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Abstract

Understanding how agents learn to generalize — and, in particular, to extrapolate — in
high-dimensional, naturalistic environments remains a challenge for both machine learning
and the study of biological agents. One approach to this has been the use of function
learning paradigms, which allow agents’ empirical patterns of generalization for smooth
scalar functions to be described precisely. However, to date, such work has not succeeded
in identifying mechanisms that acquire the kinds of general purpose representations over
which function learning can operate to exhibit the patterns of generalization observed in
human empirical studies. Here, we present a framework for how a learner may acquire such
representations, that then support generalization — and extrapolation in particular — in
a few-shot fashion in the domain of scalar function learning. Taking inspiration from a
classic theory of visual processing, we construct a self-supervised encoder that implements
the basic inductive bias of invariance under topological distortions. We show the resulting
representations outperform those from other models for unsupervised time series learning in
several downstream function learning tasks, including extrapolation.

1 Introduction

A key feature of an intelligent agent is the ability to recognize and extrapolate a variety of abstract patterns
that commonly occur in the world. Here, we focus on a tractable but still highly general special case of such
patterns, that take the form of one-dimensional smooth functions. From a formal perspective, the space
of all such functions is vast (Reed and Simon, 1980), necessitating the use of inductive biases for making
useful inferences. Thus, while this setting does not encompass all possible kinds of structures that can be
generalized or extrapolated, it is a su�ciently rich space that insights gained here are likely to shed light
on the ability of biological and artificial agents to generalize more broadly. At the same time, the abstract
structure of this space is relatively simple and well-understood, thus making it amenable to precise analysis
and interpretable experimental manipulations.

A further virtue of the space of functions is the existence of detailed experimental data from humans in this
domain, thus facilitating a direct comparison of models with natural agents. Indeed, over the past few decades,
the empirical studies of function learning in humans has catalogued the forms of several such commonly
applied biases, including associative similarity, rule based categorization (McDaniel and Busemeyer, 2005),
bias towards positive linear forms (Kwantes and Neal, 2006) and compositional construction from small
number of basis elements (Schulz et al., 2017). Taken together, such results describe a class of “intuitive
functions,” which are functions that people appear readily able to recognize and use.
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While it is generally accepted that e�cient generalization implies the existence of some previous expectations
about the structure of the space of functions, what is not obvious is how such expectations are acquired;
that is, what mechanisms are capable of learning and encoding abstract structure through unsupervised or
self-supervised experience, in such a way that features relevant to any particular task may be easily “read out”
as required. Here, we propose to address these challenges by adapting and extending the general framework
of the field of self-supervised learning (Chen et al., 2020; He et al., 2020). The framework consists of two
components: a “slow” encoder that learns general purpose representations of one-dimensional functions using
a standard self-supervised learning algorithm, and a collection of “fast” heads, which can rapidly adapt to
di�erent function learning paradigms, based on a small amount of task-specific annotated data, using a simple
form of supervised learning (linear or logistic regression). The heads are trained on top of the representations
learned previously by the encoder, allowing the model to make use of its general knowledge to rapidly adapt
to the particular task demands.

While e�orts have taken this general approach (Chen et al., 2020; He et al., 2020), none to our knowledge
have specifically considered the domain of function learning with intuitive functions – that is, ones that people
have been empirically observed to use (DeLosh et al., 1997; McDaniel and Busemeyer, 2005; Schulz et al.,
2017). Our approach is further distinguished in the design of the encoder used for self-supervised learning.
For this, we treat a scalar function as a (typically very short) time series. The crucial feature of our encoder
is a novel family of augmentations of time series, derived from the theory and phenomenology of topological
visual processing (Zeeman, 1965; Chen, 2005). This theory holds that the visual system is invariant to certain
kinds of local topological distortions of stimuli, distortions that we design our augmentations to mimic.
We hypothesize that such distortions reflect commonly occurring structure in the world, that may in turn
have been discovered by the brain, either through evolution or early development, and used as a basis for
generalization. Following this idea, we train on a self-supervised objective that tries to enforce invariance
across these augmentations, adapting the framework of Chen et al. (2020).

We demonstrate that our choice of encoder and training procedure learns representations that perform better
on a collection of downstream function learning and generalizaton tasks than do comparison models for
learning and/or representing time series. This should be of particular interest to the field of semi-supervised
learning, since works in that field have not yet systematically analyzed time series that correspond to intuitive
functions. Moreover, we directly compare the generalization patterns of the model with those of humans
asked to perform a multiple-choice extrapolation paradigm modeled after an empirical study by Schulz et al.
(2017). We find that the model exhibits a qualitatively similar bias as people in this setting, namely, a greater
accuracy on functions that are compositionally structured. This should also be of interest to psychologists,
since it suggests that behavioral biases in function learning may arise as consequences of a more general
representation-learning procedure.

2 Background

2.1 Contrastive Learning

Here we provide a brief summary of the elements of contrastive learning that are necessary to define our
encoder. This is adapted from Chen et al. (2020) and van den Oord et al. (2018). The basic assumption
is that we are provided with a set of positive pairs (vi, vÕ

i), i = 1, . . . , N , which are taken as inputs that we
wish to consider similar to each other. All other pairs of inputs are considered as negative pairs, which
the objective will attempt to push apart in the latent space. For convenience, we will treat the input as a
single flattened dataset of size 2N , in which the positive pairs are those of the form (vi, vi+N ), i Æ N . Let
f◊ : Rn1 æ Rn2 and g„ : Rn2 æ Sn3≠1 be two parametric families of functions (e.g. neural networks). Here
n1 is the dimensionality of the inputs vi, while n2 and n3 are arbitrary, and Sn3≠1 denotes the hypersphere
consisting of all vectors in Rn3 of unit norm. The objective is

max
◊,„

2Nÿ

i=1
< (g„ ¶ f◊)(vi), (g„ ¶ f◊)(vi+N ) > ≠LSE·

j ”=i(< (g„ ¶ f◊)(vi), (g„ ¶ f◊)(vj) >) (1)
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Here, · > 0 is a hyperparameter, and LSE denotes the logsumexp function LSE·
i (zi) := · ú log

q
i ezi/· .

The brackets < ·, · > are the Euclidean dot product. After optimizing this objective, we discard the function
g and take the encoder to be the function f .

Informally, the first term of the objective function acts to push positive pairs together in the latent space,
since it is maximized when both elements in the pair have equal representations. Conversely, the second term
acts to push apart all other pairs of inputs. This is because the logsumexp is a monotonically increasing
function of each of its inputs; therefore it will be minimized when all of the pairwise similarities are as small
as possible. A more precise analysis of properties of this objective may be found in Wang and Isola (2020).

2.2 A Generative model of Intuitive Functions

To define a generative model for reference curves that plausibly resemble the distribution encountered by
people, we adapt the generative process proposed in Schulz et al. (2017). This generative model uses the
formalism of Gaussian processes Rasmussen and Williams (2006); we provide further general background in
the Appendix.

Schulz et al. (2017) define the Compositional Grammar by starting from three basic Gaussian Process kernels:

Klinear(x, y) = (x ≠ ◊1)(y ≠ ◊1)
Krbf (x, y) = ◊3e≠(x≠y)2/◊2

2

Kperiodic(x, y) = ◊4e≠ sin2(2fi|x≠y|◊5)/◊2
6

where ◊i are hyperparameters. In addition, the authors include in the CG ten kernels which are defined using
pointwise sums and products of these above three. We refer to the Appendix for a more detailed description.

A natural point of comparison is the Spectral Mixture (SM) kernel (Wilson and Adams, 2013), which is a
flexible non-parametric kernel family defined by the formula

Kmix(x, y) =
mÿ

i=1
wie

≠2fi2(x≠y)2‡i cos(2fi(x ≠ y)µi)

Schulz et al. (2017) demonstrated that people learn curves generated from the CG more easily than ones
generated from the SM . Therefore the family of kernels in the CG are good candidates for generating curves
that are both naturalistic and are easily recognized by people.

Lastly, it is important to note that, due to the nature of continuous space, in practice it is necessary to
represent functions by their values on a finite set x1 < . . . < xN of ordered sample points. In our case, we
take the points to be evenly-spaced, and use the same set of points for every function. Thus any function
{(xi, yi)} may be treated as a time series and vice versa1. In what follows we will use the terms “curve,”
“function” and “time series” interchangeably, with the understanding that the points xi remain fixed across
all functions. Also, since the positions of the xi’s are the same for all functions, we omit them from explicit
notation, and use y to denote the vector with components {yi}i that defines a function.

3 A Contrastive Encoder for Intuitive Functions

To define the encoder, following Section 2.1, we need to specify the architecture and the family of positive pairs.
For the encoder architecture, we simply take f to be a feedforward network of several 1D convolutions, and g
to be an MLP with a single hidden layer. We set n2 = n3 = 128 and · = .5. For the class of augmentations,
we take inspiration from the field of topological visual perception (Chen, 2005; Zeeman, 1965), which posits
that the visual system maintains an invariance to local topological distortions (or “tolerances”) of stimuli in
order to facilitate global processing.

1In function learning, the x-axis does not necessarily correspond to time. The same is true of a “time series,” despite the
name: it is merely an ordered list of numbers.
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In our case, we consider 1-dimensional functions rather than 2-dimensional images, but similar principles
apply. We propose a family of transformations that implements localized topological distortions to the
function, together with several basic global distortions: (1) random vertical reflection, (2) random jittered
upsampling and (3) random rescaling. We denote these respectively by stochastic transformations T1, T2, T3,
which we describe in more detail below.

The first transformation, that accommodates vertical reflection, is defined by T1(y) = ≠y with 50 percent
probability and T1(y) = y otherwise. The second, that accommodates horizontal bending, is the most
elaborate. To evaluate T2(y), we first select a random interval [a, b] ∏ [x1, xT ]. We then randomly select
points xÕ

1 < . . . < xÕ
T in [a, b]. These points are not required to be uniformly spaced. We generate them by

sampling uniformly and independently at random from [a, b] and then sorting the samples, and then define

T2(y)i =
q

j Cie
≠

(xÕ
j

≠xi)2

2‡2 yj where 1/Ci =
q

j e≠
(xÕ

j
≠xi)2

2‡2 . In other words, the values of T2(y) are given by
a Gaussian Kernel Density Estimator (KDE) at the points xi. The e�ect is three-fold: since the points
xi lie in a proper sub-interval of [a, b], this crops a portion of the function and up-samples to the original
resolution. Secondly, because the points xÕ

i are not evenly spaced, some inhomogeneous horizontal stretching or
contraction is introduced. Thirdly, the nature of the Gaussian KDE means that the augmented functions are
smoothed with respect to the originals. Finally, we apply T3 that accommodates vertical rescaling. For this,
we choose a random interval [a, b] µ [0, 1] and then apply an a�ne transformation such that the maximum
value of the new function is b and the minimum is a. More explicitly, T3(y)i = (b ≠ a) yi≠minj yj

maxj yj≠minj yj
+ a.

Since this is applied last, the resulting functions always take values in the interval [0, 1]. Therefore the
positive pairs take the form (T3T2T1(y), T3T2T1(y)) where y is a function. We reiterate that Ti are stochastic
transformations, so despite the notational appearance, the two functions comprising a given positive pair
will not be equal, since they are generated using two separate evaluations of a stochastic transformation. In
our experiments the function y itself is generated from the Compositional Grammar over intuitive functions
described in Section 2.2. An illustration of the augmentations is provided in Figure 1.Furthermore, we provide
ablation studies on the e�ect of each augmentation individually in the Appendix.

Figure 1: Illustrations of the augmentations. Each plot consists of two functions comprising a positive pair.
In the four plots on the left, only the horizontal stretch transformation T2 is applied. In the four plots on the
right, all three transformations are applied.
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4 Data description and Encoder training

To evaluate the ability of the encoder to learn a representation of intuitive functions, we generated and
trained it on two types of functions: one generated from the family of 13 kernels defined by the CG (see
Section 2.2); and the other (used as a control) from a non-compositional SM Kernel, for a total of 14 kernels.
As noted above, Schulz et al. (2017) showed that human completions are closer to those generated by the CG
than by the SM. We included the SM in our generative distribution to allow a similar comparison. Each
function was generated by first sampling one of these 14 kernels, then sampling any hyperparameters of that
kernel, and finally sampling from the resulting covariance matrix evaluated on T = 100 evenly horizontally
spaced points. We sampled from the SM kernel 50 percent of the time, and each of the remaining 13 CG
kernels 3.85(= 50/13) percent of the time. Therefore, any di�erences in the representations between the SM
and the CG cannot be ascribed to data availability. We normalized all functions to lie in the interval [0, 1].
All encoders were trained using a batch size of 512, with an Adam optimizer with learning rate of .001 and
weight decay of 10≠6. All encoders were exposed to 500,000 curves during training. We trained three copies
of each encoder using random initializations and averaged results over these copies.

As described above, our model consists of a combination of a contrastive loss function, and a convolutional
encoder architecture. In addition, we considered eight comparison models, six of which are encoding models
trained using di�erent objectives than the contrastive loss, and two of which are architectural ablations
trained using the same contrastive loss, but with non-convolutional encoder architectures. Of the first six, four
were unsupervised time series models: Triplet Loss (tloss) (Jean-Yves et al., 2019), Temporal Neighborhood
coding (tnc) (Tonekaboni et al., 2021), Contrastive Predictive Coding (cpc) (van den Oord et al., 2018), and
Conditional Neural Processes (cnp) (Garnelo et al., 2018a). We also tested a Variational Autoencoder (vae)
(Kingma and Welling, 2014) as an example of an unsupervised algorithm that has been successful in other
domains, but does not exploit any structure particular to time series. Finally, we included a baseline encoder
(“raw”) that simply copies the raw input. To control for the latent space capacity, all encoders except for the
baseline had representations of equal dimensionality (128).

The first of the two architectural ablations consisted of replacing the convolutional encoder with a multi-layer
perceptron. We denote this by “contrastive-mlp.” In the second, we replaced the convolutional encoder with
the same permutation-invariant encoder as was used in the CNP model, which we denote by “contrastive-
perm-inv”. In this encoder, the representation of the function {(xi, yi)}n

i=1 takes the form 1
n

qn
i=1 MLP (xi, yi)

(Garnelo et al., 2018a;b). This encoder is thus permutation invariant in the sense that the representation of
the function does not depend on the ordering of its constituent x-y observations. For both of these ablations,
the architectures were constrained to have approximately the same number of parameters as the convolutional
encoder. Further implementational details of all comparison models are provided in the Appendix.

5 Results on Downstream Classification and Extrapolation tasks

To evaluate the quality of the learned representations, we adapted three function learning paradigms that
are either directly translated from or inspired by paradigms from studies of human performance: (1) kernel
classification, (2) multiple choice extrapolation, and (3) freeform extrapolation. The first one corresponds
directly to the standard paradigm for unsupervised learning evaluation in computer vision (Chen et al.,
2020), in which an unsupervised algorithm is trained on a dataset for which ground truth annotations are
available, and then a supervised classifier such as a logistic regression is fit on top of the frozen representations.
Although to our knowledge this has not been used directly in the analysis of empirical results concerning
human function learning, it may be regarded as an abstraction of the experiments from Leon-Villagra and
Lucas (2019), which showed that people’s completions depend on their judgements about the category to
which a function belongs, suggesting that people make use of categories when judging functions. The two
extrapolation tasks are drawn directly from Schulz et al. (2017). A version of the third task also appears
inWilson et al. (2015), however using a di�erent generative process for the probe curves.

For each task, we define a head that transforms the encoder representations to a task-specific output, and
train the head on a small amount of labeled data. In all cases when training the heads, the weights of the
encoder are frozen.
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Table 1: Accuracy on the categorization task, as a function of the number of training examples per category.
Chance performance is 7.14 percent

3 10 30 100 300
contrastive 40.95± 1.83 55.27± 1.41 64.81± 1.80 72.00± 1.52 76.23± 1.31
cnp 15.07± 1.28 19.25± 1.35 22.69± 0.96 26.19± 0.95 28.10± 0.73
cpc 25.06± 1.29 35.45± 1.57 46.38± 1.14 54.94± 1.18 58.48± 1.04
raw 11.86± 1.47 15.54± 2.02 14.27± 1.96 15.73± 1.51 14.25± 1.64
t-loss 30.41± 1.73 41.31± 1.89 52.16± 1.20 59.78± 1.24 63.35± 1.19
tnc 23.15± 1.14 31.22± 1.09 38.55± 1.23 44.85± 1.08 49.16± 1.20
vae 9.27± 1.13 12.77± 1.65 21.51± 1.89 29.17± 1.56 33.74± 1.50
contrastive-perm-inv 16.24± 1.48 22.89± 1.43 27.09± 0.88 29.37± 0.70 31.75± 0.87
contrastive-mlp 33.58± 2.05 46.08± 1.37 53.96± 0.90 57.79± 0.67 60.30± 0.65

In addition, we note that several of the tasks required that we compute the posterior mean with respect
to a Gaussian kernel in order to construct the training data, which required that we initially fit the kernel
hyperparameters. For example, in the multiple choice task, to construct two candidate completions we took
the posterior mean of the prompt curve with respect to both the SM and the CG kernels, which required we
first fit the hyperparameters for those kernels. The fitting of GP kernel hyperparameters is known to su�er
from under-fitting and instability problems (see Wilson et al. (2015), including the supplementary material).
To address this, we fixed the hyperparameter values of each kernel class, and evaluated the downstream
performance of all encoders on curves generated with this fixed set of hyperparameters. We repeated this 10
times using di�erent random choices of hyperparameters each time, and averaged the results. This ensured
that the hyperparameter values were correctly specified within each task, and that our results were not
influenced by the imperfections of any particular hyperparameter optimization procedure.

We trained three copies of each of the six encoders (contrastive encoder and five comparisons) using di�erent
initializations, and all reported results were averaged over the 3 copies and 10 hyperparameter choices, for a
total of 30 measurements. The error bars are 95 percent confidence intervals of the standard error of the
mean over those measurements.

5.1 Kernel classification

Here, the task was to predict which of the 14 kernels was used to generate a given function. The head was
simply a linear layer + softmax, the outputs of which were interpreted as the probabilities of each class. Thus
it is equivalent to a 14-way logistic regression on the encoder representations. In all cases, we fit the head
using the SGDClassifier class from scikit-learn. Additionally, we separately chose an L2 penalty for each head
using cross validation. We report the accuracy of each such classifier on a collection of 2800 held-out curves
(200 per class). As shown in Table 1, the contrastive encoder is able to attain approximately 55 percent
accuracy using only 10 labeled examples per class, which improves to approximately 75 percent when using
300 examples per class, improving upon the second-best model (t-loss) by around 10 percentage points.

5.2 Multiple Choice Extrapolation

In the multiple choice completion paradigm, the models were presented with a prompt curve y œ R80, as well
as several candidate completions curves yi œ R100 with the properties that yi

j = yj for j <= 80 and were
required to select the correct completion. Following Schulz et. al., we constructed the candidate completion
curves by computing the posterior mean with respect either to the SM kernel, or to the best-fitting CG kernel,
with the correct answer corresponding to which of these two kernels was used to generate the prompt curve.
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Figure 2: An example multiple choice completion problem. The prompt curve is on the left. The compositional
completion is in the middle and the mixture completion is on the right. In this case, the correct answer is the
compositional completion. The coloring of the candidate curves is for visual aid only.

Table 2: Performance on the Multiple Choice completion task, as a function of the number of training
examples per category. Chance performance is 50 percent.

3 10 30 100 300
contrastive 67.74± 2.48 73.68± 1.69 78.09± 1.47 79.07± 1.75 80.90± 1.93
cnp 59.30± 2.35 59.80± 2.35 59.72± 2.10 60.04± 2.14 61.56± 2.30
cpc 62.80± 2.60 67.55± 2.26 70.55± 1.93 71.58± 1.97 74.48± 1.81
raw 51.64± 2.83 54.80± 2.13 54.28± 2.20 54.68± 1.85 56.96± 2.22
t-loss 60.18± 1.44 62.74± 1.62 65.12± 1.57 65.31± 1.55 67.76± 1.73
tnc 58.38± 2.46 63.65± 1.89 68.91± 1.64 70.05± 1.68 72.25± 1.99
vae 52.48± 0.74 53.03± 0.83 53.32± 0.85 53.57± 0.84 55.00± 1.29
contrastive-perm-inv 60.38± 2.70 60.63± 2.67 60.68± 2.68 62.30± 2.58 63.32± 2.54
contrastive-mlp 67.05± 3.00 67.49± 2.56 70.00± 2.85 71.71± 2.50 72.79± 2.24

2The training data for the head consisted of 50 percent prompt curves sampled from the SM and 50 percent
curves sampled from the CG.

Since this task required comparing the prompt curve to each of the candidate curves, we used a quadratic
decision rule for the head. Let h0 denote the encoder representation of the prompt (upsampled to 100 points
prior to being fed into the encoder), and hi, i > 0 denote the representations of the choices. The head linearly
projected these vectors into a lower-dimensional space, and chose between the alternatives using a dot product
in this space. That is, we fit a model of the form pi Ã e(whi,wh0) where w is a linear projection from the
encoder space to R32 and pi, i = 1, 2 are the choice probabilities. All heads were trained on a cross-entropy
loss using the Adam optimizer with a learning rate of .01. We report the accuracy on a collection of 400
held-out curves (200 per class). In this case, we see from Table 2 an improvement in accuracy of approximately
5 to 10 percent compared with the second best model. Interestingly, the rank ordering of the models also
di�ers compared to the categorization task: here cpc and tnc both outperform t-loss, and the vae generally
matches performance of the raw encoder baseline.

5.3 Freeform extrapolation

In this task, for a given function y œ R100, the model was presented with an initial portion y1:80 and required
to make a prediction ŷ œ R20 that extended it for a fixed sized window (length 20). Performance was
measured by Sim(ŷ, y80:100), for some choice Sim of similarity function. It has been argued that, due to its
high-dimensional and underconstrained nature, this task provides a more rigorous test of extrapolation than
do discrete categorization tasks and that, in an empirical setting, it may provide finer-grained insights into
peoples’ inductive biases (DeLosh et al., 1997). However, it may be unreasonable to expect that an algorithm

2More explicitly, to generate the CG completion, we computed the likelihood of the prompt with respect to each of the CG
kernels, and then took the posterior mean of the kernel that attained the highest likelihood, mimicing the procedure of Schulz et.
al.
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trained without any predictive experience can exhibit a reasonable ability to perform free-form extrapolation.
Here, we tested the hypothesis that this capacity can arise from modest amounts of supervised (predictive)
training based on categorization judgements among function representations acquired in a self-supervised
manner from the contrastive learning mechanism described above. To test this, we implemented a simple
form of curriculum learning.

In the first phase of the curriculum, we trained a logistic regressor on the encoder features learned during
unsupervised training, to predict the generative kernel of an input function, exactly as in the categorization
task from Section 5.1. Here we presented the regressors with 300 functions and corresponding category
annotations from each kernel. In the second phase of the curriculum, we present a small number of functions
yk with no label annotations. We then fit a simple class-dependent forecasting model of the form:

yk
i ≥ wĉk

0 + w0 +
Lÿ

j=1
(wĉk

j + wj)yk
i≠j (2)

where ĉk œ {1, 2, . . . , 14} denotes the kernel class of the function yk predicted by the logistic regressor. Here
L is a hyperparameter that controls the autoregressive time lag. We set L = 20 in all cases. The parameters
{wm

j }0ÆjÆL,1ÆmÆ14 are weights that are fit using least-squares. When given a function y to extrapolate at
test, we first estimated the class ĉ œ {1, 2, . . . , 14} of y using the logistic regressor and encoder features. We
then forecast it using the autoregression weights {wj + wĉ

j}0ÆjÆL.

We compared the results of this procedure with two controls. The first was an Ideal Observer model that was
given access to the true underlying Gaussian kernel used to generate each function, information to which
the other models were not privy. This model forecast a given function by computing the posterior mean
with respect to the kernel on which it was trained. Since this model used Bayesian inference on the exact
underlying distribution over functions, it represented the best performance that any model could attain.
We refer to this as the “GPIO” (Gaussian process Ideal Observer) model. The second control was a simple
autoregression model, that removed the categorization step in order to evaluate its contribution to the forecast
quality. It used an unconditional forecasting model of the form yk

i ≥ w0 +
qL

j=1 wjyk
i≠j that ignored any

category structure. The autoregression model was trained on exactly the same number of functions as the
other forecasting models (with the number of curves used to train the logistic regressor included in this
count).

We evaluated the extrapolation performance of each model using the Pearson correlation coe�cient and L2
distance (see the Appendix for results of L2 distance) between the actual and predicted curves. We report the
average values for 4200 held-out curves (300 per class). The results, shown in Table 3, are similar to those for
the categorization task. All models substantially outperformed the autoregression baseline, indicating that
even imperfect category information is helpful for extrapolation. The contrastive model performed better
than any other model except the GPIO model. Several example extrapolations from the contrastive model
are shown in Figure 3.

6 Comparison with human data

The multiple choice completion task from Section 5.2 was modeled after Experiment 1 in Schulz et al. (2017).
An intriguing result of that experiment was that people were more likely to select the CG completion than
the SM completion. We asked whether any of the models shares this property. To do this, we measured the
di�erence in accuracy when the prompt curve was sampled from the CG compared to when it was sampled
from the SM. More precisely, let {yi

0}i denote a collection of prompt curves, {yi
CG}i the corresponding

completions generated by the CG, and {yi
SM }i the completions generated by the SM. Furthermore, define zi

to be a binary variable that indicates whether yi
0 was sampled from the CG or from the SM. In our design,

half of the prompt curves were sampled from the CG, meaning that zi assumes each of the two values with
50 percent probability. For a given model, the choice probabilities {(pi

CG, pi
SM )}i are given as in Section 5.2.

Then the accuracy di�erence is defined by

�acc := Ei(pi
CG|zi = CG) ≠ Ei(pi

SM |zi = SM) (3)
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Figure 3: Freeform completions generated by the contrastive model, using the maximal amount of training
data. The GPIO completions are also shown for comparison.

Table 3: Results on the freeform task, as a function of the number of samples per category used to train the
regression (not counting the functions used to train the kernel classifier). Values are the Pearson correlation
of the predicted to the true completion. The value for the GPIO model is 83.70± 1.78.

1 3 10 30 100
autoregression 18.48± 4.46 18.48± 4.48 18.47± 4.52 18.50± 4.47 18.66± 4.47
contrastive 30.15± 2.36 49.05± 2.00 60.78± 1.59 63.34± 1.39 63.91± 1.43
cnp 24.29± 2.07 33.12± 1.98 40.91± 1.44 43.60± 1.33 45.37± 1.29
cpc 25.13± 2.83 42.32± 2.61 51.04± 2.39 53.06± 1.92 54.79± 1.92
raw 19.89± 4.20 23.13± 4.81 27.02± 5.82 28.18± 5.81 29.14± 5.89
t-loss 29.45± 3.28 44.48± 2.74 54.62± 2.00 56.87± 1.93 58.10± 1.95
tnc 26.72± 3.22 39.11± 2.84 48.30± 1.81 51.52± 1.60 52.78± 1.74
vae 27.36± 3.09 33.51± 2.53 37.18± 2.67 39.27± 2.51 40.89± 2.39
contrastive-perm-inv 22.51± 2.65 32.33± 2.10 39.53± 1.52 42.57± 1.49 44.04± 1.33
contrastive-mlp 26.72± 2.21 45.45± 2.41 56.19± 1.55 58.47± 1.65 59.64± 1.35

A short calculation shows that �acc is directly related to the model’s propensity to favor the CG completion
over the SM completion:

Ei(pi
CG) = 1

2Ei(pi
CG|zi = CG) + 1

2Ei(pi
CG|zi = SM) (4)

= 1
2E(pi

CG|zi = CG) + 1
2(1 ≠ Ei(pi

SM |zi = SM)) (5)

= 1
2 + 1

2�acc (6)

In other words, �acc is positive exactly when the CG completion is chosen more often than the SM completion.
Note that an unbiased model would have Ei(pi

CG) = Pi(zi = CG) = 1
2 and thus �acc = 0. Note also that, as
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Table 4: Value of �acc on the multiple choice task, as a function of number of labeled training samples
per category. The corresponding value for people is approximately 39. We do not bold the highest number
because, unlike in the other tables, the values here do not correspond to a normative performance metric.

3 10 30 100 300
contrastive 19.82± 5.88 21.49± 5.26 20.53± 4.87 18.57± 4.84 19.39± 4.81
cnp 0.73± 5.39 5.25± 3.01 6.61± 4.35 8.17± 3.00 9.61± 3.32
cpc -3.92± 7.59 1.50± 5.50 4.73± 5.60 6.38± 4.43 10.33± 4.02
raw 5.19± 5.36 2.25± 3.79 3.87± 2.45 5.09± 1.81 7.92± 2.61
t-loss 0.57± 5.04 5.46± 4.37 8.24± 3.95 10.30± 3.44 12.72± 3.75
tnc -3.23± 6.13 4.70± 4.07 6.42± 2.81 8.18± 3.60 9.55± 3.97
vae 2.01± 1.34 2.62± 1.25 3.12± 1.42 3.30± 1.41 4.19± 1.79
contrastive-perm-inv 1.95± 5.01 4.60± 2.88 5.98± 4.05 8.17± 3.20 9.74± 3.55
contrastive-mlp 16.06± 3.74 16.56± 3.35 16.14± 4.01 16.48± 4.30 18.32± 3.84

described in Section 4, all models were trained on an equal proportion of curves from the SM and CG, so any
resulting bias cannot be due to di�erential data availability between the two classes of curves.

We see from Table 4 that all models had at least a weak form of the CG bias, in that they attained higher
accuracy on the multiple choice task when the prompt was sampled from the CG. The contrastive model had
the highest value of this bias, albeit the error bars overlap with the values for t-loss and contrastive-mlp.

Crucially, however, even the baseline “raw” model showed a significant positive bias, thus indicating that the
observed biases may be due to statistical properties of the curves themselves, independent of the properties
of the learned representations of the models. The contrastive and contrastive-mlp were the only models that
attained a �acc value significantly higher than that of raw, thus indicating that the observed bias for these
models is partially due to the properties of their representations.

However, all of these biases are smaller quantitatively than reported in Schulz et al. (2017). There it was
found that people attain an accuracy of 32 percent when the prompt curve is from the SM (that is, they
choose the CG completion 68 percent of the time), while they attain an accuracy of at least 71 percent
when the prompt curve is from the CG. We say “at least”, because in that experiment, there were actually
three choices presented to the participants in the CG case: the CG completion, the SM completion, and an
additional distractor completion. Thus we can estimate that, for people, the accuracy di�erence is given by

�people
acc Ø 39

7 Related Work

7.1 Contrastive Learning and Time Series Representation Learning

The idea of learning representations by maximizing an information theoretic criterion can be traced at least
back to Linsker’s InfoMAX (Linsker, 1988) principle, in which it was shown that certain properties of neurons
in visual cortex could be replicated by training the encoder to maximize mutual information between the input
and the encoder representation. This principle was subsequently extended to the problem of unsupervised
deconvolution of time series (Bell and Sejnowski, 1995) by extraction of independent components. A network
that learns by instead trying to maximize representational similarity between two di�erent parts of the same
input, presaging the modern approach to contrastive learning, was introduced by Becker and Hinton (1992).
In a similar spirit, the BCM learning rule (Bienenstock et al., 1982), introduced as a model of synaptic
plasticity in the visual cortex, can be shown to be equivalent to projecting the data onto subspaces that are
“maximally discriminative” (Intrator and Cooper, 1992), and thus, most likely to be useful for downstream
classification tasks. Rather than trying to optimize the mutual information directly, however, most modern
implementations of this idea use a form of the InfoNCE loss, introduced by van den Oord et al. (2018). There
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it was shown that this objective is a tractable lower bound to the mutual information criterion, which can
be di�cult to estimate directly. This loss is also strongly reminiscent of the older technique of Contrastive
Hebbian learning (Hinton, 1989), insofar as both involve computing average network activations over a set
of “positive pairs” of inputs as well as over a set of “negative pairs”, and try to maximize the di�erence
between the two averages. The authors incorporated this objective in their Contrastive Predictive Coding
model (CPC), in which a recurrent encoder is trained to predict its own future outputs. This basic loss
function has been adapted and modified in several ways. In Chen et al. (2020) it is used in tandem with
a siamese network architecture, as we described in Section 2.1, while Aberdam et al. (2020) extends this
setup to a seq-to-seq objective and Li et al. (2020) integrates the contrastive objective with a reconstructive
one. A similar contrastive objective is used in He et al. (2020), except with a memory bank used to sample
negative examples, with this approach extended to videos in Pan et al. (2021). The approach of Hyvarinen
and Morioka (2016) is also very similar in spirit, in which the idea is to learn temporal features of time series
that di�er across di�erent time windows.

Although some of the works above deal with sequential data, they tend to be high-dimensional (videos (Pan
et al., 2021), image patches (Aberdam et al., 2020)) or data that is otherwise not directly interpretable by
humans (audio (van den Oord et al., 2018), radio frequency signals (Li et al., 2020)), and do not consistently
yield lower dimensional, readily interpretable, and easily composable functions of the form studied here.
Fewer works have considered whether and how representation learning of such simple functions, such as the
1-dimensional time series of the sort used in function learning experiments and studied here-this omission is
notable since, despite their simplicity, such functions occur in a wide range of naturalistic settings (Duvenaud
et al., 2013) . Two particularly notable models of unsupervised time series learning are Triplet loss (Jean-Yves
et al., 2019) and Temporal Neighborhood Coding (Tonekaboni et al., 2021). The first is inspired by word2vec
(Mikolov et al., 2013), and relies on predicting the representation of a “word” (here a short window of the
time series) from the representation of its “context” (here a longer window containing the “word”). In TNC,
the timeseries is divided into disjoint segments. The encoder is jointly learned alongside a discriminator, in
such a way that the discriminator is able to tell the di�erence between distant and proximal observations. In
both TNC and Triplet loss, a recurrent encoder is used. An alternative approach to unsupervised learning
of 1D time series learning is through autoencoders. A popular choice here is a seq2seq architecture with
a reconstruction loss (Amiriparian et al., 2017; Lyu et al., 2018; Malhotra et al., 2017). Ma et al. (2019)
augmented this setup with a k-means objective to encourage clustering in the latent space. Compared to our
approach, these involve considerably more complexity, through the use of an additional decoding step, as well
as more intricate seq2seq architectures.

7.2 Function Learning and Gaussian Processes

The dominant framework for modeling of human function learning uses Gaussian processes, a statistical
model that specifies a probability distribution over the infinite-dimensional space of functions and allows for
tractable inference procedures (Rasmussen and Williams, 2006). Lucas et al. (2015) used Gaussian processes
to capture a wide range of empirical function learning phenomena, while Wilson et al. (2015) and Schulz et al.
(2017) proposed specific families of kernels to model human extrapolation judgements. A limitation of the
basic GP framework is its dependence on a choice of specific kernels or kernel families. Our approach sought
to address this dependence through the use of unsupervised learning. Other approaches have taken a similar
tack. The Spectral Mixture Kernel (Wilson and Adams, 2013) and Variational GP (Tran et al., 2016) do so
by introducing nonparametric families of kernels that can approximate arbitrary kernels to an arbitrary level
of precision. Duvenaud et al. (2013) implement a similar idea, except by building up a family of kernels using
operations of a small number of atomic kernels, and performing a search over the resulting combinatorial
space. Sun et al. (2018) perform a similar search except using a continuous relaxation and neural network. In
Hinton and Salakhutdinov (2007), an appropriate kernel is found by fitting a Boltzmann machine. Neural
Processes (Garnelo et al., 2018b) go further and replace the Gaussian kernel with a more flexible parametric
family of distributions that can be learned using a neural network. This approach naturally extends to
modeling of conditional distributions(Garnelo et al., 2018a; Kim et al., 2019; Gondal et al., 2021). This
approach also has the advantage that the encoder can accommodate both variable number of observations, as
well as variable x-locations. Such approaches share our broad goal of trying to learn the structure of a space
of curves without assuming any particular functional forms ahead of time. However, both di�er from ours in
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that they build in more statistical machinery, by positing an explicit generative probabalistic model of the
input distribution of curves.

8 Limitations

There are several limitations to our encoder. First, it di�ers from other models in that it was not designed to
scale to very long time series. In particular, we use a feedforward convolutional encoder that processes the
entire time series at once, while other techniques use some combination of recurrence and/or local windowing
of the time series. Our time series have only 100 points, which is extremely short from the viewpoint of typical
time series in learning models. However, in the context of function learning, such short time series have face
validity, because during function learning experiments people can only make use of limited information at a
time (Villagra et al., 2018). Thus, while it is not clear how well our encoder architecture would scale to very
long time series, it is also not clear how well humans would do so either; and it remains to be determined how
useful doing so would be for generalization in natural environments. These remain subjects for future research.
Second, the feedforward nature of our encoder also restricts it to processing time series of a fixed length and
sampling frequency, as opposed to the recurrent encoders of the other models which can handle time series of
variable lengths, or the CNP-style permutation-invariant encoder, which can handle both variable lengths
and variable sampling frequencies. In principle this could be overcome by upsampling or downsampling as
necessary (and this was the approach we took in the multiple choice completion task). While this kind of
resampling may be benign or helpful in certain circumstances (e.g., as a form of context normalization (Webb
et al., 2020)), there are also many applications in which it would instead be preferable to preserve the original
resolution and accommodate variable lengths. It is also possible that an appropriate modification of the
CNP-style encoder could be used to overcome this di�culty; but due to the relatively poor results of the
contrastive-perm-inv model, further work is necessary to fully flesh out this idea.

9 Discussion

The contrastive encoder we presented exhibited superior performance to comparison models in tests of
generalization involving categorization as well as free form extrapolation. This was the case, despite its greater
simplicity than those models. Moreover, we found that the performance was significantly degraded if an MLP
was used in place of the convolutional layers in the encoder, and was even further degraded when using a
Neural Process-style permutation-invariant architecture. On the other hand, the usage of a convolutional
encoder is not su�cient on its own to achieve this level of performance, as shown by the poor results of the
VAE, which employed such an encoder. This suggests that the combination of 1d convolutions,together with
the contrastive loss and specific family of augmentations, may be key to learning good representations of
intuitive functions.

In the multiple choice task, all models found it easier to correctly extrapolate prompt curves generated from
the CG than curves generated from the SM, with this e�ect being most pronounced in the contrastive model.
This is qualitatively similar to the corresponding empirical result from Schulz et al. (2017), regarding peoples’
judgements in an analogous task. Thus our analysis suggests that such a bias may simply “fall out” as a
consequence of a more general representation-learning procedure. More generally, we regard this as a proof of
concept that the properties of representation learning algorithms can serve as an explanatory tool in the
study of high-level human cognition such as function learning.

Indeed, several influential accounts of human intelligence posit the existence of elements of “core knowledge,”
such as an abstract number sense and fundamental notions of Euclidean geometry (Spelke and Kinzler, 2007;
Chollet, 2019). Sometimes referred to as “atoms” of knowledge, these primitives are assumed to be low
dimensional forms of representation and/or simple constructs and functions (e.g., continuity of processing,
simple forms of causality), on which more complex cognitive abilities responsible for human intelligence are
built. It has been proposed that the availability and use of such primitives is a critical factor in distinguishing
human generalization capabilities from that of existing artificial systems (Lake et al., 2016), that rely on
statistical estimation, and recent empirical evidence has been proposed in support of this claim (Kumar et al.,
2020) Major e�orts in cognitive science have assumed that such primitives are either genetically pre-specified,
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or arise su�ciently early and predictably in development that they can be treated as predetermined. Based
on this assumption, such e�orts have focused research on the kinds of inference and learning mechanisms that,
operating on such primitives, can compose them into more complex forms of processing (Lake et al., 2015;
Ellis et al., 2020). Similarly, it has been proposed that such primitives should be considered as inductive
biases when designing and comparing candidate computational architectures that seek to emulate human
generalization capabilities. In contrast to this approach, some have argued that it is neither necessary nor
accurate to assume that such primitives are pre-specific, but rather they arise from and are shaped by
general purpose learning mechanisms interacting with and encoding statistical of present in the environment
(Rumelhart and McClelland, 1986). While examples have been provided of how human-like concept formation
and generalization can arise in this way (McClelland and Rogers, 2003), these have generally relied on
externally supervised forms of learning that are explicitly trained on tasks that elicit such structure. To
date, it has been di�cult to design artificial systems that can discover low dimensional, simple forms of
structure that can be exploited for generalization, using unsupervised or self-supervised forms of learning.
Here, we have proposed one such mechanism, through a combination of contrastive learning and topological
augmentations, and have demonstrated its ability learn to basic classes of functions, and simple compositions
thereof.

For testing free form extrapolation, we used a curriculum learning strategy that involved first learning
categories and then learning category-specific forecasting rules. While this procedure was more complex than
for the other heads, there is reason to believe that it in fact resembles the process by which people may learn
to make inferences in sparse and underdetermined settings. The most direct evidence of this in the realm of
function learning comes from Leon-Villagra and Lucas (2019), which showed that peoples’ extrapolations
of curves were dependent on whether they judged the curves to lie in a previously encountered category,
suggesting that people use category-dependent forecasting rules. More generally, our approach may be viewed
as implementing a form of a Hierarchical Bayesian model, which have been show to capture the structure
of peoples’ intuitive theories about abstract structures in the world (Gershman and Niv, 2010; Tenenbaum
et al., 2011; Kemp and Tenenbaum, 2008).

Our approach also fits with the idea that learning in natural agents involves adjudicating a tension between
maintaining as much flexibility as possible (by optimizing a Maximum Entropy objective) while at the same
time maximizing e�ciency of computation (e.g., by optimizing a Minimum Energy objective). From this
perspective, the contrastive encoder can be viewed as maximizing entropy, as implemented by the InfoNCE
objective that we used, as it may be shown (Wang and Isola, 2020) that the second term in that objective
is an estimator of the entropy of the distribution of codes in the latent space. Complementing this, our
curriculum learning can be viewed as minimizing the energy of representations generated by a given category
of function when presented with an instance of that function. This may strike a balance between flexibility
(of generalization) and e�ciency (of inference) that begins to approximate the balance observed in natural
agents, and humans in particular (Frankland et al., 2021).

10 Broader Impact

As this work is concerned with foundational properties of learning algorithms in an abstract setting, we do
not foresee any negative societal consequences arising directly from this work.
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