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Abstract001

Large language models (LLMs), have demon-002
strated significant success in natural language003
understanding and generation tasks. In this004
work, we propose LAR (Large language model005
Assisted Retrieval) to harness LLMs towards006
enhancing the effectiveness of retrieval models,007
thereby improving the relevance of informa-008
tion retrieval from datasets. Our approach aug-009
ments a retriever engine by incorporating a sub-010
sequent refinement step to the query, utilizing011
an LLM. This approach showcases the poten-012
tial of combining retrieval models with LLMs013
to advance information retrieval systems. We014
demonstrate the efficacy of LAR through exten-015
sive evaluations, specifically showing enhanced016
performance on the BEIR retrieval benchmark.017
Furthermore, our methodology exhibits notable018
improvements on downstream tasks such as019
question answering, as demonstrated on the020
NarrativeQA dataset.021

1 Introduction022

In recent years, the emergence of Large Language023

Models (LLMs) has revolutionized the landscape of024

natural language processing tasks. LLMs, such as025

GPT (Achiam et al., 2023) models, exhibit remark-026

able capabilities in understanding and generating027

human-like text. These models leverage large-scale028

pre-training on diverse text corpora, enabling them029

to capture intricate linguistic patterns and semantic030

nuances.031

Retrieval models are essential for information032

retrieval systems, enabling users to locate pertinent033

documents within vast collections based on their034

queries. These models optimize the search process035

by evaluating and ranking the relevance of docu-036

ments to user queries. Additionally, they are crucial037

for question answering systems where the corpus038

is very large.039

040

Figure 1: An overview of LAR. The original query is
used to gather relevant documents, which are in turn
used to prompt the LLM and get a revised query.

Standard retrieval models, such as BM25 041

(Robertson et al., 2009), leverage statistical meth- 042

ods to rank documents based on term frequency 043

and document length. More advanced models, like 044

Dense Passage Retrieval (Karpukhin et al., 2020), 045

utilize deep learning to understand and match the 046

context of queries and documents via distributed 047

representations of queries and documents. How- 048

ever, a key limitation of these approaches is that 049

they are confined to retrieving documents that are 050
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directly related to the given query. Specifically,051

such methods will struggle with finding documents052

that require integrating cross-document informa-053

tion. As an example, consider a query about the054

height of a certain entity John. Assume that there’s055

a document that mentions John is also known as056

JJ, and another document specifying JJ’s height. If057

there are many documents specifying height, it is058

unlikely the above retrieval engines will return the059

one about JJ’s height, as it is not sufficiently similar060

to the query.061

Our key observation is that LLMs can “read” re-062

trieved documents, and use these to generate new063

queries, such that in this process more relevant doc-064

uments would surface. We implement this idea065

by introducing a method that uses LLMs to revise066

queries with retrieval models to return documents067

given these queries. Importantly, the LLMs gener-068

ate the queries based on the documents, thus facili-069

tating the use of cross-document information. See070

Figure 1.071

We conducted experiments on the BEIR (Thakur072

et al., 2021)and ZeroScrolls (Shaham et al., 2023)073

benchmarks, and have achieved results that outper-074

form all open-source models. The synergy between075

retrieval models and LLMs presents a promising076

avenue for advancing information retrieval tech-077

niques. By harnessing the contextual understand-078

ing and generative prowess of LLMs, it becomes079

feasible to augment traditional retrieval processes080

with advanced language understanding capabilities.081

Our contributions are:082

• We introduce a general method for enhancing083

the performance of current retrieval systems.084

• We investigate the effects of combining LLMs085

with retrieval models for various tasks.086

• We demonstrate competitive results when en-087

hancing existing approaches with LAR.088

2 Method089

The goal of a document retrieval model can be090

formally defined as: given a dataset, D, identify091

and return the most relevant documents in response092

to a given query, Q. The main challenge lies in093

efficiently sifting through potentially vast amounts094

of data to pinpoint documents that best address the095

query. Our approach involves a two-step iterative096

process leveraging both a retriever model and a097

large language model to refine the results.098

Our process is illustrated in Figure 1. We be- 099

gin by employing a retriever model to filter the 100

dataset D, and obtain an initial list of 10 docu- 101

ments. From the list of documents retrieved in the 102

first step, we select the top k documents. These doc- 103

uments, along with the query Q are then presented 104

to the LLM. The LLM assesses whether these doc- 105

uments contain answers pertinent to the query in 106

a zero-shot manner. If the LLM confirms that the 107

documents are relevant, these documents are used 108

as the final answer set. If the LLM determines 109

that the documents are not sufficiently relevant, we 110

prompt it to generate a set of more appropriate 111

search terms. These updated terms form a revised 112

query. The retriever model is then employed again 113

using the updated query. The documents retrieved 114

in this iteration are taken as the final answer set. 115

Finally, we have applied a reranking model to 116

the result, demonstrating that LAR can be com- 117

bined with existing approaches to enhance their 118

performance. 119

3 Experiments 120

In what follows, we provide details about the 121

datasets and evaluation protocol, and implemen- 122

tation details. 123

3.1 BEIR Benchmark Evaluation 124

We evaluated our approach on the BEIR1 bench- 125

mark datasets (Thakur et al., 2021). BEIR con- 126

sists of 18 datasets containing information retrieval 127

tasks. We used the standard test sets for all evalua- 128

tions. Initially, we use Pyserini’s (Lin et al., 2021) 129

flat indexes to retrieve 10 documents for each query 130

using the BM25 algorithm with default parameters 131

(k1=0.9, b=0.4). These documents, along with the 132

query, were then provided as input into GPT4o. 133

The task of the LLM is to assess whether the re- 134

trieved documents sufficiently addressed the query 135

by answering the question: “Do the texts contain 136

the answer to the query? Answer in ’Yes’ or ’No’.” 137

If the LLM responded "No", indicating that 138

the retrieved documents were insufficient, we 139

prompted the LLM again to understand what ad- 140

ditional information was needed. Specifically, the 141

LLM was asked: “Use these texts and the query 142

1We did not test LAR on the Quora and CQADupstack
datasets because our approach is tailored for a query and a
related corpus containing information about it. These datasets
consist of query duplications where the task is to find the
most similar question, with each "document" being a question.
Instead, we present the average BM25 result or the average
InPars result.
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provided to better understand what information is143

missing from the texts to answer the query, and pro-144

vide search terms that will help search a larger text145

for that missing information.” The LLM-generated146

search terms were then used to refine the query and147

retrieve a new set of documents using BM25-flat.148

The final set of documents obtained through this149

refined retrieval process was evaluated using the150

nDCG@10 score.151

As a final optional step, we took an existing152

reranking method, InPars-v2 (Jeronymo et al.,153

2023), and incorporated it on top of our method, in154

order to assess if LAR can be combined with ex-155

isting methods for superior results. InPars-v2 used156

data generated from the BEIR datasets in order to157

fine tune a Monot5 (Nogueira et al., 2020) model158

to be used as a reranker for the final 1000 results159

retrieved using BM25-flat. We used these reranker160

models as the final step in our process. Once the161

final result of the retrieved documents was returned162

from BM25, we rereanked the results.163

3.2 Open Domain QA164

We also conducted experiments using the Narra-165

tiveQA (Kočiskỳ et al., 2018) dataset from the Ze-166

roScrolls benchmark (Shaham et al., 2023), in or-167

der to evaluate the improvement in open-domain168

question answering. The ZeroScroll subset is a sub-169

set of the NarrativeQA dataset that contains 500170

datapoints. We have used that instead of the full171

narrativeQA dataset for budgetary reasons. Here,172

the objective is to extract a precise answer from173

a lengthy document in response to a given query.174

Out of the ZeroScrolls, we focused only on Narra-175

tiveQA since it is the only one that both has queries,176

and has texts long enough to make retrieval useful177

(as opposed to just using the entire text as context).178

The original corpus was preprocessed by seg-179

menting it into chunks of approximately 500 char-180

acters each, ending at the first period after the 500th181

character. These chunks were treated as individual182

documents for the retrieval process.183

Following the preprocessing, we adhered to the184

previously described retrieval steps involving the185

LLM for generating new search terms if the initial186

documents were deemed insufficient, but using a187

Dense Passage Retrieval model, Contriever (Izac-188

ard et al., 2021) for the retrieval of documents, and189

gpt-4-1106-preview as the LLM.190

In the final retrieval step, the documents selected191

based on LLM guidance were used as context for192

question answering. Answers were evaluated us-193

ing F1 score, as is standard for this dataset. It is 194

important to note that our approach utilized approx- 195

imately 1700 tokens as context, in contrast to the 196

ZeroScrolls baseline which used 8000 tokens. 197

3.3 Incorporating InPars-V2 Rerankers 198

For the BEIR benchmark, we also explored the use 199

of a reranker, InPars-v2, and incorporated it on top 200

of LAR. InPars-v2 used data generated from the 201

BEIR datasets in order to fine tune a Monot5 model 202

to be used as a reranker for the final results retrieved 203

from BM25-flat. We used these reranker models as 204

the final step in our process. Once the final result 205

of retrieved documents was returned from BM25, 206

we reranked the results before evaluating them. 207

4 Results 208

Table 1 presents the BEIR results for BM25, BM25 209

enhanced by the LLM, BM25 followed by an In- 210

ParsV2 reranker, and BM25 enhanced by the LLM 211

and followed by an InParsV2 reranker. Our ap- 212

proach shows statistically significant (paired t-test. 213

p = 0.039) and consistent improvements over In- 214

ParsV2. In addition, LAR shows significant im- 215

provement when applied over BM25 without the 216

use of a reranker. These results beat the current best 217

open source method (Jeronymo et al., 2023), while 218

still being competitive with the unpublished current 219

state of the art, reported on the BEIR benchmark 220

leaderboard. 221

Table 2 presents the results on the ZeroScrolls 222

subset of the NarrativeQA dataset. We demon- 223

strate the efficacy of LAR when employing a dense 224

passage retrieval model, Contriever. We achieve 225

superior results to the ZeroScrolls baseline despite 226

using only roughly 1700 tokens in comparison to 227

the baseline’s 8000. 228

5 Related Work 229

Iterative retrieval has been explored before in dif- 230

ferent contexts. (Trivedi et al., 2022) uses chain-of- 231

thought to guide the retrieval process and refines 232

the CoT with the obtained retrieval results. They 233

differ from our approach because while they utilize 234

the LLM for query enhancement, we also use the 235

LLM for determining whether the current context 236

is sufficient, thus avoiding model hallucinations in 237

QA. Peng et al. (2023) enhances LLM responses by 238

grounding them in external knowledge and refining 239

prompts with utility function feedback, but this ex- 240

ternal knowledge must be stored in a task specific 241
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Dataset BM25 Enhanced by LLM +
InParsV2 BM25 + InParsV2 BM25 +

Enhanced by LLM BM25

AVG 0.55 0.545 0.443 0.424
NFCorpus 0.405 0.385 0.339 0.321
Arguana 0.372 0.369 0.404 0.397
Trec-covid 0.848 0.846 0.609 0.594
Touche-2020 0.291 0.291 0.460 0.442
Dbpedia-entity 0.505 0.498 0.351 0.318
Scidocs 0.208 0.208 0.158 0.149
Climate-FEVER 0.324 0.323 0.190 0.165
Scifact 0.770 0.774 0.715 0.678
Fiqa 0.516 0.509 0.251 0.236
Fever 0.860 0.872 0.640 0.651
Nq 0.653 0.638 0.354 0.305
Hotpotqa 0.795 0.791 0.654 0.633
Robust04 0.656 0.632 0.461 0.408
Trec-news 0.493 0.49 0.447 0.395
Signal1m 0.312 0.308 0.322 0.330
Bioasq 0.594 0.595 0.523 0.522
CQADupstack 0.448 0.448 0.302 0.302
Quora 0.845 0.845 0.789 0.789

Table 1: nDCG@10 on BEIR. Improvement over the baseline is signifcant (paired t-test. p = 0.039). The
CQADupstack and Quora values are placeholders since we did not run experiments on these datasets because they
focus on question duplication rather than document retrieval to answer a query.

Dataset Contriever +
Enhanced by LLM Contriever ZeroScrolls baseline

(∼8000 tokens)

NarrativeQA 33.7 33.1 27.6

Table 2: F1 on NarrativeQA. The ZeroScrolls baseline used 8000 tokens for their evaluation, while LAR used only
∼1700 tokens.

database. Zemlyanskiy et al. (2022) retrieve exem-242

plars with outputs similar to a preliminary output243

generated by the LLM. (Yu et al., 2023) uses a gen-244

erated output to retrieve relevant context used for245

output refinement, while we prompt the LLM to,246

when necessary, refine the input (query) by using247

retrieved documents (context).248

Retrieval-Augmented Generation (RAG) (Guu249

et al., 2020; Lewis et al., 2020) presented a tech-250

nique that enhances language models (LMs) by251

incorporating relevant text passages retrieved from252

external sources into their input space. This ap-253

proach has been shown to significantly boost per-254

formance in knowledge-intensive tasks, both when255

fine-tuned and when used with pre-trained LMs,256

however it does not boost the retrieval process it-257

self. (Gao et al., 2023) used reflection tokens to258

adaptively retrieve passages, determining the best259

moment for retrieval. (Luo et al., 2023) fine-tunes260

a language model by prepending a fixed number of 261

relevant retrieved passages to the input. Jiang et al. 262

(2023) adaptively retrieves passages to assist gen- 263

eration based on the confidence of the previously 264

generated tokens. 265

6 Conclusion 266

In this work, we presented a general approach for 267

utilizing LLMs to enhance information retrieval 268

systems and performance on downstream tasks. 269

Our results demonstrate that LAR can be used to en- 270

hance retrieval processes based on BM25, DPR and 271

reranker models, resulting in improved retrieval 272

quality. Our evaluation demonstrates competitive 273

performance with strong baselines on BEIR and 274

NarrativeQA. It is likely these results can be im- 275

proved further by introducing more elaborate itera- 276

tive procedures that take into account information 277

gathered from previous retrievals. 278
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7 Limitations279

Despite the promising results described here, few280

limitations need to be acknowledged. First, LAR re-281

quires one or two calls to an LLM. This reliance can282

introduce significant computational costs and time283

delays, especially when dealing with large-scale284

datasets or real-time applications. Our model’s re-285

trieval performance relies on the corpus containing286

relevant information about the query, limiting its287

effectiveness in scenarios where this is not the case,288

such as duplicated question retrieval, as exempli-289

fied by datasets like “Quora”. These are general290

limitations on these kinds of models.291
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