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Abstract

An abundance of recent impossibility results es-
tablish that regret minimization in Markov games
with adversarial opponents is both statistically and
computationally intractable. Nevertheless, none
of these results preclude the possibility of regret
minimization under the assumption that all par-
ties adopt the same learning procedure. In this
work, we present the first (to our knowledge) algo-
rithm for learning in general-sum Markov games
that provides sublinear regret guarantees when
executed by all agents. The bounds we obtain
are for swap regret, and thus, along the way, im-
ply convergence to a correlated equilibrium. Our
algorithm is decentralized, computationally effi-
cient, and does not require any communication
between agents. Our key observation is that online
learning via policy optimization in Markov games
essentially reduces to a form of weighted regret
minimization, with unknown weights determined
by the path length of the agents’ policy sequence.
Consequently, controlling the path length leads to
weighted regret objectives for which sufficiently
adaptive algorithms provide sublinear regret guar-
antees.

1. Introduction
Multiagent reinforcement learning (MARL; see Busoniu
et al., 2008; Zhang et al., 2021) studies statistical and compu-
tational properties of learning setups that consist of multiple
agents interacting within a dynamic environment. One of
the most well studied models for MARL is Markov Games
(also known as stochastic games, introduced originally by
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Shapley, 1953), which can be seen as a generalization of a
Markov Decision Process (MDP) to the multiagent setup. In
this model, the transition dynamics are governed by the joint
action profile of all agents, implying that the environment as
perceived by any individual agent is non-stationary. While
providing powerful modeling capabilities, this comes at the
cost of marked challenges in algorithm design. Further-
more, in its full generality the model considers multiplayer
general-sum games, where it is well-known that computing
a Nash equilibrium is computationally intractable already in
the simpler model of normal form games (Daskalakis et al.,
2009; Chen et al., 2009).

Contemporary research works that study general-sum
Markov games consider objectives that roughly fall into
one of two categories; sample complexity of learning an ap-
proximate (coarse) correlated equilibrium, or regret against
an arbitrary opponent. The sample complexity setup as-
sumes all players learn using the same algorithm, while in
the regret minimization setting, where the vast majority of
results are negative (e.g., Bai et al., 2020; Tian et al., 2021;
Liu et al., 2022), the opponents are assumed to be adversar-
ial, and in particular do not use the same algorithm as the
learner nor attempt to minimize their regret. Curiously, de-
veloping (or, asking if there exist) algorithms that minimize
individual regret given that all players adopt the same algo-
rithm has been largely overlooked. Considering the intrinsic
nature of MARL problems, where agents learn interactively
from experience, it is of fundamental interest not only to
arrive at an equilibrium, but to control the loss incurred
during the learning process. Moreover, this is precisely the
objective considered by a long line of works into learning in
normal form games (Syrgkanis et al., 2015; Chen & Peng,
2020; Daskalakis et al., 2021; Anagnostides et al., 2022b).
Thus, we are motivated to ask;

Can we design algorithms for learning in general-sum
Markov games that, when adopted by all agents,
provide sublinear individual regret guarantees?

In this work, we answer the above question affirmatively,
and present the first (to our knowledge) algorithm for
general-sum Markov games which guarantees sublinear re-
gret compared to the best fixed Markov policy in hindsight.
We consider finite horizon Markov games in two settings;
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full-information, where access to exact state-action value
functions is available, and the unknown model setup (where
each agent only observes loss values of visited state-action
pairs) with a minimum reachability assumption. In both
cases, our algorithm is decentralized and does not require
any form of communication between agents. In addition,
our bounds apply to the general notion of swap regret (Blum
& Mansour, 2007), and therefore imply that the empirical
distribution (over time steps) of policy profiles generated by
our algorithm converges to a correlated equilibrium as the
game progresses.

To achieve our results, we make the following observations.
In a Markov game, from the point of view of any individual
agent, the environment reduces to a single agent MDP in
any given episode. When considering multiple episodes,
the environment perceived by any individual agent is non-
stationary, with the path length of the sequence of policies
generated by fellow agents determining the total variation of
MDP dynamics. Our first key observation is that, when exe-
cuting a policy optimization routine (Shani et al., 2020; Cai
et al., 2020) in a non-stationary MDP (and thus in a Markov
game), the per state objective becomes one of weighted re-
gret with weights unknown to the learner. Importantly, the
total variation of weights in these objectives is governed
by the degree of non-stationarity (and in turn, by the path
length of the other agents’ policies). Therefore, a possible
approach would be to provide all agents with an algorithm
which has the following two properties; (1) the path length
of generated policies is well bounded, and (2) the per state
weighted regret is bounded in terms of the total variation
of weights (and thus in terms of the policy path length).
Indeed, we prove that a carefully designed instantiation of
policy optimization with optimistic-online-mirror-descent
(OOMD; Rakhlin & Sridharan, 2013) produces a bounded
path length policy sequence, and simultaneously exhibits
the required weighted regret bounds.

Our approach builds on recent progress on decentralized
learning in normal form games (Daskalakis et al., 2021;
Anagnostides et al., 2022b;a). The work of Anagnos-
tides et al. (2022b) demonstrated that optimistic-follow-
the-regularized-leader (OFTRL; Syrgkanis et al., 2015),
combined with log-barrier regularization and the no-swap-
regret meta algorithm of Blum & Mansour (2007), leads
to well bounded path length in general-sum normal form
games. However, their techniques do not readily extend to
the Markov game setup; indeed, FTRL-based algorithms are
not sufficiently adaptive and at least in standard form cannot
be tuned to satisfy weighted regret bounds. In fact, weighted
regret is a generalization of the previously studied objective
of adaptive regret (Hazan & Seshadhri, 2009), and it can
be shown FTRL-based algorithms do not even satisfy this
weaker notion (see Hazan & Seshadhri, 2009 and a more
elaborate discussion in Appendix G). Evidently, however,

an OOMD-based algorithm can be made sufficiently adap-
tive and produce iterates of bounded path length. When
all agents adopt our proposed algorithm, the path length of
the generated policy sequence remains well bounded, lead-
ing to moderate non-stationarity and low total variation per
state weighted regret problems, which allows properly tuned
mirror descent steps—crucially, without knowledge of the
weights—to obtain sublinear regret. Notably, while much
of the previous works (e.g., Syrgkanis et al., 2015; Chen &
Peng, 2020; Anagnostides et al., 2022b) employ optimistic
online algorithms and path length dependent regret bounds
to improve upon naive square-root regret, in Markov games,
with our approach, these are actually crucial for obtaining
any form of sublinear regret.

1.1. Summary of contributions

To summarize, we present a decentralized algorithm for
(multiplayer, tabular, and episodic) Markov games, with the
following guarantees when adopted by all agents.

• In the full-information setting, with access to exact
state-action value functions, the individual swap regret
of every agent is 𝑂 (𝑇3/4) (see Section 3).

• In the unknown model setup, subject to reachability as-
sumptions (see Assumption 4.1), we obtain individual
swap regret of 𝑂 (𝑇8/9) (see Section 4).

• In the special case of full-information independent
transition function where agents only affect the loss
functions of each other but not the transition dynamics,
our algorithm guarantees 𝑂 (log𝑇) individual regret.
The result is relatively straight forward given our analy-
sis for general Markov games, and we defer the formal
setting and proofs to Appendix I.

• As an immediate implication, we obtain that the joint
empirical distribution of policy profiles produced by
our algorithm converges to a correlated equilibrium,
at a rate of 𝑂 (𝑇−1/4) in the full-information setting,
𝑂 (𝑇−1/9) in the unknown model setting, and 𝑂 (1/𝑇)
in the independent transition function setting.

1.2. Related work

Learning in Markov games. The framework of Markov
games was originally introduced by Shapley (1953). The
majority of studies consider learning Nash equilibria in
two-player zero-sum Markov games, and may be roughly
categorized by assumptions made on the model. The full-
information setting, where the transition function is known
and/or some sort of minimum state reachability is assumed,
has gained much of the earlier attention (Littman, 1994;
Littman et al., 2001; Brafman & Tennenholtz, 2002; Hu &
Wellman, 2003; Hansen et al., 2013; Wei et al., 2017), as
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well as more recent (Daskalakis et al., 2020; Wei et al., 2021;
Cen et al., 2021; Zhao et al., 2022; Alacaoglu et al., 2022;
Zhang et al., 2022). The unknown model setup, where the
burden of exploration is entirely in the hands of the agent,
has been a target of several recent papers focusing on sample
complexity (Sidford et al., 2020; Bai et al., 2020; Xie et al.,
2020; Zhang et al., 2020; Liu et al., 2021).

The work of Wei et al. (2021) considers zero-sum games
with model assumptions similar to ours, and present an
optimistic gradient descent-ascent policy optimization algo-
rithm with a smoothly moving critic. They obtain last iterate
convergence to a Nash equilibrium at a rate of 𝑂 (𝑇−1/2)
for the full-information setting, which immediately implies
individual regret of 𝑂 (𝑇1/2). In the unknown model setup
with reachability assumptions, their algorithm obtains a last
iterate guarantee that implies 𝑂 (𝑇7/8) regret. Also note-
worthy, Tian et al. (2021) consider the zero-sum unknown
model setting, and develop an algorithm that provides a
𝑂 (𝑇2/3) regret guarantee when comparing to the minimax
game value. Tian et al. (2021) also present a certain ex-
tension of their result to general-sum games, however their
definition of regret in this case does not translate to the usual
notion of regret even when all players adopt their algorithm.

Learning in general-sum Markov games has been compara-
tively less explored. The work of Liu et al. (2021) presented
a centralized algorithm in the unknown model setup with
optimal sample complexity guarantees in terms of the num-
ber of episodes, but exponential dependence on the num-
ber of agents. Following their work, several recent papers
(Jin et al., 2021; Song et al., 2021; Mao & Başar, 2022)
independently develop variants of V-learning, a decentral-
ized algorithm for learning unknown general-sum Markov
games. After 𝑇 episodes, their algorithms output a (non-
Markov) 𝑂 (𝑇−1/2)-coarse correlated equilibrium, without
dependence on the number of agents. Jin et al. (2021) and
Song et al. (2021) also present extensions for obtaining
approximate (non-coarse) correlated equilibrium with sim-
ilar guarantees. Later, Mao et al. (2022) further propose
simplifications to the V-learning algorithmic and analysis
framework. Notably though, the output of these algorithms
is linear in the number of episodes (as it includes the history
of all policies), and it is unclear what are the online guaran-
tees of these methods. In a full-information setting similar
to ours, the recent work of Zhang et al. (2022) presents
an algorithm that outputs a 𝑂̃ (𝑇−3/4)-optimal policy after
𝑇 episodes for general-sum games; notably, however, it is
unclear whether their algorithm provides regret guarantees.

No-regret learning in games. Theoretically understand-
ing no-regret dynamics in multiplayer games has been a
topic of vast interest in recent years (e.g., Rakhlin & Sridha-
ran, 2013; Syrgkanis et al., 2015; Foster et al., 2016; Chen
& Peng, 2020; Daskalakis et al., 2021; Anagnostides et al.,

2022b; Piliouras et al., 2021). The main focus in most of
these works is to analyze the performance of optimistic vari-
ants of online learning algorithms such as FTRL and OMD
in multiplayer normal form games, and ultimately prove
regret bounds which are vastly better than the naive 𝑂 (

√
𝑇)

guarantee achievable in adversarial environments. The state-
of-the-art result in this setting was established by Anagnos-
tides et al. (2022b) who proposed an algorithm which guar-
antees𝑂 (log𝑇) swap regret in general-sum games. Some of
these results have been extended to more general classes of
games such as extensive-form games (Farina et al., 2022b;
Anagnostides et al., 2022a) and convex games (Farina et al.,
2022a). In this work we adopt some of the techniques pre-
sented by Anagnostides et al. (2022b) in order to establish
sublinear swap regret guarantees in general-sum Markov
games.

Hardness results for Markov games. Learning in
Markov games is considered a notoriously challenging prob-
lem, and several learning objectives have been shown in
previous works to be either computationally or statistically
hard. For instance, Bai et al. (2020) show that computing the
best response policy in zero-sum Markov games against an
adversarial opponent is at least as hard as learning parities
with noise, a problem conjectured to be computationally
hard. Tian et al. (2021) and Liu et al. (2022) show a regret
lower bound of Ω(min{

√
2𝐻𝑇,𝑇}) for zero-sum episodic

Markov games with an unknown transition function, where
the opponent is restricted to Markov policies. We note that
these hardness results do not directly impact our goal of
no-regret learning in general-sum Markov games, as they
consider the setting of facing an arbitrary opponent which
is only constrained to play Markov policies. By contrast,
our main result shows that each player’s individual regret is
sublinear in 𝑇 as long as the other players’ policies have a
well bounded second-order path length, which is a property
enforced by our choice of algorithm for all players. Ad-
ditionally, Daskalakis et al. (2022) show that the problem
of computing a coarse correlated equilibrium comprised of
stationary Markov policies in a general-sum infinite hori-
zon Markov game is computationally hard. We consider a
setting of regret minimization in layered episodic Markov
games, and though our policies of interest are stationary,
they do not translate into stationary policies in a correspond-
ing infinite horizon Markov game. Hence, this lower bound
is not applicable in the setting we consider here. Finally,
in a recent work, Foster et al. (2023) consider a more gen-
eral notion of regret in general sum Markov games, where
each player’s benchmark policy may be non-Markovian.
Specifically, they show that obtaining sublinear regret in
this regime is both computationally and statistically hard. In
the setting we consider in this paper, each player’s perfor-
mance is compared to the best Markov policy in hindsight,
and therefore we manage to obtain sublinear regret despite
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this result.

Zero sum Markov games. The recent work of Zhang et al.
(2022) that was mentioned earlier also presents an algorithm
for the zero sum setting with an 𝑂̃ (𝑇−5/6) convergence rate.
This was later improved in Yang & Ma (2022) to 𝑂̃ (𝑇−1)
and then later by Cen et al. (2022) who also establish last
iterate convergence (at the same rate) and improve depen-
dence on the horizon. It is worth noting Pattathil et al. (2022)
who study the zero sum setting with function approximation,
and Giannou et al. (2022) who prove local convergence to
Nash equilibria for independent policy gradients in a general
sum Markov game setting.

Regret in the policy revealing setting. The recent works
of Liu et al. (2022); Zhan et al. (2022) explore the policy-
revealing setting, where agents share their policies after
every episode. Liu et al. (2022) give both positive and
negative results on regret guarantees in this setup for zero-
sum games, with the regret upper bounds depending on
the cardinality of either the baseline or opponent policy
classes. Zhan et al. (2022) extend their work and present
an algorithm for the policy-revealing setting with function
approximation, which achieves no-regret in general-sum
games in face of arbitrary opponents, as long as these reveal
their policies at the end of each episode. Importantly, in both
Liu et al. (2022) and Zhan et al. (2022) the computational
complexity depends on the cardinality of the baseline policy
class, and thus their algorithm is inefficient whenever the
baseline policy class is the class of all Markov policies, as
in our case.

We remark that a possible approach for regret minimization
in Markov games is via a decentralized algorithm with a
sample complexity guarantee (e.g. Jin et al. (2021)), to-
gether with an explore-exploit mechanism. However, such
an approach would require a correlation device between
agents during the exploit phase, an thus would be effectively
centralized. For a further discussion, see Appendix A.

2. Preliminaries
Markov games. An 𝑚-player general-sum fi-
nite horizon Markov game is defined by the tuple(
𝐻,S, {A𝑖}𝑚𝑖=1, 𝑃, {ℓ

𝑖}𝑚
𝑖=1

)
. 𝐻 is the horizon; S is set

of states of size 𝑆 partitioned as S =
⋃𝐻+1
ℎ=1 Sℎ, where

S1 = {𝑠1} and S𝐻+1 = {𝑠𝐻+1}; A𝑖 is the set of actions of
agent 𝑖 of size 𝐴𝑖 , and the joint action space is denoted
by A B

>𝑚
𝑖=1A𝑖 . Further, 𝑃 is the transition kernel,

where given the state at time ℎ, 𝑠 ∈ Sℎ, and a joint action
profile a ∈ A, 𝑃(· | 𝑠, a) ∈ ΔSℎ+1 is the probability
distribution over the next state, where given some set
C, ΔC B

{
𝑝 : C → [0, 1] | ∑𝑥∈C 𝑝(𝑥) = 1

}
denotes the

probability simplex over C. Finally, ℓ𝑖 : S × A → [0, 1]

denotes the cost function of agent 𝑖. A policy for player
𝑖 is a function 𝜋𝑖 (· | ·) : A𝑖 × S → [0, 1], such that
𝜋𝑖 (· | 𝑠) ∈ ΔA𝑖

for all 𝑠 ∈ S. Given a policy profile
𝝅 = (𝜋1, ..., 𝜋𝑚), player 𝑖 ∈ [𝑚], state 𝑠 ∈ Sℎ and action
𝑎 ∈ A𝑖 , we define the value function and the 𝑄-function of
agent 𝑖 by:

𝑉 𝑖,𝝅 (𝑠) = E

[
𝐻∑︁
ℎ′=ℎ

ℓ𝑖 (𝑠ℎ′ , aℎ′ ) | 𝝅, 𝑠ℎ = 𝑠
]

𝑄𝑖,𝝅 (𝑠, 𝑎) = E

[
𝐻∑︁
ℎ′=ℎ

ℓ𝑖 (𝑠ℎ′ , aℎ′ ) | 𝑎𝑖ℎ = 𝑎, 𝑠ℎ = 𝑠, 𝝅
]
.

Interaction protocol. The agents interact with the
Markov game over the course of 𝑇 episodes. At the be-
ginning of each episode 𝑡 ∈ [𝑇] every agent chooses a
policy 𝜋𝑖𝑡 . Then, all agents start at the initial state 𝑠1, and
for each time step ℎ = 1, 2, . . . , 𝐻, each player draws an
action 𝑎𝑖

ℎ
∼ 𝜋𝑖𝑡 (· | 𝑠ℎ) and the agents transition together to

the next state 𝑠ℎ+1 ∼ 𝑃(· | 𝑠ℎ, aℎ) where aℎ = (𝑎1
ℎ
, ..., 𝑎𝑚

ℎ
).

At the end of the episode, agent 𝑖 incurs a loss given by∑𝐻
ℎ=1 ℓ

𝑖 (𝑠ℎ, aℎ), and observes feedback that differs between
two distinct settings we consider. In the full-information
setup, agent 𝑖 ∈ [𝑚] observes the exact state-action value
functions; 𝑄𝑖,𝝅𝑡 (𝑠, 𝑎), ∀𝑠, 𝑎 ∈ S × A𝑖 . In the unknown
model setup, agent 𝑖 only observes losses for the state and ac-
tion profiles visited in the episode; {ℓ𝑖 (𝑠ℎ, aℎ)}𝐻ℎ=1, and we
additionally assume the Markov game satisfies a minimum
reachability condition (Assumption 4.1).

Learning objective. Given an agent 𝑖 ∈ [𝑚] and policy
profile 𝝅 = (𝜋1, ..., 𝜋𝑚) = 𝜋1 ⊙ 𝜋2 ⊙ . . . ⊙ 𝜋𝑚, we will
be interested in the policy profile excluding 𝑖 which we
denote by 𝝅−𝑖 B 𝜋1 ⊙ . . . 𝜋𝑖−1 ⊙ 𝜋𝑖+1 ⊙ . . . ⊙ 𝜋𝑚. For
policy profile 𝝅 and a player 𝑖 policy 𝜋 ∈ S → A𝑖 , we
let 𝜋 ⊙ 𝝅−𝑖 = 𝜋1 ⊙ . . . 𝜋𝑖−1 ⊙ 𝜋 ⊙ 𝜋𝑖+1 ⊙ . . . ⊙ 𝜋𝑚 denote
the joint policy formed by replacing 𝜋𝑖 with 𝜋. Given an
episode 𝑡 and policy profile 𝝅𝑡 = (𝜋1

𝑡 , ..., 𝜋
𝑚
𝑡 ), we will be

interested in the single agent MDP induced by 𝝅−𝑖𝑡 . This in-
duced MDP is specified by 𝑀 𝑖

𝑡 B (𝐻,S,A𝑖 , 𝑃𝑖𝑡 , ℓ𝑖𝑡 ), where
ℓ𝑖𝑡 (𝑠, 𝑎) B Ea∼𝝅𝑡 ( · |𝑠)

[
ℓ𝑖 (𝑠, a) | 𝑎𝑖 = 𝑎

]
and 𝑃𝑖𝑡 (· | 𝑠, 𝑎) =

Ea∼𝝅𝑡 ( · |𝑠)
[
𝑃(· | 𝑠, a) | 𝑎𝑖 = 𝑎

]
define agent 𝑖’s induced loss

vector and transition kernel respectively. Furthermore, we
denote the value and action-value functions of a policy
𝜋 ∈ S → ΔA𝑖

in this MDP by

𝑉
𝑖, 𝜋
𝑡 (𝑠) B 𝑉 𝑖, 𝜋⊙𝝅

−𝑖
𝑡 (𝑠);𝑄𝑖, 𝜋𝑡 (𝑠, 𝑎) B 𝑄𝑖, 𝜋⊙𝝅

−𝑖
𝑡 (𝑠, 𝑎),

where 𝑠 ∈ Sℎ and 𝑎 ∈ A𝑖 . Given our defini-
tions above, a standard argument shows that 𝑉 𝑖, 𝜋𝑡 (𝑠) =

E
[ ∑𝐻

ℎ′=ℎ ℓ
𝑖
𝑡 (𝑠ℎ′ , 𝑎ℎ′ ) | 𝑃𝑖𝑡 , 𝜋, 𝑠ℎ = 𝑠

]
, and 𝑄𝑖, 𝜋𝑡 (𝑠, 𝑎) =

E
[ ∑𝐻

ℎ′=ℎ ℓ
𝑖
𝑡 (𝑠ℎ′ , 𝑎ℎ′ ) | 𝑃𝑖𝑡 , 𝜋, 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎

]
. We note

that we sometimes use the shorthand 𝑉 𝑖𝑡 (·) for 𝑉 𝑖, 𝜋
𝑖
𝑡

𝑡 (·) and
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𝑄𝑖𝑡 (·, ·) for 𝑄𝑖, 𝜋
𝑖
𝑡

𝑡 (·, ·). Given a jointly generated policy se-
quence {𝝅1, . . . , 𝝅𝑇 }, our primary performance measure is
the individual swap regret of each player 𝑖, defined as

Swapℜ𝑖𝑇 = (1)

max
𝜙𝑖
★∈{S×A𝑖→A𝑖 }

{ 𝑇∑︁
𝑡=1

(
𝑉
𝑖, 𝜋𝑖𝑡
𝑡 (𝑠1) −𝑉

𝑖,𝜙𝑖
★ (𝜋𝑖𝑡 )

𝑡 (𝑠1)
) }
,

where we slightly overload notation and define a policy swap
function 𝜙 : S×A𝑖 → A𝑖 applied to a policy 𝜋 ∈ S → ΔA𝑖

as follows;

𝜙(𝜋) (𝑎 | 𝑠) B
∑︁

𝑎′:𝜙 (𝑠,𝑎′ )=𝑎
𝜋(𝑎′ | 𝑠).

That is, the distribution 𝜙(𝜋) (· | 𝑠) is formed by sampling
𝑎 ∼ 𝜋(· | 𝑠) and then replacing it with 𝜙(𝑠, 𝑎) ∈ A𝑖 . Sim-
ilarly, given an action swap function 𝜓𝑖 : A𝑖 → A𝑖 , we
slightly overload notation when applying it to 𝑥 ∈ ΔA𝑖

by
defining 𝜓𝑖 (𝑥) (𝑎) = ∑

𝑎′:𝜓𝑖 (𝑎′ )=𝑎 𝑥(𝑎′). We remark this
notion of regret is strictly stronger (in the sense that it is
always greater or equal) than the external regret against the
best fixed Markov policy in hindsight, defined by;

ℜ𝑖𝑇 B max
𝜋𝑖★∈{S→ΔA𝑖

}

{ 𝑇∑︁
𝑡=1

(
𝑉
𝑖, 𝜋𝑖𝑡
𝑡 (𝑠1) −𝑉

𝑖, 𝜋𝑖★
𝑡 (𝑠1)

) }
. (2)

Finally, a joint policy distribution Π is an 𝜀-approximate
Markov correlated equilibrium if for any player 𝑖,

E𝝅∼Π

[
max
𝜙𝑖

(
𝑉 𝑖,𝝅 (𝑠1) −𝑉 𝑖, (𝜙𝑖 (𝜋

𝑖 )⊙𝝅−𝑖 ) (𝑠1)
)]
≤ 𝜀. (3)

It is straightforward to show that if all players achieve swap
regret of 𝑂 (𝜀𝑇) over 𝑇 episodes, then the distribution given
by sampling 𝝅𝑡 with 𝑡 ∼ [𝑇] uniformly constitutes an 𝜀-
approximate Markov correlated equilibrium (Blum & Man-
sour, 2007).

Additional notation and definitions. We denote the size
of the largest action set as 𝐴 B max𝑖 𝐴𝑖 . In addition, we let
𝑞
𝑖, 𝜋
𝑡 denote the state-occupancy measure of policy 𝜋 in 𝑀 𝑖

𝑡 ;

𝑞
𝑖, 𝜋
𝑡 (𝑠) B Pr(𝑠ℎ = 𝑠 | 𝑃𝑖𝑡 , 𝜋).

For any pair of policies 𝜋, 𝜋̃ ∈ S → ΔA𝑖
of player 𝑖, we

define

∥𝜋 − 𝜋̃∥∞,1 B max
𝑠∈S
∥𝜋(· | 𝑠) − 𝜋̃(· | 𝑠)∥1,

and for any 𝑃, 𝑃̃ ∈ S × A𝑖 → ΔS ,

∥𝑃 − 𝑃̃∥∞,1 B max
𝑠∈S,𝑎∈A𝑖

∥𝑃(· | 𝑠, 𝑎) − 𝑃̃(· | 𝑠, 𝑎)∥1.

In addition, for a sequence of policies 𝜋0, 𝜋1, . . . , 𝜋𝑇 ,
we refer to the quantities

∑𝑇
𝑡=1 ∥𝜋𝑡 − 𝜋𝑡−1∥1 and

∑𝑇
𝑡=1 ∥𝜋𝑡 − 𝜋𝑡−1∥21 as their (first-order) path length

and second-order path length respectively.

Finally, the notations Õ(·), Ω̃(·), Θ̃(·) and ≲ hide constant
and poly-logarithmic factors.

Optimistic online mirror descent Let X ⊂ Δ𝑑 be a con-
vex subset of the 𝑑-dimensional simplex, and ℓ1, . . . , ℓ𝑇 ∈
[0, 1]𝑑 be an online loss sequence. Optimistic online
mirror descent (OOMD) over X with convex regularizer
𝑅 : X → R and learning rate 𝜂 > 0 is defined as follows:

𝑥0 ← arg min
𝑥∈X

𝑅(𝑥);

𝑡 = 1, . . . , 𝑇 ; 𝑥𝑡 ← arg min
𝑥∈X

{
⟨ℓ̃𝑡 , 𝑥⟩ +

1
𝜂
𝐷𝑅 (𝑥, 𝑥𝑡−1)

}
,

𝑥𝑡 ← arg min
𝑥∈X

{
⟨ℓ𝑡 , 𝑥⟩ +

1
𝜂
𝐷𝑅 (𝑥, 𝑥𝑡−1)

}
.

We instantiate OOMD with 1-step recency bias, meaning
ℓ̃1 B 0 and ℓ̃𝑡 B ℓ𝑡−1 for 𝑡 ≥ 2. The primal and dual local
norms induced by the regularizer 𝑅 are denoted;

∀𝑣 ∈ R𝑑 , 𝑥 ∈ X, ∥𝑣∥𝑥 =
√︁
𝑣⊤∇2𝑅(𝑥)𝑣;

∥𝑣∥∗,𝑥 =
√︁
𝑣⊤ (∇2𝑅(𝑥))−1𝑣.

For the most part, we will employ the log-barrier regulariza-
tion specified by

∀𝑥 ∈ X, 𝑅(𝑥) =
∑︁
𝑎∈[𝑑 ]

log
1

𝑥(𝑎) . (4)

The Bregman divergence induced by the log-barrier is given
by 𝐷𝑅 (𝑥, 𝑦) =

∑
𝑎∈[𝑑 ] log 𝑦 (𝑎)

𝑥 (𝑎) +
𝑥 (𝑎)−𝑦 (𝑎)
𝑦 (𝑎) , and the local

norms by

∥𝑣∥𝑥 =
√√ ∑︁
𝑎∈[𝑑 ]

𝑣(𝑎)2
𝑥(𝑎)2

; ∥𝑣∥∗,𝑥 =

√︄ ∑︁
𝑎∈[𝑑 ]

𝑣(𝑎)2𝑥(𝑎)2,

∀𝑣 ∈ R𝑑 , 𝑥 ∈ X. Finally, throughout, we refer to the 𝛾-
truncated simplex, defined by

Δ
𝛾

𝑑
B {𝑥 ∈ Δ𝑑 | 𝑥(𝑎) ≥ 𝛾, ∀𝑎 ∈ [𝑑]} . (5)

3. Algorithm and main result
In this section, we present our algorithm and outline the
analysis establishing the regret bound. We propose a policy
optimization method with a carefully designed regret min-
imization algorithm employed in each state. Specifically,
inspired by the work of Anagnostides et al. (2022b), we
equip the swap regret algorithm of Blum & Mansour (2007)
with a variant of optimistic online mirror descent over the
truncated action simplex. This choice has two important
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properties; First, it can be shown that online mirror descent
(as well as its optimistic variant) with some tuning satisfies
weighted regret bounds of the form that emerges from non-
stationarity in MDP dynamics which directly depends on the
path length of the joint policy sequence. Additionally, the
second-order path length of the generated policy sequence
is 𝑂 (log𝑇), a fact we establish by suitable modifications of
the arguments presented in Anagnostides et al. (2022b).

Algorithm 1 Policy Optimization by Swap Regret Mini-
mization

1: input: 𝐻,S,A𝑖 , 𝑇 agent index 𝑖, parameter 𝛾 > 0,
learning rate 𝜂 > 0, regularizer 𝑅(·).

2: initialization: 𝜋𝑖1 is the uniform policy. For every 𝑠 ∈ S
and every 𝑎 ∈ A𝑖 initialize
𝑥
𝑖,𝑠,𝑎

0 = arg min𝑥∈Δ𝛾

A𝑖

𝑅(𝑥).
3:
4: for 𝑡 = 1 to 𝑇 do
5: Play policy 𝜋𝑖𝑡
6: Observe an 𝜀-approximation of 𝑄𝑖𝑡 denoted by 𝑄̂𝑖𝑡
7: Incur the expected loss of the policy 𝜋𝑖𝑡 with respect

to the losses ℓ𝑖𝑡 : 𝑉
𝑖
𝑡 (𝑠0).

8:
9: # Optimistic OMD step

10: For every 𝑠, 𝑎 perform an optimistic OMD update
with the loss vector 𝑔𝑖,𝑠,𝑎𝑡 B 𝜋𝑖𝑡 (𝑎 | 𝑠)𝑄̂𝑖𝑡 (𝑠, ·):

𝑥
𝑖,𝑠,𝑎
𝑡 = arg min

𝑥∈Δ𝛾

A𝑖

{
𝜂
〈
𝑥, 𝑔

𝑖,𝑠,𝑎
𝑡

〉
+ 𝐷𝑅

(
𝑥, 𝑥

𝑖,𝑠,𝑎

𝑡−1

)}
𝑥
𝑖,𝑠,𝑎

𝑡+1 = arg min
𝑥∈Δ𝛾

A𝑖

{
𝜂
〈
𝑥, 𝑔

𝑖,𝑠,𝑎
𝑡

〉
+ 𝐷𝑅

(
𝑥, 𝑥

𝑖,𝑠,𝑎
𝑡

)}
11: # Policy update
12: for 𝑠 ∈ S do
13: # Calculate 𝜋𝑖

𝑡+1 (· | 𝑠) - the stationary distribution
corresponding to

{
𝑥
𝑖,𝑠,𝑎

𝑡+1
}
𝑎∈A𝑖

14: Let 𝐵 be the matrix whose rows are
{
𝑥
𝑖,𝑠,𝑎

𝑡+1
}
𝑎∈A𝑖

15: Compute 𝜋𝑖
𝑡+1 (· | 𝑠) ∈ Δ

𝛾

A𝑖
by solving

𝐵𝜋𝑖𝑡+1 (· | 𝑠) = 𝜋
𝑖
𝑡+1 (· | 𝑠)

16: end for
17: end for

We remark that the policy update step in Algorithm 1 can be
performed in polynomial time, since it only requires solving
a system of linear equations under linear inequality con-
straints. We refer to the components of the algorithm which
perform the OOMD steps at a given state and action (see
line 10 of Algorithm 1) as base algorithms. On the level
above the base algorithms, the components which perform
the policy update from each state are referred to as state
algorithms. The guarantee of Algorithm 1 is provided in

the statement of Theorem 3.1 below. The important conse-
quence is that when the Markov game’s transition kernel
is known, i.e., the players have access to the accurate in-
duced 𝑄-functions, sub-linear regret of 𝑂 (𝑇3/4) is achieved.
By employing relatively standard arguments this may be
extended (under a suitable reachability assumption) to a
sub-linear regret bound in the unknown dynamics setting,
which we present in Section 4.

Theorem 3.1. Assume 𝐻 ≥ 2, and that all players adopt
Algorithm 1 with log-barrier regularization (Equation (4)),
𝛾 ≤ 1/2𝐴 (recall that we define 𝐴 = max𝑖 𝐴𝑖) and step size
𝜂 = 1

96𝐻2𝑚
√
𝑆𝐴

, and that ∥𝑄̂𝑖𝑡 −𝑄𝑖𝑡 ∥∞ ≤ 𝜀 for all 𝑖, 𝑡. Then,
the swap regret of every player 𝑖 is bounded as

Swapℜ𝑖𝑇 ≲ 𝐻
4𝑆𝐴3𝑚2√𝑇/𝛾 + 𝑚𝐻

√
𝑆𝐴3/2𝜀𝑇/𝛾

+ 𝛾𝐴𝐻2𝑇 + 𝑚𝐻2𝑆3/2𝐴7/2.

In particular, if 𝜀 = 0, for the choice of 𝛾 = 𝑚𝐻
√
𝑆𝐴𝑇−1/4,

and 𝑇 ≥ 16𝑚4𝐻4𝑆2𝐴8 we obtain;

Swapℜ𝑖𝑇 = 𝑂̃

(
𝑚𝐻3√𝑆𝐴2𝑇3/4

)
.

Theorem 3.1 hinges on two separate avenues in the analysis,
each of which corresponds to the two properties mentioned
earlier. The first, outlined in Section 3.1 and Section 3.2,
establishes the individual regret may be bounded by the
path length of the jointly generated policy sequence. The
second avenue, presented in Section 3.3 largely follows the
techniques of Anagnostides et al. (2022b), and establishes
the jointly generated policy sequence indeed has a well
bounded path length. The proof of Theorem 3.1 proceeds
by standard arguments building on the aforementioned parts
of the analysis, and is deferred to Section 3.4. To conclude
this section, we obtain as an immediate corollary that the
players’ joint policy sequence converges to an approximate
Markov correlated equilibrium (Equation (3)) of the Markov
game.

Corollary 3.2 (Convergence to a correlated equilibrium).
If all players adopt Algorithm 1 with the parameters and
conditions specified in Theorem 3.1, then for every player 𝑖
it holds that

E𝑡∼[𝑇 ]
[
max
𝜙𝑖

(
𝑉
𝑖, 𝜋𝑖𝑡
𝑡 (𝑠1) −𝑉

𝑖,𝜙𝑖 (𝜋𝑖𝑡 )
𝑡 (𝑠1)

)]
= 𝑂̃

(
𝑚𝐻3√𝑆𝐴2𝑇−1/4

)
,

where 𝑡 ∼ [𝑇] denotes the uniform distribution over [𝑇] =
{1, 2, . . . , 𝑇}.

The proof follows immediately from the observation that
the left-hand-side is Swapℜ𝑖

𝑇
/𝑇 , and applying the result of

Theorem 3.1.
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3.1. Policy optimization in non-stationary MDPs and
weighted regret

The analysis of policy optimization algorithms is often built
upon a fundamental regret decomposition known as the
value difference lemma (see Lemma F.1). In the regime of
regret minimization with a stationary transition function,
the value difference lemma leads to 𝑆 regret expressions,
each weighted by a constant factor, and thus amenable to
standard analysis (e.g., Shani et al., 2020; Cai et al., 2020).
By contrast, in the Markov game setup, the single agent
induced MDP is essentially non-stationary, thus applying
the value difference lemma results in a sum of weighted
regret expressions, with weights given by the (changing) oc-
cupancy measure of the benchmark policy, and in particular
are not known to the learner. A natural complexity measure
of weighted regret minimization is the total variation of
weights — roughly speaking, the larger the total variation
the harder the problem becomes (for example, note that with
zero total variation the problem reduces to standard regret
minimization).

Thus, we are motivated to consider a weighted regret objec-
tive with unknown weights, which may be seen as a gener-
alization to the previously studied notion of adaptive regret
(Hazan & Seshadhri, 2009). As it turns out, the widely used
FTRL for example, might suffer linear regret even if the
weights’ total variation is as small as a constant (see the dis-
cussion in Hazan & Seshadhri (2009) and in Appendix G).
On the other hand, we show that OMD-style algorithms are
resilient to weighting with small variations, as long as the
Bregman divergence between the benchmark policy and the
iterates of the algorithm is bounded and the step size is cho-
sen appropriately. Lemma 3.3 below establishes a weighted
regret bound for optimistic OMD. The proof follows from
arguments typical to OMD analyses, and is thus deferred to
Appendix B.

Lemma 3.3. Assume we run OOMD on a sequence of losses
{ℓ𝑡 }𝑇𝑡=1 with a regularizer 𝑅 : X → R that is 1-strongly
convex w.r.t. ∥·∥. Then, for any 𝑥★ ∈ X and any weight
sequence {𝑞𝑡 }𝑇𝑡=1, it holds that

𝑇∑︁
𝑡=1

𝑞𝑡
〈
𝑥𝑡 − 𝑥★, ℓ𝑡

〉
≤ 𝑞1𝐷𝑅 (𝑥★, 𝑥0)

𝜂
+ 1
𝜂

𝑇∑︁
𝑡=1
(𝑞𝑡+1 − 𝑞𝑡 )𝐷𝑅 (𝑥★, 𝑥𝑡 )

+ 𝜂
2

𝑇∑︁
𝑡=1

𝑞𝑡 ∥ℓ𝑡 − ℓ̃𝑡 ∥2∗ .

3.2. Bounding regret by path length

Our algorithm runs an instance of the meta algorithm of
Blum & Mansour (2007) in each state with OOMD as a base

algorithm. It is straightforward to show that the meta algo-
rithm inherits the desired property of weighting-resilience
(see Theorem D.1). By relating the weights 𝑞𝑖,★𝑡 (𝑠) with the
first-order path length we are able to show the following
regret bound.
Theorem 3.4. Suppose every player 𝑖 adopts Algorithm 1
with log-barrier regularization (Equation (4)) and 𝛾 ≤
1/2𝐴𝑖 , and that ∥𝑄̂𝑖𝑡 −𝑄𝑖𝑡 ∥∞ ≤ 𝜀 for all 𝑡. Then, assuming
𝐻 ≥ 2, the swap-regret of player 𝑖 is bounded as

Swapℜ𝑖𝑇 ≲
𝑆𝐴2

𝑖

𝜂
+ 𝐴𝑖𝐻

2

𝜂𝛾

𝑚∑︁
𝑗=1

𝑇∑︁
𝑡=1
∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1

+ 𝜂𝑚𝑆𝐴𝑖𝐻4
𝑇∑︁
𝑡=1

𝑚∑︁
𝑗=1
∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥2∞,1 + E,

where E B 𝑂 (𝜂𝜀2𝑆𝑇 + 𝜀𝐻𝑇 + 𝛾𝐴𝐻 (𝐻 + 𝜀)𝑇).

Below we provide the main ideas of the proof of Theo-
rem 3.4; for a full proof, see Appendix C.

Proof (sketch). We begin by invoking a standard value dif-
ference lemma (Lemma F.1) and using the fact that 𝑄̂𝑖𝑡 is an
𝜀-approximation of 𝑄𝑖𝑡 to bound the swap regret as follows:

𝑇∑︁
𝑡=1
𝑉
𝑖, 𝜋𝑖𝑡
𝑡 (𝑠1) −𝑉

𝑖,𝜙★ (𝜋𝑖𝑡 )
𝑡 (𝑠1)

≤
∑︁
𝑠∈S

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑄̂𝑖𝑡 (𝑠, ·), 𝜋𝑖𝑡 (· | 𝑠) − 𝜙𝑖,𝑠★ (𝜋𝑖𝑡 (· | 𝑠))

〉
+ 𝜀𝐻𝑇.

We now make use of Theorem D.1 which is based on an
argument by Blum & Mansour (2007), and relates the per-
state weighted swap-regret to the sum of per-state weighted
external regrets of the base algorithms:∑︁

𝑠∈S

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑄̂𝑖𝑡 (𝑠, ·), 𝜋𝑖𝑡 (· | 𝑠) − 𝜙𝑖,𝑠★ (𝜋𝑖𝑡 (· | 𝑠))

〉
≤
∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑔
𝑖,𝑠,𝑎
𝑡 , 𝑥

𝑖,𝑠,𝑎
𝑡 − 𝑥𝑖,𝑠,𝑎★,𝛾

〉
+ 2𝛾𝐴𝑖𝐻 (𝐻 + 𝜀)𝑇.

We can now invoke Lemma 3.3 which bounds the weighted
regret of optimistic OMD, to bound the last term by;

≤ 2𝛾𝐴𝑖𝐻 (𝐻 + 𝜀)𝑇 +
𝑆𝐴2

𝑖
ln 1
𝛾

𝜂

+ 1
𝜂

∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1
(𝑞𝑖,★
𝑡+1 (𝑠) − 𝑞

𝑖,★
𝑡 (𝑠))𝐷𝑅 (𝑥

𝑖,𝑠,𝑎
★,𝛾 , 𝑥

𝑖,𝑠,𝑎
𝑡 )

+ 𝜂
2

∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1
∥𝑔𝑖,𝑠,𝑎
𝑡+1 − 𝑔

𝑖,𝑠,𝑎
𝑡 ∥2∞,
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where we have used the fact that the first Bregman term is
bounded by 𝐴𝑖 log 1

𝛾
. We proceed by using the bounded-

ness of the Bregman terms over the 𝛾-truncated simplex,
and applying Lemma F.3 which relates the weights’ total
variation to the first-order path length:

1
𝜂

∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1
(𝑞𝑖,★
𝑡+1 (𝑠) − 𝑞

𝑖,★
𝑡 (𝑠))𝐷𝑅 (𝑥

𝑖,𝑠,𝑎
★,𝛾 , 𝑥

𝑖,𝑠,𝑎
𝑡 )

≤ 3𝐴𝑖
𝜂𝛾

𝑇∑︁
𝑡=1
∥𝑞𝑖,★
𝑡+1 − 𝑞

𝑖,★
𝑡 ∥1

≤ 3𝐴𝑖𝐻2

𝜂𝛾

𝑇∑︁
𝑡=1

∑︁
𝑗∈[𝑚]

∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1.

We conclude by using Lemma B.1 which relates the second-
order loss variation term to the second-order path length:

𝜂

2

∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1
∥𝑔𝑖,𝑠,𝑎
𝑡+1 − 𝑔

𝑖,𝑠,𝑎
𝑡 ∥2∞

≤ 4𝜂𝑚𝑆𝐴𝑖𝐻4
𝑇∑︁
𝑡=1

𝑚∑︁
𝑗=1
∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥2∞,1 + 4𝜂𝜀2𝑆𝑇.

Plugging both bounds into the swap regret bound, we con-
clude the proof. □

3.3. Bounding the path length

In this section, we provide a brief outline of the path length
analysis, central to our regret bound. At a high level, the ar-
guments closely follow those of Anagnostides et al. (2022b),
with suitable adjustments made to accommodate the ele-
ments in which our setting differs. Specifically, these in-
clude the use of mirror descent (rather than OFTRL) over
the truncated simplex, the fact that a single iterate of each
player is comprised of outputs from a collection of 𝑆 state
algorithms, and that each of these algorithms optimizes
w.r.t. approximate 𝑄-functions rather than the true ones. Be-
low, we state the main theorem and subsequently describe
the analysis at a high level, with most of the technical details
deferred to Appendix D.

Theorem 3.5. If each player uses Algorithm 1 with 𝜂 =
1

96𝐻2𝑚
√
𝑆𝐴

then the following second-order path length
bound holds on the jointly generated policy sequence;

𝑇∑︁
𝑡=1

𝑚∑︁
𝑖=1



𝜋𝑖𝑡+1 − 𝜋𝑖𝑡

2
∞,1 ≲ 𝑆𝐴

3𝑚 + 𝜀2𝑇

𝑚𝐻4 .

Similar to Anagnostides et al. (2022b), Theorem 3.5 is de-
rived by establishing that the swap regret (defined in for-
mally in Appendix D) of each state algorithm satisfies an
RVU property (Regret bounded by Variation in Utilities;

originally defined in Syrgkanis et al. (2015)) with suitable
norms. Following that, we use the non-negativity of the
swap regret in order to arrive at the desired conclusion by
a simple algebraic manipulation. In order to establish the
aforementioned RVU property of the state algorithms, the
first step consists of showing the base algorithms satisfy
an RVU property with the local norms induced by the log-
barrier.

Lemma 3.6 (RVU property of OOMD with log-barrier and
local norms). Let [𝑑] represent an action set with 𝑑 actions,
and consider an online loss sequence 𝑔1, . . . , 𝑔𝑇 ∈ [0, 𝐻]𝑑 .
Assume we run OOMD over X = Δ

𝛾

𝑑
with log-barrier regu-

larization and learning rate 𝜂 ≤ 1
64𝐻 . Then, for all 𝑥★ ∈ X

the following regret bound holds:

𝑇∑︁
𝑡=1

〈
𝑥𝑡 − 𝑥★, 𝑔𝑡

〉
≤
𝑑 log 1

𝛾

𝜂
+ 4𝜂

𝑇∑︁
𝑡=1
∥𝑔𝑡 − 𝑔𝑡−1∥2∗,𝑥𝑡

− 1
576𝜂

𝑇∑︁
𝑡=1
∥𝑥𝑡 − 𝑥𝑡−1∥2𝑥𝑡 ,

where we define 𝑝0 = arg min𝑥∈X 𝑅(𝑥).

Using Lemma 3.6 and the swap regret guarantee of Blum &
Mansour (2007), we arrive at an RVU-like property for each
state algorithm’s swap regret, one that involves the local
norms of base algorithms; Swapℜ𝑖,𝑠

𝑇
≤

|A𝑖 |2 log 1
𝛾

𝜂
+ 4𝜂

𝑇∑︁
𝑡=1

∑︁
𝑎∈A𝑖



𝑔𝑖,𝑠,𝑎𝑡 − 𝑔𝑖,𝑠,𝑎
𝑡−1



2
∗,𝑥𝑖,𝑠,𝑎𝑡

− 1
576𝜂

𝑇∑︁
𝑡=1

∑︁
𝑎∈A𝑖



𝑥𝑖,𝑠,𝑎𝑡 − 𝑥𝑖,𝑠,𝑎
𝑡+1



2
𝑥
𝑖,𝑠,𝑎
𝑡

.

The negative term in the right-hand side can be converted to
the state algorithm’s second-order path length in 𝐿1-norm us-
ing arguments similar to those of Anagnostides et al. (2022b)
(see Lemma D.5). Each base algorithms’ path length of the
loss vectors may also be related to its second-order policy
path length, by invoking Lemma B.1. This, combined with
some standard arguments, leads to a swap-regret RVU prop-
erty of each state algorithm w.r.t. the ∥·∥∞,1 and ∥·∥1 norms.

Theorem 3.7. If all players play according to Algorithm 1
with 𝜂 ≤ 1

128𝐻 , then for any 𝑖 ∈ [𝑚], 𝑠 ∈ S, we have that
the swap regret in 𝑠, Swapℜ𝑖,𝑠

𝑇
, is bounded by,

|A𝑖 |2 log 1
𝛾

𝜂
+ 4𝐻4𝑚𝜂

𝑇∑︁
𝑡=1

𝑚∑︁
𝑗=1




𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡




2

∞,1

− 1
576𝜂 |A𝑖 |

𝑇∑︁
𝑡=1



𝜋𝑖𝑡 (· | 𝑠) − 𝜋𝑖𝑡+1 (· | 𝑠)

2
1 + 36𝜂𝜀2𝑇.
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At this point, Theorem 3.5 follows easily from Theorem 3.7,
by summing the swap regret upper bounds over all states
and players, and rearranging.

3.4. Proof of main theorem

Having established that the regret of Algorithm 1 may be
bounded by the path length of the generated policy sequence
(Theorem 3.4), and that the second order path length is well
bounded (Theorem 3.5), the proof of our main theorem
combines both results using relatively standard arguments.
Notably, Theorem 3.4 bounds the regret by the sum of both
the first and second-order path lengths while Theorem 3.5
provides only a second order bound. Thus, a

√
𝑚𝑇 factor is

ultimately incurred in the final bound.

Proof of Theorem 3.1. By Theorem 3.5,

𝑇∑︁
𝑡=1

𝑚∑︁
𝑖=1



𝜋𝑖𝑡+1 − 𝜋𝑖𝑡

∞,1 ≤ √︄
𝑚𝑇

∑︁
𝑡 ,𝑖



𝜋𝑖
𝑡+1 − 𝜋

𝑖
𝑡



2
∞,1

≲ 𝑚
√
𝑆𝐴3/2√𝑇 + 𝜀𝑇

𝐻2 .

Plugging in Theorem 3.4 gives us;

Swapℜ𝑖𝑇 ≲
𝑆𝐴2

𝑖

𝜂
+ 𝐻

2√𝑆𝐴 5
2𝑚

𝜂𝛾

√
𝑇 + 𝐴𝑖𝜀𝑇

𝜂𝛾

+ 𝜂𝑆𝐴𝜀2𝑇 + 𝜂𝐻4𝑆2𝐴4
𝑖𝑚

2 + E .

Finally, setting 𝜂 = 1
96𝐻2𝑚

√
𝑆𝐴

completes the proof. □

4. Regret analysis with unknown dynamics
In this section we analyze the setting of unknown dynamics
and bandit feedback - i.e., every player only observes the
losses of the state-action pairs in the trajectory visited in
each episode. Our analysis requires the following assump-
tion (similar to Wei et al., 2021) of a minimum reachability
property of the dynamics:

Assumption 4.1 (𝛽-reachability). There exists a constant
𝛽 > 0 such that for every set of Markov policies for the 𝑚
players {𝜋𝑖}𝑚

𝑖=1 corresponding to a joint policy 𝝅, it holds
that 𝑞𝝅 (𝑠) ≥ 𝛽 for all 𝑠 ∈ S, where 𝑞𝝅 (𝑠) is the probability
of reaching state 𝑠 when each player 𝑖 plays according to
the policy 𝜋𝑖 .

We now consider a modification Algorithm 1 which employs
a standard blocking mechanism, where inside each block the
players do not change their policies, and the mirror descent
updates take place only at the end of each block. This allows
the players to obtain good approximations of their respective
𝑄 functions, as provided by the next lemma.

Lemma 4.2. With blocks of size Θ̃
(
𝐻2

𝛾𝛽𝜀2

)
, we have that with

probability at least 1 − 2𝛿, the following holds: For every

player 𝑖 ∈ [𝑚], block index 𝑗 = 1, . . . , 𝑇/𝐵 and state-action
pair (𝑠, 𝑎) it holds that���𝑄̂𝑖𝑡 𝑗 (𝑠, 𝑎) −𝑄𝑖𝑡 𝑗 (𝑠, 𝑎)��� ≤ 𝜀.
The proof of the lemma, along with the rest of the techni-
cal details of this section are deferred to Appendix E. Our
guarantee for this setting now follows by applying Theo-
rem 3.1 with the approximation guarantee assured by the
above lemma.

Theorem 4.3. If each player 𝑖 uses the blocked version of
Algorithm 1 with appropriate choice of 𝜂, 𝛾, 𝜖 and blocks
of size Θ̃

(
𝐻2

𝛾𝛽𝜀2

)
, then for sufficiently large 𝑇 , we have that

with probability at least 1−𝛿 the swap regret of every player
𝑖 is bounded as

Swapℜ𝑖𝑇 ≲ 𝐻
22/9𝑆1/3𝐴14/9𝑚2/3𝛽−1/9𝑇8/9.

We conclude this section with our convergence guarantee,
which follows straightforwardly from Theorem 4.3, in a
similar manner as did Corollary 3.2 from Theorem 3.1.

Corollary 4.4 (Convergence to a correlated equilibrium
with an unknown model). Under the conditions and setting
of parameters specified in Theorem 4.3, with probability at
least 1 − 𝛿, for every player 𝑖 it holds that

E𝑡∼[𝑇 ]
[
max
𝜙𝑖

(
𝑉
𝑖, 𝜋𝑖𝑡
𝑡 (𝑠1) −𝑉

𝑖,𝜙𝑖 (𝜋𝑖𝑡 )
𝑡 (𝑠1)

)]
= 𝑂̃

(
𝐻22/9𝑆1/3𝐴14/9𝑚2/3𝛽−1/9𝑇−1/9

)
,

where 𝑡 ∼ [𝑇] denotes the uniform distribution over [𝑇] =
{1, 2, . . . , 𝑇}.
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A. Reduction to low sample complexity
As mentioned previously, there are several works that propose decentralized algorithms with sample-complexity guarantees.
Given this, a plausible approach to obtain an online result is to employ an explore-exploit type black-box reduction; learn a
good equilibrium in an initial period, then have all players play the joint policy output for the rest of the game. Applying this
procedure to V-learning (Jin et al., 2021) for example, and optimizing the length of the initial policy learning period yields
an 𝑂 (𝑇2/3) regret bound for all players. However, this approach would necessitate a centralized coordination device (such
as shared randomness) which our approach does not require. The equilibrium output by the aforementioned algorithms
is of course correlated; hence, the exploit phase of the procedure in question is inherently centralized. This highlights an
important feature of obtaining correlated equilibrium in a truly online manner; that it circumvents the need for explicit
correlation which would be necessary otherwise.

B. Weighted regret analysis (proofs for Section 3.1)
Lemma B.1. Assuming 𝐻 ≥ 2 and ∥𝑄̂𝑡 −𝑄𝑡 ∥∞ ≤ 𝜀, it holds that for all 𝑖 ∈ [𝑚], 𝑠 ∈ S, 𝑎 ∈ A𝑖;

∥𝑔𝑖,𝑠,𝑎
𝑡+1 − 𝑔

𝑖,𝑠,𝑎
𝑡 ∥∞ ≤ 2𝐻2

𝑚∑︁
𝑗=1
∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1 + 2𝜀𝜋𝑖𝑡+1 (𝑎 | 𝑠).

Proof of Lemma B.1. First, note that,

𝑔𝑖,𝑠,𝑎
𝑡+1 − 𝑔

𝑖,𝑠,𝑎
𝑡




∞ =



𝜋𝑖𝑡+1 (𝑎 | 𝑠)𝑄̂𝑖𝑡+1 (𝑠, ·) − 𝜋𝑖𝑡 (𝑎 | 𝑠)𝑄̂𝑖𝑡 (𝑠, ·)

∞
≤ 𝜋𝑖𝑡+1 (𝑎 | 𝑠)



𝑄̂𝑖𝑡+1 (𝑠, ·) − 𝑄̂𝑖𝑡 (𝑠, ·)

∞ + 𝑄̂𝑖𝑡 (𝑠, ·) |𝜋𝑖𝑡+1 (𝑎 | 𝑠) − 𝜋𝑖𝑡 (𝑎 | 𝑠) |
≤ 𝜋𝑖𝑡+1 (𝑎 | 𝑠)



𝑄𝑖𝑡+1 (𝑠, ·) −𝑄𝑖𝑡 (𝑠, ·)

 + 𝐻 |𝜋𝑖𝑡+1 (𝑎 | 𝑠) − 𝜋𝑖𝑡 (𝑎 | 𝑠) |
+ 𝜋𝑖𝑡+1 (𝑎 | 𝑠)



𝑄̂𝑖𝑡+1 (𝑠, ·) −𝑄𝑖𝑡+1 (𝑠, ·)

∞ + 𝜋𝑖𝑡+1 (𝑎 | 𝑠) 

𝑄̂𝑖𝑡 (𝑠, ·) −𝑄𝑖𝑡 (𝑠, ·)

∞
≤ 𝜋𝑖𝑡+1 (𝑎 | 𝑠)



𝑄𝑖𝑡+1 (𝑠, ·) −𝑄𝑖𝑡 (𝑠, ·)

∞ + 𝐻 |𝜋𝑖𝑡+1 (𝑎 | 𝑠) − 𝜋𝑖𝑡 (𝑎 | 𝑠) | + 2𝜀𝜋𝑖𝑡+1 (𝑎 | 𝑠)

To bound the difference in 𝑄-values, observe that for any 𝑎′ ∈ A𝑖 , by Lemma F.2 and Lemma F.4;

𝑄𝑖𝑡+1 (𝑠, 𝑎
′)−𝑄𝑖𝑡 (𝑠, 𝑎′)

= 𝑄𝑖, 𝜋
𝑖
𝑡+1 (𝑠, 𝑎′;𝑀 𝑖

𝑡+1) −𝑄
𝑖, 𝜋𝑖𝑡 (𝑠, 𝑎′;𝑀 𝑖

𝑡 )
≤ 𝐻2 

𝜋𝑖𝑡+1 − 𝜋𝑖𝑡

∞,1 + (𝐻2 + 1)



𝑃𝑀𝑖
𝑡+1
− 𝑃𝑀𝑖

𝑡




∞,1 + (𝐻 + 1)



ℓ𝑀𝑖
𝑡+1
− ℓ𝑀𝑖

𝑡




∞

≤ 𝐻2 

𝜋𝑖𝑡+1 − 𝜋𝑖𝑡

∞,1 + (𝐻2 + 1)
∑︁
𝑗≠𝑖

∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1 + (𝐻 + 1)



ℓ𝑀𝑖
𝑡+1
− ℓ𝑀𝑖

𝑡




∞

≤ 𝐻2 

𝜋𝑖𝑡+1 − 𝜋𝑖𝑡

∞,1 + (𝐻2 + 𝐻 + 2)
∑︁
𝑗≠𝑖

∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1.

Thus, by our assumption that 𝐻 ≥ 2, we have

∥𝑔𝑖,𝑠,𝑎
𝑡+1 − 𝑔

𝑖,𝑠,𝑎
𝑡 ∥∞ ≤ (𝐻2 + 𝐻 + 2)

∑︁
𝑗≠𝑖

∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1 + (𝐻2 + 𝐻)∥𝜋𝑖𝑡+1 − 𝜋

𝑖
𝑡 ∥∞,1 + 2𝜀𝜋𝑖𝑡+1 (𝑎 | 𝑠)

≤ 2𝐻2
𝑚∑︁
𝑗=1
∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1 + 2𝜀𝜋𝑖𝑡+1 (𝑎 | 𝑠).

□

Proof of Lemma 3.3. Following similar arguments made in Rakhlin & Sridharan (2013); Syrgkanis et al. (2015), we have〈
ℓ𝑡 , 𝑥𝑡 − 𝑥★

〉
=
〈
ℓ𝑡 , 𝑥𝑡 − 𝑥★

〉
+ ⟨ℓ̃𝑡 , 𝑥𝑡 − 𝑥𝑡 ⟩ + ⟨ℓ𝑡 − ℓ̃𝑡 , 𝑥𝑡 − 𝑥𝑡 ⟩,

and, from optimality conditions of the first and second optimization steps, respectively;

⟨ℓ̃𝑡 , 𝑥𝑡 − 𝑥𝑡 ⟩ ≤
1
𝜂
(𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1) − 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡 ) − 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1))〈

ℓ𝑡 , 𝑥𝑡 − 𝑥★
〉
≤ 1
𝜂

(
𝐷𝑅 (𝑥★, 𝑥𝑡−1) − 𝐷𝑅 (𝑥★, 𝑥𝑡 ) − 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1)

)
.

13
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This implies 〈
𝑥𝑡 − 𝑥★, ℓ𝑡

〉
≤ ⟨ℓ𝑡 − ℓ̃𝑡 , 𝑥𝑡 − 𝑥𝑡 ⟩

+ 1
𝜂

(
𝐷𝑅 (𝑥★, 𝑥𝑡−1) − 𝐷𝑅 (𝑥★, 𝑥𝑡 ) − 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡 ) − 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1)

)
≤ 𝜂

2
∥ℓ𝑡 − ℓ̃𝑡 ∥2∗ +

1
2𝜂
∥𝑥𝑡 − 𝑥𝑡 ∥2

+ 1
𝜂

(
𝐷𝑅 (𝑥★, 𝑥𝑡−1) − 𝐷𝑅 (𝑥★, 𝑥𝑡 ) −

1
2
∥𝑥𝑡 − 𝑥𝑡 ∥2 − 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1)

)
=
𝜂

2
∥ℓ𝑡 − ℓ̃𝑡 ∥2∗

+ 1
𝜂

(
𝐷𝑅 (𝑥★, 𝑥𝑡−1) − 𝐷𝑅 (𝑥★, 𝑥𝑡 ) − 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1)

)
Multiplying both sides by 𝑞𝑡 and summing over 𝑡, we obtain

𝑇∑︁
𝑡=1

𝑞𝑡
〈
𝑥𝑡 − 𝑥★, ℓ𝑡

〉
≤ 𝑞1𝐷𝑅 (𝑥★, 𝑥0)

𝜂
+ 1
𝜂

𝑇∑︁
𝑡=1
(𝑞𝑡+1 − 𝑞𝑡 )𝐷𝑅 (𝑥★, 𝑥𝑡 ) +

𝜂

2

𝑇∑︁
𝑡=1

𝑞𝑡 ∥ℓ𝑡 − ℓ̃𝑡 ∥2∗ .

□

C. Bounding regret by path length (proofs for Section 3.2)
Proof of Theorem 3.4. Let 𝜙𝑖★ : S × A𝑖 → A𝑖 be any policy swap function, specifying 𝑆 action swap functions 𝜙𝑖,𝑠★ B
𝜙𝑖★(·, 𝑠) : A𝑖 → A𝑖 . By Lemma F.1 (value difference), we have;

𝑇∑︁
𝑡=1
𝑉
𝑖, 𝜋𝑖𝑡
𝑡 (𝑠1) −𝑉

𝑖,𝜙★ (𝜋𝑖𝑡 )
𝑡 (𝑠1)

=
∑︁
𝑠∈S

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑄𝑖𝑡 (𝑠, ·), 𝜋𝑖𝑡 (· | 𝑠) − 𝜙𝑖,𝑠★ (𝜋𝑖𝑡 (· | 𝑠))

〉
=
∑︁
𝑠∈S

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑄𝑖𝑡 (𝑠, ·) − 𝑄̂𝑖𝑡 (𝑠, ·), 𝜋𝑖𝑡 (· | 𝑠) − 𝜙𝑖,𝑠★ (𝜋𝑖𝑡 (· | 𝑠))

〉
+
∑︁
𝑠∈S

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑄̂𝑖𝑡 (𝑠, ·), 𝜋𝑖𝑡 (· | 𝑠) − 𝜙𝑖,𝑠★ (𝜋𝑖𝑡 (· | 𝑠))

〉
≤ 𝜀𝐻𝑇 +

∑︁
𝑠∈S

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑄̂𝑖𝑡 (𝑠, ·), 𝜋𝑖𝑡 (· | 𝑠) − 𝜙𝑖,𝑠★ (𝜋𝑖𝑡 (· | 𝑠))

〉
. (6)

Now, let 𝑥𝑖,𝑠,𝑎★,𝛾 ∈ arg min𝑥∈Δ𝛾

A𝑖

∥𝑥 − 𝜙𝑖,𝑠★ (𝑒𝑎)∥1, and observe that our assumption 𝛾 ≤ 1/2𝐴𝑖 implies (see Lemma H.1)

∥𝑥𝑖,𝑠,𝑎★,𝛾 − 𝜙
𝑖,𝑠
★ (𝑒𝑎)∥1 ≤ 2𝛾𝐴𝑖 . Thus, by Theorem D.1, it follows that for all 𝑠;∑︁
𝑠∈S

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑄̂𝑖𝑡 (𝑠, ·), 𝜋𝑖𝑡 (· | 𝑠) − 𝜙𝑖,𝑠★ (𝜋𝑖𝑡 (· | 𝑠))

〉
≤
∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑔
𝑖,𝑠,𝑎
𝑡 , 𝑥

𝑖,𝑠,𝑎
𝑡 − 𝜙𝑖,𝑠★ (𝑒𝑎)

〉
=
∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑔
𝑖,𝑠,𝑎
𝑡 , 𝑥

𝑖,𝑠,𝑎
𝑡 − 𝑥𝑖,𝑠,𝑎★,𝛾

〉
+
∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑔
𝑖,𝑠,𝑎
𝑡 , 𝑥

𝑖,𝑠,𝑎
★,𝛾 − 𝜙

𝑖,𝑠
★ (𝑒𝑎)

〉
≤
∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1

𝑞
𝑖,★
𝑡 (𝑠)

〈
𝑔
𝑖,𝑠,𝑎
𝑡 , 𝑥

𝑖,𝑠,𝑎
𝑡 − 𝑥𝑖,𝑠,𝑎★,𝛾

〉
+ 2𝛾𝐴𝑖𝐻 (𝐻 + 𝜀)𝑇,
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where in the last transition we use Hölder’s inequality and that
∑
𝑠 𝑞

𝑖,★
𝑡 (𝑠) = 𝐻 for all 𝑡. By Lemma 3.3, this can be further

bounded by;

≤ 2𝛾𝐴𝑖𝐻 (𝐻 + 𝜀)𝑇 +
𝑆𝐴2

𝑖
ln 1
𝛾

𝜂

+ 1
𝜂

∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1
(𝑞𝑖,★
𝑡+1 (𝑠) − 𝑞

𝑖,★
𝑡 (𝑠))𝐷𝑅 (𝑥

𝑖,𝑠,𝑎
★,𝛾 , 𝑥

𝑖,𝑠,𝑎
𝑡 ) + 𝜂

2

∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1
∥𝑔𝑖,𝑠,𝑎
𝑡+1 − 𝑔

𝑖,𝑠,𝑎
𝑡 ∥2∞, (7)

where we have used the fact that 𝑥𝑖,𝑠,𝑎0 ∈ arg min𝑥 𝑅(𝑥) and 𝑥𝑖,𝑠,𝑎★,𝛾 ∈ Δ
𝛾

A𝑖
implies 𝐷𝑅 (𝑥𝑖,𝑠,𝑎★,𝛾 , 𝑥

𝑖,𝑠,𝑎

0 ) ≤ 𝐴𝑖 log 1
𝛾

. Proceeding,
to bound the first series term we use the boundedness of the Bregman terms ensured by the truncated simplex (see
Lemma H.1), and then apply Lemma F.3 which relates the total variation of the weights to the first-order path length;

1
𝜂

∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1
(𝑞𝑖,★
𝑡+1 (𝑠) − 𝑞

𝑖,★
𝑡 (𝑠))𝐷𝑅 (𝑥

𝑖,𝑠,𝑎
★,𝛾 , 𝑥

𝑖,𝑠,𝑎
𝑡 ) ≤ 3𝐴𝑖

𝜂𝛾

𝑇∑︁
𝑡=1
∥𝑞𝑖,★
𝑡+1 − 𝑞

𝑖,★
𝑡 ∥1

≤ 3𝐴𝑖𝐻2

𝜂𝛾

𝑇∑︁
𝑡=1

∑︁
𝑗∈[𝑚]

∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1.

Finally, we show in Lemma B.1 that the second-order loss variation term (second series term in Equation (7)) is bounded by
the second-order path length up to an additive lower order term. Formally,

𝜂

2

∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1
∥𝑔𝑖,𝑠,𝑎
𝑡+1 − 𝑔

𝑖,𝑠,𝑎
𝑡 ∥2∞ ≤

𝜂

2

∑︁
𝑠∈S

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1

©­«2𝐻2
𝑚∑︁
𝑗=1
∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1 + 2𝜀𝜋𝑖𝑡+1 (𝑎 | 𝑠)

ª®¬
2

≤ 4𝜂𝑚𝑆𝐴𝑖𝐻4
𝑇∑︁
𝑡=1

𝑚∑︁
𝑗=1
∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥2∞,1 + 4𝜂𝜀2𝑆𝑇.

Plugging the bounds from the last two displays into Equation (7), the result follows. □

D. Path length analysis (proofs for Section 3.3)
In this section, we provide the full technical details of the analysis outlined in Section 3.3. As mentioned, the arguments
mostly follow those of Anagnostides et al. (2022b), who prove a similar result in the setting of general-sum games with
access to the exact induced utility functions. The analysis hinges on establishing an RVU property for the swap regret, and
then exploiting the fact that it is non-negative. The swap regret of a sequence of iterates 𝑥1, . . . , 𝑥𝑇 ∈ Δ𝑑 w.r.t. a sequence of
linear losses 𝑔1, . . . , 𝑔𝑇 ∈ [0, 1]𝑑 , is defined by;

Swapℜ𝑇 = max
𝜙∈{[𝑑 ]→[𝑑 ] }

{
𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝜙(𝑥𝑡 )⟩

}
. (8)

Recall we slightly overload notation when applying a swap function 𝜙 : [𝑑] → [𝑑] to 𝑥 ∈ Δ𝑑 as follows;

𝜙(𝑥) (𝑎) =
∑︁

𝑎′:𝜙 (𝑎′ )=𝑎
𝑥(𝑎′).

That is, the distribution 𝜙(𝑥) ∈ Δ𝑑 is formed by sampling 𝑎 ∼ 𝑥 and then replacing it with 𝜙(𝑎) ∈ [𝑑]. We note that, since
losses are linear, the external regret is obtained by mapping all actions to the one optimal in hindsight, and taking 𝜙 to be the
identity mapping we see the swap regret is never negative, hence Swapℜ𝑇 ≥ max(ℜ𝑇 , 0). The next theorem is due to Blum
& Mansour (2007) and provides for an essential building block in our analysis. We formulate the theorem in the context of
our state algorithms, and incorporate the weighting of instantaneous regret, for which the original arguments go through
with no modification. The proof below is provided for completeness.
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Theorem D.1 (Blum & Mansour (2007)). Let 𝑖 ∈ [𝑚], 𝑠 ∈ S. For any weight sequence {𝑞𝑡 }𝑇𝑡=1, 𝑞𝑡 ∈ [0, 1], and any action
swap function 𝜙★ : A𝑖 → A𝑖 , we have that when player 𝑖 runs Algorithm 1, the following holds;

𝑇∑︁
𝑡=1

𝑞𝑡
〈
𝑄̂𝑖𝑡 (𝑠, ·), 𝜋𝑖𝑡 (· | 𝑠) − 𝜙★(𝜋𝑖𝑡 (· | 𝑠))

〉
=

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1

𝑞𝑡
〈
𝑔
𝑖,𝑠,𝑎
𝑡 , 𝑥

𝑖,𝑠,𝑎
𝑡 − 𝜙★(𝑒𝑎)

〉
,

where 𝑒𝑎 (𝑎′) = I{𝑎′ = 𝑎}.

Proof of Theorem D.1. The policy played by the state algorithm of player 𝑖 at 𝑠 satisfies 𝜋𝑖𝑡 (𝑎′ | 𝑠) =
∑
𝑎∈A𝑖

𝜋𝑖𝑡 (𝑎 |
𝑠)𝑥𝑖,𝑠,𝑎 (𝑎′) (see line 10 of Algorithm 1), thus;〈

𝜋𝑖𝑡 (· | 𝑠), 𝑄̂𝑖𝑡 (𝑠, ·)
〉
=

∑︁
𝑎′∈A𝑖

𝜋𝑖𝑡 (𝑎′ | 𝑠)𝑄̂𝑖𝑡 (𝑠, 𝑎′)

=
∑︁
𝑎′∈A𝑖

∑︁
𝑎∈A𝑖

𝜋𝑖𝑡 (𝑎 | 𝑠)𝑥𝑖,𝑠,𝑎 (𝑎′)𝑄̂𝑖𝑡 (𝑠, 𝑎′)

=
∑︁
𝑎∈A𝑖

∑︁
𝑎′∈A𝑖

𝑥
𝑖,𝑠,𝑎
𝑡 (𝑎′)𝜋𝑖𝑡 (𝑎 | 𝑠)𝑄̂𝑖𝑡 (𝑠, 𝑎′)

=
∑︁
𝑎∈A𝑖

〈
𝑥
𝑖,𝑠,𝑎
𝑡 , 𝑔

𝑖,𝑠,𝑎
𝑡

〉
,

where we use the definition of 𝑔𝑖,𝑠,𝑎𝑡 in Algorithm 1. In addition, we have〈
𝜙★(𝜋𝑖𝑡 (· | 𝑠)), 𝑄̂𝑖𝑡 (𝑠, ·)

〉
=
〈
𝜋𝑖𝑡 (· | 𝑠), 𝑄̂𝑖𝑡 (𝑠, 𝜙★(·))

〉
=

∑︁
𝑎∈A𝑖

𝜋𝑖𝑡 (𝑎 | 𝑠)𝑄̂𝑖𝑡 (𝑠, 𝜙★(𝑎))

=
∑︁
𝑎∈A𝑖

𝜋𝑖𝑡 (𝑎 | 𝑠)
〈
𝜙★(𝑒𝑎), 𝑄̂𝑖𝑡 (𝑠, ·)

〉
,

=
∑︁
𝑎∈A𝑖

〈
𝜙★(𝑒𝑎), 𝑔𝑖,𝑠,𝑎𝑡

〉
.

Combining the above two displays, the result follows. □

Before proving Theorem 3.7 we give the proof of Lemma 3.6, demonstrating the RVU property of OOMD with local norms.
The analysis is similar to arguments made in previous works, such as Wei & Luo (2018, Theorem 7).

Proof of Lemma 3.6. Denote:

𝑥𝑡 = arg min
𝑥∈X

{𝜂 ⟨𝑔𝑡 , 𝑥⟩ + 𝐷𝑅 (𝑥, 𝑥𝑡−1)} ,

where 𝑥0 = arg min𝑥∈X 𝑅(𝑥). We bound the instantaneous regret as follows:〈
𝑥𝑡 − 𝑥★, 𝑔𝑡

〉
=
〈
𝑥𝑡 − 𝑥★, 𝑔𝑡

〉
+ ⟨𝑥𝑡 − 𝑥𝑡 , 𝑔𝑡−1⟩ + ⟨𝑥𝑡 − 𝑥𝑡 , 𝑔𝑡 − 𝑔𝑡−1⟩ .

Using first-order optimality conditions and the three point identity we have:〈
𝑥𝑡 − 𝑥★, 𝑔𝑡

〉
≤ 1
𝜂

(
𝐷𝑅

(
𝑥★, 𝑥𝑡−1

)
− 𝐷𝑅

(
𝑥★, 𝑥𝑡

)
− 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1)

)
,

and similarly:

⟨𝑥𝑡 − 𝑥𝑡 , 𝑔𝑡−1⟩ ≤
1
𝜂
(𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1) − 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡 ) − 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1))

=
1
𝜂
𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1) −

1
2𝜂
∥𝑥𝑡 − 𝑥𝑡 ∥2𝑦𝑡 −

1
2𝜂
∥𝑥𝑡 − 𝑥𝑡−1∥2𝑧𝑡 ,
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where 𝑦𝑡 ∈ [𝑥𝑡 , 𝑥𝑡 ] and 𝑧𝑡 ∈ [𝑥𝑡−1, 𝑥𝑡 ]. Note that by Lemma D.3 and the condition on 𝜂, it holds that 1
𝑦𝑡 (𝑎) ≥

1
2𝑥𝑡 (𝑎) for all

𝑎 ∈ A and 1
𝑧𝑡 (𝑎) ≥

1
6𝑥𝑡 (𝑎) . Combining this with the above we obtain

⟨𝑥𝑡 − 𝑥𝑡 , 𝑔𝑡−1⟩ ≤
1
𝜂
𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1) −

1
8𝜂
∥𝑥𝑡 − 𝑥𝑡 ∥2𝑥𝑡 −

1
72𝜂
∥𝑥𝑡 − 𝑥𝑡−1∥2𝑥𝑡 .

Also, by Hölder’s inequality and Young’s inequality:

⟨𝑥𝑡 − 𝑥𝑡 , 𝑔𝑡 − 𝑔𝑡−1⟩ ≤ ∥𝑔𝑡 − 𝑔𝑡−1∥∗,𝑥𝑡 · ∥𝑥𝑡 − 𝑥𝑡 ∥𝑥𝑡

≤ 4𝜂 ∥𝑔𝑡 − 𝑔𝑡−1∥2∗,𝑥𝑡 +
1

16𝜂
∥𝑥𝑡 − 𝑥𝑡 ∥2𝑥𝑡 .

Summing the above over 𝑡 we obtain:
𝑇∑︁
𝑡=1

〈
𝑥𝑡 − 𝑥★, 𝑔𝑡

〉
≤ 𝐷𝑅 (𝑥★, 𝑥0)

𝜂
+ 4𝜂

𝑇∑︁
𝑡=1
∥𝑔𝑡 − 𝑔𝑡−1∥2∗,𝑥𝑡 −

1
72𝜂

𝑇∑︁
𝑡=1
∥𝑥𝑡 − 𝑥𝑡−1∥2𝑥𝑡−1 −

1
72𝜂

𝑇∑︁
𝑡=1
∥𝑥𝑡 − 𝑥𝑡 ∥2𝑥𝑡 .

First note that by definition of 𝑥0 and first-order optimality conditions, it holds that

𝐷𝑅 (𝑥★, 𝑥0) ≤ 𝑅(𝑥★) − 𝑅(𝑥0) ≤ 𝑑 log
1
𝛾
.

Now note:

∥𝑥𝑡 − 𝑥𝑡−1∥2𝑥𝑡 ≤ 2 ∥𝑥𝑡 − 𝑥𝑡−1∥2𝑥𝑡 + 2 ∥𝑥𝑡 − 𝑥𝑡 ∥2𝑥𝑡 .

Using Lemma D.3 again we have ∥𝑥𝑡 − 𝑥𝑡−1∥2𝑥𝑡 ≤ 4 ∥𝑥𝑡 − 𝑥𝑡−1∥2𝑥𝑡−1 which gives

∥𝑥𝑡 − 𝑥𝑡−1∥2𝑥𝑡 ≤ 8 ∥𝑥𝑡 − 𝑥𝑡−1∥2𝑥𝑡−1 + 8 ∥𝑥𝑡 − 𝑥𝑡 ∥2𝑥𝑡 .

Combining all of the above we conclude the proof. □

Next, we provide the proof of the principal theorem establishing an RVU property of each state algorithm.

Proof of Theorem 3.7. Using Theorem D.1 and Lemma 3.6, for any swap function 𝜙,
𝑇∑︁
𝑡=1

〈
𝜋𝑖𝑡 (· | 𝑠) − 𝜙(𝜋𝑖𝑡 (· | 𝑠)), 𝑄̂𝑖𝑡 (𝑠, ·)

〉
≤

∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1

〈
𝑥
𝑖,𝑠,𝑎
𝑡 − 𝜙(𝒆𝑎), 𝑔𝑖,𝑠,𝑎𝑡

〉
≤
|A𝑖 |2 log 1

𝛾

𝜂
+ 4𝜂

𝑇∑︁
𝑡=1

∑︁
𝑎∈A𝑖



𝑔𝑖,𝑠,𝑎𝑡 − 𝑔𝑖,𝑠,𝑎
𝑡−1



2
∗,𝑥𝑖,𝑠,𝑎𝑡

− 1
576𝜂

𝑇∑︁
𝑡=1

∑︁
𝑎∈A𝑖



𝑥𝑖,𝑠,𝑎𝑡 − 𝑥𝑖,𝑠,𝑎
𝑡+1



2
𝑥
𝑖,𝑠,𝑎
𝑡

,

≤
|A𝑖 |2 log 1

𝛾

𝜂
+ 4𝜂

𝑇∑︁
𝑡=1

∑︁
𝑎∈A𝑖

∑︁
𝑎′∈A𝑖

(𝑥𝑖,𝑠,𝑎𝑡 (𝑎′))2


𝑔𝑖,𝑠,𝑎𝑡 − 𝑔𝑖,𝑠,𝑎

𝑡−1



2
∞ −

1
576𝜂

𝑇∑︁
𝑡=1

∑︁
𝑎∈A𝑖



𝑥𝑖,𝑠,𝑎𝑡 − 𝑥𝑖,𝑠,𝑎
𝑡+1



2
𝑥
𝑖,𝑠,𝑎
𝑡

,

≤
|A𝑖 |2 log 1

𝛾

𝜂
+ 4𝜂

𝑇∑︁
𝑡=1

∑︁
𝑎∈A𝑖



𝑔𝑖,𝑠,𝑎𝑡 − 𝑔𝑖,𝑠,𝑎
𝑡−1



2
∞ −

1
576𝜂

𝑇∑︁
𝑡=1

∑︁
𝑎∈A𝑖



𝑥𝑖,𝑠,𝑎𝑡 − 𝑥𝑖,𝑠,𝑎
𝑡+1



2
𝑥
𝑖,𝑠,𝑎
𝑡

, (9)

Now, from Corollary D.4,�����1 − 𝑥𝑖,𝑠,𝑎𝑡+1 (𝑎
′)

𝑥
𝑖,𝑠,𝑎
𝑡 (𝑎′)

����� ≤ 32𝜂
(

𝑔𝑖,𝑠,𝑎

𝑡−1




∞ +



𝑔𝑖,𝑠,𝑎
𝑡−2




∞

)
≤ 32𝜂𝐻

(
𝜋𝑖𝑡−1 (𝑎 | 𝑠) + 𝜋

𝑖
𝑡−2 (𝑎 | 𝑠)

)
=⇒

∑︁
𝑎∈A𝑖

max
𝑎′

�����1 − 𝑥𝑖,𝑠,𝑎𝑡+1 (𝑎
′)

𝑥
𝑖,𝑠,𝑎
𝑡 (𝑎′)

����� ≤ 1
2
.

Therefore, using Lemma D.5, 

𝜋𝑖𝑡 (· | 𝑠) − 𝜋𝑖𝑡+1 (· | 𝑠)

2
1 ≤ |A𝑖 |

∑︁
𝑎∈A𝑖



𝑥𝑖,𝑠,𝑎𝑡 − 𝑥𝑖,𝑠,𝑎
𝑡+1



2
𝑥
𝑖,𝑠,𝑎
𝑡

. (10)

Combining Equations (9) and (10) and Lemma B.1 completes the proof. □
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We conclude with the proof of Theorem 3.5, which follows easily from Theorem 3.7.

Proof of Theorem 3.5. From Theorem 3.7 and the fact that swap regret is non-negative, we have

0 ≤
𝑚∑︁
𝑖=1

∑︁
𝑠∈S

Swapℜ𝑖,𝑠
𝑇

≤
𝑚𝑆𝐴2 log 1

𝛾

𝜂
+ 36𝜂𝜀2𝑚𝑆𝑇 +

𝑇∑︁
𝑡=1

𝑚∑︁
𝑖=1

(
4𝜂𝐻4𝑚2𝑆 − 1

576𝜂𝐴

) 

𝜋𝑖𝑡+1 − 𝜋𝑖𝑡

2
∞,1 ,

where we also used the fact that
∑
𝑠∈S



𝜋𝑖𝑡 (· | 𝑠) − 𝜋𝑖𝑡+1 (· | 𝑠)

2
1 ≥



𝜋𝑖
𝑡+1 − 𝜋

𝑖
𝑡



2
∞,1. Setting 𝜂 = 1

96𝐻2𝑚
√
𝑆𝐴

and rearranging
the terms completes the proof. □

D.1. Log barrier lemmas for Theorem 3.7

The following Lemmas D.2 and D.3 follows by the proof technique of Jin & Luo (2020, Lemma 12); Lee et al. (2020,
Lemma 9).

Lemma D.2. Let 𝐹 : Δ𝑑 → R defined as 𝐹 (𝑥) = 𝜂⟨𝑥, ℓ⟩ + 𝐷𝑅 (𝑥, 𝑥′) for some 𝑥′ ∈ Δ𝑑 , where 𝑅 is the log-barrier
regularization. Suppose ∥ℓ∥∞ ≤ 𝐻, and that 𝜂 ≤ 1

8𝐻 . Then, for any 𝑥′′ ∈ Δ𝑑 such that ∥𝑥′′ − 𝑥′∥𝑥′ = 8𝜂 ∥ℓ∥∞, we have

𝐹 (𝑥′′) ≥ 𝐹 (𝑥′).

Proof. By second-order Taylor expansion of 𝐹 around 𝑥′, there exist 𝜉 is on the line segment between 𝑥′′ and 𝑥′ such that,

𝐹 (𝑥′′) = 𝐹 (𝑥′) + ∇𝐹 (𝑥′)⊤ (𝑥′′ − 𝑥′) + 1
2
(𝑥′′ − 𝑥′)⊤∇2𝐹 (𝜉) (𝑥′′ − 𝑥′),

= 𝐹 (𝑥′) + 𝜂⟨ℓ, 𝑥′′ − 𝑥′⟩ + 1
2
(𝑥′′ − 𝑥′)⊤∇2𝐹 (𝜉) (𝑥′′ − 𝑥′)

≥ 𝐹 (𝑥′) − 𝜂∥ℓ∥∗,𝑥′ ∥𝑥′′ − 𝑥′∥𝑥′ +
1
2
(𝑥′′ − 𝑥′)⊤∇2𝐹 (𝜉) (𝑥′′ − 𝑥′)

= 𝐹 (𝑥′) − 8𝜂2 ∥ℓ∥∞ ∥ℓ∥∗,𝑥′ +
1
2
∥𝑥′′ − 𝑥′∥2𝜉

≥ 𝐹 (𝑥′) − 8𝜂2 ∥ℓ∥2∞ +
1
2
∥𝑥′′ − 𝑥′∥2𝜉 (11)

The second equality is since ∇𝐹 (𝑥′) = 𝜂ℓ, the first inequality is Hölder inequality, the last equality is since ∥𝑥′′ − 𝑥′∥𝑥′ =
8𝜂 ∥ℓ∥∞ and ∇2𝐹 = ∇2𝑅, and the last inequality is since ∥ℓ∥∗,𝑥′ ≤ ∥ℓ∥∞. Now, for all 𝑎, since 𝜂 ≤ 1

8𝐻 :

|𝜉 (𝑎) − 𝑥′ (𝑎) |
𝑥′ (𝑎) ≤ |𝑥

′′ (𝑎) − 𝑥′ (𝑎) |
𝑥′ (𝑎) ≤ ∥𝑥′′ − 𝑥′∥𝑥′ ≤ 8𝜂𝐻 ≤ 1.

In particular, 𝜉 (𝑎) ≤ 2𝑥′ (𝑎), which implies that

∥𝑥′′ − 𝑥′∥2𝜉 =
∑︁
𝑎

(
𝑥′′ (𝑎) − 𝑥′ (𝑎)

𝜉 (𝑎)

)2

≥ 1
4

∑︁
𝑎

(
𝑥′′ (𝑎) − 𝑥′ (𝑎)

𝑥′ (𝑎)

)2

=
1
4
∥𝑥′′ − 𝑥′∥2𝑥′ = 16𝜂2 ∥ℓ∥2∞ .

Plugging back in Equation (11),

𝐹 (𝑥′′) ≥ 𝐹 (𝑥′) − 8𝜂2 ∥ℓ∥2∞ + 16𝜂2 ∥ℓ∥2∞ ≥ 𝐹 (𝑥′).

□
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Lemma D.3. Let 𝑥′ ∈ Δ𝑑 , 𝐹 : Δ𝑑 → R be defined as in Lemma D.2 and let 𝑥+ = arg min𝑥 𝐹 (𝑥). If 𝜂 ≤ 1
8𝐻 then for any

𝑎 ∈ [𝑑] it holds that
(1 − 8𝜂 ∥ℓ∥∞) 𝑥′ (𝑎) ≤ 𝑥+ (𝑎) ≤ (1 + 8𝜂 ∥ℓ∥∞) 𝑥′ (𝑎).

Proof. We first show that ∥𝑥+ − 𝑥′∥𝑥′ ≤ 8𝜂 ∥ℓ∥∞. Assume otherwise: ∥𝑥+ − 𝑥′∥𝑥′ > 8𝜂 ∥ℓ∥∞. Then for some 𝜆 ∈ (0, 1) and
𝑥′′ = 𝜆𝑥+ + (1 − 𝜆)𝑥′ we have,

∥𝑥′′ − 𝑥′∥𝑥′ = 8𝜂 ∥ℓ∥∞ .

From Lemma D.2, 𝐹 (𝑥′) ≤ 𝐹 (𝑥′′). Since 𝐹 is strongly convex and 𝑥+ is the (unique) minimizer of 𝐹,

𝐹 (𝑥′) ≤ 𝐹 (𝑥′′) ≤ 𝜆𝐹 (𝑥+) + (1 − 𝜆)𝐹 (𝑥′) < 𝜆𝐹 (𝑥′) + (1 − 𝜆)𝐹 (𝑥′) = 𝐹 (𝑥′),

which is a contradiction. Hence, ∥𝑥+ − 𝑥′∥𝑥′ ≤ 8𝜂 ∥ℓ∥∞ and for any 𝑎,(
𝑥+ (𝑎) − 𝑥′ (𝑎)

𝑥′ (𝑎)

)2
≤
∑̃︁
𝑎

(
𝑥+ (𝑎̃) − 𝑥′ (𝑎̃)

𝑥′ (𝑎̃)

)2
≤ (8𝜂 ∥ℓ∥∞)2.

By rearranging the inequality above we obtain the statement of the lemma. □

Corollary D.4. Assume that {𝑥𝑡 }𝑇𝑡=1 are iterates of OOMD with log-barrier and 𝜂 ≤ 1
64𝐻 , then for any 𝑡,

1 − 32𝜂(∥ℓ𝑡−1∥∞ + ∥ℓ𝑡−2∥∞) ≤
𝑥𝑡+1 (𝑎)
𝑥𝑡 (𝑎)

≤ 1 + 32𝜂(∥ℓ𝑡−1∥∞ + ∥ℓ𝑡−2∥∞).

Proof. By Lemma D.3 we have,

1 − 8𝜂 ∥ℓ𝑡−1∥∞ ≤
𝑥𝑡 (𝑎)
𝑥𝑡−1 (𝑎)

≤ 1 + 8𝜂 ∥ℓ𝑡−1∥∞

1 − 8𝜂 ∥ℓ𝑡−1∥∞ ≤
𝑥𝑡−1 (𝑎)
𝑥𝑡−2 (𝑎)

≤ 1 + 8𝜂 ∥ℓ𝑡−1∥∞

(1 + 8𝜂 ∥ℓ𝑡−2∥∞)−1 ≤ 𝑥𝑡−2 (𝑎)
𝑥𝑡−1 (𝑎)

≤ (1 − 8𝜂 ∥ℓ𝑡−2∥∞)−1.

Hence,

𝑥𝑡 (𝑎)
𝑥𝑡−1 (𝑎)

=
𝑥𝑡 (𝑎)
𝑥𝑡−1 (𝑎)

· 𝑥𝑡−1 (𝑎)
𝑥𝑡−2 (𝑎)

· 𝑥𝑡−2 (𝑎)
𝑥𝑡−1 (𝑎)

≤ (1 + 8𝜂(∥ℓ𝑡−1∥∞ + ∥ℓ𝑡−2∥∞))2
1 − 8𝜂(∥ℓ𝑡−1∥∞ + ∥ℓ𝑡−2∥∞)

≤ 1 + 32𝜂(∥ℓ𝑡−1∥∞ + ∥ℓ𝑡−2∥∞)

where the last is since (1+𝑥 )
2

1−𝑥 ≤ 1 + 4𝑥 for 𝑥 ∈ (0, 1/5]. In a similar way,

𝑥𝑡 (𝑎)
𝑥𝑡−1 (𝑎)

=
𝑥𝑡 (𝑎)
𝑥𝑡−1 (𝑎)

· 𝑥𝑡−1 (𝑎)
𝑥𝑡−2 (𝑎)

· 𝑥𝑡−2 (𝑎)
𝑥𝑡−1 (𝑎)

≥ (1 − 8𝜂(∥ℓ𝑡−1∥∞ + ∥ℓ𝑡−2∥∞))2
1 + 8𝜂(∥ℓ𝑡−1∥∞ + ∥ℓ𝑡−2∥∞)

≥ 1 − 24𝜂(∥ℓ𝑡−1∥∞ + ∥ℓ𝑡−2∥∞)

where the last is since (1−𝑥 )
2

1+𝑥 ≤ 1 − 3𝑥 for all 𝑥 > 0. □

The following lemma is a slight generalization of (Anagnostides et al., 2022b, Lemma 4.2), which applies for any sequence
of sufficiently stable base iterates (not necessarily OFTRL generated).

Lemma D.5 (Anagnostides et al. (2022b)). Fix some vectors 𝑥𝑡 ,𝑎 ∈ Δ𝑑 for 𝑡 ∈ [𝑇] and 𝑎 ∈ [𝑑]. Let 𝑀𝑡 ∈ R𝑑×𝑑 a matrix

who’s rows are 𝑥𝑡 ,𝑎 and let 𝑥𝑡 ∈ Δ𝑑 be vectors such that 𝑀⊤𝑡 𝑥𝑡 = 𝑥𝑡 . If
∑
𝑎∈[𝑑 ] max𝑎′

��� 𝑥𝑡−1,𝑎 (𝑎′ )−𝑥𝑡,𝑎 (𝑎′ )
𝑥𝑡−1,𝑎 (𝑎′ )

��� ≤ 1/2, then

∥𝑥𝑡 − 𝑥𝑡−1∥21 ≤ 64𝐴
∑︁
𝑎∈[𝑑 ]



𝑥𝑡 ,𝑎 − 𝑥𝑡−1,𝑎


2
𝑥𝑡−1,𝑎

where the local norms here are those induced by the log-barrier regularizer (Equation (4)).
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Proof. Let T𝑎 be the set of all directed trees over [𝑑] (i.e., each directed tree has no directed cycles, each node 𝑎′ ≠ 𝑎 has
exactly 1 outgoing edge and 𝑎 has no outgoing edges). By the Markov chain tree theorem (Anantharam & Tsoucas, 1989)
𝑥𝑡 (𝑎) = 𝑤𝑡 (𝑎)

𝑊𝑡
where

𝑤𝑡 (𝑎) =
∑︁
T∈T𝑎

∏
(𝑢,𝑣) ∈𝐸 (T)

𝑥𝑡 ,𝑢 (𝑣) and, 𝑊𝑡 =
∑︁
𝑎

𝑤𝑡 (𝑎).

Let 𝜇𝑡 ,𝑎 := max𝑎′
���1 − 𝑥𝑡,𝑎 (𝑎′ )

𝑥𝑡−1,𝑎 (𝑎′ )

��� ≤ 𝜇. In particular, 1 − 𝜇𝑡 ,𝑎 ≤ 𝑥𝑡,𝑎 (𝑎′ )
𝑥𝑡−1,𝑎 (𝑎′ ) ≤ 1 + 𝜇𝑡 ,𝑎 which implies

𝑤𝑡 (𝑎) ≤
∑︁
T∈T𝑎

∏
(𝑢,𝑣) ∈𝐸 (T)

𝑥𝑡 ,𝑢 (𝑣)

≤
∑︁
T∈T𝑎

∏
(𝑢,𝑣) ∈𝐸 (T)

(1 + 𝜇𝑡 ,𝑢)𝑥𝑡−1,𝑢 (𝑣)

≤
∏
𝑎′∈[𝑑 ]

(1 + 𝜇𝑡 ,𝑎′ )
∑︁
T∈T𝑎

∏
(𝑢,𝑣) ∈𝐸 (T)

𝑥𝑡−1,𝑢 (𝑣)

=
∏
𝑎′∈[𝑑 ]

(1 + 𝜇𝑡 ,𝑎′ )𝑤𝑡−1 (𝑎)

≤ exp ©­«
∑︁
𝑎′∈[𝑑 ]

𝜇𝑡 ,𝑎′
ª®¬𝑤𝑡−1 (𝑎).

This also implies that𝑊𝑡 ≤ exp
(∑

𝑎′∈[𝑑 ] 𝜇𝑡 ,𝑎′
)
𝑊𝑡−1. In a similar way,

𝑤𝑡 (𝑎) ≥
∏
𝑎′∈[𝑑 ]

(1 − 𝜇𝑡 ,𝑎′ )𝑤𝑡−1 (𝑎)

≥
∏
𝑎′∈[𝑑 ]

exp ©­«−2
∑︁
𝑎′∈[𝑑 ]

𝜇𝑡 ,𝑎′
ª®¬𝑤𝑡−1 (𝑎)

where the last uses the fact that 1 − 𝑥 ≥ 𝑒−2𝑥 for 𝑥 ∈ [0, 1/2] and that
∑
𝑎′∈[𝑑 ] 𝜇𝑡 ,𝑎′ ≤ 1/2. Similarly, 𝑊𝑡 ≥

exp
(
−2

∑
𝑎′∈[𝑑 ] 𝜇𝑡 ,𝑎′

)
𝑊𝑡−1. Combining the inequities above we get,

𝑥𝑡 (𝑎) − 𝑥𝑡−1 (𝑎) =
𝑤𝑡 (𝑎)
𝑊𝑡

− 𝑥𝑡−1 (𝑎)

≤
exp

(∑
𝑎′∈[𝑑 ] 𝜇𝑡 ,𝑎′

)
𝑤𝑡−1 (𝑎)

exp
(
−2

∑
𝑎′∈[𝑑 ] 𝜇𝑡 ,𝑎′

)
𝑊𝑡−1

− 𝑥𝑡−1 (𝑎)

≤ 𝑥𝑡−1 (𝑎) ©­«exp ©­«3
∑︁
𝑎′∈[𝑑 ]

𝜇𝑡 ,𝑎′
ª®¬ − 1ª®¬

≤ 8𝑥𝑡−1 (𝑎)
∑︁
𝑎′∈[𝑑 ]

𝜇𝑡 ,𝑎′ ,

where the last holds since 𝑒𝑥 − 1 ≤ 8
3𝑥 for 𝑥 ∈ [0, 2/3] and

∑
𝑎′∈[𝑑 ] 𝜇𝑡 ,𝑎′ ≤ 1/2. In similar way,

𝑥𝑡−1 (𝑎) − 𝑥𝑡 (𝑎) ≤ 𝑥𝑡−1 (𝑎)
©­«1 − exp ©­«−3

∑︁
𝑎′∈[𝑑 ]

𝜇𝑡 ,𝑎′
ª®¬ª®¬ ≤ 3𝑥𝑡−1 (𝑎)

∑︁
𝑎′∈[𝑑 ]

𝜇𝑡 ,𝑎′ .
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From the last to we have |𝑥𝑡−1 (𝑎) − 𝑥𝑡 (𝑎) | ≤ 8𝑥𝑡−1 (𝑎)
∑
𝑎′∈[𝑑 ] 𝜇𝑡 ,𝑎′ and so,

∥𝑥𝑡−1 − 𝑥𝑡 ∥21 ≤ 64 ©­«
∑︁
𝑎∈[𝑑 ]

𝜇𝑡 ,𝑎
ª®¬

2

≤ 64𝐴
∑︁
𝑎∈[𝑑 ]

(
𝜇𝑡 ,𝑎

)2
≤ 64𝐴

∑︁
𝑎∈[𝑑 ]

∑︁
𝑎′∈[𝑑 ]

(
𝑥𝑡−1,𝑎 (𝑎′) − 𝑥𝑡 ,𝑎 (𝑎′)

𝑥𝑡−1,𝑎 (𝑎′)

)2

= 64𝐴
∑︁
𝑎∈[𝑑 ]



𝑥𝑡 ,𝑎 − 𝑥𝑡−1,𝑎


2
𝑥𝑡−1,𝑎

.

□

E. Unknown dynamics regret analysis (proof for Section 4)
In this section we provide the full technical details involved in the proof of Theorem 4.3. As mentioned, we modify
Algorithm 1 to a blocking type algorithm as follows: After each policy update, the players use the same policy for 𝐵
episodes and use the trajectories observed in those 𝐵 episodes to estimate their 𝑄-function. We later set 𝐵 such that with
high probability, every player samples the loss of every state-action pair (𝑠, 𝑎) at least ≈ 1/𝜀2 times, which is enough to
guarantee that with high probability 𝑄̂𝑡 (𝑠, 𝑎) is an 𝜀-approximation of 𝑄𝑡 (𝑠, 𝑎).

More formally, after a policy update at the end of episode 𝑡 𝑗 for 𝑗 = 1, 2, . . . , 𝑇/𝐵, each player uses the policy 𝜋𝑖𝑡 𝑗 for 𝐵
consecutive episodes to obtain the trajectories{(

𝑠𝜏1 , 𝑎
𝜏
1 , . . . , 𝑠

𝜏
𝐻−1𝑎

𝜏
𝐻−1, 𝑠

𝜏
𝐻

)}
𝜏=𝑡 𝑗+1,𝑡 𝑗+2,...,𝑡 𝑗+𝐵 ,

and then constructs the following estimator for the 𝑄-function at each state-action pair (𝑠, 𝑎) where 𝑠 is in layer ℎ:

𝑄̂𝑖𝑡 𝑗 (𝑠, 𝑎) =
1
𝐵

𝑡 𝑗+𝐵∑︁
𝜏=𝑡 𝑗+1

I
[
𝑠𝜏ℎ = 𝑠, 𝑎𝜏ℎ = 𝑎

] 𝐻−1∑︁
ℎ′=ℎ

ℓ𝑖𝜏 (𝑠𝜏ℎ′ , 𝑎
𝜏
ℎ′ ).

Note that for each state-action pair (𝑠, 𝑎) this is an unbiased estimator for 𝑄𝑖𝑡 𝑗 (𝑠, 𝑎). We refer to the time periods in between
each pair of episodes 𝑡 𝑗 and 𝑡 𝑗+1 as “blocks”. As a first step, we establish that w.h.p. these estimates are indeed good
approximations of the true 𝑄-functions.

E.1. The good event

Lemma E.1. Denote by 𝑛𝑖
𝑗
(𝑠, 𝑎) the number of times player 𝑖 reached the state-action pair (𝑠, 𝑎) in episodes 𝑡 𝑗+1, . . . , 𝑡 𝑗+𝐵.

Then with probability at least 1 − 𝛿, for every player 𝑖, block index 𝑗 = 1, . . . , 𝑇/𝐵 and state-action pair (𝑠, 𝑎) it holds that

𝑛𝑖𝑗 (𝑠, 𝑎) ≥
𝛾𝛽𝐵

2
− log

𝑚𝑆𝐴𝑇

𝛿
.

Proof. First note that for all 𝑠 ∈ S and 𝑎 ∈ A𝑖 ,

𝜋𝑖𝑡 𝑗 (𝑎 | 𝑠) ≥ 𝛾.

This follows immediately from the fact that 𝜋𝑖𝑡 𝑗 (· | 𝑠) is a stationary distribution corresponding to the base iterates
{
𝑥
𝑖,𝑠,𝑎
𝑡 𝑗
(·)

}
in which every action is taken with probability of at least 𝛾. Therefore, if we denote by 𝑋𝜏 (𝑠) the indicator variable of
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reaching state 𝑠 at episode 𝜏, we have

E𝑡 𝑗
[
𝑛𝑖𝑗 (𝑠, 𝑎)

]
=

𝑡 𝑗+𝐵∑︁
𝜏=𝑡 𝑗+1

Pr [𝑋𝜏 (𝑠) = 1] 𝜋𝑖𝑡 𝑗 (𝑎 | 𝑠)

≥ 𝛾
𝑡 𝑗+𝐵∑︁
𝜏=𝑡 𝑗+1

Pr [𝑋𝜏 (𝑠) = 1]

≥ 𝛾𝛽𝐵,

where the last inequality follows from Assumption 4.1. By invoking Lemma F.4 in Dann et al. (2017) we obtain that with
probability at least 1 − 𝛿

𝑚𝑆𝐴𝑇
it holds that

𝑛𝑖𝑗 (𝑠, 𝑎) ≥
𝛾𝛽𝐵

2
− log

𝑚𝑆𝐴𝑇

𝛿
,

and we conclude the proof with a union bound over 𝑖, 𝑠, 𝑎 and 𝑗 . □

Proof of Lemma 4.2. We set 𝐵 =
2𝐻2 ln 𝑚𝑆𝐴𝑇

𝛿

𝛾𝛽𝜀2 . Denote by 𝐺1 the event that for all 𝑖, 𝑗 , 𝑠, 𝑎 it holds that 𝑛𝑖
𝑗
(𝑠, 𝑎) ≥ 𝑁 , where

𝑁 =
𝐻2 ln 𝑚𝑆𝐴𝑇

𝛿

2𝜀2 . By Lemma E.1 and the choice of 𝐵, the event 𝐺1 holds with probability at least 1− 𝛿. Therefore for the rest
of the proof we assume 𝐺1 holds. Note that conditioned on 𝐺1, the estimator of the 𝑄-function 𝑄̂𝑖𝑡 𝑗 (𝑠, 𝑎) is an average of at
least 𝑁 i.i.d random variables, each bounded in [0, 𝐻] and each with expected value 𝑄𝑖𝑡 𝑗 (𝑠, 𝑎). Therefore, using Hoeffding’s
inequality and our setting of 𝑁 , with probability at least 1 − 𝛿

𝑚𝑆𝐴𝑇
it holds that���𝑄̂𝑖𝑡 𝑗 (𝑠, 𝑎) −𝑄𝑖𝑡 𝑗 (𝑠, 𝑎)��� ≤ 𝜀.

Taking a union bound over 𝑖, 𝑠, 𝑎, 𝑗 we conclude the proof. □

E.2. Regret bound

To prove our regret bound, we begin with a standard lemma which relates the swap regret of the blocked version of
Algorithm 1 where each player plays the same policy for 𝐵 episodes after each policy update, to the swap regret guarantee
of Algorithm 1, assuming at each episode the players observe 𝜀-approximations of their 𝑄-functions.

Lemma E.2. If the non-blocked version of Algorithm 1 has a swap regret guarantee of Swapℜ𝑖
𝐾
≤ 𝑅(𝑚, 𝐻, 𝑆, 𝐴, 𝐾) when

run for 𝐾 episodes, then the swap regret of the blocked version of Algorithm 1 can be bounded by

𝐵 · 𝑅
(
𝑚, 𝐻, 𝑆, 𝐴,

𝑇

𝐵

)
.

Proof. Let {𝜋𝑖𝑡 } denote the policies played by player 𝑖 when executing the blocked with estimations version of the algorithm,

and let 𝑟𝑡 B 𝑉
𝑖, 𝜋𝑖𝑡
𝑡 (𝑠1) −𝑉

𝑖,𝜙 (𝜋𝑖★)
𝑡 (𝑠1) denote the per round instantaneous regret w.r.t. swap function 𝜙. Then

Swapℜ𝑖𝑇 =

𝑇∑︁
𝑡=1

𝑟𝑡 =

𝑇/𝐵∑︁
𝑗=1

𝑡 𝑗+𝐵∑︁
𝜏=𝑡 𝑗+1

𝑟𝜏 =

𝑇/𝐵∑︁
𝑗=1

𝑡 𝑗+𝐵∑︁
𝜏=𝑡 𝑗+1

𝑟𝑡 𝑗 = 𝐵

𝑇/𝐵∑︁
𝑗=1
𝑟𝑡 𝑗 ≤ 𝐵 · 𝑅

(
𝑚, 𝐻, 𝑆, 𝐴,

𝑇

𝐵

)
,

where the last inequality is due to the fact that the sequence of policies {𝜋𝑖𝑡 𝑗 } 𝑗∈[𝐵] corresponds to running Algorithm 1 over
𝑇/𝐵 episodes. □

Given Lemma E.2 and the individual swap regret bound in Theorem 3.1, we are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. We make the following parameter choices; block size 𝐵 =
2𝐻2 ln 𝑚𝑆𝐴𝑇

𝛿

𝛾𝛽𝜀2 , step size 𝜂 = 1
96𝐻2𝑚

√
𝑆𝐴

,

𝜀 = 6𝐻2√𝑚𝑆 1
4 𝐴

3
4

(
ln 𝑚𝑆𝐴𝑇

𝛿
ln 1
𝛾

) 1
4 (𝛽𝛾𝑇)− 1

4 and 𝛾 = 𝐻
4
9 𝑆

1
3 𝐴

5
9𝑚

2
3 𝛽−

1
9

(
ln 𝑚𝑆𝐴𝑇

𝛿
ln𝑇

) 1
9
𝑇−

1
9 . Further, we assume 𝑇 ≥

512𝐻4𝑆3𝐴14𝑚6𝛽−1 ln 𝑚𝑆𝐴𝑇
𝛿

ln𝑇 , so that 𝛾 ≤ 1/2𝐴.
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Now, using Theorem 3.1, Lemma 4.2, Lemma E.2 and the choice of 𝐵 we obtain that with probability at least 1 − 2𝛿, player
𝑖’s swap regret can be bounded as follows:

Swapℜ𝑖𝑇 ≤
2 · 104𝐻5𝑆𝐴3𝑚2

√︃
ln 1
𝛾

ln 𝑚𝑆𝐴𝑇
𝛿

𝜀𝛾
3
2
√
𝛽

√
𝑇 + 600𝑚𝐻

√
𝑆𝐴

3
2

𝛾
𝜀𝑇 + 2𝛾𝐴𝐻2𝑇

+
300𝑚𝐻4𝑆

3
2 𝐴

7
2 ln 1

𝛾
ln 𝑚𝑆𝐴𝑇

𝛿

𝛾𝛽𝜀2 .

Our choice of 𝜀 balances the first two terms, leading to;

Swapℜ𝑖𝑇 ≤ 7000𝐻3𝑆
3
4 𝐴

9
4𝑚

3
2

(
ln
𝑚𝑆𝐴𝑇

𝛿
ln𝑇

) 1
4

𝛽−
1
4 𝛾−

5
4𝑇

3
4 + 2𝛾𝐴𝐻2𝑇

+ 10𝑆𝐴2
√︂

ln
𝑚𝑆𝐴𝑇

𝛿
ln𝑇𝛽−

1
2 𝛾−

1
2
√
𝑇,

where we used the fact that 𝛾 ≥ 1
𝑇

. We now use our choice of 𝛾 to obtain the desired regret bound. □

F. Elementary MDP Lemmas
In this section, we prove some basic lemmas relating variations in state visitation measures, losses and dynamics to the
movement (changes in policies) of players. Recall we let ℓ𝑖𝑡 , 𝑃

𝑖
𝑡 , 𝑀

𝑖
𝑡 denote respectively the loss, dynamics, and MDP tuple

𝑀 𝑖
𝑡 B (𝐻,S,A𝑖 , 𝑃𝑖𝑡 , ℓ𝑖𝑡 ) of the single agent induced MDP of player 𝑖 at round 𝑡. Further, for any (single agent) transition

function 𝑃, policy 𝜋 ∈ S → ΔA𝑖
and state 𝑠 ∈ Sℎ, we denote

𝑞𝜋𝑃 (𝑠, 𝑎) B Pr(𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎 | 𝑃, 𝜋, 𝑠1),
𝑞𝜋𝑃 (𝑠) B Pr(𝑠ℎ = 𝑠 | 𝑃, 𝜋, 𝑠1).

When 𝑃 is clear from context we may omit the subscript and write 𝑞𝜋 for 𝑞𝜋
𝑃

. Further, for any single agent MDP
𝑀 = (𝐻,S,A𝑖 , 𝑃, ℓ), we write 𝑉 (·;𝑀), 𝑄(·, ·;𝑀) to denote respectively the state and state-action value functions of 𝑀.
We may omit 𝑀 and write 𝑉 (·), 𝑄(·, ·) when 𝑀 is clear from context. For 𝑠 ∈ S, we let ℎ(𝑠) B ℎ s.t. 𝑠 ∈ Sℎ. With this
notation in place, we have for a policy 𝜋 ∈ S → ΔA𝑖

:

𝑉 𝜋 (𝑠;𝑀) B E
[ 𝐻∑︁
ℎ=ℎ (𝑠)

ℓ(𝑠ℎ, 𝑎ℎ) | 𝑃, 𝜋, 𝑠ℎ (𝑠) = 𝑠
]
,

𝑄 𝜋 (𝑠, 𝑎;𝑀) B E
[ 𝐻∑︁
ℎ=ℎ (𝑠)

ℓ(𝑠ℎ, 𝑎ℎ) | 𝑃, 𝜋, 𝑠ℎ (𝑠) = 𝑠, 𝑎ℎ (𝑠) = 𝑎
]
.

We begin with value difference lemmas which are typical in single agent MDP analyses. The proofs below are provided for
completeness; see also Shani et al. (2020); Cai et al. (2020) for similar arguments.

Lemma F.1 (value-difference). The following holds.

1. For any MDP 𝑀 = (S,A𝑖 , 𝐻, 𝑃, ℓ), and pair of policies 𝜋, 𝜋̃ ∈ S → ΔA𝑖
, we have

𝑉 𝜋 (𝑠1) −𝑉 𝜋̃ (𝑠1) = E

[
𝐻∑︁
ℎ=1
⟨𝑄 𝜋 (𝑠ℎ, ·), 𝜋(· | 𝑠ℎ) − 𝜋̃(· | 𝑠ℎ)⟩ | 𝜋̃

]
=
∑︁
𝑠∈S

𝑞 𝜋̃ (𝑠) ⟨𝑄 𝜋 (𝑠, ·), 𝜋(· | 𝑠) − 𝜋̃(· | 𝑠)⟩

≤ 𝐻2 ∥𝜋 − 𝜋̃∥∞,1 .
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2. For any two MDPs 𝑀 = (𝐻, 𝑆,A𝑖 , 𝑃, ℓ), 𝑀̃ = (𝐻, 𝑆,A𝑖 , 𝑃̃, ℓ̃), 𝑉 𝜋 (·) B 𝑉 𝜋 (·;𝑀), 𝑉̃ 𝜋 (·) B 𝑉 𝜋 (·; 𝑀̃), and policy
𝜋 ∈ S → ΔA𝑖

, we have

𝑉 𝜋 (𝑠1) − 𝑉̃ 𝜋 (𝑠1) = E𝑃̃, 𝜋

[
𝐻∑︁
ℎ=1

ℓ(𝑠ℎ, 𝑎ℎ) − ℓ̃(𝑠ℎ, 𝑎ℎ) +
∑︁

𝑠′∈Sℎ+1

(𝑃(𝑠′ |𝑠ℎ, 𝑎ℎ) − 𝑃̃(𝑠′ |𝑠ℎ, 𝑎ℎ))𝑉 𝜋 (𝑠′)
]

≤ 𝐻


ℓ − ℓ̃

∞ + 𝐻2 

𝑃 − 𝑃̃

∞,1

Proof. For (1), observe that for 𝑠 ∈ S𝑙;

𝑉 𝜋 (𝑠) −𝑉 𝜋̃ (𝑠) = ⟨𝑄 𝜋 (𝑠, ·), 𝜋(·|𝑠) − 𝜋̃(·|𝑠)⟩ +
〈
𝑄 𝜋 (𝑠, ·) −𝑄 𝜋̃ (𝑠, ·), 𝜋̃(·|𝑠)

〉
= ⟨𝑄 𝜋 (𝑠, ·), 𝜋(·|𝑠) − 𝜋̃(·|𝑠)⟩ + E𝑎′∼ 𝜋̃ ( · |𝑠)

[
E𝑠′∼𝑃 ( · |𝑠,𝑎′ )

[
𝑉 𝜋 (𝑠′) −𝑉 𝜋̃ (𝑠′)

] ]
= ⟨𝑄 𝜋 (𝑠, ·), 𝜋(·|𝑠) − 𝜋̃(·|𝑠)⟩ + E

[
𝑉 𝜋 (𝑠𝑙+1) −𝑉 𝜋̃ (𝑠𝑙+1) | 𝜋̃, 𝑠𝑙 = 𝑠

]
.

Applying the relation recursively, we obtain for 𝑙 = 1;

𝑉 𝜋 (𝑠1) −𝑉 𝜋̃ (𝑠1) = E

[
𝐻∑︁
ℎ=1
⟨𝑄 𝜋 (𝑠ℎ, ·), 𝜋(·|𝑠ℎ) − 𝜋̃(·|𝑠ℎ)⟩ | 𝜋̃, 𝑠1

]
=

𝐻∑︁
ℎ=𝑙

∑︁
𝑠∈Sℎ

Pr(𝑠ℎ = 𝑠 |, 𝑠1, 𝜋̃) ⟨𝑄 𝜋 (𝑠, ·), 𝜋(·|𝑠) − 𝜋̃(·|𝑠)⟩

=
∑︁
𝑠∈S

Pr(𝑠ℎ = 𝑠 |, 𝑠1, 𝜋̃) ⟨𝑄 𝜋 (𝑠, ·), 𝜋(·|𝑠) − 𝜋̃(·|𝑠)⟩

=
∑︁
𝑠∈S

𝑞 𝜋̃ (𝑠) ⟨𝑄 𝜋 (𝑠, ·), 𝜋(·|𝑠) − 𝜋̃(·|𝑠)⟩

≤ 𝐻
∑︁
𝑠∈S

𝑞 𝜋̃ (𝑠) ∥𝜋(·|𝑠) − 𝜋̃(·|𝑠)∥1

≤ 𝐻
∑︁
𝑠∈S

𝑞 𝜋̃ (𝑠) ∥𝜋 − 𝜋̃∥∞,1 ≤ 𝐻2 ∥𝜋 − 𝜋̃∥∞,1 ,

which completes the proof of (1). For (2), let 𝑠 ∈ S𝑙 and observe;

𝑉 𝜋 (𝑠) − 𝑉̃ 𝜋 (𝑠) = E𝑎∼𝜋 ( · |𝑠)
ℓ(𝑠, 𝑎) − ℓ̃(𝑠, 𝑎) +

∑︁
𝑠′∈S𝑙+1

𝑃(𝑠′ |𝑠, 𝑎)𝑉 𝜋 (𝑠′) − 𝑃̃(𝑠′ |𝑠, 𝑎)𝑉̃ 𝜋 (𝑠′)


Further, we have ∑︁
𝑠′∈S𝑙+1

𝑃(𝑠′ |𝑠, 𝑎)𝑉 𝜋 (𝑠′) − 𝑃̃(𝑠′ |𝑠, 𝑎)𝑉̃ 𝜋 (𝑠′)

=
∑︁

𝑠′∈S𝑙+1

(
𝑃(𝑠′ |𝑠, 𝑎) − 𝑃̃(𝑠′ |𝑠, 𝑎)

)
𝑉 𝜋 (𝑠′) + 𝑃̃(𝑠′ |𝑠, 𝑎)

(
𝑉 𝜋 (𝑠′) − 𝑉̃ 𝜋 (𝑠′)

)
,

and combining this with the previous equation we get

𝑉 𝜋 (𝑠) − 𝑉̃ 𝜋 (𝑠) = E𝑎∼𝜋 ( · |𝑠)
ℓ(𝑠, 𝑎) − ℓ̃(𝑠, 𝑎) +

∑︁
𝑠′∈S𝑙+1

(
𝑃(𝑠′ |𝑠, 𝑎) − 𝑃̃(𝑠′ |𝑠, 𝑎)

)
𝑉 𝜋 (𝑠′)


+ E

[
𝑉 𝜋 (𝑠𝑙+1) − 𝑉̃ 𝜋 (𝑠𝑙+1) | 𝑃̃, 𝜋, 𝑠𝑙 = 𝑠

]
.
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Applying this recursivly with 𝑙 = 1, the first part of (2) follows. For the second part;

E𝑃̃, 𝜋

[
𝐻∑︁
ℎ=1

ℓ(𝑠ℎ, 𝑎ℎ) − ℓ̃(𝑠ℎ, 𝑎ℎ) +
∑︁

𝑠′∈Sℎ+1

(𝑃(𝑠′ |𝑠ℎ, 𝑎ℎ) − 𝑃̃(𝑠′ |𝑠ℎ, 𝑎ℎ))𝑉 𝜋 (𝑠′)
]

≤ E𝑃̃, 𝜋

[
𝐻∑︁
ℎ=1



ℓ − ℓ̃

∞ + 𝐻 

𝑃(·|𝑠ℎ, 𝑎ℎ) − 𝑃̃(·|𝑠ℎ, 𝑎ℎ)

1

]
≤ E𝑃̃, 𝜋

[
𝐻


ℓ − ℓ̃

∞ + 𝐻 𝐻∑︁

ℎ=1



𝑃 − 𝑃̃

∞,1]
= 𝐻



ℓ − ℓ̃

∞ + 𝐻2 

𝑃 − 𝑃̃

∞,1
□

Lemma F.2 (action-value-difference). Let 𝑀 = (𝑆,A𝑖 , 𝐻, 𝑃, ℓ), 𝑀̃ = (𝑆,A𝑖 , 𝐻, 𝑃̃, ℓ̃) be two MDPs, and 𝜋, 𝜋̃ ∈ S → ΔA𝑖

be a pair of policies. Then for all 𝑠 ∈ S, 𝑎 ∈ A𝑖 , we have;

𝑄 𝜋 (𝑠, 𝑎;𝑀) −𝑄 𝜋̃ (𝑠, 𝑎; 𝑀̃) ≤ 𝐻2 ∥𝜋 − 𝜋̃∥∞,1 + (𝐻2 + 1)


𝑃 − 𝑃̃

∞,1 + (𝐻 + 1)



ℓ − ℓ̃

∞ .
Proof. By Lemma F.1, we have

𝑉 𝜋 (𝑠) − 𝑉̃ 𝜋̃ (𝑠) = 𝑉 𝜋 (𝑠) −𝑉 𝜋̃ (𝑠) +𝑉 𝜋̃ (𝑠) − 𝑉̃ 𝜋̃ (𝑠)
≤ 𝐻2 ∥𝜋 − 𝜋̃∥∞,1 + 𝐻2 

𝑃 − 𝑃̃

∞,1 + 𝐻 

ℓ − ℓ̃

∞ .

Thus, let 𝑠 ∈ Sℎ, 𝑎 ∈ A𝑖 , and observe;

𝑄 𝜋 (𝑠, 𝑎;𝑀) −𝑄 𝜋̃ℎ (𝑠, 𝑎; 𝑀̃) = ℓ(𝑠, 𝑎) − ℓ̃(𝑠, 𝑎)
+ E𝑠′∼𝑃 ( · |𝑠,𝑎) 𝑉 𝜋 (𝑠′;𝑀) − E𝑠′∼𝑃̃ ( · |𝑠,𝑎) 𝑉 𝜋̃ (𝑠′; 𝑀̃)

= ℓ(𝑠, 𝑎) − ℓ̃(𝑠, 𝑎)

+
∑︁

𝑠′∈Sℎ+1

𝑃(𝑠′ | 𝑠, 𝑎)𝑉 𝜋 (𝑠′;𝑀) − 𝑃̃(𝑠′ | 𝑠, 𝑎)𝑉 𝜋̃ (𝑠′; 𝑀̃)

≤ |ℓ(𝑠, 𝑎) − ℓ̃(𝑠, 𝑎) |

+
∑︁

𝑠′∈Sℎ+1

𝑃(𝑠′ | 𝑠, 𝑎) |𝑉 𝜋 (𝑠′;𝑀) −𝑉 𝜋̃ (𝑠′; 𝑀̃) |

+
∑︁

𝑠′∈Sℎ+1

𝑉 𝜋̃ (𝑠′; 𝑀̃) |𝑃(𝑠′ | 𝑠, 𝑎) − 𝑃̃(𝑠′ | 𝑠, 𝑎) |

≤ |ℓ(𝑠, 𝑎) − ℓ̃(𝑠, 𝑎) |
+ 𝐻2 ∥𝜋 − 𝜋̃∥∞,1 + 𝐻2 

𝑃 − 𝑃̃

∞,1 + 𝐻 

ℓ − ℓ̃

∞
+ 𝐻



𝑃(· | 𝑠, 𝑎) − 𝑃̃(· | 𝑠, 𝑎)

1

≤ 𝐻2 ∥𝜋 − 𝜋̃∥∞,1 + (𝐻2 + 1)


𝑃 − 𝑃̃

∞,1 + (𝐻 + 1)



ℓ − ℓ̃

∞
□

Lemma F.3. For any policy 𝜇 : S → A𝑖 , player 𝑖 ∈ [𝑚], we have

𝑞𝜇
𝑃𝑖
𝑡+1
− 𝑞𝜇

𝑃𝑖
𝑡




∞ ≤ 𝐻

2
∑︁
𝑗≠𝑖

∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1.

Proof. Follows by combining Lemma F.5 and Lemma F.4;

𝑞𝜇
𝑃𝑖
𝑡+1
− 𝑞𝜇

𝑃𝑖
𝑡




1 ≤ 𝐻

2

𝑃𝑖𝑡+1 − 𝑃𝑖𝑡

∞,1 ≤ 𝐻2
∑︁
𝑗≠𝑖

∥𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡 ∥∞,1.

□
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Lemma F.4. It holds that for all 𝑖 ∈ [𝑚], 𝑠 ∈ S, 𝑎 ∈ A𝑖;

∥𝑃𝑖𝑡+1 (· | 𝑠, 𝑎) − 𝑃
𝑖
𝑡 (· | 𝑠, 𝑎)∥1 ≤

∑︁
𝑗≠𝑖

∥𝜋 𝑗
𝑡+1 (· | 𝑠) − 𝜋

𝑗
𝑡 (· | 𝑠)∥1,

|ℓ𝑖𝑡+1 (𝑠, 𝑎) − ℓ
𝑖
𝑡 (𝑠, 𝑎) | ≤

∑︁
𝑗≠𝑖

∥𝜋 𝑗
𝑡+1 (· | 𝑠) − 𝜋

𝑗
𝑡 (· | 𝑠)∥1.

Proof. For the losses, observe;

ℓ𝑖𝑡+1 (𝑠, 𝑎) − ℓ
𝑖
𝑡 (𝑠, 𝑎) = Ea−𝑖∼𝝅−𝑖

𝑡+1
ℓ𝑖 (𝑠, 𝑎, a−𝑖) − Ea−𝑖∼𝝅−𝑖𝑡 ℓ

𝑖 (𝑠, 𝑎, a−𝑖)

=
∑︁

a−𝑖∈A−𝑖

(
𝝅−𝑖𝑡+1 (a

−𝑖 | 𝑠) − 𝝅−𝑖𝑡 (a−𝑖 | 𝑠)
)
ℓ𝑖 (𝑠, 𝑎, a−𝑖)

≤


𝝅−𝑖𝑡+1 (· | 𝑠) − 𝝅−𝑖𝑡 (· | 𝑠)




1 .

For the induced transition function, note that for any ℎ ∈ [𝐻], we have∑︁
𝑠′∈Sℎ+1

𝑃𝑖𝑡+1 (𝑠
′ | 𝑠, 𝑎) − 𝑃𝑖𝑡 (𝑠′ | 𝑠, 𝑎)

=
∑︁

𝑠′∈Sℎ+1

Ea−𝑖∼𝝅−𝑖
𝑡+1 ( · |𝑠)

[
𝑃(𝑠′ | 𝑠, 𝑎, a−𝑖)

]
− Ea−𝑖∼𝜋−𝑖𝑡 ( · |𝑠)

[
𝑃(𝑠′ | 𝑠, 𝑎, a−𝑖)

]
=

∑︁
𝑠′∈Sℎ+1

∑︁
a−𝑖∈A−𝑖

(𝝅−𝑖𝑡+1 (a
−𝑖 | 𝑠) − 𝝅−𝑖𝑡 (a−𝑖 | 𝑠))𝑃(𝑠′ | 𝑠, 𝑎, a−𝑖)

=
∑︁

a−𝑖∈A−𝑖
(𝝅−𝑖𝑡+1 (a

−𝑖 | 𝑠) − 𝝅−𝑖𝑡 (a−𝑖 | 𝑠))
∑︁

𝑠′∈Sℎ+1

𝑃(𝑠′ | 𝑠, 𝑎, a−𝑖)

=


𝝅−𝑖𝑡+1 (· | 𝑠) − 𝝅−𝑖𝑡 (· | 𝑠)




1

By Lemma H.2, we have 

𝝅−𝑖𝑡+1 (· | 𝑠) − 𝝅−𝑖𝑡 (· | 𝑠)




1 ≤
∑︁
𝑗≠𝑖

∥𝜋 𝑗
𝑡+1 (· | 𝑠) − 𝜋

𝑗
𝑡 (· | 𝑠)∥1,

and the result follows. □

Lemma F.5. For any policy 𝜋 ∈ S → A𝑖 and single agent transition functions 𝑃, 𝑃̃, it holds that

∥𝑞𝜋𝑃 − 𝑞𝜋𝑃̃ ∥1 ≤ 𝐻
2∥𝑃 − 𝑃̃∥∞,1,

∥𝑞𝜋𝑃 − 𝑞𝜋𝑃̃ ∥∞ ≤ 𝐻∥𝑃 − 𝑃̃∥∞,1.

Proof. Let 𝐿 ∈ [𝐻], 𝑧 ∈ S𝐿 , set loss function ℓ𝑧 (𝑠, 𝑎) = I{𝑠 = 𝑧}, and consider the two MDPs 𝑀𝑧 = (𝐻,S,A𝑖 , 𝑃, ℓ𝑧)
and 𝑀̃𝑧 = (𝐻,S,A𝑖 , 𝑃̃, ℓ̃𝑧) with value functions 𝑉𝑧 , 𝑉̃𝑧 respectively. Then, we have for any 𝑠 ∈ Sℎ, 𝑉 𝜋𝑧 (𝑠) = Pr(𝑠𝐿 = 𝑧 |
𝑠ℎ = 𝑠, 𝑃, 𝜋), and 𝑉̃𝑧 (𝑠) = Pr(𝑠𝐿 = 𝑧 | 𝑠ℎ = 𝑠, 𝑃̃, 𝜋), which also implies 𝑉 𝜋𝑧 (𝑠1) = 𝑞𝜋𝑃 (𝑧) and 𝑉̃ 𝜋𝑧 (𝑠1) = 𝑞𝜋𝑃̃ (𝑧). Thus, by
Lemma F.1, we have;

𝑞𝜋𝑃 (𝑧) − 𝑞𝜋𝑃̃ (𝑧)

=

𝐿∑︁
ℎ=1

∑︁
𝑠ℎ ,𝑎ℎ

𝑞𝜋
𝑃̃
(𝑠ℎ, 𝑎ℎ)

∑︁
𝑠ℎ+1

(𝑃𝜋 (𝑠ℎ+1 | 𝑠ℎ, 𝑎ℎ) − 𝑃̃𝜋 (𝑠ℎ+1 | 𝑠ℎ, 𝑎ℎ)) Pr(𝑠𝐿 = 𝑧 | 𝑠ℎ+1, 𝑃, 𝜋).

Taking absolute values and summing the above over 𝑧 ∈ S𝐿 we obtain∑︁
𝑧∈S𝐿

|𝑞𝜋𝑃 (𝑧) − 𝑞𝜋𝑃̃ (𝑧) | ≤
𝐿∑︁
ℎ=1

∑︁
𝑠ℎ ,𝑎ℎ

𝑞𝜋
𝑃̃
(𝑠ℎ, 𝑎ℎ)

∑︁
𝑠ℎ+1

|𝑃𝜋 (𝑠ℎ+1 | 𝑠ℎ, 𝑎ℎ) − 𝑃̃𝜋 (𝑠ℎ+1 | 𝑠ℎ, 𝑎ℎ) |

≤ 𝐿∥𝑃 − 𝑃̃∥∞,1.
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Hence,

∥𝑞𝜋𝑃 − 𝑞𝜋𝑃̃ ∥1 =

𝐻∑︁
𝐿=1

∑︁
𝑧∈S𝐿

|𝑞𝜋𝑃 (𝑧) − 𝑞𝜋𝑃̃ (𝑧) | ≤ 𝐻
2∥𝑃 − 𝑃̃∥∞,1.

□

G. FTRL lower bound in non-stationary MDP
In the following, we provide an example demonstrating that FTRL-based policy optimization does not adapt to non-stationary
dynamics, at least not in the sense discussed here.

In a nutshell, since FTRL considers the entire sequence of past loss functions, it may not pick up on the change in the
long term reward in a timely fashion. Indeed, since the policy optimization paradigm prescribes a per state objective that
effectively ignores the visitation frequency to that state, FTRL allows past losses (induced by action-value functions from
previous episodes) that may be irrelevant to bias the policy towards suboptimal actions for a prohibitively large number of
episodes. Loosely speaking, this behavior is due to the fact that in contrast to OMD, FTRL is insensitive to the order of
losses.

Notably, the failure of FTRL is strongly related to its inability to guarantee adaptive regret in the sense defined in Hazan &
Seshadhri (2009), who also point out the inherent non-adaptivity of this algorithm.

The claim below illustrates an example of an MDP with a small constant change in the dynamics leading to FTRL incurring
linear regret. Essentially, this is a simple example where FTRL fails to achieve adaptive regret, embedded in a non-stationary
MDP. We remark that while the MDP in our construction makes a single, abrupt shift in the dynamics, the lower bound does
not stem from the abruptness of the change. Rather, this choice is only for simplicity; the construction may be generalized to
the case where the per episode drift must be bounded by e.g., 1/

√
𝑇 , by augmenting the construction with a ”shift period” of√

𝑇 episodes. In addition, it is not hard to show the construction can be generalized to subsets of the action simplex — this is
to say that the lower bound also does not stem from lack of exploration that can be solved by truncating the simplex, as we
have done in the OMD case. Finally, we remark that the same lower bound remains valid also when considering OFTRL;
1-step recency bias does not make the algorithm sufficiently adaptive for the example in question.

We refer in the statement to a symmetric regularizer, meaning one that is insensitive to permutations of the input coordinates.
This assumption is only for simplicity; it can be relaxed by generalizing the instance appearing in the lower bound to a
mixture of two instances with action roles reversed, and observing that on at least one of them FTRL must incur linear regret.
Claim 1. There exists a non-stationary MDP 𝑀 = (𝑆, {𝑎, 𝑏}, {𝑃𝑡 }𝑇𝑡=1, ℓ), such that

∑𝑇
𝑡=2 ∥𝑃𝑡 − 𝑃𝑡−1∥1 ≤ 1, but policy

optimization with FTRL over the action simplex Δ{𝑎,𝑏} , any symmetric regularizer, and any step size incurs regret of Ω(𝑇).

Proof. Let 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝐿0, 𝐿1} denote the state space, and consider the non-stationary MDP 𝑀 = (𝑆, {𝑎, 𝑏}, {𝑃𝑡 }𝑇𝑡=1, ℓ),
where the immediate loss function is independent of the action and is specified by ℓ(𝑠𝑖) = 0 ∀𝑖, ℓ(𝐿0) = 0, and ℓ(𝐿1) = 1.
Further, assume that

• for 𝑡 ≤ 𝑇/3, 𝑃𝑡 (𝑠1 |𝑠0, ·) = 1, 𝑃𝑡 (𝐿1 |𝑠2, 𝑎) = 1, and 𝑃𝑡 (𝐿0 |𝑠2, 𝑏) = 1, (see Figure 1)

• for 𝑡 > 𝑇/3, 𝑃𝑡 (𝑠2 |𝑠0, ·) = 1, 𝑃𝑡 (𝐿1 |𝑠2, 𝑏) = 1, and 𝑃𝑡 (𝐿0 |𝑠2, 𝑎) = 1 (see Figure 2).

Consider running policy optimization with FTRL over X = Δ{𝑎,𝑏} , and a symmetric regularizer 𝑅 : X → R for 𝑇 episodes.

First, observe that the optimal policy in hindsight 𝜋★ selects action 𝑎 with probability 1 in state 𝑠2; 𝜋★(𝑎 |𝑠2) = 1. Note that
the actions chosen in the rest of the states do not affect the loss, and therefore need not be specified. Thus, in the first 𝑇/3
episodes, 𝜋★ loses nothing since state 𝑠2 is never reached, and in the remaining 2𝑇/3 episodes it loses nothing on account of
selecting an action which leads to 𝐿0. This establishes that

∑𝑇
𝑡=1𝑉

𝜋★ (𝑠0; 𝑃𝑡 ) = 0.

On the other hand, for 𝑡 > 𝑇/3, the FTRL objective on episode 𝑡 at state 𝑠2, is given by

𝜋𝑡+1 (·|𝑠2) ← arg min
𝑥∈X

{
𝜂

〈 𝑡∑︁
𝑗=1
ℓ̂𝑡 , 𝑥

〉
+ 𝑅(𝑥)

}
,
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where ℓ̂𝑡 (·) B 𝑄𝑡 (𝑠2, ·). Thus, {
ℓ̂𝑡 (𝑎) = 1, ℓ̂𝑡 (𝑏) = 0 𝑡 ≤ 𝑇/3,
ℓ̂𝑡 (𝑎) = 0, ℓ̂𝑡 (𝑏) = 1 𝑡 > 𝑇/3,

which leads us to conclude that in all rounds 𝑡 ≤ 2𝑇/3, the action 𝑏 seems favorable according to the minimization objective.
This implies that for all 𝑡 ≤ 2𝑇/3, 𝜋𝑡 (𝑏 |𝑠2) ≥ 1/2. Note that we use here the fact that the regularizer and decision set are
symmetric, and treat all coordinates equally. Now,

𝑇∑︁
𝑡=1
𝑉 𝜋𝑡 (𝑠0; 𝑃𝑡 ) −𝑉 𝜋★ (𝑠0; 𝑃𝑡 ) ≥

2𝑇/3∑︁
𝑡=𝑇/3

𝑉 𝜋𝑡 (𝑠0; 𝑃𝑡 ) ≥
𝑇

6
,

as claimed. □

H. Auxiliary Lemmas
Lemma H.1. Let 𝑘 ∈ N, and consider the truncated simplex Δ

𝛾

𝑘
⊆ Δ𝑘 (see Equation (5)). It holds that:

1. For log-barrier regularizer 𝑅 : Δ𝛾
𝑘
→ R (see Equation (4)), we have 𝐷𝑅 (𝑥, 𝑥′) ≤ 3

𝛾
for all 𝑥, 𝑥′ ∈ Δ𝛾

𝑘
.

2. If 0 < 𝛾 ≤ 1/2𝑘 , for all 𝑥 ∈ Δ𝑘 , there exists 𝑥𝛾 ∈ Δ𝛾
𝑘

such that ∥𝑥 − 𝑥𝛾 ∥1 ≤ 2𝛾𝑘 .

Proof. See below.

• We have, for any 𝑥, 𝑥′ ∈ Δ𝛾A𝑖
;

𝐷𝑅 (𝑥, 𝑥′) =
∑︁
𝑎∈A𝑖

log
𝑥(𝑎)
𝑥′ (𝑎) +

𝑥(𝑎) − 𝑥′ (𝑎)
𝑥′ (𝑎) ≤ log

1
𝛾
+ 2
𝛾
≤ 3
𝛾
.

• Let 𝐼 = {𝑖 ∈ [𝑘] | 𝑥(𝑎) ≤ 𝛾}. Then |𝐼 | ≤ 𝑘 − 1, otherwise
∑𝑘
𝑖=1 𝑥(𝑖) ≤ 1/2. Now, set 𝑥𝛾 (𝑖) = 𝛾, for 𝑖 ∈ 𝐼, and

𝑥𝛾 (𝑖) = 𝑥(𝑖) for 𝑖 ∉ 𝐼. We have

𝑘∑︁
𝑖=1

𝑥𝛾 (𝑖) = 1 + 𝛿, where 𝛿 ≤ 𝛾 |𝐼 |,

and ∥𝑥 − 𝑥𝛾 ∥1 ≤ (𝑘 − 1)𝛾. Now, subtract from the largest coordinate value 𝑥𝛾 (𝑖max) the excess weight 𝛿. In the event
that 𝑥𝛾 (𝑖max) ≤ 𝛾 + 𝛿, subtract to 𝛾, and continue iteratively to the second largest etc. This process must terminate
before reaching coordinates in 𝐼, since

∑𝑘
𝑖=1 𝑥(𝑖) = 1. Now, ∥𝑥𝛾 ∥1 = 1, and

∥𝑥 − 𝑥𝛾 ∥1 ≤ (𝑘 − 1)𝛾 + 𝛿 ≤ (2𝑘 − 1)𝛾.

□

Lemma H.2. Let 𝑝 and 𝑞 be any two product distributions over 𝑋1 × · · · × 𝑋𝑚, i.e., 𝑝(𝑥1, . . . , 𝑥𝑚) =
∏𝑚
𝑖=1 𝑝𝑖 (𝑥𝑖), and

𝑞(𝑥1, . . . , 𝑥𝑚) =
∏𝑚
𝑖=1 𝑞𝑖 (𝑥𝑖). Then

∥𝑝 − 𝑞∥1 ≤
𝑚∑︁
𝑖=1
∥𝑝𝑖 − 𝑞𝑖 ∥1 .
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𝐿0 𝐿1

𝑠2

𝑠0

𝑠1

𝑎𝑏

𝑎, 𝑏

Figure 1. MDP at 𝑡 = 1, . . . , 𝑇/3

𝐿0 𝐿1

𝑠2

𝑠0

𝑠1

𝑏𝑎

𝑎, 𝑏

Figure 2. MDP at 𝑡 = 𝑇/3 + 1, . . . , 𝑇
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Proof. We have;

∥𝑝 − 𝑞∥1 =
∑︁
𝑥1∈𝑋1

· · ·
∑︁

𝑥𝑚∈𝑋𝑚

���𝑝𝑚 (𝑥𝑚) 𝑚−1∏
𝑖=1

𝑝𝑖 (𝑥𝑖) − 𝑞𝑚 (𝑥𝑚)
𝑚−1∏
𝑖=1

𝑞𝑖 (𝑥𝑖)
���

≤
∑︁
𝑥1∈𝑋1

· · ·
∑︁

𝑥𝑚∈𝑋𝑚

𝑚−1∏
𝑖=1

𝑝𝑖 (𝑥𝑖)
���𝑝𝑚 (𝑥𝑚) − 𝑞𝑚 (𝑥𝑚)���

+
∑︁
𝑥1∈𝑋1

· · ·
∑︁

𝑥𝑚∈𝑋𝑚

𝑞𝑚 (𝑥𝑚)
��� 𝑚−1∏
𝑖=1

𝑝𝑖 (𝑥𝑖) −
𝑚−1∏
𝑖=1

𝑞𝑖 (𝑥𝑖)
���

= ∥𝑝𝑚 − 𝑞𝑚∥1
∑︁
𝑥1∈𝑋1

· · ·
∑︁

𝑥𝑚−1∈𝑋𝑚−1

𝑚−1∏
𝑖=1

𝑝𝑖 (𝑥𝑖)

+





𝑚−1∏
𝑖=1

𝑝𝑖 −
𝑚−1∏
𝑖=1

𝑞𝑖







1

∑︁
𝑥𝑚∈𝑋𝑚

𝑞𝑚 (𝑥𝑚)

= ∥𝑝𝑚 − 𝑞𝑚∥1 +





𝑚−1∏
𝑖=1

𝑝𝑖 −
𝑚−1∏
𝑖=1

𝑞𝑖







1

,

and the claim follows by induction. □

I. Markov Games with Independent Transition Function
In this section we consider a variant of Markov Games for which each agent has its own state and the transition is affected
only by the agent’s own action. Formally, each agent has its own set of states S𝑖 . Further, 𝑃 is the transition kernel, where
given the state at time ℎ, 𝑠 ∈ S𝑖

ℎ
, and the agent’s action 𝑎 ∈ A𝑖 , 𝑃(· | 𝑠, 𝑎) ∈ ΔS𝑖

ℎ+1
is the probability distribution over the next

state. The loss function at time ℎ depends on the states and actions at time ℎ of all agents: ℓ𝑖
ℎ

: (>𝑖∈[𝑚] S𝑖ℎ) × A → [0, 1]
The policy of player 𝑖, depends on its individual state. That is, 𝜋𝑖 (· | ·) : A𝑖 × S𝑖 → [0, 1], is a function such that 𝜋𝑖 (𝑎 | 𝑠)
gives the probability of player 𝑖 to take action 𝑎 in state 𝑠. Similar to before, denote the expected loss function of agent
𝑖 at time 𝑡 given action 𝑎 and state 𝑠 ∈ S𝑖

ℎ
by ℓ𝑖𝑡 (𝑠, 𝑎) = E[ℓ𝑖 (s, a) | 𝝅𝑡 , 𝑠𝑖ℎ = 𝑠] where 𝝅𝑡 is the joint policy of the agents

and s = (𝑠1
ℎ
, ..., 𝑠𝑚

ℎ
) is the vector of the agents’ states at time ℎ. Similar to before, we denote the value and action-value

functions of a policy 𝜋 ∈ S → ΔA𝑖
by

𝑉
𝑖, 𝜋
𝑡 (𝑠) = E

[
𝐻∑︁
ℎ′=ℎ

ℓ𝑖𝑡 (sℎ′ , aℎ′ ) | 𝝅−𝑖𝑡 , 𝑠ℎ = 𝑠
]

; 𝑄𝑖, 𝜋𝑡 (𝑠, 𝑎) = E

[
𝐻∑︁
ℎ′=ℎ

ℓ𝑖𝑡 (sℎ′ , aℎ′ ) | 𝝅−𝑖𝑡 , 𝑠ℎ = 𝑠
]
,

where 𝑠 ∈ S𝑖
ℎ

and 𝑎 ∈ A𝑖 . We note that we sometimes use the shorthand 𝑉 𝑖𝑡 (·) for 𝑉 𝑖, 𝜋
𝑖
𝑡

𝑡 (·) and 𝑄𝑖𝑡 (·, ·) for 𝑄𝑖, 𝜋
𝑖
𝑡

𝑡 (·, ·).

In the setting of individual state transitions, it is possible to achieve much better regret bounds than in Markov games;
specifically, we show that using Algorithm 1 each player can obtain 𝑂 (log𝑇) individual swap regret. This possibility stems
from the fact that in contrast to Markov games, the MDPs each player experiences throughout the episodes remain constant,
and hence it is possible to obtain a regret bound which depends on the sum of second order path lengths of the players’
policies rather than on the first order path lengths (see Theorem 3.4 for the corresponding result for Markov games).

Theorem I.1. In the independent transition function setting, assume that every player 𝑖 adopts Algorithm 1 with log-barrier
regularization (Equation (4)) and 𝛾 ≤ 1/2𝐴𝑖 , and that ∥𝑄̂𝑡 −𝑄𝑡 ∥∞ ≤ 𝜀 for all 𝑡. Then, assuming 𝐻 ≥ 2, the swap-regret of
player 𝑖 is bounded as

Swapℜ𝑖𝑇 ≤
𝐴2 log 1

𝛾

𝜂
+ 24𝜂𝐻4𝐴𝑚

𝑚∑︁
𝑗=1

𝑇∑︁
𝑡=1




𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡




2

∞,1
+ 𝜀𝐻𝑇 + 8𝜂𝜀2𝑇

Proof. As opposed to the standard Markov game setting, the occupancy measure of the benchmark policy remains stationary
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over time: 𝑞𝑖,★𝑡 = 𝑞𝑖,★. Therefore, much like in the proof of Theorem 3.4,

ℜ𝑖𝑇 (𝜋𝑖★) ≤ 𝜀𝐻𝑇 +
∑︁
𝑠∈S

𝑞𝑖,★(𝑠)
𝑇∑︁
𝑡=1

〈
𝑄̂𝑖𝑡 (𝑠, ·), 𝜋𝑖𝑡 (· | 𝑠) − 𝑥𝑖,𝑠★

〉
≤ 𝜀𝐻𝑇 +

∑︁
𝑠∈S

𝑞𝑖,★(𝑠)
∑︁
𝑎∈A𝑖

𝑇∑︁
𝑡=1

〈
𝑔
𝑖,𝑠,𝑎
𝑡 , 𝑥

𝑖,𝑠,𝑎
𝑡 − 𝑥𝑖,𝑠★

〉
.

From Lemma 3.6,

𝑇∑︁
𝑡=1

〈
𝑔
𝑖,𝑠,𝑎
𝑡 , 𝑥

𝑖,𝑠,𝑎
𝑡 − 𝑥𝑖,𝑠★

〉
≤
𝐴 log 1

𝛾

𝜂
+ 4

𝑇∑︁
𝑡=1

𝜂


𝑔𝑖,𝑠,𝑎𝑡 − 𝑔𝑖,𝑠,𝑎

𝑡−1



2
∗,𝑥𝑖,𝑠,𝑎𝑡

≤
𝐴 log 1

𝛾

𝜂
+ 24𝜂𝐻4𝑚

𝑚∑︁
𝑗=1

𝑇∑︁
𝑡=1




𝜋 𝑗
𝑡+1 − 𝜋

𝑗
𝑡




2

∞,1
+ 8𝜂𝜀2

𝑇∑︁
𝑡=1

𝜋
𝑗

𝑡+1 (𝑎 | 𝑠).

Combining the last two displays completes the proof. □

Theorem I.2. If each player uses Algorithm 1 with log-barrier regularization (Equation (4)) and 𝜂 = 1
96𝐻2𝑚

√
𝑆𝐴

then the
following path length bound holds on the jointly generated policy sequence;

𝑇∑︁
𝑡=1

𝑚∑︁
𝑖=1



𝜋𝑖𝑡+1 − 𝜋𝑖𝑡

2
∞,1 ≤ 768𝑆𝐴3𝑚 log

1
𝛾
+ 4𝜀2𝑇

𝑚𝐻4 .

The proof follows by the exact same arguments in the proof of Theorem 3.5. Combining Theorems I.1 and I.2 gives us the
following corollary:

Corollary I.3. In the independent transition function setting with full information (i.e., 𝜀 = 0), assume that every player 𝑖
adopts Algorithm 1 with log-barrier regularization (Equation (4)), 𝜂 = 1

96𝐻2𝑚
√
𝑆𝐴

and 𝛾 = 1/𝑇 . Then, assuming 𝐻 ≥ 2 and
𝑇 ≥ 2𝐴, the swap-regret of player 𝑖 is bounded as

Swapℜ𝑖𝑇 ≤ 288𝐻2𝑆3/2𝐴7/2𝑚 log𝑇.
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