Example of conflicting multi-view opinions. The
Titanic’s route is safe in Captain’s and Polar Bear’s View,
while unsafe in Dolphin’s view.

Multi-View Classification (MVC)
plays a critical role in deep learning by
greatly enhancing the ability to make
accurate decisions through integrating
multi-source information. Its effec-
tiveness has been verified with the suc-
cessful application in many domains
such as autonomous driving (Yurt-
sever et al., 2020) and AI-assisted
medical diagnostic systems (Kang
et al., 2020). Most of the existing
studies on MVC rely on the assump-
tion that data from different views con-
sistently provide reliable information
about the ground truth (Liang et al.,
2024; Zhang et al., 2023a; Xu et al.,
2024a). Nevertheless, this assumption
may not always be valid in real-world
scenarios. Substantial variations in
the informativeness of data from dif-
ferent views can produce conflicting results, thereby undermining the reliability of the model’s
predictions.

A possible solution for resolving conflicts is to project data from different views into a shared latent
space (Hardoon et al., 2004; Wang et al., 2015; Federici et al., 2020; Hjelm et al., 2019), and then
draw a joint representation from the latent space for the classification task. This is achieved by
integrating essential features via weighting schemes, such as attention mechanisms (Zheng et al.,
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2021) and weighted fusion (Atrey et al., 2010; Zhang et al., 2019). These methods typically assign
higher weights to more informative views or features, thus reducing the impact of potential conflicting
information. Although these methods have achieved promising results in MVC, their focus on
the joint representation can be a limitation. Solely relying on the joint representation hinders the
capacity to thoroughly grasp information provided by different views. In contexts such as ocean
navigation, characterized by observations sources from various views (e.g., the perspectives of the
captain, dolphin and Polar Bear when observing an iceberg as shown in Figure 1), it is crucial to
thoroughly analyze and comprehend each view before making the decision to cross and face or detour,
as different views provide unique and complementary information.

Existing approaches to resolve conflicts build neural networks to generate view-specific predictions
and then combine view-specific predictions together. As a prime example, the Evidential Multi-view
framework is emerging as a promising approach, offering a reliable means for the final fusion stage.
Within this framework, evidence acts as a metric of endorsement for the associated predicted label,
and the evidence is collected through view-specific neural networks. Subsequently, evidence from
diverse viewpoints is fused, considering their respective epistemic uncertainties. However, there may
exist cases where the view-specific information is not well aligned with the ground truth, resulting in
misleading predictions with high confidence (low uncertainty). For example, as shown in Figure 1,
while the dolphin can clearly observe the massive structure hidden beneath the water’s surface, the
captain may only see the tip of the iceberg.

In this work, we take a significant step further: leveraging the Evidential Multi-view framework, we
propose a new computational trust based opinion fusion method to resolve potential conflicts in MVC.
Specifically, the computational trust is modelled through an evidence network that operates on a view-
specific and instance-wise basis. Drawing upon the principle of trust discounting in subjective logic,
it evaluates the reliability of view-specific predictions generated by existing Evidential frameworks,
such as Evidential Deep Learning (EDL) (Sensoy et al., 2018). Within the proposed method, each
view-specific evidence is transformed into a degree of trust using the Binomial opinion theory (Jøsang,
2018). These degrees of trust are then utilized to establish uncertainty and a trust-aware opinion,
ultimately facilitating the generation of reliable predictions. In summary, the contributions of this
paper include:

1. We present a novel learnable trust-discounting mechanism to extend the widely-used Ev-
idential MVC framework, enhancing its conflict resolution capabilities. Drawing from
the Binomial opinion theory within subjective logic, it operates on a view-specific and
instance-wise basis, adeptly resolving conflicts among views through a probability-sensitive
trust discounting rule;

2. We develop a stage-wise training strategy 1 to optimize the parameters of the proposed
mechanism, which works robustly on different datasets;

3. We conduct extensive experiments on six real-world datasets, showing that our method
outperforms the existing Evidential MVC methods, particularly on the datasets exhibiting
large discrepancy among view-specific predictions. In addition, our method can also enhance
the consistency among opinions derived from different views.

2 RELATED WORK

Multi-View Classification leverages multiple data sources, offering varied perspectives on the same
object, to enhance the classification performance. Recent advancements in MVC have focused on
generating noise-robust representations through cluster-based (Huang et al., 2023; Wen et al., 2023a;
Zhang et al., 2023b), self-representation-based (Hou et al., 2020), and partially view-aligned (Wen
et al., 2023b; Huang et al., 2020) methods, harnessing the expressive power of deep neural networks.
However, noise-robust representations may not fully resolve conflicts in opinions for a given data
instance, as conflicts may arise by discrepant information from distinct views, and the discrepancy
cannot be eliminated by addressing noises. Our method addresses this limitation by introducing a
separate evidence network that evaluates the reliability of view-specific predictions and adjusts the
final predictions according to the degree of trust.

1We move the detailed training algorithm to the Appendix A due to the space limitation.
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Trusted Multi-View Classification has emerged as a crucial area and a pivotal domain within
Multi-View Learning. This research area aims to enhance the accuracy and dependability of clas-
sification models by integrating data from multiple views, guided by their prediction confidence
and epistemic uncertainty. The seminal work, Trusted Multi-View Classification (TMC) (Han et al.,
2021), introduced the fusion of different views from an opinion perspective using the Dempher-Shafer
Combination rule. Building upon TMC, Han et al. (2022) extended the approach by incorporating
the pseudo-view, a concatenation of all other views, resulting in improved performance. Subsequent
studies by Liu et al. (2022) and Xu et al. (2024a) explored alternative opinion fusion methods.
Concurrent research efforts, such as those by Jung et al. (2022) and Jung et al. (2023), focus on
multiview uncertainty estimation, enhancing the model’s reliability. Similar to the TMC, our method
is also built upon the Evidential Neural Network, and generating the fused decision by using the
Dempher-Shafer Combination rule. However, we introduce a novel Trust Discounting module, which
adjust the original evidence and opinions before the Dempher-Shafer Combination based on the
reliability of evidence and opinion.

Conflictive Multi-View Classification argues that existing work primarily focusing on either learning
joint aligned representations or better quantifying uncertainty overlook the problem of potential
contradictory in the prediction space. Recognizing this gap, the pioneer work by Xu et al. (2024a)
highlighted this issue and introduced the Degree of Conflict loss. This loss quantifies the disparity
between different predictions in the prediction space while accounting for uncertainty, aiming
to mitigate conflict-related challenges. However, this approach may inadvertently lead correct
predictions to converge towards incorrect ones, potentially jeopardizing model stability. For instance,
if most views are making incorrect predictions, the minority of correctly predicted views may be
forced to align with the majority of incorrect ones. In contrast, our method can generate more
accurate predictions with properly estimated uncertainty. As the trust discount module of our method
is trained based on the correctness of the view-specific prediction and directly assess the reliability of
it, instead of using other views’s predictions which may provide incorrect optimization direction.

3 TRUST FUSION ENHANCED EVIDENTIAL MVC

3.1 PRELIMINARIES

Given training data D = {{xv
i }Vv=1, yi}

N

i=1 where N is the number of training data, each instance xi

has V views, ground truth label yi and an one-hot encoded label yi (i.e., for a K-class classification
problem, yi,k is 1 if k is the index of ground truth label for i-th instance, otherwise it is 0). The task
of MVC is to learn a function f that maps {xv

i }Vv=1 to yi.

The Evidential MVC framework applies Subjective Logic (SL) to the K-class classification problem
by assigning belief masses to individual class labels and computing epistemic uncertainty for the
generated belief masses. The formulation links the evidence collected from instance view-specific
observation to the concentration parameter of the Dirichlet Distribution. Let fvθ (·) denote the view-
specific neural network for evidence generation, where the view-specific evidence for an instance
is ev = fvθ (x

v), the association between the evidence and the Dirichlet parameters is simply
αk = ek + 1 (Sensoy et al., 2018; Han et al., 2021) . The belief mass on class label k, denoted as bk,
and uncertainty u are subject to the additive requirement, i.e., u +

∑K
k=1 bk = 1. With respect to

MVC, the view-specific belief mass bvk and uncertainty uv can then be computed as

Sv =

K∑
k=1

αv
k, bvk =

evk
Sv

=
αv
k − 1

Sv
, uv = 1−

K∑
k=1

bvk =
K

Sv
(1)

To generate the final prediction, SL models the view-specific predictions as multinomial opinions,
denoted as ωv = [bv, uv,av], with av being the base rate (i.e., a prior probability distribution
over classes, generally a discrete uniform distribution), and then combine them together with an
appropriate belief fusion rules based on the context (Jøsang et al., 2013). The Belief Constraint Fusion
(BCF) (Jøsang et al., 2013), an extension of Dempher-Shafer combination rule (Shafer, 1976), was
first adopted by (Han et al., 2021) in trusted MVC. Other fusion rules, such as Aleatory Cumulative
Belief Fusion (A-CBF) (Liu et al., 2022) and Averaging Belief Fusion (ABF) (Xu et al., 2024a) have
also been explored. We choose to stay with BCF in our experiments due to its intuitive foundation
(Jøsang et al., 2013; Jøsang, 2018) and the effectiveness demonstrated by (Han et al., 2021; 2022).
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The fusion rule, ⊕, of BCF, among two views, i.e., ω = ω1 ⊕ ω2, can be formulated as follows:

bk =
1

1− C
(b1kb

2
k + b1ku

2 + b2ku
1), u =

1

1− C
u1u2 (2)

where C =
∑

i ̸=j b
1
i b

2
j is the normalization factor, and bk is the belief mass of label k and u is

the uncertainty the fused opinion ω. Since the order of combination does not affect the final result
(Jøsang, 2018), applying Eq. 2 by sequentially combining the V views in pairs, where the result of
each combination is then combined with the next view, will derive the final fused opinion, which is
as follows,

ω = ω1 ⊕ ω2 ⊕ · · ·ωV (3)
For the fused opinion ω, we can derive the parameters of the Dirichletαk by reversing the computation
of Eq. 1.
Corollary 1. An alternative representation for BCF is based on combining the evidence 2, from
which the opinion ω = [b, u,a] can be derived:

ek = e1k + e2k +
e1ke

2
k

K
(4)

3.2 CONFLICT RESOLVING BY TRUST FUSION

We realize conflicts can happen when view-specific opinions express conflicting preferences, lead-
ing to ambiguity in the fused opinion, for example, two views’ candidate labels has same confi-
dence(belief), and subsequently draws potential inaccurate predictions. Based upon this, we define
the conflict problem as follows:
Definition 1 (Conflicts within Multi-view Classification). In a K-class multi-class classification
problem involving a multi-view dataset, a classification conflict arises when multiple views that
predict different classes. This conflict leads to ambiguity in aggregating these predictions, as it
becomes challenging to determine a single, coherent classification result from those inconsistent
predictions.

Although Belief Fusion has been verified effectively to fuse different opinions under SL, it still
can generate unreliable fused opinions and lead to inaccurate predictions, for example, the Titanic
navigation route case used in Figure 1. The data of different views’ opinions have been recollected,
and shown in Table 1. Besides, we also compute the fused opinion generated through BCF by
substituting the data of three (i.e., Captain, Dolphin and PolarBear) functional opinions into Eq. 2
and Eq. 3 3, and the fused opinion has also been appended to the Table 1.

Table 1: Opinions from Different views and BCF Fused opinion
Belief Uncertainty

View Safe Distrust
Captain(functional) 0.85 0.05 0.10
Dolphin(functional) 0.05 0.90 0.05
PolarBear(functional) 0.75 0.20 0.05
Fused (BCF) 0.68 0.31 0.01

From Table 1, we can see that compared to the ”unsafe” option, the fused opinion assigns a higher
belief mass to the ”safe” option (0.68 vs. 0.31). As a result, the prediction will be ”safe”, which
is factually incorrect, as indicated in Figure 1. We attribute this error to less evidence collected,
so less beleif mass to support the factual correct option ”safe” in Captain’s and PolarBear’s view.
insufficient evidence being collected, resulting in less belief mass supporting the factually correct
option, ”unsafe,” in the opinions of both Captain and PolarBear. Additionally, the fused opinion
exhibits lower uncertainty (0.01) compared to the original views’ opinions (0.1, 0.05 and 0.05),
however, the uncertainty is expected to be not lower than that of all views to reflect the struggle
among different opinions in the presence of conflict.

2We provide the proof in Appendix B.2 and we implement BCF based on this equation due to its computational
efficiency.

3We provide the detailed calculation process in Appendix
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We utilize the principle of Trust Fusion (TF) by Trust Discounting (TD) (Jøsang et al., 2015) to handle
the incorrect prediction caused by conflicting opinions. The basic idea of TD is to discount evidence
or opinion from an individual view as a function of trust on that view. It can be used to weigh the
current view-specific opinion according to the degree of trust, thus guiding the fusion process to
generate more reliable prediction. Here we present a Probability-sensitive Trust Discounting rule, as
show in Eq. 5, and use it in an instance-wise manner in our experiments as follows,

Definition 2 (Instance-wise Probability-Sensitive Trust Discounting). For each view of each individ-
ual instance, the trust-discounted opinion is defined as

ω̆v
i = ω̈v

i ⊗ ώv
i =

{
b̆vi = p̈vt,i ∗ b́vi ,
ŭvi = 1− p̈vt,i ∗

(∑K
k=1 b́

v
k,i

)
.

(5)

where i, v are the index for v-th view of i-th instance, ⊗ indicates the TD operator, ω̆ denotes
the discounted opinion, and ω̈, ώ denote referral opinion and functional opinion (e.g., opinions in
Table 1), respectively. The scalar probability p̈t denotes the degree of trust, representing how much
we are confident with the opinion given by the view-specific evidential model. Given Eq. 5, we fuse
the trust-discounted opinions from V views of i-th instance with BCF by:

ω̄i = ω̆1
i ⊕ ω̆2

i ⊕ · · · ⊕ ω̆V
i =

(
ω̈1
i ⊗ ώ1

i

)
⊕
(
ω̈2
i ⊗ ώ2

i

)
⊕ · · · ⊕

(
ω̈V
i ⊗ ώV

i

)
(6)

Note that 1) the referral opinion is different from the functional opinion shown in Table 1, which
aims for assessing reliability of corresponding views’ functional opinion, and 2) comparing with
original Probability-Sensitive TD (Jøsang et al., 2012), our proposed instance-wise manner takes into
consideration the opinions reliability of each instance, instead of global reliability of view only.

Table 2: Referral Opinions of Different views
Belief Uncertainty Trust (p̈t)

View Trust Distrust
Captain(referral) 0.60 0.30 0.10 0.65
Dolphin(referral) 0.90 0.00 0.10 0.95
PolarBear(referral) 0.20 0.70 0.10 0.25

According to (Jøsang et al.,
2015), the probability p̈t can
be computed by p̈t = b̈t +
ät ∗ ü 4 with ä being the uni-
formly distributed base rate,
i.e., ät = 1/2 for each individ-
ual instance on each view. As-
suming we have the referral
opinions for each view’s func-
tional opinion in Table 1, and defined in the Table 2.

By substituting trust scores p̈t with the data in Table 2 and functional beliefs b́ with the data in Table 1
in Eq. 5 and Eq. 6, we effectively apply TD to original functional opinions. This process enabled
us to compute the discounted opinions for each view as well as their fused opinion through BCF
combination, which is shown as in Table 3.

Table 3: Discounted Opinions from Different views and BCF Fused opinion
Belief Uncertainty

View Safe Unsafe
Captain(discounted) 0.55 0.03 0.42
Dolphin(discounted) 0.04 0.86 0.10
PolarBear(discounted) 0.19 0.05 0.76
Fused (BCF) 0.22 0.70 0.08

We can see that with the intervention of TD, the BCF fused opinion now assigns more belief mass
to ”unsafe,” which aligns with the factual label. Additionally, the uncertainty of the fused opinion
is now 0.08, which is rational given that Captain’s and PolarBear’s opinions have high uncertainty.
Therefore, the decision aligning with Dolphin’s opinion, which has significantly lower uncertainty
than the others, is reasonable.

4We will show that pt = bt + at ∗ u is equivalent to pt = α2/(α1 + α2) with the assumption that base rate
at is uniformly distributed in Appendix B.1.
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Corollary 2. Above Eq. 2 also corresponds to updating the Dirichlet evidence by 5 :

ĕvk,i =
p̈vt,iú

v
t,i

1− p̈vt,i + p̈vt,iú
v
t,i

évk,i (7)

The following propositions provide theoretical analysis of the proposed TD rule for achieving TF,
and their detailed proof can be found in Appendix B.4.

Proposition 1. Instance-wise Probability-Sensitive TD maximizes the belief mass of the Ground truth
label after BCF, under the assumption that at least one view’s prediction is correct.

Proposition 2. The combined opinion generated by proposed TF (TD+BCF) for conflicting views,
will exhibit greater uncertainty than obtained through fusion with non-discounted functional opinions.

3.3 LEARNING TO FORM OPINIONS

We depict the proposed TF (TD+BCF) along with entire Evidential MVC framework in Figure 2.
The view-specific functional evidence is generated through an Evidential Neural Network (ENN),
i.e., évi = fv

θ́
(xv

i ), which is same as Han et al. (2021). Similar to the functional evidence generation
process, we construct another view-specific evidential network parameterized by θ̈, for collecting
referral evidence ë, i.e., ëvi = fv

θ̈
([xv

i , b́
v
i ])

6, where both feature representation xv
i and functional

opinion b́vi are used as inputs.

Figure 2: The TF Enhanced Evidential MVC Framework. (a) is the zoomed in view of View-specific
Module, the Discounted Opinion is produced by applying Trust Fusion to discount the Functional
Opinion using the Referral Opinion. (b) is the overall flow of the Evidential MVC framework.

In terms of loss function, we follow Sensoy et al. (2018); Han et al. (2021; 2022); Xu et al. (2024a)
and optimize parameters of each view-specific evidential network. The loss term for i-th instance on
v-th view is defined as follows,

Lv
i =

K∑
k=1

yi,k(ψ(S
v
i )− ψ(αv

i,k)) + λoDKL[Dir(pv
i |α̃v

i )||Dir(pv
i |1)] (8)

where ψ is the digamma function, λo = min(1.0, o/10) is the annealing factor, and o is the index
of the current training epoch, α̃ = y + (1 − y) ⊙ α is the Dirichlet parameters after removing
misleading evidence from predicted distribution parameters α , and p is the projected probability,
i.e., p = α/S.

Note that, 1) the loss term above is directly linked with the distribution parameters that are generated
through ENN parameterized by θ, which will also be updated through back-propagation during

5We provide the proof in Appendix B.3.
6We used Bi-Linear layer instead of Dense/Linear Layer in our experiments.
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Algorithm 1: Algorithm For Training (Simplified by omitting batch-wise operation)

Input: Multi-view dataset: D = {{xv
i }Vv=1, yi}Ni=1.

Initialize: Initialize the parameters θ́, θ̈ of Functional and Referral ENNs, respectively.
Stage-1 Warm-up Referral Network
Obtain {ëv}V ← Referral ENNs outputs and {α̈v}V by α̈v ← ëv + 1;
Update the parameters θ̈ by Gradient Descent (GD) with loss of Eq. 10 for all {α̈v}V ;
Stage-2 Update Functional Network
/*Substage-2a*/
Obtain {év}V ← Functional ENNs outputs and {άv}V by άv ← év + 1;
Update the parameters θ́ by GD with loss of Eq. 8 for all {άv}V ;
/*Substage-2b*/
Obtain {ëv}V ← Referral ENNs outputs and {α̈v}V by α̈v ← ëv + 1;
Obtain {év}V ← Functional ENNs outputs and {άv}V by άv ← év + 1;
Obtain ω̈v and ώv by Eq. 1 with ëv and év for all views, respectively ;
Obtain BCF fused opinion ω̄ by Eq. 6 and corresponding ᾱ by reversing Eq. 1;
Update the parameters θ́ by GD with loss of Eq. 8 for ᾱ ;
Stage-3 Adjust Referral Network
By repeating Stage-2b and update θ̈ instead of θ́ only ;
Stage-4 Adjust Functional Network
By repeating entire Stage-2;
Output: Functional and Referral networks parameters.

training stage; 2) even though we omit the notation for distinguishing the distribution parameters that
govern the variational transformation of referral and functional opinions, this loss term will still be
applied to the referral and functional nets respectively; 3) the above equation will be also applied
to the final fused opinion since its corresponding variational Dirichlet has parameter ᾱ as well. We
illustrate when and how to use the loss term in our proposed stage-wise training algorithm (Alg. 1) 7.

We also adopt a warm-up stage for the referral nets since the randomly initialized parameters of them
could introduce unreliable trust scores for discounting at early training stage. The loss term used at
the warm-up stage is simply the left summation term of Eq. 8 with a different target label which is
defined as

zvi =

{
1 if ŷvi = yi
0 otherwise

(9)

where ŷvi = argmaxk b́ which is predicted label of functional opinion, so the target label zvi primarily
indicates the correctness of such prediction. Following Müller et al. (2019), we apply label smoothing
with smoothing factor η = 0.9 to the hard label. The association between one-hot encoded hard label
zvi of target zvi and smooth label is z̊vi = zvi ⊙ η+ (1− η)/2. since the smoothed label could provide
training signals for neurons of both target and non-target labels, we omit the KL term here. The
summation term, with Beta distribution parameters α̈v

i of referral opinion, changes to follows,

2∑
j=1

z̊vij(ψ(α̈
v
i1 + α̈v

i2)− ψ(α̈v
ij)) (10)

3.4 MULTI-VIEW AGREEMENT WITH GROUND TRUTH (MVAGT)

The MVAGT (Multi-View Agreement with Ground Truth) is a novel evaluation metric designed
specifically for multi-view classification problems with conflicting views. It assesses the model’s
performance on the test set by considering the ground truth labels, thus providing a more reliable and
realistic measure of the model’s ability to handle view disagreements. The rationality behind MVAGT
lies in its alignment with real-world scenarios, where the majority agreement among multiple views is
often considered more reasonable for the final decision. In the presence of view conflicts, a model that

7We provide a simplified version of training algorithm here for improving the readability and we direct
readers to Appendix A for the detailed training algorithm

7
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can make predictions consistent with the majority of views is deemed more trustworthy and reliable.
By evaluating models using MVAGT, we can examine the reasonableness of the fused decision and
assess the model’s capability to handle view conflicts effectively. Mathematically, MVAGT calculates
the accuracy of the model on the test set as follows:

MVAGT =
1

M

M∑
i=1

1

(
V∑

v=1

1((ŷvi = yi) >
V

2

)
(11)

where M is the total number of test samples, V is the number of views, ŷvi is the predicted label of
the i-th sample from the v-th view, yi is the ground truth label of the i-th sample, and 1(·) is the
indicator function that returns 1 if the condition is satisfied and 0 otherwise.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. Following previous work (Han et al., 2021; 2022; Jung et al., 2022; Xu et al., 2024a), we
conducted experiments on six benchmark datasets: Handwritten8, Caltech101 (Fei-Fei et al., 2004),
PIE 9, Scene15 (Fei-Fei & Perona, 2005), HMDB (Kuehne et al., 2011) and CUB (Wah et al., 2011)
with train-test split of 80% vs. 20%. A detailed description of these datasets is provided in the
Appendix, we direct readers to the Appendix C.2 for further details regarding these datasets.

Compared Methods. We aim to resolve conflicts among predictions of different views, so we
consider the methods that generate view-specific predictions which could have potential conflicts, and
thus included following baselines: Fusion by Majority Voting (F-Mode) and Fusion by Probability
Averaging (F-Avg), which are two commonly used fusion methods in most MVC methods. We also
consider existing Evidential MVC baselines, TMC (Han et al., 2021), and the conflict resolution
pioneering work ECML (Xu et al., 2024a). Recent work, TMNR (Xu et al., 2024b) applied Evidential
MVC for noisy label learning, and CCML (Liu et al., 2024) derived consistent evidence among shared
information by dynamically decoupling the consistent and complementary evidence 10. Our method
can also be extended to leverage the pseudo view, as demonstrated by its application to ETMC (Han
et al., 2022), an extended version of TMC that incorporates pseudo views. We also compare with one
multi-view uncertainty estimation baseline, MGP (Jung et al., 2022), in our experiments. We term
our methods as TF and ETF where E indicates the pseudo-view is incorporated. All methods were
run on a single 24GB RTX3090 card for fair comparison.

Evaluation Metrics. We evaluate MVC methods based on the reliability from prediction accuracy
of fused opinion and the consistency among different views predictions. Similar to Han et al.
(2021; 2022); Jung et al. (2022); Xu et al. (2024a), we measure the prediction accuracy using Top-1
Classification Accuracy, which checks whether the final predicted label of fused opinion is same as
ground truth. Regarding to the consistency among various views’ predictions, we apply the Fleiss
Kappa (Fleiss, 1971), which is a statistical measure for assessing the agreement between different
raters, with scores closer to 1 indicating higher agreement among the different predictions. The
intuition behind using this two metrics is a reliable prediction should not be accurate only but also
from most agreements. We also evaluate the model with the newly proposed metric, MVGAT, which
measures the consistency of different views predictions with the ground truth label.

4.2 EXPERIMENT RESULTS AND ANALYSIS

For each individual metric, mean and standard deviation from ten runs with ten different random seeds
are reported. In all tables, the best-performing method is highlighted in bold, and the second-best
method is underlined.

Predictions Accuracy via Top-1 Accuracy. Similar to Han et al. (2021; 2022); Jung et al. (2022);
Xu et al. (2024a), we first evaluated the model performance on the test split by Top-1 Classification
Accuracy, as shown in Table 4. Building on the strengths of pseudo view, our method (ETF)

8https://archive.ics.uci.edu/ml/datasets/Multiple+Features
9http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html

10We re-run the official implementation of ECML, TMNR, CCML with our data loader for fair comparison.
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Table 4: Top-1 accuracy on test split.
Dataset Handwritten Caltech101 PIE Scene15 HMDB CUB AVG
F-Mode 99.10±0.20 94.13±0.08 79.41±0.00 62.45±0.11 51.70±0.41 70.25±0.38 76.13
F-Avg 99.25±0.00 95.59±0.06 90.59±0.29 76.21±0.09 71.49±0.35 92.75±0.53 87.65
MGP 99.60±0.10 94.42±0.20 90.13±0.87 74.30±0.41 73.97±0.15 90.79±1.03 87.03
ECML 99.57±0.11 94.25±0.08 91.40±0.47 64.34±0.11 72.90±0.11 92.58±0.25 85.84
TMNR 99.72±0.08 94.31±0.09 89.34±0.59 74.14±0.13 73.46±0.15 92.25±0.38 87.21
CCML 99.00±0.00 94.64±0.10 93.09±0.36 73.97±0.15 72.59±0.42 93.83±0.41 87.91
TMC 99.63±0.13 94.30±0.13 87.43±0.90 73.99±0.19 73.30±0.18 92.50±0.37 86.60
TF(ours) 99.68±0.11 95.26±0.10 93.31±0.40 77.83±0.32 74.35±0.09 93.33±0.75 88.96
ETMC 99.75±0.00 94.41±0.11 91.69±0.47 78.41±0.20 74.01±0.19 93.67±0.41 88.74
ETF(ours) 99.98±0.07 95.07±0.08 94.63±0.34 82.01±0.17 75.55±0.15 94.08±0.38 90.22

consistently outperforms all evidential MVC methods and the multi-view uncertainty estimation
method, and gains the best average performance over six datasets compared with all baselines. For
example, on the PIE and Scene15 datasets, the use of referral trust boosts the accuracy of ETMC
by 2.94% and 3.60%, respectively. Moreover, ETF surpasses the pioneering conflict resolving
method ECML by a substantial margin of 3.23% on PIE, 9.66% on Scene15 and 2.65% on HMDB,
highlighting better power of conflicts handling of our method. It is worth noting that Caltech101
inherently has lower level of conflicts, as corroborated by high accuracy and Fleiss’ Kappa scores
(Table 5) of all baselines. Nevertheless, ETF maintains the compatible performance with the best one,
F-Avg (a minor decrease of 0.52%), and still outperforms other methods, e.g., improve the accuracy
of ETMC by 0.66%.

When compared to well-established methods like TMC, MGP, and ECML without pseudo views, our
method TF consistently demonstrates superior performance across all datasets. For example, our
proposed trust discounting method enhance TMC’s performance by 3.84% on Scene15 and 5.88%
on PIE, while also achieving the highest Top-1 accuracy on other datasets. Notably, our method TF,
even without incorporating pseudo views, exhibits comparable performance to ETMC with pseduo
views. For instance, TF outperforms ETMC on three datasets (Caltech101, PIE, and HMDB) out of a
total of six.

Table 5: Fleiss’ Kappa on test splits.
Dataset Handwritten Caltech101 PIE Scene15 HMDB CUB AVG
F-Mode 0.63±0.04 0.97±0.00 0.38±0.00 0.42±0.00 0.56±0.00 0.71±0.01 0.61
F-Avg 0.54±0.03 0.97±0.00 0.37±0.01 0.42±0.00 0.55±0.01 0.58±0.06 0.57
MGP 0.59±0.05 0.94±0.00 0.21±0.01 0.33±0.00 0.51±0.00 0.43±0.07 0.50
ECML 0.42±0.05 0.95±0.00 0.40±0.01 0.26±0.00 0.53±0.01 0.44±0.07 0.50
TMNR 0.59±0.02 0.94±0.01 0.29±0.02 0.30±0.00 0.53±0.00 0.37±0.06 0.50
CCML 0.64±0.04 0.91±0.01 0.39±0.01 0.36±0.01 0.53±0.01 0.63±0.04 0.58
TMC 0.54±0.07 0.94±0.01 0.23±0.02 0.30±0.01 0.52±0.01 0.37±0.19 0.48
TF(ours) 0.65±0.02 0.95±0.00 0.36±0.01 0.39±0.00 0.54±0.00 0.51±0.10 0.57
ETMC 0.66±0.01 0.84±0.00 0.28±0.04 0.37±0.00 -0.15±0.04 0.45±0.10 0.41
ETF(ours) 0.76±0.02 0.95±0.00 0.48±0.01 0.48±0.01 0.65±0.00 0.64±0.03 0.66

Predictions Consistency via Fleiss’ Kappa and MVGAT. To further validate the effectiveness
of our proposed method, we evaluate it with two additional metrics, Fleiss’ Kappa Fleiss (1971)
and our proposed metric, MVAGT. As depicted in Table 5, our method (ETF) achieves the highest
Fleiss’ Kappa score on four datasets (Handwritten, PIE, Scene15, HMDB and CUB). Even through
ETF does not rank first on the remaining two datasets (the third on Caltech101 and the second on
CUB), it remains the most generalizable model with the highest average Fleiss’ Kappa (0.66). It’s
worth noting that while our methods assume the existence of conflicts, Caltech101 is a dataset with
fewer conflicts, which explains the performance discrepancy in Table 4. Nevertheless, ETF still
outperforms other evidential or the MGP and enhances the robustness of ETMC with an improvement
of approximately 13% on Caltech101. Moreover, it’s essential to highlight that ETMC exhibits
extremely poor agreement on HMDB with a negative value of -0.15. However, by applying our
method, ETF significantly improves performance by an absolute value of 0.8. This underscores the
relative robustness of our method across different datasets.
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Table 6: MVAGT on test split.
Dataset Handwritten Caltech101 PIE Scene15 HMDB CUB
F-Mode 88.87±1.73 94.13±0.08 79.41±0.00 62.54±0.11 51.70±0.41 70.25±0.38
F-Avg 18.78±5.89 93.89±0.24 17.06±1.22 27.70±0.36 51.18±0.51 59.50±5.25
MGP 81.37±5.73 91.55±0.29 63.20±2.31 52.10±0.41 50.43±0.42 42.50±9.26
ECML 74.08±0.61 91.05±0.27 78.46±1.19 41.91±0.31 50.95±0.48 48.58±5.36
TMNR 86.80±1.03 90.92±0.18 65.15±3.68 51.86±0.61 50.48±0.47 36.58±6.42
CCML 86.78±1.42 88.97±1.09 81.91±1.40 55.23±0.84 51.34±0.91 63.67±2.61
TMC 81.58±6.57 90.27±0.38 51.54±3.00 51.42±0.46 50.37±0.45 43.25±14.8
TF(ours) 88.97±0.61 92.01±0.22 80.59±0.75 60.41±0.52 52.47±0.35 54.33±7.54
ETMC 98.10±0.17 92.41±0.32 75.15±4.13 73.75±0.45 8.45±1.09 91.08±1.06
ETF(ours) 98.53±0.08 94.47±0.12 90.37±0.40 79.18±0.38 71.43±0.32 91.17±0.67

While a multi-view classification (MVC) classifier with both high accuracy and high Fleiss’ Kappa
score generally suggests good reliability, high Fleiss’ Kappa scores without reference to the ground
truth label might be misleading, particularly in cases where the majority of views agree on the same
incorrect class. Therefore, we propose a new evaluation metric (MVAGT), specifically tailored for
conflict MVC scenarios. MVAGT assesses correctness on the test split by verifying that more than
half of the views make correct decisions. Since majority agreement is often more reasonable for final
decisions in real-world scenarios, evaluating methods using MVAGT ensures the reasonableness of
the fused decision. As depicted in Table. 6, ETF demonstrates superior performance compared to
other methods. Moreover, ETF exhibits good generalizability across different datasets, where ETMC
experiences significant decreases (e.g., HMDB) or other methods alternately occupy the second-best
position.

Discussion on consistency improvement. It is worth noting that applying TD solely on existing
functional opinions will not improve the consistency among different views, however, our methods
show that the consistency of opinions from different views is significantly improved, as measured
by Fleiss Kappa and MVGAT. We attribute this improvement to the incorporation of TD in the
training stage. The functional opinion will be discounted accordingly by the referral opinion, and
it thus receive larger magnitude of gradients from the loss term, e.g., at the Substage 2b in Alg. 2,
due to interactions between different opinions, e.g., Eq.2. Therefore, the functional opinion will be
enforced to align with the ground truth which leads to the improved consistency among different
views’ opinions.

5 CONCLUSION

In this paper, we introduced a theoretically-grounded approach for resolving conflicts in Multi-View
Classification. This approach is built on top of the principle of the Trust Discounting in Subjective
Logic, where the computational trust, aka referral trust, is represented as a Binomial opinion with a
Beta probability density function.The functional trust is then discounted by the amount computed as
a function of the degree of trust. We demonstrated through extensive experiments that the proposed
trust discounting method not only benefits classification accuracy but also increases consistency
among different views, providing a new reliable approach to handling conflicts in MVC.
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Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
representations via multi-view information bottleneck. In International Conference on Learning
Representations, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Li Fei-Fei and Pietro Perona. A bayesian hierarchical model for learning natural scene categories.
In Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pp.
524–531, 2005.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In Conference on
Computer Vision and Pattern Recognition workshop, pp. 178–178, 2004.

Angelos Filos, Sebastian Farquhar, Aidan N Gomez, Tim GJ Rudner, Zachary Kenton, Lewis Smith,
Milad Alizadeh, Arnoud de Kroon, and Yarin Gal. A systematic comparison of bayesian deep
learning robustness in diabetic retinopathy tasks. arXiv preprint arXiv:1912.10481, 2019.

Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psychological bulletin, 76
(5):378, 1971.

Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view classification.
In International Conference on Learning Representations, 2021.

Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view classification
with dynamic evidential fusion. IEEE transactions on pattern analysis and machine intelligence,
45(2):2551–2566, 2022.

David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis: An
overview with application to learning methods. Neural computation, 16(12):2639–2664, 2004.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In International Conference on Learning Representations, 2019.

Dongdong Hou, Yang Cong, Gan Sun, Jiahua Dong, Jun Li, and Kai Li. Fast multi-view outlier
detection via deep encoder. IEEE Transactions on Big Data, 8(4):1047–1058, 2020.

Zhenyu Huang, Peng Hu, Joey Tianyi Zhou, Jiancheng Lv, and Xi Peng. Partially view-aligned
clustering. Advances in Neural Information Processing Systems, 33:2892–2902, 2020.

Zongmo Huang, Yazhou Ren, Xiaorong Pu, Shudong Huang, Zenglin Xu, and Lifang He. Self-
supervised graph attention networks for deep weighted multi-view clustering. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 7936–7943, 2023.

Audun Jøsang. Subjective Logic: A formalism for reasoning under uncertainty. Springer Publishing
Company, Incorporated, 2018.
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A PROPOSED ALGORITHM FOR TRAINING AND TESTING

Algorithm 2: Algorithm For Training

Input: Multi-view dataset: D = {{xv
i }Vv=1, yi}Ni=1.

Initialize: Initialize the parameters θ́ of the Functional networks; initialize the parameters θ̈ of
the Referral networks.

/*Stage-1 Warm-up Referral Network*/
for minibatch do

for v = 1 : V do
ëv ← Referral Evidential network batch output;
Obtain α̈v ← ëv + 1 ;

end
Obtain overall loss by summing losses calculated by Eq. 10 of all {α̈v}Vv=1;
Update the parameters θ̈ by gradient descent with the loss from above;

end
/*Stage-2 Update Functional Network*/
for minibatch do

/*Substage-2a*/
for v = 1 : V do

év ← Functional Evidential network batch output;
Obtain άv ← év + 1 ;

end
Obtain overall loss by summing losses calculated by Eq. 8 of all {άv}Vv=1;
Update the parameters θ́ by gradient descent with the loss from above;
/*Substage-2b*/
for v = 1 : V do

ëv ← Referral Evidential network batch output;
év ← Functional Evidential network batch output;
Obtain ω̈v and ώv by Eq. 1 with ëv and év , respectively ;

end
Obtain joint opinion ω̄ by Eq. 6 and ᾱ of this opinion by reversing Eq. 1;
Obtain loss by Eq. 8 with ᾱ and update the parameters θ́ with gradient descent;

end
/*Stage-3 Adjust Referral Network*/
By repeating Stage-2b only and update θ̈ instead of θ́;
/*Stage-4 Adjust Functional Network*/
By repeating entire Stage-2;
Output: Functional and Referral networks parameters.

Algorithm 3: Algorithm For Testing
/*Testing Phase*/
Requires: the parameters θ́ of the Functional networks; the parameters θ̈ of the Referral
networks.

for minibatch do
for v = 1 : V do

ëv ← Referral Evidential network batch output;
év ← Functional Evidential network batch output;
Obtain ω̈v and ώv by Eq. 1 with ëv and év , respectively ;

end
Obtain joint opinion ω̄ by Eq. 6 and ᾱ of this opinion by reversing Eq. 1;
Obtain predicted labels of minibatch using argmax over belief masses.

end
Output: Predicted Labels and Opinions including fused opinion, functional opinions, referral

opinions, discounted opinions for each instance of each view.
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B PROOFS AND DERIVATIONS

B.1 CALCULATION OF PREDICTIVE PROBABILITY

According to Subjective Logic (SL) Jøsang (2018), the predictive probability pk for class k, can be
calculated by

pk = bk + ak ∗ u (12)

where bk is the belief mass for k-th label, u is the predictive uncertainty or epistemic uncertainty
Sensoy et al. (2018). We usually assume the prior ak conforms to a uniform discrete distribution, i.e.,
ak = 1/K, so the above equation is identical to

pk =
αk

S
(13)

where αk is the Dirichlet concentration parameter for k-th label, and S is the Dirichlet strength, i.e.,
S =

∑
k αk.

Proof.

pk = bk + ak ∗ u

= bk +
1

K
∗ K
S

=
ek
S

+
1

S

=
αk

S

Since Beta Distribution is 2-dimensional Dirichlet Distribution, above equations for calculating
probabilities of multinomial opinions could also be applied to binomial opinions.

B.2 ALTERNATIVE REPRESENTATION OF BELIEF CONSTRAINT FUSION(BCF)

Proof. We the proof for Eq. 4 as follows,

ek = S ∗ bk

= S
1

1− C
(b1kb

2
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B.3 DIRICHLET EVIDENCE UPDATING BY TRUST DISCOUNTING (TD)

As mentioned earlier, the TD in Definition 2 also corresponds to updating Dirichlet evidence using
following equation,

ĕk =
p̈tú

1− p̈t + p̈tú
ék (14)

where p̈t is the probability representing trust degree and ú is the uncertainty for functional opinion.
ék is Dirichlet evidence of functional opinion, and ĕk is Dirichlet evidence after discounting.

Proof.

ĕk = b̆k ∗ S̆

=
p̈tb́kK

ŭ

=
p̈tb́kK

1− p̈t + p̈tú

=
p̈t

1− p̈t + p̈tú

ék

Ś
K

=
p̈t

1− p̈t + p̈tú

K

Ś
ék

=
p̈tú

1− p̈t + p̈tú
ék

B.4 DETAILED PROOF OF PROPOSITIONS

Proof. Proof details of Proposition 1. Recall that scalar probability p̈t represents the degree of trust
as mentioned before. The belief mass for k-th label of final fused opinion is as follows,

b̄k =
1

1− C̆
(b̆1k b̆

2
k + b̆1kŭ

2 + b̆2kŭ
1)

=
1

1− C̆
((b́1kp̈

1
t )(b́

2
kp̈

2
t ) + b́1kp̈

1
t ŭ

2 + b́2kp̈
2
t ŭ

1)

We use g to denote the index of ground-truth label, and we have

b̄g =
1

1− C̆
((b́1gp̈

1
t )(b́

2
gp̈

2
t ) + b́1gp̈

1
t ŭ

2 + b́2gp̈
2
t ŭ

1)

The discounted opinion’s uncertainty ŭ is

ŭ = 1− p̈t(
∑
k

b́k)

= 1− p̈t(1− ú)
= 1− p̈t + p̈t ∗ ú

In the warm-up training stage, the Eq. 10 is used to make sure p̈t → 1 (with hard targets for simplicity
here) for those views’ predictions are same as the ground truth label, and ŭ → 0 for those views’
predictions are incorrect. Therefore, ŭ→ ú when b́g = max(b́), and ŭ→ 1 when b́g ̸= max(b́).

Therefore, with the assumption that at least one-view’s prediction is same the ground truth (i.e.,
correct label, let’s say view 1’s prediction is correct), we have

b̄g =
1
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1(equality holds iif. k = g))

=
1

1− C̆
(b̆1k b̆

2
k + b̆1kŭ
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Besides the warm-up stage, in other training stages, such as training stage 3 in Alg.2, the p̈t will also
be updated to maximize b̄g based on the Eq. 8, i.e., b̄g ≥ b̄k(equality holds iif. k = g. Therfore, the
referral opinion is learnt to maximize the belief mass of ground truth label of the final fused opinion
as well.

Proof. Proof details of Proposition 2. Let ū and ū′ denote the uncertainty of BCF combined opinion
with or without Trust Discounting, respectively.
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ú2+ 1

p̈2t
−1

) + 1

=
1∑K

k=1(
b́1k b́

2
k

( ú1
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B.5 LOSS FUNCTIONS AND HYPERPARAMETERS FOR OPTIMIZATION

Recall that the probability density function (pdf) of the Dirichlet distribution, Dir(p | α), is given by:

Dir(p | α) =
1

B(α)

K∏
i=1

pαi−1
i

where:

• p = (p1, p2, . . . , pK) is a probability vector, such that
∑K

k=1 pk = 1 and pk ≥ 0 for all k.
• α = (α1, α2, . . . , αK) is a vector of concentration parameters, with αk > 0.

• B(α) is the multivariate Beta function, defined as B(α) =
∏K

k=1 Γ(αk)

Γ(
∑K

k=1 αk)
.

• Γ(·) is the Gamma function.

Recall that our loss function for Dirichlet Parameters α is

Lv
i =

K∑
k=1

yi,k(ψ(S
v
i )− ψ(αv

i,k)) + λoDKL[Dir(pv
i |α̃v

i )||Dir(pv
i |1)]

Specifically, the left summation term is derived from the Bayes risk for Cross-Entropy loss with a
Dirichlet distribution, which is also dentoed as Lace in previous work (Han et al., 2021). We omit the
index of view v and instance i for simplicity, so Lace is defined as follows,

Lace =

∫ [ K∑
k=1

−yklog(pk)

]
1

B(α)

K∏
k=1

(pk)
αk−1dp

=

K∑
k=1

yk(ψ(S)− ψ(αk)) (15)
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Where ψ is the digamma function.

Recall that our referral network will generate the evidence for binomial opinion, and the evidence
will be converted into parameters of Beta Distribution, i.e., Beta(α0, α1) Subsequently, by replacing
the Dirichlet Distribution with Beta Distribution, and the label yk in above equation with another
label, we can have the ace loss for Beta Distribution, as Eq. 10.

And the right term, KL divergence loss is

DKL [Dir(p | α) ∥ Dir(p | 1)]

= log

 Γ
(∑K

k=1 αk

)
Γ(K)

∏K
k=1 Γ(αk)

+

K∑
k=1

(αk − 1)

ψ(αk)− ψ

 K∑
j=1

αj

 (16)

C ADDITIONAL DETAILS OF THE EXPERIMENT

C.1 HYPER-PARAMETERS OF PROPOSED METHODS

The hyper-parameters for training TF and ETF has been shown in in Table 7. Concretely, ”lr” is
the learning rate for functional networks, ”rlr” indicates the learning rate for referral networks. For
the ”lr”, we follow ETMC (Han et al., 2022), and used same strategy to select learning rate for the
functional nets. When tuning the learning rate for referral networks, we follow a basic principle of
starting with a value less than or equal to the base learning rate, and then gradually decreasing the
learning rate of referral network by a factor of three. For fair comparison, we used same learning rate
for functional networks for evidence-based methods, except MGP (Jung et al., 2022), for which we
followed their paper.

Table 7: TF and ETF hyper-parameters
Hyper-parameter Handwritten Caltech101 PIE Scene15 HMDB CUB
lr 3e-3 1e-4 3e-3 1e-2 3e-4 1e-3
rlr 3e-4 3e-5 1e-3 3e-3 1e-4 3e-4
weight-decay 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
warm-up epochs 1 1 1 1 1 1

The Adam optimizer (Kingma & Ba, 2015) is used for updating model parameters with beta coeffi-
cients = (0.9, 0.999) and epsilon = 1e-8.

C.2 SUMMARY OF DATASET

Table 8: Summary of Datasets
Dataset Size K Dimensions #Train #Test
HandWritten 2000 10 240/76/216/47/64/6 1600 400
Caltech101 8677 101 4096/4096 6941 1736
PIE 680 68 484/256/279 544 136
Scene15 4485 15 20/59/40 3588 897
HMDB 6718 51 1000/1000 5374 1344
CUB 600 10 1024/300 480 120

We provide the summary of the dataset in Table 8, we direct readers to Han et al. (2021) for further
details regarding these datasets. The datasets used in our experiments are 1) Handwritten dataset
has 2000 samples of 10 classes. Each class is one of the digit 0 to 9 with samples evenly distributed
(i.e., 200 samples per class). We use six descriptors to represent different views, and they are Pixel
averages in 2 × 3 windows (Pix) feature with 240 dimensions, Fourier coefficients of the character
shapes (FOU) with 76 dimensions, Profile correlations (FAC) features with 216 dimensions, Zernike
moments (ZER) with 47 dimensions, Karhunen-Love coefficients (KAR) with 64 dimensions, and
Morphological (MOR) features with 6 dimensions; 2) Caltech101 dataset has 101 classes and 8677
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images in total; We used the extracted features from DECAF Donahue et al. (2014) and VGG19
Simonyan & Zisserman (2014). Both views have 4096 dimensions. 3) PIE dataset includes intensity
(484 dimensions), Local binary patterns (LBP) (256 dimensions) and Gabor feature (279 dimensions)
of 680 facial images, with 68 subjects; 4) Scene15 dataset has 4485 images from 15 indoor and
outdoor scene categories. There are 3 different views information, and they are GIST, Pyramid
Histogram of Oriented Gradients (PHOG) and Local binary patterns (LBP) feature. These views
are in 20, 59 and 40 dimensions respectively; 5) HMDB has 6718 samples of 51 categories of
actions, which is consisted of Histogram of oriented gradients (HOG) feature and Motion Boundary
Histograms (MBH) features as a 2-view dataset. Both views have 1000 dimensions; 6) CUB dataset
has 200 different categories of birds and 11788 images in total. Same as Han et al. (2021), we used
first 10 categories in our experiment and GoogleNet Szegedy et al. (2015) and doc2vec Le & Mikolov
(2014) to extract the image features and text features to simulate a 2-view dataset. Image view and
text view has 1024 and 300 dimensions respectively.

D SUPPLEMENTARY INSIGHTS AND ADDITIONAL ANALYSIS

D.1 AUROC FOR UNCERTAINTY.

The uncertainty score, as illustrated in Proposition 2, will be more accurate withou introducing biases,
so it is essential to validate the increased uncertainty. Following the approach of prior work (Filos
et al., 2019), we assess uncertainty to ensure a thorough evaluation. Specifically, we employed
AUROC to measure the model’s discriminate power in distinguishing incorrect predictions using
uncertainty scores. As shown in Table 9, TF and ETF consistently demonstrate the best performance
on five out of the six datasets, showcasing their robust generalizability. Despite a performance
decrease on the CUB dataset, our method (ETF) still maintains the second-best result, outperforming
other approaches, whether incorporating pseudo views or not. One possible reason for the decreased
performance on CUB could be the unstable optimization caused by the limited number of training
instances (e.g., 480), whereas other datasets, such as Scene15, contain significantly more instances
(e.g., 3588).

Table 9: AUROC of uncertainty scores for identifying incorrect predictions.
Dataset Handwritten Caltech101 PIE Scene15 HMDB CUB
MGP 99.29±0.30 87.62±0.90 88.43±0.67 63.92±1.96 82.87±0.60 58.20±11.4
ECML 79.05±5.62 86.31±0.50 87.51±0.49 60.50±0.25 81.63±0.15 57.30±8.50
TMC 99.23±0.22 87.33±0.47 90.16±0.99 62.60±0.54 82.63±0.48 64.80±10.5
TF(ours) 99.32±0.35 88.99±0.54 95.90±0.08 64.56±2.02 83.59±0.23 53.52±14.3
ETMC 99.30±0.19 88.35±0.63 93.02±1.40 66.49±0.44 85.42±0.34 72.56±8.11
ETF(ours) 99.90±0.30 88.70±0.54 92.47±1.19 70.44±1.10 86.23±0.49 64.41±3.54

D.2 ABLATION STUDY OF WARM-UP EPOCHS

In the proposed stage-wise training algorithm, we adopt a warm-up stage (i.e., training stage 1) for
better initialization of referral networks. As random initialized parameters may not able to assess the
reliability of corresponding functional opinions correctly. The key hyper-parameter of the warm-up
stage, is the warm-up epochs. We ablate different values of this hyper-parameter and evaluate the
effect of it on the performance of our method. Specially, we used an empirical value, i.e., one single
epochs, for all reported results in the experiment section. And here we provide more analysis with
finely grain values, starting from 0 and increasing steadily, for example, to 2, 5, and 10, that is first
random initializing the parameters of the referral networks and then not warm-up training or training
with 2, 5, 10, and followed by each, finish the rest training stages. Please note that if this value is set
to be 0, which means we disable the warm-up stage, and reported results with warm-up epoch 1 are
also included, as shown in Figure 3.

From Figure 3, we can find that incorporating warm-up stage (warm-up epochs ≥ 1) can generally
results in better accuracy. For some datasets (e.g. HMDB), increasing the number of warm-up epochs
further improves accuracy compared to the results previously reported. This observation suggests
that adjusting this value based on the specific dataset can lead to enhanced performance.
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Handwritten Caltech101 PIE

Scene15 HMDB CUB

Figure 3: The effect of different warm-up epochs on testing accuracy.

TMC TF

ETMC ETF

Figure 4: Conflict Ratio on Scene15, Four Methods TMC, TF, ETMC, ETF are compared. GT, Pred,
1, 2, 3 and PS are ground-truth, prediction, GIST, PHOG, LBP and pseudo view respectively.
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D.3 ABLATION STUDY OF WITH OR WITHOUT THE TD MODULE

We conduct the ablation study to validate the effectiveness of TD module. In the case without the TD
module, the corresponding training stages related to TD module will be disabled, for example, the
warm-up stage and training stage 2-b.

Table 10: Ablation Study of With or Without the TD module
Method Top-1 Acc(%) FleissKappa MVGAT(%) Uncer AUROC(%)
ETF(w/ TD, reported) 82.01±0.17 0.48±0.01 79.18±0.38 70.44±1.10
ETF(w/o TD) 81.06±0.16 0.46±0.01 77.42±0.49 69.95±0.83
TF(w/ TD, reported) 77.83±0.32 0.39±0.00 60.41±0.52 64.56±2.02
TF(w/o TD) 76.82±0.33 0.37±0.01 59.04±0.71 63.54±1.50

We can see that without the core module TD, the performance over four metrics drops, which indicates
the effectiveness of our proposed TD module.

D.4 ABLATION STUDY OF SMOOTHING FACTOR

We varied the smoothing factor used in the warm-up stage for ablation. we set warm-up epoch equals
1, which same as the reported results in the main text. The equation we used for smoothing hard label
is z̊vi = zvi ⊙ η + (1− η)/2, with larger smoothing factor, the smoothed label becomes meaningless,
so we vary the factor from 0.6 to 1.0 by step size 0.1.

Table 11: Ablation Study of Smoothing Factor
Method Top-1 Acc(%) FleissKappa MVGAT(%) Uncer AUROC(%)
ETF(0.9, reported) 82.01±0.17 0.48±0.01 79.18±0.38 70.44±1.10
ETF(1.0) 82.07±0.12 0.48±0.01 79.32±0.38 71.03±0.40
ETF(0.8) 82.04±0.23 0.49±0.01 79.40±0.48 70.48±1.11
ETF(0.7) 82.07±0.10 0.48±0.01 79.42±0.28 70.53±0.82
ETF(0.6) 81.96±0.16 0.47±0.01 79.31±0.40 70.36±0.74

We can see that our method is relatively robust to different smoothing factors, and even gains
performance improvement with adjusted smoothing factors on Scene15 Dataset, e.g., factor equals to
1.0, the smoothing factor we used in submission (e.g., 0.9) is the empirical value suggested in the
original paper, to avoid hyper-parameters over-tuning.

D.5 THE EFFECTIVENESS OF LEVERAGING DIFFERENT VIEWS

We take the Scene15 dataset as example, and ablate the number of views to validate how the trust
discounting mechanism performs with varying number of views.

Table 12: Test Accuracy by using different views on Scene15
Comb N Views used view 1 view 2 view 3 Top-1 Accuracy

1 1 ✓ x x 57.16±0.22
2 1 x ✓ x 75.15±0.01
3 1 x x ✓ 62.97±0.45
4 2 ✓ ✓ x 78.70±0.00
5 2 ✓ x ✓ 68.21±0.01
6 2 x ✓ ✓ 80.21±0.00
7 3 ✓ ✓ ✓ 82.01±0.17

Based on the table above, we observe that the effectiveness of each individual view on classification
varies significantly, as reflected in the test accuracy of individual views. However, our method
consistently improves accuracy by effectively incorporating different views. For instance, View 2,
View 3, and View 1 rank 1st, 2nd, and 3rd, respectively, in terms of single-view accuracy. Combination
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4 (View 1 & 2) outperforms Combination 5 (View 1 & 3) across comparisons, and in such case,
view 1 are the common view, but view 2 is better than 3, so combination 4 is expected to outperform
combination 5, and this holds true when comparing Combination 4 with Combination 6, or comparing
Combination 5 with Combination 6. The highest accuracy is achieved when all views are utilized
together, which also proves the effectiveness of our method.

D.6 INSTANCE SIMILARITY OF VECTOR DATASETS

We also calculated the pair-wise cosine similarities and provided both the results and an analysis
accordingly. Specifically, we considered to calculate the instance similarity using pair-wise cosine
similarity. Please note the AVG view means calculating instance similarity on each view first, then
averaging over all views.

Table 13: View-Specific Pairwise Feature Similarity For Six Datasets
View Mean Median Min Max

Handwritten

1 0.6268 0.6329 0.1249 1.0000
2 0.8043 0.8095 0.4456 1.0000
3 0.8586 0.8592 0.6304 1.0000
4 0.7917 0.8038 0.2970 1.0000
5 0.9167 0.9168 0.8137 1.0000
6 0.7036 0.7964 0.0097 1.0000

AVG 0.7836 0.7889 0.5350 1.0000

Caltech101 1 0.9684 0.9725 0.6968 1.0000
2 0.9748 0.9792 0.5175 1.0000

AVG 0.9716 0.9756 0.6263 1.0000

PIE
1 0.7518 0.7696 0.2842 0.9954
2 0.7173 0.7203 0.4939 0.8530
3 0.8613 0.8682 0.5598 0.9895

AVG 0.7768 0.7829 0.5471 0.9395

Scene15
1 0.9038 0.9234 0.0538 1.0000
2 0.8689 0.8904 0.1185 1.0000
3 0.8133 0.8385 0.0072 1.0000

AVG 0.8620 0.8789 0.1170 1.0000

HMDB 1 0.9372 0.9375 0.9002 1.0000
2 0.9418 0.9418 0.8898 1.0000

AVG 0.9395 0.9397 0.8970 1.0000

CUB 1 0.4112 0.3952 0.1346 0.9577
2 0.9033 0.9128 0.5949 0.9972

AVG 0.6572 0.6494 0.4153 0.9674

Based on the Table above, we can see that for some datasets, like Handwritten and CUB, different
views show different statistics indicating the similarity varies significantly in different views. However,
for other datasets, like HMDB and Caltech101, the instance similarity among different views are
pretty similar.

As we calculated the pairwise similarity using the feature vectors of instances, this similarity also
reflects the semantic similarity. Consequently, similar statistics among different views suggest that
their classification performance is likely to be comparable.

1) For similar views: If one view achieves high accuracy, the other is likely to perform similarly,
resulting in both high accuracy and consistency. For example, this is observed in the Caltech101
dataset (refer to Top-1 Accuracy and Fleiss Kappa). If one view performs with low accuracy, the
other tends to perform similarly, leading to fused predictions that are consistently low in accuracy
across views. An example of this can be seen in the HMDB dataset.

2) For dissimilar views: If one view achieves high accuracy while the other produces low-accuracy
predictions, this leads to higher conflicts. But the accuracy of the fused prediction depends on the
specific fusion mechanism employed by the method. Examples of this scenario can be observed in
the Handwritten and CUB datasets.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.7 END2END TRAINING ON FOOD101 DATASET

In order to further validate the effectiveness of our model on a large dataset, we use an additional
dataset, Food101, which has both an image and text view. This is one dataset has the same number of
class labels, 101, as Caltech101, and has more training (i.e., 61127), validation (i.e, 6845) and testing
(i.e., 22716) instances.. We tried our best, but can only find this dataset having comparable statistics,
e.g., number of class labels and instances.

Table 14: Test Performance on Food101
Method Top-1 Acc
TMC 92.35±0.34
ETMC 92.49±0.13
ECML 92.53±0.15
CCML 92.70±0.06
TF 92.79±0.15
ETF 93.09±0.02

We trained all methods using pre-trained Resnet50 and base-uncased Bert as image and text encoder,
and we adopt AdamW Optimizer for updating parameters. All other settings e.g., maximum number
of epochs, are identical, and we run each method three times for reporting mean and standard
deviation. We do not include TMNR here as it requires pre-extracted frozen feature vectors for
computing similarity matrix working for noisy label learning, and we are not able to have frozen
feature vectors in this End2End training case as the parameters of encoder will also be updated. Our
method ETF consistently outperforms all other methods with regards classification accuracy as shown
in the table.

D.8 REDUCE CONFLICTS BY TRUST FUSION

We calculate the Conflict Ratio (CR) by normalizing the number of times that the v-th view prediction
is different from w-th view, i.e., CR(ŷv, ŷw) = 1

M

∑M
i=1 1(ŷ

v
i ̸= ŷwi ), where M is total number of

test instances, ŷwi is the predicted label of i-th instance on w-th view, and 1 is the indicator function
that returns 1 if the condition is satisfied and 0 otherwise. By applying Trust Discounting, both
TMC’s and ETMC’s conflicts between different views are significant reduced. As an example, the
CR on Scene15 is visualized by heatmap, shown in Figure D.1. The colors in the heatmap generated
by our method are noticeably more blue (or less red) than those of the baselines, indicating that the
conflict ratio has been reduced by our method.

D.9 EXPLANATION FOR THE DECREASE OF AUROC FOR UNCERTAINTY

We argue the decreased performance of AUROC on whether uncertainty can indicate the correctness
of predicted label in caused by insufficient training instances. As shown in Table 8, there are less than
550 training instances on PIE and CUB datasets, where our methods, ETF and TF, have decreased
performance, compared to ETMC and TMC, in which the only difference is the TD module.

Besides, we also investigate a particular testing instance of CUB dataset for the decreased performance
on AUROC of uncertainty. As the error case displayed in Figure 5, ETF corrects the error prediction
made by ETMC. However, even though the combined prediction is correct after applying trust
discounting, the predictive uncertainty is still relatively high. If ETF corrects previously incorrect
predictions but assigns them relatively high uncertainty scores (e.g., 0.4), it may lead to a decrease
in the AUROC for predictive uncertainty. This is because AUROC evaluates the model’s ability
to discriminate between correct and incorrect predictions based on uncertainty scores. Correcting
predictions while maintaining high uncertainty scores can make it more challenging for the model
to distinguish between correct and incorrect predictions, resulting in a lower AUROC score, even
though the accuracy improves.
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Combined View Pseudo View

Feat View 1 Feat View 2

Figure 5: Bar chart for each label’s belief mass and predictive uncertainty of one testing instance of
CUB dataset. GT indicates the ground truth label of the selected instance.

D.10 SIMULATING CONFLICTING PREDICTIONS WITH NOISY INSTANCES

We plot the model performance for Evidential MVC methods with various level of noises introduced
to inputs in Figure 6 and Figure 7, for methods incorporate pseudo views and not incorporate pseudo
views respectively. Our methods consistently outperforms other methods like TMC and ECML.

Handwritten Caltech101 PIE

Scene15 HMDB CUB

Figure 6: Performance of pseudo-view incorporated Evidential MVC methods on multi-view data
with different levels of noise.
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Handwritten Caltech101 PIE

Scene15 HMDB CUB

Figure 7: Performance of non pseudo-view incorporated Evidential MVC methods on multi-view
data with different levels of noise.

D.11 LIMITATIONS

One possible limitation of our work is that the warm-up loss is not optimal solution, even though we
explored the impact of different warm-up epochs and showed the effectiveness with using warm-up
loss. Another possible limitation would be stage-wise training algorithm is time consuming, we leave
it to future work for improving its efficiency.

E TECHNICAL REQUIREMENT AND EXECUTION

E.1 EXECUTION TIME

The proposed instance-wise approach does indeed introduce additional time complexity compared
to the baselines, particularly compared to methods like TMC and ETMC that do not incorporate
the TF Module but with same Belief Fusion method. However, our method does not rely on the
dependencies between instances for computation. This allows us to perform batch-wise calculations
during both training and testing, a practice widely adopted in most deep learning algorithms, which
can enhance efficiency.

Table 15: Handwritten
Method Train(Seconds) Test(Seconds)
F-Avg 22.88±0.30 0.040±0.09
F-Mode 26.26±0.36 0.041±0.09
MGP 452.31±1.43 0.428±0.10
EMCL 52.63±1.15 0.041±0.09
TMC 55.46±0.78 0.042±0.09
TF 183.51±1.81 0.043±0.09
ETMC 62.45±0.95 0.042±0.09
ETF 202.15±2.24 0.044±0.09

Table 16: Caltech101
Method Train(Seconds) Test(Seconds)
F-Avg 78.62±0.95 0.063±0.09
F-Mode 94.01±0.87 0.063±0.09
MGP 2439.60±7.35 3.428±0.13
ECML 152.99±5.96 0.064±0.10
TMC 114.77±1.89 0.066±0.10
TF 463.41±10.65 0.067±0.09
ETMC 153.64±1.690 0.066±0.09
ETF 543.99±24.88 0.067±0.010

From another perspective, we can view the TF stage as an additional layer appended to the existing
framework (e.g., TMC). Let h be the input vector with dimension dh used for the classification task.
For a K-class classification problem, we obtain a K+1-dimensional functional opinion (1 dimension
for uncertainty). The weight matrix W of the proposed BiLinear layer will have dimensions dh x
dK+1 x d2, and the bias vector will have dimension d2. The time complexity for matrix multiplication
is O(dh x dK+1 x d2) and the time complexity for bias addition is O(d2). Thus, the overall time
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Table 17: PIE
Method Train(Seconds) Test(Seconds)
F-Avg 4.94±0.26 0.033±0.09
F-Mode 6.06±0.27 0.034±0.09
MGP 123.63±2.38 0.374±0.11
ECML 12.92±1.50 0.035±0.09
TMC 11.39±0.31 0.035±0.09
TF 41.63±0.68 0.037±0.09
ETMC 10.36±0.37 0.036±0.09
ETF 50.39±0.71 0.037±0.09

Table 18: Scene15
Method Train(Seconds) Test(Seconds)
F-Avg 27.33±0.37 0.039±0.09
F-Mode 33.77±0.65 0.040±0.09
MGP 576.76±1.27 0.420±0.15
ECML 63.24±0.72 0.040±0.09
TMC 73.26±0.53 0.042±0.10
TF 229.05±2.86 0.042±0.09
ETMC 86.81±3.11 0.042±0.09
ETF 271.99±2.26 0.043±0.09

Table 19: HMDB
Method Train(Seconds) Test(Seconds)
F-Avg 38.26±0.65 0.045±0.09
F-Mode 48.86±0.64 0.048±0.09
MGP 654.42±1.35 0.971±0.13
ECML 82.32±1.17 0.047±0.09
TMC 74.62±0.65 0.047±0.09
TF 278.99±3.47 0.047±0.09
ETMC 99.54±0.93 0.046±0.09
ETF 365.94±8.12 0.047±0.09

Table 20: CUB
Method Train(Seconds) Test(Seconds)
F-Avg 3.57±0.29 0.033±0.09
F-Mode 4.48±0.29 0.033±0.09
MGP 136.74±0.76 0.239±0.10
ECML 8.17±0.28 0.036±0.09
TMC 7.66±0.30 0.034±0.09
TF 29.21±0.41 0.035±0.09
ETMC 13.98±0.38 0.035±0.09
ETF 37.57±0.56 0.036±0.09

complexity is O(dh x dK+1 x d2). Given the dataset for a classification task, the additional layer
exhibits linear time complexity with respect to only the hidden size. Since this hidden size is relatively
small and compact to the classification dimension, we argue that the increase in time complexity is
not substantial as shown in following tables. We report the training and testing time by averaging 10
times running as shown in Tables 15 - 20.

E.2 FRAMEWORK AND REPRODUCIBILITY

For experimental results to be reproducible, we will release our official implementation upon the
paper’s acceptance. Specifically, we used PyTorch (Paszke et al., 2019) version 1.13.0, built with
CUDA 11.7, to implement our codes. The Python environment version is 3.8, and the operating
system is Ubuntu 22.04.4. All Experiments are conducted on a single Nvidia RTX 3090 GPU with
24GB of memory.
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