
TRIGO: Benchmarking Formal Mathematical Proof Reduction for
Generative Language Models

Jing Xiong1∗, Jianhao Shen2∗, Ye Yuan2, Haiming Wang5, Yichun Yin6,
Zhengying Liu6, Lin Li6, Zhijiang Guo6, Qingxing Cao1, Yinya Huang1,4,

Chuanyang Zheng3, Xiaodan Liang1†, Ming Zhang2†, Qun Liu6

1Shenzhen Campus of Sun Yat-Sen University 2Peking University
3The Chinese University of Hong Kong 4City University of Hong Kong

5Sun Yat-Sen University 6Huawei Noah’s Ark Lab

{xiongj69, wanghm39, caoqx}@mail2.sysu.edu.cn,
{jhshen, yuanye_pku, mzhang}@pku.edu.cn,

{yinyichun, liuzhengying2, guozhijiang, lilin29, qun.liu}@huawei.com

{cyzheng21}@cse.cuhk.edu.hk {yinya.el.huang, xdliang328}@gmail.com

Abstract

Automated theorem proving (ATP) has become
an appealing domain for exploring the reason-
ing ability of the recent successful generative
language models. However, current ATP bench-
marks mainly focus on symbolic inference, but
rarely involve the understanding of complex
number combination reasoning. In this work,
we propose TRIGO, an ATP benchmark that not
only requires a model to reduce a trigonomet-
ric expression with step-by-step proofs but also
evaluates a generative LM’s reasoning ability
on formulas and its capability to manipulate,
group, and factor number terms. We gather
trigonometric expressions and their reduced
forms from the web, annotate the simplifica-
tion process manually, and translate it into the
“Lean” formal language system. We then auto-
matically generate additional examples from
the annotated samples to expand the dataset.
Furthermore, we develop an automatic genera-
tor based on Lean-Gym to create dataset splits
of varying difficulties and distributions in order
to thoroughly analyze the model’s generaliza-
tion ability. Our extensive experiments show
our proposed TRIGO poses a new challenge
for advanced generative LM’s including GPT-4
which is pre-trained on a considerable amount
of open-source formal theorem-proving lan-
guage data, and provide a new tool to study
the generative LM’s ability on both formal and
mathematical reasoning.

1 Introduction

Automated theorem proving (ATP) requires formal
reasoning and deduction from conclusion to axioms
or known theorems. This task requires general and

∗These authors contributed equally.
†Corresponding author

Figure 1: The task of trigonometric expression reduction.
The key is to rewrite π

12 into 1
2 ∗

π
6 (the green part), and

apply the half-angle formula (the orange part). Both
steps need an understanding of numbers and formulas.

flexible reasoning and is easy to validate, making
it an appealing domain for exploring the reasoning
ability of the recent successful pre-trained genera-
tive language models. These models show strong
proof generation capabilities (Lample et al., 2022;
Jiang et al., 2022), but its ability to perform formal
mathematical proof reduction, which involves com-
plex numerical reasoning, has not been thoroughly
explored.

Current ATP benchmarks (Wu et al., 2021a; Han
et al., 2021; Zheng et al., 2022) mainly focus on
symbolic inference but rarely involve the under-
standing of complex number combination reason-
ing, such as term grouping, term factorization and
equivalent substitution. For advanced mathemati-
cal proving such as trigonometric expressions, ATP
can be beneficial for evaluating the crucial com-
plex number combination. For example, as shown
in Figure 1, to correctly reduce the left-hand-side
expression, one must recognize the specific angles
or terms such as cos(π

12), capable of applying the
half-angle formula and know the result is cos(12∗

π
6).

Figure 2: An example of GPT-4 struggling to solve TRIGO. GPT-4 corrects its response after the second prompt
(box in right), but continues generating error tactics (highlighted in red with a cross mark).

Such proof steps can be automatically denoted by
the formal language deduction as shown in the
right-hand-side, and then verified via the interactive
theorem-proving environment in ATP.

To develop such profound ATP evaluation for
current generative LMs, we propose the task
of Trigonometric Expression Reduction (TRIGO).
Given a trigonometric expression, a model is re-
quired to accept formal input with Lean formal
language and then perform step-by-step proof re-
duction. The proposed TRIGO poses a new chal-
lenge for current state-of-the-art generative LMs.
Figure 2 presents an illustrative example of a proof
generated by GPT-4 (OpenAI, 2023). Inspired by
self-refine (Madaan et al., 2023), we first provide
the prompt “Please help me prove this problem
using Lean: lemma Trigo_0 : sin(107 * pi) = 0 :”
to GPT-4 and the GPT-4 generates non-exist tac-
tics and gives the incorrect equations. We further
prompt it with “We require to use lemma from
Lean’s standard library for the proof and to ensure
the correctness of the equation” to correct the GPT-
4. However, in the second attempt, the GPT-4 still
applies the tactic “sin_periodic_pi” that does not
exist in the Lean standard library and comments
it “−−available in Lean standard library”. Surpris-
ingly, GPT-4 produced the correct equation “have
h: sin(107*pi) = sin(1*pi)” in the second proof at-
tempt, even though the proof for this subgoal is
incorrect. This example demonstrates the potential
of GPT-4 in accurately manipulating numbers and
formulas, as well as the challenge of strict formal
reasoning posed by the TRIGO task.

To construct the TRIGO dataset, we collect
trigonometric expression reduction problems and
corresponding answers from high school exercises
and exams. We then develop an interactive annota-

tion software to manually label the reduction steps
and formalize the processes into "Lean" formal lan-
guage. Finally, based on this manually formalized
data, we develop an automatic proof generation
program to expand the dataset with real-world data
and create datasets of artificially generated sam-
ples. Specifically, we generate 3 types of samples
by controlling their proof length and generating
trigonometric functions with larger numerical val-
ues to assess the models’ ability to generalize to
out-of-distribution data.

Our contributions are three-fold:
• We propose the new trigonometric expression

reduction tasks that are the first to explore for-
mal mathematical reasoning abilities with re-
gard to both formulas and numerical elements
understanding.
• We construct the new TRIGO dataset with

manually labeled reduction steps and convert
them to the formal language Lean (de Moura
et al., 2015). We also generate extra samples
with controlled difficulties and distribution to
further evaluate different aspects of generative
LMs.
• We conduct extensive experiments and de-

tailed analysis of a broad range of methods,
identifying the new challenges for current
state-of-the-art generative LMs.

2 Related Work
Automatic theorem proving (ATP) has numerous
formal environments such as HOList (Bansal et al.,
2019a), Metamath (Megill and Wheeler, 2019),
and CoqGYM (Yang and Deng, 2019). There are
several formal benchmark tasks for theorem prov-
ing that exist. LeanStep (Han et al., 2021) extracts
(state, tactic) pairs from mathlib (mathlib, 2020), a

comprehensive library of theorem proofs in Lean.
The IsarStep dataset (Li et al., 2021) mines inter-
mediate proof steps from the Archive of Formal
Proofs (AFP). MiniF2F (Zheng et al., 2022) is a
cross-system benchmark of olympiad-level math-
ematics problems, containing 488 problems for-
malized in Metamath, Lean, Isabelle, and HOL
Light, but only a small portion has formalized solu-
tions. FIMO (Liu et al., 2023) targets formal Inter-
national Mathematical Olympiad (IMO) problems.
The Geometry3K dataset (Lu et al., 2021) includes
3,002 geometry problems with annotated formal
language descriptions but lacks interaction with
formal environments. Many other works also focus
on informal math problem solving (Saxton et al.,
2019; Hendrycks et al., 2021; Cobbe et al., 2021;
Shen et al., 2021). Our work is most similar to
(Wu et al., 2021a). They use formal mathematical
reasoning to reduce equations and inequalities and
employ programs to automatically generate proofs
to explore combinational generalization. However,
they lack real-world problems to assess the model’s
generalization to real distributions and do not in-
volve complex numerical operations combination.
Compared with previous work (Wu et al., 2021a)
which has 18 axioms and 9 transformations, our
generation process has a total of 85 transforma-
tion rules and diverse sampled parameters. Our
proposed TRIGO generates complex samples with
controlled difficulties and distribution, and includes
manually annotated samples and proof steps from
real-world problems.

3 Background on Lean Environment

Formal language systems are effective tools for
strictly verifying the correctness of each proof
step generated by the model. In this work, we use
Lean (de Moura et al., 2015) as formal environ-
ment.

The correctness of a given proof can be veri-
fied by a Lean verifier program. A Lean proof
example is shown in Figure 1. It starts from a
goal state “⊢ sin(π/3) + 2 ∗ cos(π/12) ∗ ∗ 2 −
cos(π/2) = sqrt(3) + 1”, representing the current
proof goal. In the row next to the “begin”, a tac-
tic “rw cos_pi_div_two” is applied to the current
goal state, meaning rewrites the term cos(π/2) to
0. In the following rows, the proof applies “have”
tactic generates a new sub-goal such as proving
cos(π/12)2 = cos(π/6)/2 + 1/2, and applies the
“ring_exp” to solving exponents equations in com-

Figure 3: The proof flow is produced by the interactive
Lean-Gym environment. The language model generates
proof steps given the formal prompts until reaches “no
goal”.

mutative (semi)rings. More details of used tactics
are given in Appendix H.

Lean-Gym (Polu et al., 2023) is an interactive
environment that allows language models to inter-
act with formal systems. As depicted in Figure 3,
we begin by acquiring the initial goal state G1 as
“⊢ sin(π/3) + 2 ∗ cos(π/12) ∗ ∗2 − cos(π/2) =
sqrt(3) + 1”. This goal state is inputted into lan-
guage model with the prompt “GOAL G1 PROOF-
STEP”. Subsequently, GPT-2 generates the corre-
sponding tactic T1 as “rw cos_pi_div_two,”. Given
the goal state and tactic, Lean-Gym outputs a new
goal state “⊢ sin(π/3)+2∗cos(π/12)∗∗ 2−0 =
sqrt(3) + 1” for language model to obtain the next
tactic. We iteratively perform this process until the
Lean-Gym returns “no goals” which indicates the
proof is complete.

4 TRIGO Dataset

In this section, we first introduce how we collect
trigonometric expression reduction problems from
“tiku”1, annotate the step-by-step reduction pro-
cesses, and transform them into Lean formal lan-
guage to create the TRIGO-real and TRIGO-web
datasets. Then we introduce how to automatically
generate data to construct the TRIGO-gen.

4.1 Problem Collection
We collect the trigonometric expression reduc-
tion problems from “tiku”, a large-scale math
problem set from textbooks and exams. Specifi-
cally, we collect problems and their answers from

1https://www.tiku.cn/

https://www.tiku.cn/

the “trigonometry” topic. We eventually collect
427 problems and denote them as TRIGO-real.
To expand our dataset, we further collect addi-
tional trigonometry reduction problems from dif-
ferent websites. After manually filtering the dupli-
cate problems, we obtain an additional 453 sam-
ples as TRIGO-web and use them as the test set.
These data are collected from other websites found
through search engines. These sources contain high
school math exam questions with standard answers.
Throughout the collection process, we aim to gather
data randomly whenever possible, ensuring diver-
sity in the distribution of the test set to reflect the
model’s performance on real human exam ques-
tions.

4.2 Interactive Proof Annotation
The collected problems have only the final results
without step-by-step reduction processes. To facili-
tate the annotation of these crucial processes, we
develop interactive software specifically tailored
for this purpose. The annotation process has the
following steps:

Step. 1 The software shows an expression to the
annotator.

Step. 2 The annotator inputs a transformation
equation that will be applied in the next
step.

Step. 3 The software checks if the equation is
valid by matching it with a rule in a pre-
defined bank. If no rule is matched, the
software reports “No Matched Rule” and
goes back to step 2.

Step. 4 The software applies this transformation
to the current problem. If succeeds, the
software outputs the new expression. Oth-
erwise the software reports “Rule Failed”
and goes back to step 2.

Step. 5 Repeat steps 2-4 until the expression
equals the answer.

Equation-Rule Matching In step 3, each anno-
tated equation must match with a predefined rule
to ensure its correctness. We define a total of 85
rules that can cover most of the trigonometric trans-
formation. Some examples are shown in Table 1.
As shown in Table 1, some rules have value ar-
gument X , Y , and parameter K. To perform the
rule matching, we first use sympy2 to parse both

2https://docs.sympy.org/latest/tutorial/manipulation.html

Identity Rule Name Example

sin_zero sin (0) = 0

sin_pi_div_six sin
(
π
6

)
= 1

2

cos_pi cos (π) = −1

cos_neg cos (X) = cos (2 ∗ π ∗ K− X)

tan_add tan (X + Y) = tan(X)+tan(Y)
1−tan(X)∗tan(Y)

Table 1: Examples of our pre-defined rule bank.

the equation and rules into expression trees. Then
we compare each equation sub-tree with the rule
tree. If two trees are identical except for the sibling
nodes’ order, we consider they are matched and
the equation is valid. Given a matched sub-tree, we
further use sympy to extract the arguments X , Y ,
and K. The full list of examples is demonstrated in
Appendix I.

4.3 Lean Formalization
After obtaining the stepwise reduction annotation,
we manually transform the annotated equation into
Lean formal language. Since we use Lean-Gym
with mathlib (mathlib, 2020) backend as our formal
environment, Lean-Gym can only accept tactics in-
side the mathlib. To ensure the correct acceptance
and processing of our defined trigonometric rules
in Lean-Gym, we derive these rules from math-
lib theorems and convert them into tactics before
adding them to mathlib.

We then construct the framework of the proof
script. The script begins with the keyword “lemma”
followed by a name and the premises of the lemma
and then presents the goal equation where the left-
hand side (LHS) represents the original expression
and the right-hand side (RHS) represents its re-
duced result. Lastly, we add the “begin”, “sorry”,
and “end” keywords where the “sorry” is a place-
holder that will be replaced in the following steps.

Given the empty proof script, we convert the
annotated step into Lean tactics. Recall that dur-
ing the annotation phase, each annotated step is
matched with a predefined rule, which can be fur-
ther converted to a Lean-Gym tactic using a Python
program. Thus, we only need to apply the corre-
sponding rule with proper arguments parsed by
sympy. Take the equation sin

(
13π
6

)
= sin

(
π
6

)
as an example. The matched rule is sin (X) =
sin (X− 2π) with argument X = 13π

6 . After apply-
ing this rule to sympy we get a new goal equation:
sin

(
13π
6 − 2π

)
= sin

(
π
6

)
, along with the corre-

sponding tactics.

https://docs.sympy.org/latest/tutorial/manipulation.html

0 50 100 150 200
Tactic length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
op

or
tio

n
Tactic length density

TG-1
TG-2
TG-3
TRIGO-real
TG-E

Figure 4: Tactic length distribution based on the number
of tactics.

Although the above step can complete most of
the transformation to Lean, we still need to manu-
ally fix the Lean proof. For example, Lean does not
reduce the above new goal state sin

(
13π
6 − 2π

)
to

sin
(
π
6

)
, and rewriting tactics “rw sin(x+y) = · · · ”

fails when applied to “sin(y + x) · · · = · · · ” as
Lean can not match sin(x + y) with sin(y + x).
Thus, we manually add more steps such that the
Lean-Gym can correctly process the entire proof.

4.4 Generated Data

To comprehensively analyze the performance of
models across various levels of difficulty and dif-
ferent ranges of numbers, as well as to study
the gap between generated and real-world data,
we automatically generate trigonometric prob-
lems and proofs by applying random prede-
fined rules repeatedly. Specifically, we randomly
choose a rule denoted as r from our prede-
fined rule bank and select corresponding value
arguments X and Y from the value list C =
{2π, π, π2 ,

π
3 ,

π
6 ,−

π
6 ,−

π
3 ,−

π
2 ,−π,−2π}, and ini-

tialize K with an integer value between 0 and 100,
to construct our initial goal expressions G. Then
at each step, we sample a r and try to match the r
with LHS or RHS of goal expressions G. If either
side is matched, we replace the corresponding part
of goal expressions G with rule r’s corresponding
Lean tactics set.

During the replacement, we need to determine
the value arguments X , Y , and K given the goal
G. For example, consider the expression sin(3π4)
and the rule sin (X + Y) = sin (X) cos (Y) +
sin (Y) cos (X), where the argument X + Y must
equal 3π

4 . We first sample the value of X from
the value list C, then calculate the Y = 3π

4 − X.

To obtain the parameter K for some rules such as
cos(X) = sin(2 ∗ π ∗ K − X + π

2), we uniformly
choose an integer between [0, 100] as its value.

To control the difficulties of the generated sam-
ples, under the assumption that the difficulty of
the problem increases as the number of sampled
rules grows, we sample and apply 1, 2, and 3 rules
to construct TRIGO-gen, denoted as TG-1, TG-2,
and TG-3, respectively. For each rule length, we
generate 9,000 training samples, 1,000 validation
samples, and 1,000 test samples. To close the gap
between the generated samples and real-world sam-
ples, we also use the trigonometric expression in
TRIGO-real as initial goal expressions G, then sam-
ple and apply the exact 3 rules to generate the set
TG-E as generated training data.

4.5 Data Statistics
Finally, the TRIGO-real has 427 problems and a
total of 10,574 proof tactics. We divide TRIGO-real
into train, validation, and test splits with a 7:1:2 ra-
tio, resulting in 299 training samples, 42 validation
samples, and 86 test samples. The average proof
step size for TRIGO-real, TG-1, TG-2, TG-3, and
TG-E are 37, 22, 35, 49 and 81. Since Lean-Gym
only accepts one tactic at a time, the tactic length
of each problem in the dataset typically matches
the size of the proof step. Figure 4 displays the
sample proportions concerning their tactic length.
We can observe that the generated samples have
similar tactic lengths, while the real-world data has
various but more uniform lengths. More statistics
are in Appendix G.

5 Baseline Models

Recent works utilize GPT-based language models
for automated theorem proving and have made sig-
nificant improvement (Polu and Sutskever, 2020;
Han et al., 2021; Polu et al., 2023; Jiang et al.,
2022; Zheng et al., 2023). In this work, we use
GPT-2 (Radford et al., 2019) with a proof search
algorithm as a baseline method for our dataset.

Data Preparation The Lean-Gym (Polu et al.,
2023) provides an interactive formal environment
to obtain a new goal state given the previous state
and tactic, as shown in Figure 3. During training,
at each step, we obtain the (state, tactic) pairs from
Lean-Gym and training samples respectively, and
concatenate them into a sequence with the “GOAL”
and “PROOFSTEP” special tokens:

GOAL ⟨state⟩ PROOFSTEP ⟨tactic⟩.

Model
Manual Labeling TRIGO-gen

TRIGO-real TRIGO-web TG-1 TG-2 TG-3

GPT-2B 12.79 13.90 42.79 7.49 0.39
GPT-2L 12.79 13.02 71.59 23.39 1.69
GPT-2L-PACT 32.55 25.60 77.29 44.19 18.99

GPT-2B−D 17.44 17.21 42.29 12.69 4.89
GPT-2L−D 19.76 20.08 54.79 20.89 7.69
GPT-2L-PACT-D 23.25 13.02 84.29 60.09 25.29
GPT-2L-PACT-E 34.88 25.38 - - -

Table 2: Pass rates of benchmark models and baselines.

We take the above sequence as input and train the
GPT-2 models to predict the “tactic” sequence with
autoregressive loss (Bengio et al., 2000):

L (θ) = −
n−1∑
i=1

log p (xi+1|x1, x2, ..., xi; θ) ,

where θ indicates model parameters, and xi is the
i-th token of the input sequence:

Proof Search After training GPT-2 to generate
a tactic given a goal state, we search the complete
proof by expanding the most probable state at each
step. We employ Breadth-First Search (BFS) in this
paper. Specifically, we define the probability of the
goal state as the cumulative logarithm probability
of its corresponding generated tactics:

logPstateN = log pstateN−1 + log ptacticsi , (1)

where ptacticsi is the tactic’s probability generated
by the GPT-2. Lean-Gym outputs the new state
stateN by applying the tacticsi to a previous goal
state stateN−1. At each proof search step, we se-
lect a goal state with the highest probability and
feed the sequence “GOAL ⟨state⟩ PROOFSTEP”
into the trained GPT-2 to generate the tactics. We
sample 8 tactics based on GPT-2 output probability.
The generated tactics with the goal state are input
to Lean-Gym to obtain a new valid goal state if
possible. We repeat the search process until “no
goal” state is reached, the queue becomes empty,
or reach the maximum search step 512.

6 Experiment

In this section, we evaluate the performance of
GPT-2BASE (GPT-2B), GPT-2LARGE (GPT-2L), and
GPT-2L-PACT, a GPT-2LARGE pre-trained on the
formal proof dataset PACT (Han et al., 2021).
Furthermore, we evaluate the model’s out-of-
distribution generalization ability by examining its
performance across various levels of difficulty and
different ranges of numbers, while also evaluating

Model
Manual Labeling TRIGO-gen

TRIGO-real TRIGO-web TG-1 TG-2 TG-3

Training on TG-1
GPT-2B 9.30 0.94 - 9.89 3.39
GPT-2L 5.81 0.88 - 14.29 6.19
GPT-2L-PACT 5.81 0.88 - 16.39 6.29

Training on TG-2
GPT-2B 3.48 0.44 19.59 - 2.59
GPT-2L 4.65 0.66 32.29 - 8.29
GPT-2L-PACT 5.81 1.32 48.49 - 15.89

Training on TG-3
GPT-2B 1.16 0.00 5.59 0.89 -
GPT-2L 0.00 0.00 10.59 3.49 -
GPT-2L-PACT 8.13 1.10 57.19 46.39 -

Table 3: Pass rates of models on OOD test set.

the impact of generating data distributions beyond
those observed in real-world data. Additionally, we
conduct a comprehensive analysis of the models,
including an evaluation of GPT-4’s performance.

6.1 Implementation Details
All models are trained with Adam opti-
mizer (Kingma and Ba, 2015), learning rate
of 2.5 × 10−4, batch size of 512, and a cosine
schedule. More implementation details of these
models are demonstrated in Appendix A.

6.2 Main Results
Table 2 presents the pass rate of different mod-
els on TRIGO-real (training, validation, and test
sets), TRIGO-web (test set only), and TRIGO-gen
(training, validation, and test sets). The pass rate
indicates the percentage of problems that a model
outputs a correct proof within the maximum search
steps by interacting with Lean-Gym. All models are
trained and evaluated on the corresponding training
and test splits, except for the TRIGO-real which the
models are trained on TRIGO-real training split and
tested on the TRIGO-real test split and TRIGO-web.

In Table 2 we find that: (1) Models with different
parameter sizes (GPT-2B, GPT-2L) achieve similar
performance on both TRIGO-real and TRIGO-web
when trained on the smaller dataset TRIGO-real. On
TRIGO-gen that has more training samples, larger
model parameter scales lead to better performance;
(2) GPT-2L-PACT achieves the best results on each
test set, indicating the significant improvement of
pre-training on PACT and raising the question of
whether we can achieve a similar improvement if
fine-tune on TRIGO-gen.

To study the above question, we merge the gen-
erated dataset TG-1, TG-2, and TG-3 training split
to fine-tune GPT-2B, GPT-2L, and further train
GPT-2L-PACT. We denote the resulting models as

GPT-2B−D, GPT-2L−D, and GPT-2L-PACT-D and
evaluate their pass rate. We find that only GPT-2L-
PACT-D pre-trained on PACT can obtain significant
improvement on TRIGO-gen. However, when we
continue to train GPT-2L-PACT-D on TRIGO-real,
the performance does not improve significantly,
achieving accuracies of only 23.25% and 13.02%
on TRIGO-real and TRIGO-web, respectively.

To explore the gap between TRIGO-real and
TRIGO-gen, we train the GPT-2L-PACT on TG-E
whose samples are generated start with expression
in TRIGO-real. The results are denoted as GPT-
2L-PACT-E. Compared with GPT-2L-PACT, GPT-
2L-PACT-E achieves a 2.33% improvement on the
TRIGO-real test set but a 0.22% decrease on TRIGO-
web. These results suggest that solely increasing
the proof length in the training data using a genera-
tion program does not enhance model performance
on the TRIGO-web. We posit that this is due to the
significant distribution gap between TRIGO-real
and TRIGO-web, making it challenging for the data
generated based on TRIGO-real to generalize to
TRIGO-web.

To investigate the out-of-distribution generaliza-
tion ability on datasets of varying difficulty, we
present the results in Table 3. Table 3 shows the
results of only training model on TG-1, TG-2, and
TG-3 and testing on other test sets with different
distribution. It is shown that all models perform
consistently worse than the in-distribution setting.
On TG-1, the best GPT-2L-PACT trained on the
more complex TG-3 dataset is still 20.1% lower
than that trained on TG-1 alone. On TRIGO-real
and TRIGO-gen however, model GPT-2L-PACT
trained with three generated datasets separately per-
form worse than the GPT-2L-PACT-E trained on
the TG-E. This demonstrates that initiating the au-
tomatic theorem generation program with input
derived from real-world data effectively bridges
the distribution gap between real-world data and
generated data.

6.3 Model Analysis
In this section, we perform a comprehensive anal-
ysis of GPT models on our TRIGO with various
settings. We mainly evaluate the PACT pre-trained
model as it achieves the best overall performance.
Stepwise Evaluation We first evaluate the single-
step generation performance. We obtain all (goal
state, tactic) pairs, and select the pairs whose tactic
is not “have” as set w/o have. We compare the
model’s top-1 and top-8 output tactics with the

Dataset
all w/o have

EM@1 EM@8 EM@1 EM@8

TRIGO-real 69.81 78.40 80.81 86.85
TG-1 92.22 97.31 94.33 98.56
TG-2 89.29 93.71 93.11 96.22
TG-3 86.13 90.56 90.77 93.65

Table 4: The single step performance of GPT-2L-PACT
on different datasets. EM@k represents the exact match
scores of the top-k generated tactics.

Model TG-1 TG-2 TG-3 TRIGO-real

GPT-2L-PACT 90.23 85.77 81.27 45.40
GPT-4 16.91 7.44 4.67 0.26

Table 5: Exact match scores of single step performance
on “have” tactic. We obtain a tactic with highest proba-
bility from GPT-2L-PACT, and provide GPT-4 with an
8-shot prompt (randomly sampled from the (state, tac-
tic) pairs in the training set that contain “have” tactic).

ground truth and consider the model is correct if
any of the generated tactics is an exact match with
the ground truth. The results are shown in Table 4.

GPT models achieve high performance on tactics
without the "have" tactics, with EM scores above
86% for the top 8 generated tactics. However, the
prediction of "have" tactics poses a significant chal-
lenge in overall proof generation, especially in the
TRIGO-real dataset where there is an 8.45% gap in
EM@8 between "all" tactics and tactics without the
"have" tactics. In the TRIGO-gen dataset, the gap
in EM@8 between "all" tactics and tactics without
the "have" tactics increases as the number of proof
steps increases.

To explore the impact of model size on the ac-
curacy of single-step proofs, we evaluate GPT-4.
We believe that LLMs such as GPT-4 have already
demonstrated their ability to process formal lan-
guage, particularly in translating informal proofs to
formal proofs (Jiang et al., 2023; Wu et al., 2022).
Furthermore, LLMs have demonstrated promise
in theorem proving using proof assistants such as
Lean, as evidenced by Yang et al.’s study (Yang
et al., 2023). The study showed that GPT-4 could
generate proofs accepted by a zero-shot manner,
thus establishing GPT-4 as a robust baseline. These
results suggest that GPT-4 may have been trained
on Lean examples, as there were publicly accessi-
ble proofs on GitHub prior to GPT-4’s data cutoff
date in September 2021 (OpenAI, 2023).

We also evaluate the single-step performance of
GPT-4, focusing specifically on the "have" tactics.
Since the "have" tactic only requires generating the

Goal GOAL
⊢ cos(433*pi/3)
= 2*cos(pi/6)**2
- 1 PROOFSTEP

GOAL h0 : tan(295*pi/6) ̸= 0,
this : tan(-pi/3)
= (-1)/tan(295*pi/6)
⊢ sin(-pi/3)/cos(-pi/3)
= tan(-pi/3) PROOFSTEP

GOAL ⊢ sin(4*pi/3)*cos(pi/3)
- sin(pi/3)*cos(4*pi/3)
= 2*sin(pi/2)*cos(pi/2)
PROOFSTEP

GPT-4
w/ ICL

have: cos(2*pi/3) =
2*cos(pi/6)**2 - 1,

have: sin(-pi/3)/cos(-pi/3) =
tan(-pi/3),

have: sin(4pi/3)*cos(pi/3)
- sin(pi/3)*cos(4pi/3) =
2*sin(pi/2)*cos(pi/2),

GPT-4
w/ Instruction

have: cos(433*pi/3) =
cos((433 mod 6)*pi/3)

have: tan(pi/3) =
-tan(113*pi/3)

have: sin(2*pi) = sin((-2)*pi)

GT have: cos(pi/3) =
cos(433*pi/3),

have: sin(-pi/3)/cos(-pi/3) =
tan(-pi/3),

have: sin(pi) =
sin(4*pi/3)*cos(pi/3) -
sin(pi/3)*cos(4*pi/3),

Table 6: One-step proofs generated by GPT-4 given in-context learning (ICL) or natural language instruction
(Instruction) and a new goal (Goal), compared with the ground truth (GT).

sub-goal equation without additional Lean knowl-
edge, evaluating GPT-4’s performance on these
tactics effectively reflects its ability in complex
number combination reasoning. For each genera-
tion, we randomly select 8 (goal state, tactic) pairs
from the training set as in-context learning exam-
ples for GPT-4. Table 5 presents the exact match
scores obtained. The experimental results highlight
a significant performance gap between GPT-4 and
the fine-tuned smaller GPT-2 models across all set-
tings. Table 6 showcases several one-step proofs
generated by GPT-4.

Search Evaluation We conduct three experi-
ments to study the effects of tactics decoding and
proof search methods.

We first compare beam search and sampling.
When generating tactics, we apply beam search
with size 16 and expand the proof goal with the
top-8 tactics. As for sampling, we randomly select
each token based on the model’s output probability
and sample 8 tactics. Table 7 shows the proof pass
rate, and sampling achieves better performance. Af-
ter inspecting model outputs, we further observe
that sampling produces more diverse tactics, ex-
ploring various search paths, and is particularly
effective in discovering number combinations.

We then explore the effect of increasing sam-
pling temperatures. With a temperature of 1.5, the
model generates many illegal characters but outputs
more diverse tactics. Reducing the temperature to
1.25 significantly decreases illegal characters, im-
proving the model’s pass rate on TRIGO-real, TG-1,
and TG-2. These results suggest a future direction
of developing decoding methods to generate di-
verse and valid tactics.

To compare different search algorithms, we
lastly implement breadth-first search (BFS) and
Monte Carlo tree search (MCTS) in previous
work (Silver et al., 2017). Surprisingly, MCTS does
not excel on our dataset. In Table 9, MCTS per-

Decoding Method
Manual Labeling TRIGO-gen

TRIGO-real TRIGO-web TG-1 TG-2 TG-3

Beam Search 23.25 20.75 68.49 38.39 6.79
Sampling 32.55 25.60 77.29 44.19 18.99

Table 7: Pass rate at different decoding methods.

Temperature
Manual Labeling TRIGO-gen

TRIGO-real TRIGO-web TG-1 TG-2 TG-3

1.0 32.55 25.60 77.29 44.19 18.99
1.25 31.39 26.49 77.49 45.99 18.59
1.5 29.06 22.07 76.49 44.89 17.39

Table 8: Pass rate with different sampling temperatures.

forms significantly worse than BFS on the artifi-
cially synthesized dataset TRIGO-gen. We suppose
this is due to the lack of a well-developed value
function that should be addressed in future work.

Expert Iteration Figure 5 demonstrates the
model performances by expert iterations. Gener-
ated samples in TRIGO-gen usually have multi-
ple proof paths, thus we apply the expert itera-
tion (Polu et al., 2023) to discover diverse and bet-
ter proof paths. Specifically, we train the GPT-2L-
PACT model on TG-i, where i ∈ [1, 3]. Then we
employ the trained models to prove the training set
samples in TG-i. If the proof pass, we add the new
proof to the original TG-i. Eventually, we expand
the original set to a new training set TG1-i, where
1 indicates the 1st iteration. We retrain the GPT-2L-
PACT on TG1-i, generate new proofs, add the new
proofs to TG1-i and obtain TG2-i. We repeat the
above process 7 times, obtaining TG1-i to TG7-i.
We train the model on the seven datasets and evalu-
ate them on the original test set of TG-i. As shown
in Figure 5, the model’s pass rate improves signif-
icantly across all three TRIGO-gen datasets, with
the largest improvement of 10.9% in TG-2. This
highlights the diversity of proof path in training
data for enhancing model performance.

Large Angle Values Evaluation To evaluate the
model’s out-of-distribution (OOD) generalization

Search Method
Manual Labeling TRIGO-gen

TRIGO-real TRIGO-web TG-1 TG-2 TG-3

MCTS 32.55 24.06 51.59 11.49 5.89
BFS 32.55 25.60 77.29 44.19 18.99

Table 9: Pass rate at different search methods.

0 1 2 3 4 5 6 7
Iteration

20

30

40

50

60

70

80

Pa
ss

 R
at

e

Pass rate of diccerent expert iteration steps

TG-1
TG-2
TG-3

Figure 5: The accuracy of the GPT-2L-PACT model on
the test set during expert iteration.

ability on numerical reasoning, we expand the
range of angle values C that can be sampled
during generation to a more complex set Cl =
{2π, π, π2 ,

π
3 ,

π
6 ,−

π
6 ,−

π
3 ,−

π
2 ,−π,−2π,

π
4 ,

π
5 ,

π
7 ,

π
8 ,

π
9 ,−

π
4 ,−

π
5 ,−

π
7 ,−

π
8 ,−

π
9 }, and extend the

maximum value of K from 100 to 1000. We
generate harder test sets for TG-1/2/3 respectively.
We find that all models including the strongest
baseline GPT-2L-PACT-D model achieve a pass
rate of 0 on these OOD test sets, revealing the
limitation of current language models on the
numerical reasoning.

7 Conclusion
In this paper, we introduce TRIGO, a dataset focus-
ing on trigonometric expression reduction for for-
mal mathematical reasoning with both real-world
and generated samples. To the best of our knowl-
edge, TRIGO is the first Lean-based dataset with
manually annotated and automatically generated
reduction proofs for exploring the formal mathe-
matical ability of current language models.

Our comprehensive experiments reveal that, in
comparison to generated data, pre-training on
PACT significantly enhances performance on real-
world problems. Furthermore, expanding the data
scale by utilizing real-world data as the starting
point for the theorem generation program can ef-
fectively boost the model’s performance on the real-
world test set. Additionally, we reveal the model’s
incapability on generalizing numeric operations to
larger unseen numbers and find that both the di-

versity of tactics and search paths have significant
impacts on the final proof pass rate.

8 Ethics Statement

The trigonometric expression reduction dataset
TRIGO is obtained from the Internet. After we col-
lect the data, we formalize it in Lean and submit
it to Lean to verify the correctness of the proof,
without any bias involved.

When annotating TRIGO-real, we utilize not only
the publicly available answers from “tiku”, but also
compose some of the answers ourselves. As for
collecting unlabeled data for TRIGO-web, we make
efforts to gather solutions from diverse sources,
encompassing blogs, documentation, Q&A com-
munities, and even videos.

9 Limitations

Our evaluation metric focuses solely on verifying
the correctness of the model’s proofs. We consider
the “no goals” output in the interactive environ-
ment Lean-Gym as an indication of success. Hence,
this indicator serves as our metric for assessing the
model’s performance. In our future work, we aim
to introduce improved evaluation metrics to assess
the model’s ability to generate a wider range of
proof paths.

Due to regional constraints, we cannot access
the services offered by OpenAI, such as GPT-4
and GPT-3.5. Therefore, the evaluation of GPT-4
and GPT-3.5 in our paper has been entrusted to
researchers from a research institution outside the
restricted region of OpenAI, who conducted the
assessment for this part.

10 Acknowledgements

This work was supported in part by National
Key R&D Program of China under Grant No.
2020AAA0109700, NSFC Grant No. 62276002,
NSFC Grant No.62006255, Guangdong Outstand-
ing Youth Fund (Grant No. 2021B1515020061),
NSFC Mobility Grant Award under Grant No. M-
0461, Shenzhen Science and Technology Program
(Grant No. RCYX20200714114642083), Shen-
zhen Science and Technology Program (Grant No.
GJHZ20220913142600001), Nansha Key RD Pro-
gram under Grant No.2022ZD014 and Sun Yatsen
University under Grant No. 22lgqb38 and 76160-
12220011. We thank MindSpore for the partial sup-
port of this work.

References
Bruce Abramson and Richard E Korf. 1987. A model

of two-player evaluation functions. In AAAI, pages
90–94.

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian
Szegedy, and Stewart Wilcox. 2019a. HOList: An
environment for machine learning of higher order
logic theorem proving. In ICML, pages 454–463.
PMLR.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, and
Christian Szegedy. 2019b. Learning to reason in
large theories without imitation. arXiv preprint
arXiv:1905.10501.

Yoshua Bengio, Réjean Ducharme, and Pascal Vin-
cent. 2000. A neural probabilistic language model.
NeurIPS, pages 932–938.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Leonardo de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer. 2015. The
lean theorem prover (system description). In ICAD,
pages 378–388.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward
Ayers, and Stanislas Polu. 2021. Proof artifact co-
training for theorem proving with language models.
In ICLR.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In NeurIPS.

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski,
Konrad Czechowski, Tomasz Odrzygóźdź, Piotr
Miłoś, Yuhuai Wu, and Mateja Jamnik. 2022. Thor:
Wielding hammers to integrate language models
and automated theorem provers. NeurIPS, 35:8360–
8373.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou,
Timothée Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. 2023.
Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. In ICLR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In ACL, pages
1152–1157.

Guillaume Lample, Timothée Lacroix, Marie-Anne
Lachaux, Aurélien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet.
2022. Hypertree proof search for neural theorem
proving. In NeurIPS, pages 26337–26349.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson.
2021. Isarstep: a benchmark for high-level mathe-
matical reasoning. In ICLR.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying
Liu, Ye Yuan, Haiming Wang, Wei Ju, Chuanyang
Zheng, Yichun Yin, Lin Li, et al. 2023. Fimo: A chal-
lenge formal dataset for automated theorem proving.
arXiv preprint arXiv:2309.04295.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan
Huang, Xiaodan Liang, and Song-Chun Zhu. 2021.
Inter-GPS: Interpretable geometry problem solving
with formal language and symbolic reasoning. In
ACL, pages 6774–6786.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

mathlib. 2020. The lean mathematical library. In Pro-
ceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP
2020, pages 367–381. ACM.

Norman Megill and David A Wheeler. 2019. Metamath:
a computer language for mathematical proofs. Lulu.
com.

OpenAI. 2023. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In ACL, pages 2080–2094.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-
tas Baksys, Igor Babuschkin, and Ilya Sutskever.
2023. Formal mathematics statement curriculum
learning. In ICLR.

Stanislas Polu and Ilya Sutskever. 2020. Generative
language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, page 9.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. In ICLR.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. In Findings of EMNLP, pages 2269–2279.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. 2017. Mastering the game of go without
human knowledge. nature, 550(7676):354–359.

https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
http://arxiv.org/abs/1905.10501
http://arxiv.org/abs/1905.10501
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://openreview.net/pdf?id=SMa9EAovKMC
https://openreview.net/pdf?id=SMa9EAovKMC
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
http://papers.nips.cc/paper_files/paper/2022/hash/a8901c5e85fb8e1823bbf0f755053672-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a8901c5e85fb8e1823bbf0f755053672-Abstract-Conference.html
https://openreview.net/forum?id=Pzj6fzU6wkj
https://openreview.net/forum?id=Pzj6fzU6wkj
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://openreview.net/pdf?id=-P7G-8dmSh4
https://openreview.net/pdf?id=-P7G-8dmSh4
http://arxiv.org/abs/2009.03393
http://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=H1gR5iR5FX
https://openreview.net/forum?id=H1gR5iR5FX

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In
EMNLP, pages 845–854.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hanna
Hajishirzi, Yejin Choi, and Kyunghyun Cho. 2021.
Naturalproofs: Mathematical theorem proving in nat-
ural language. In NeurIPS.

Yuhuai Wu, Albert Q. Jiang, Jimmy Ba, and
Roger Baker Grosse. 2021a. INT: an inequality
benchmark for evaluating generalization in theorem
proving. In ICLR.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models. NeurIPS, pages 32353–32368.

Yuhuai Wu, Markus N. Rabe, Wenda Li, Jimmy Ba,
Roger B. Grosse, and Christian Szegedy. 2021b.
LIME: learning inductive bias for primitives of math-
ematical reasoning. In ICML, pages 11251–11262.

Huajian Xin, Haiming Wang, Chuanyang Zheng, Lin
Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, et al. 2023. Lego-
prover: Neural theorem proving with growing li-
braries. arXiv preprint arXiv:2310.00656.

Jing Xiong, Chengming Li, Min Yang, Xiping Hu, and
Bin Hu. 2022. Expression syntax information bot-
tleneck for math word problems. In SIGIR, pages
2166–2171.

Jiong Xiong, Zixuan Li, Chuanyang Zheng, Zhijiang
Guo, Yichun Yin, Enze Xie, Zhicheng Yang, Qingx-
ing Cao, Haiming Wang, Xiongwei Han, Jing Tang,
Chengming Li, and Xiaodan Liang. 2023. Dq-
lore: Dual queries with low rank approximation
re-ranking for in-context learning. arXiv preprint
arXiv:2310.02954.

Kaiyu Yang and Jia Deng. 2019. Learning to prove
theorems via interacting with proof assistants. In
ICML, pages 6984–6994.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. 2023. Leandojo:
Theorem proving with retrieval-augmented language
models. arXiv preprint arXiv:2306.15626.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Chuanyang Zheng, Haiming Wang, Enze Xie, Zhengy-
ing Liu, Jiankai Sun, Huajian Xin, Jianhao Shen,
Zhenguo Li, and Yu Li. 2023. Lyra: Orchestrating
dual correction in automated theorem proving. arXiv
preprint arXiv:2309.15806.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2022. Minif2f: a cross-system benchmark for formal
olympiad-level mathematics. In ICLR.

https://doi.org/10.18653/v1/D17-1088
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/d9d4f495e875a2e075a1a4a6e1b9770f-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/d9d4f495e875a2e075a1a4a6e1b9770f-Abstract-round1.html
https://openreview.net/forum?id=O6LPudowNQm
https://openreview.net/forum?id=O6LPudowNQm
https://openreview.net/forum?id=O6LPudowNQm
http://proceedings.mlr.press/v139/wu21c.html
http://proceedings.mlr.press/v139/wu21c.html
https://api.semanticscholar.org/CorpusID:263620351
https://api.semanticscholar.org/CorpusID:263620351
https://api.semanticscholar.org/CorpusID:263620351
http://proceedings.mlr.press/v97/yang19a.html
http://proceedings.mlr.press/v97/yang19a.html

A Implementation Details.

We employ identical hyperparameters to train GPT
models on both the PACT and TRIGO datasets. The
Adam optimizer (Kingma and Ba, 2015) is utilized
with a learning rate of 2.5 × 10−4 and a cosine
schedule, while the batch size is set to 512. During
training on TRIGO, we set a maximum epoch limit
of 20 and select the epoch that achieves the lowest
validation set loss. For PACT training, we conduct
an initial pre-training epoch on the mathlib, mix1,
and mix2 datasets provided by PACT. During the
proof search phase, beam search is applied to gener-
ate tactics with a beam size of 16, and we consider
the top 8 outputs. Additionally, a maximum budget
of 512 search steps is allotted. All experiments are
executed on 8 Nvidia Tesla V100 GPUs.

B Case Study

We provide an example of the model’s search on
TG-1 in this section. As shown in Figure 8, this
example demonstrates a correct proof step, and we
can see that the model employs the tactic of “have”
to make multiple assumptions. However, often the
goal of many hypotheses to prove is trivial, so deter-
mining how to make useful assumptions is a crucial
factor in the model’s proof accuracy. Furthermore,
the model’s ability to combine the numbers in the
“have” tactic also determines whether the model
can reach the correct proof path.

As shown in Figure 9, this example demonstrates
a proof step where the model fails. The model ap-
pears to struggle to output diverse hypotheses to
explore more proof paths when forming a search
tree but generates a large number of identical “have”
tactics. It highlights the importance of using a vari-
ety of exploration strategies to improve accuracy.

As shown in Table 10, GPT-4 with the In-context
learning approach performs well in both the second
and third examples, while methods using natural
language instructions fail completely. These exam-
ples illustrate that GPT-4 is capable of learning the
compositional relationships in numbers through
in-context learning in one-step proofs.

C Experimental Details of Monte Carlo
Tree Search

We provide here the details of our implementation
of Monte Carlo Tree Search. We follow the formula
below to generate each tactic t∗:

PUCT(g, t) = Q(g, t) + c · Pθ(t | g) ·
√∑

N(g, ·)
1 + C(g, t)

,

t∗ = argmax
t∈A

PUCT(g, t),

(2)

where Q(g, t) denotes the value function of sam-
pling tactic t in proof state g, A denotes all the
tactics that can be sampled, Pθ(t | g) denotes the
prior probability, and C(g, t) denotes the number
of visit counts of the sampled tactic t in state g. In
our experiments, we always set the constant c to 1,
and we use the cumulative probability of the model
output tactic as the value of Q(g, t).

D Informal Mathematics Benchmarks

In contrast to formal benchmarks, informal bench-
marks lack data annotated in a formal theorem
proving language. Constructing formal mathemat-
ics is time-consuming and demands a high level
of mathematical expertise from contributors. In-
formal math problem datasets, represented in nat-
ural language, are more convenient to construct.
Math word problems (Koncel-Kedziorski et al.,
2016; Wang et al., 2017; Patel et al., 2021; Cobbe
et al., 2021; Xiong et al., 2022, 2023; Yu et al.,
2023) target elementary students, querying an un-
known variable given a natural language situation
description. MATH (Hendrycks et al., 2021) con-
tains 12,500 high school math competition prob-
lems with natural language statements and solu-
tions. These datasets, collected from real human
problem-solving, better reflect real distribution but
lack strict formal verification to ensure correct-
ness. NaturalProofs (Welleck et al., 2021) uses nat-
ural language to describe mathematical statements
and proofs, while (Saxton et al., 2019) syntheti-
cally generates sequence-to-sequence math prob-
lems represented as pure strings, covering various
topics. However, due to natural language ambigu-
ity, the correctness of the proof process in these
works cannot be verified.

E Neural Theorem Proving

DeepHOL (Bansal et al., 2019b) first applies rein-
forcement learning to automatic theorem proving
without human-written proofs, achieving the best
performance on HOList. AStactic (Yang and Deng,
2019) treats tactics as programs and composes ab-
stract syntax trees (ASTs) during tactic generation.
LIME (Wu et al., 2021b) introduces inductive bias

In-
context

GOAL ⊢ -cos(154*pi/3) = cos(131*pi/3) PROOFSTEP have: cos(pi/3) = -cos(154*pi/3),
GOAL ⊢ 2 * sin pi * cos (pi / 3) * cos pi = sin (5 * pi / 3) / 2 + sin (7 * pi / 3) / 2
PROOFSTEP have: 2*sin(pi)*cos(pi)*cos(pi/3) = 2*sin(pi)*cos(pi/3)*cos(pi),

GOAL h0 : tan (66 * pi) ̸= 0 ⊢ 1 / tan (66 * pi) = tan (187 * pi / 2)
PROOFSTEP have: tan(-pi/2) = 1 / tan(66*pi),

GOAL ⊢ -cos (69 * pi / 2) = -sin (34 * pi) PROOFSTEP have: sin(pi) = -cos(69*pi/2),
GOAL h0 : sin (pi / 3) ̸= 0, h1 : 2 * sin (pi / 3) ̸= 0, h2 : sin (2 * pi / 3) / (2 * sin (pi / 3))

̸= 0, h3 : sin (2 * pi / 3) ̸= 0 ⊢ tan (pi / 3) =
2 * sin (pi / 3) ** 2 / sin (2 * pi / 3)
PROOFSTEP have: sin(pi/3)/(sin(2*pi/3) / (2*sin(pi/3))) = 2*sin(pi/3)**2/sin(2*pi/3),

GOAL this : cos (pi / 6) = 2 * cos (pi / 12) ** 2 - 1 ⊢ sin ((-2) * pi / 3)
= sin (-pi / 2) * cos (pi / 6) - sin (pi / 6) * cos (-pi / 2)
PROOFSTEP have: sin(-2*pi/3) = sin(-pi/2) * cos(pi/6) - sin(pi/6) * cos(-pi/2),

GOAL ⊢ cos (-pi) = sin ((-133) * pi / 2) PROOFSTEP have: - -sin((-133) * pi / 2) = sin(-133*pi/2),
GOAL ⊢ sin ((-4) * pi) = (-2) * sin ((-2) * pi) * sin (299 * pi / 2)

PROOFSTEP have: 2*sin((-2)*pi) * -sin(299*pi/2) = -2*sin(-2*pi)*sin(299*pi/2),

GOAL
⊢ cos(433*pi/3)
= 2*cos(pi/6)**2
- 1 PROOFSTEP

GOAL h0 : tan(295*pi/6) ̸= 0,
this : tan(-pi/3)
= (-1)/tan(295*pi/6)
⊢ sin(-pi/3)/cos(-pi/3)
= tan(-pi/3) PROOFSTEP

GOAL ⊢ sin(4*pi/3)*cos(pi/3)
- sin(pi/3)*cos(4*pi/3)
= 2*sin(pi/2)*cos(pi/2)
PROOFSTEP

GPT-4 have: cos(2*pi/3) =
2*cos(pi/6)**2 - 1,

have: sin(-pi/3)/cos(-pi/3) =
tan(-pi/3),

have: sin(4pi/3)*cos(pi/3)
- sin(pi/3)*cos(4pi/3) =
2*sin(pi/2)*cos(pi/2),

Instructions You are an expert in Lean.
Now I will give you a
one-step goal-proof pair:
GOAL ⊢ -cos(154*pi/3) =
cos(131*pi/3) PROOFSTEP
have: cos(pi/3) =
-cos(154*pi/3), Please
provide a tactic that
includes the word “have”
as shown in the example
above: GOAL ⊢ cos (433 *
pi / 3) = 2 * cos (pi / 6)

** 2 - 1 PROOFSTEP

You are an expert in Lean.
Now I will give you a
one-step goal-proof pair:
GOAL ⊢ -cos(154*pi/3) =
cos(131*pi/3) PROOFSTEP have:
cos(pi/3) = -cos(154*pi/3),
Please provide a tactic
that includes the word
“have” as shown in the
example above: GOAL h0 :
tan(295*pi/6) ̸=0, this :
tan(-pi/3)=(-1)/tan(295*pi/6)
⊢ sin(-pi/3)/cos(-pi/3) =
tan(-pi/3) PROOFSTEP

You are an expert in Lean. Now
I will give you a one-step
goal-proof pair: GOAL ⊢
-cos(154*pi/3) = cos(131*pi/3)
PROOFSTEP have: cos(pi/3)
= -cos(154*pi/3), Please
provide a tactic that includes
the word “have” as shown
in the example above: GOAL
⊢ sin(4*pi/3)*cos(pi/3) -
sin(pi/3)*cos(4*pi/3) =
2*sin(pi/2)*cos(pi/2) PROOFSTEP

GPT-4 PROOFSTEP have:
cos(433*pi/3) = cos((433
mod 6)*pi/3)

PROOFSTEP have: tan(pi/3) =
-tan(113*pi/3)

PROOFSTEP have: sin(2*pi) =
sin((-2)*pi)

GT have: cos(pi/3) =
cos(433*pi/3),

have: sin(-pi/3)/cos(-pi/3) =
tan(-pi/3),

have: sin(pi) =
sin(4*pi/3)*cos(pi/3) -
sin(pi/3)*cos(4*pi/3),

Table 10: One-step proofs from 8-shot in-context demonstrations generated by GPT-4. We compare results from
in-context demonstrations and natural language instructions.

of reasoning into language models through syn-
thetic tasks. GPT-f (Polu and Sutskever, 2020)
is the first work leveraging pre-trained language
models for automatic theorem proving, generating
tactics, and proposing proof search expansion for
efficient proof tree searching. Our experiments pri-
marily reference GPT-f ’s design. PACT (Han et al.,
2021) extends this line of work through co-training
generating models with multiple self-supervised
auxiliary tasks, providing the strongest baseline
model after training on PACT’s pre-training corpus.
Lample et al. (2022) extends MCTS (Abramson
and Korf, 1987) to hypertrees, proposing Hyper-
Tree Proof Search for theorem proving. Polu et al.
(2023) explores curriculum learning for perfor-
mance improvement, which we incorporate through
expert iterations in our study. Xin et al. (2023) ex-
plores the utilization of a growing skill library to
augment the theorem proving capabilities of large

language models, allowing them to generate novel
skills and enhance success rates in mathematical
theorem proving tasks, thereby paving the way for
new avenues in the theorem proving community.

F More Details on Automatic Sample
Generation

As illustrated in Algorithm 1, we have devised our
automated sample generation program by draw-
ing inspiration from the manual annotation pro-
cess of problem-solving, as depicted in Figure 7.
Lean-Gym implements a strict replacement strat-
egy and does not perform reduction operations like
sympy. Specifically, when performing the expres-
sion replacement step, since we use sympy to parse
the expression tree, it automatically reduces the
expression to the new equation eqt, causing mis-
alignment with the equation eqlean in Lean’s proof
goal. To solve this problem, we use the “have” tac-

Types of tactics TRIGO-real TG-1 TG-2 TG-3

all tactics 10,574 209,662 349,393 498,417
have 2,179 32,490 53,955 76,413

Ratio 0.206 0.155 0.154 0.153

Table 11: Statistics for Ratio of “have” tactic

TRIGO-real TG-1 TG-2 TG-3 dθE

37 22 35 49 81

Table 12: Average number of tactics per dataset.

tic for alignment, for example: “have elean=ep, try
field_simp at *, try repeat left, tryring, conv to_lhs,
rw this”, where elean and ep respectively represent
the side of the equation eqlean and eqt that is to
be replaced. These tactics automatically align the
proof target in Lean’s proof goal to eqt. We present
our generation algorithm in Algorithm 1. The algo-
rithm continuously iterates in the forward process,
randomly sampling rules and parameters to gener-
ate problems at each iteration, and interacts with
Lean-Gym to ensure correctness. Once the speci-
fied number of replacement rules or the maximum
number of iterations is reached, the algorithm stops
and collects tactics in reverse to obtain training
data.

G Dataset Statistics

In this section, we present the average proof length
for TRIGO, along with the split of the training, val-
idation, and test sets in TRIGO-real. We show the
proportion of different tactics in Figure 6. Addi-
tionally, we display the proportion of occurrences
containing the “have” tactic in Table 11. Table 12
shows the average lengths of the datasets in TRIGO.
Table 13 shows our split on TRIGO-real.

We can observe that TG-2 has the closest average
length to the TG-real. From Table 11, the propor-
tion of occurrences containing the “have” tactic in
TG-2 is smaller than that in TRIGO-real. Although
the average proof length is different in TRIGO-gen,
the occurrence of the “have” tactic is roughly the
same. Additionally, upon closer examination of
the data, we find that the “have” tactics in TG-3
is comparable in complexity to the “have” tactic
in some of the data in TRIGO-real. The aforemen-
tioned statistical data reflects the disparity between
the distribution of generated data and real-world
data.

TRIGO-real TG-1 TG-2 TG-3
Split Problem Tactic Problem Tactic Tactic Tactic

Train 299 7,338 9,000 115,475 189,138 274,373
Val 42 1,212 1,000 13,819 22,220 31,660
Test 86 2,024 1,000 14,285 22,979 32,021

All 427 10,574 11,000 143,579 234,337 338,054

Table 13: Statistics for TRIGO-real.

H General Tactic

In this section, we present several tactics we gener-
ated along with their corresponding annotations3.
Table 14 shows several typical tactics, such as
“field_simp”, both of which are high-level tactics
that can handle many expressions involving field
operations such as addition, multiplication, and in-
verse. We do not consider “tidy” when generating
the data because this tactic is easily timed out.

I Rule Specifications

In this section, we present all the rules manually
defined in Table 15-17. For each rule, we create
corresponding tactics to ensure that the proof of the
problem can be collected backward after generating
the corresponding tactics forward. We demonstrate
the mapping of some rules to their corresponding
tactics in Table 38. During the complete process of
annotating these missing reduction steps, as demon-
strated in Figure 7, we illustrate how it is matched
with the rule specifications, undergoes a one-step
transformation, and results in a new problem state.

J Annotator Demographics

Our annotation team consists of four Master’s stu-
dents and three PhD students. The Master’s stu-
dents are responsible for completing the annotation
of informal proof steps, while the Ph.D students fo-
cuse on formalizing the informal proofs into Lean.
The four Master’s students holds a Master’s degree
in Computer Science. They have received rigorous
mathematical training and possess in-depth knowl-
edge in the process of reducing trigonometric ex-
pressions. The three Ph.D students are in the field
of computer science specializing in formal theorem
proving. Four Master’s students firstly simplify the
trigonometric functions, then Ph.D students man-
ually translate these informal proofs to Lean and
submit them to the Lean theorem prover for cor-
rectness checking. The combined process of data
annotation and mathematical formalization took
one month to complete. The personnel involved in

3https://leanprover.github.io/documentation/

https://leanprover.github.io/documentation/

have

24.5%

rw

23.5%

ring

17.0%

conv
10.2%

simp
7.6%

focus

7.6%

others

9.7%

(a) TG-1

have

24.4%

rw

20.7%

ring

16.9%
conv

13.1%

simp
6.5%

focus

6.5%

others

11.8%

(b) TG-2

have

24.2%

rw

19.4%

ring

16.9%
conv

14.4%

field_simp
6.3%

focus

6.2%

others

12.6%

(c) TG-3

rw

37.4%

have

20.6% ring

10.0%
apply

5.8%

repeat5.8%

linarith

5.5%

others

15.0%

(d) TRIGO-real

Figure 6: Tactic distribution of TG-1, TG-2, TG-3, TRIGO-real

the formalization work are also co-authors of our
work.

K Data Example

We show examples from our dataset in this section.
Table tables 18 to 25 shows typical examples in
TRIGO. This data can be compiled correctly within
Lean-Gym, and after compilation, we interact with
Lean-Gym to obtain the final training data.

L Large Language Model test examples

In this section, we demonstrate examples of in-
context learning and zero-shot methods on large
language models. In contrast to the single-step
proof context learning in Table 6, the examples
of context learning presented in this section di-
rectly provide the entire proof. We find that it is
challenging for the model to provide correct proof.
Tables 30, 32, 26, and 28 show examples of our
in-context learning approach tested on our dataset
using GPT-3.5 and GPT-4 models. Tables 31, 33,
27, and 29 show the outputs of these models. We
find that LLMs have difficulty learning to use the
correct “have” tactic, which suggests that LLMs
may not be able to manipulate numbers and lack
generalization abilities such as the commonly used

techniques of grouping and factoring in trigonomet-
ric reduction.

We conduct numerous zero-shot tests on our
dataset using GPT-3.5 and GPT-4, employing the
prompt “Please help me prove the following lemma
using Lean: lemma Trigo_0 : [PROBLEM] :=”.
However, we find that GPT-4 tends to output a lot
of meaningless tactics, such as the case shown in
Table 35. Moreover, GPT-4 often generates tactics
that do not exist in the dependencies, as seen in
35. The example in Table 35 reveals that GPT-4 is
prone to making trivial assumptions. By comparing
the output of GPT-3.5 and GPT-4 in tables 34 to 37,
we observe that GPT-4 is more inclined to generate
“have” tactics, which is closer to the proof pattern
of our dataset.

The experiments above all indicate the limita-
tions of LLMs on our dataset. We leave to future
work on how to enable large language models to
acquire complex number combinations ability and
reduce illusions.

Tactic Function
field_simp The goal of field_simp is to reduce an expression in a field to an ex-

pression of the form n÷ d where neither n nor d contains any division
symbol.

simp In Lean, simp is a tactic that stands for "simplification." It is used to sim-
plify expressions and goals by applying a set of predefined rewrite rules
and simplification procedures. The purpose of simp is to automatically
transform complex or convoluted expressions into simpler forms, making
them easier to work with and reason about.

ring_exp A tactic for solving equations in commutative (semi)rings, where the
exponents can also contain variables.

ring Evaluate expressions in the language of commutative (semi)rings.
assumption The assumption tactic looks through the assumptions in context of the

current goal, and if there is one matching the conclusion, it applies it.
repeat assumption The repeat assumption tactic looks through the assumptions in context

of all goals, and if the assumption of the context of the current goal can
match the target, then it is applied.

left The tactic tries to solve the left disjunct immediately by assumption; if
that fails, it tries to focus on the right disjunct; and if that doesn’t work,
it invokes the assumption tactic.

refl In the proof language Lean, refl is an abbreviation for "reflexivity." It is
used as a tactic to automatically prove goals of the form a = a, where a
is any term or expression. Essentially, it asserts that any term is equal to
itself, which is a fundamental property of equality.

have In Lean, "have" is a keyword used in proof scripts to introduce a new
intermediate goal or hypothesis. It allows the user to assert a proposition
and then prove it separately before continuing with the rest of the proof.

conv In Lean, conv is a tactic that allows users to perform step-by-step rewrit-
ing and manipulation of expressions within a proof. It stands for "conver-
sion" and provides a flexible way to apply various rewrite rules, simplify
expressions, and rearrange terms.

to_lhs The to_lhs modifier is typically used within a tactic block, such as conv
or rewrite, to specify the side of the equation or expression that should
be modified. When to_lhs is used, the tactic will focus on the LHS of the
equation or expression and perform the specified operations on that side.

rw In Lean, rw is a tactic that stands for "rewrite". It is used to apply a
specific rewrite rule to an expression or goal within a proof. The rw tactic
is commonly used to replace occurrences of a specified term or pattern
with a different term or pattern according to a given equality.

apply In Lean, the apply tactic is used to apply a theorem or a hypothesis as a
rule to prove a goal or to generate new subgoals. It allows the user to use
an existing proposition to infer or establish other propositions.

congr_arg In Lean, congr_arg is a function that allows users to apply congruence
to a function applied to an argument. It is used to prove equalities by
reasoning about the effects of a function on its arguments.

Table 14: Examples of general tactic.

Identity Rule Name Example

sin_zero sin (0) = 0

sin_pi sin (π) = 0

sin_two_pi_div_three sin
(
2π
3

)
=

√
3
2

sin_three_pi_div_four sin
(
3π
4

)
=

√
2
2

sin_five_pi_div_six sin
(
5π
6

)
= 1

2

sin_pi_div_twelve sin
(
π
12

)
= −

√
2
4 +

√
6
4

sin_pi_div_two sin
(
π
2

)
= 1

sin_pi_div_three sin
(
π
3

)
=

√
3
2

sin_pi_div_four sin
(
π
4

)
=

√
2
2

sin_pi_div_six sin
(
π
6

)
= 1

2

cos_zero cos (0) = 1

cos_two_pi_div_three cos
(
2π
3

)
= −1

2

cos_three_pi_div_four cos
(
3π
4

)
= −

√
2
2

cos_five_pi_div_six cos
(
5π
6

)
= −

√
3
2

cos_pi cos (π) = −1

cos_pi_div_twelve cos
(
π
12

)
=

√
2
4 +

√
6
4

cos_pi_div_two cos
(
π
2

)
= 0

cos_pi_div_three cos
(
π
3

)
= 1

2

cos_pi_div_four cos
(
π
4

)
=

√
2
2

cos_pi_div_six cos
(
π
6

)
=

√
3
2

tan_zero tan (0) = 0

tan_pi tan (π) = 0

tan_two_pi_div_three tan
(
2π
3

)
= −
√
3

tan_three_pi_div_four tan
(
3π
4

)
= −1

tan_pi_div_twelve tan
(
π
12

)
= 2−

√
3

tan_pi_div_three tan
(
π
3

)
=
√
3

tan_pi_div_four tan
(
π
4

)
= 1

tan_pi_div_six tan
(
π
6

)
=

√
3
3

Table 15: Examples of identities in our pre-defined rule bank. Notations (1/3).

Identity Rule Name Example

sin_neg sin (X) = − sin (2 ∗ π ∗ K− X)

cos_neg cos (X) = cos (2 ∗ π ∗ K− X)

tan_neg tan (X) = − tan (π ∗ K− X)

sin_add_int_mul_two_pi sin (X) = sin (2 ∗ π ∗ K + X)

cos_add_int_mul_two_pi cos (X) = cos (2 ∗ π ∗ K + X)

sin_add_int_mul_two_pi_add_pi sin (X) = − sin (X + π ∗ (2 ∗ K + 1))

cos_add_int_mul_two_pi_add_pi cos (X) = − cos (X + π ∗ (2 ∗ K + 1))

tan_add_int_mul_pi tan (X) = tan (π ∗ K + X)

sin_neg_add_int_mul_two_pi_add_pi sin (X) = sin (−X + π ∗ (2 ∗ K + 1))

cos_neg_add_int_mul_two_pi_add_pi cos (X) = − cos (−X + π ∗ (2 ∗ K + 1))

sin_add_pi_div_two sin (X) = − cos
(
2 ∗ π ∗ K + X + π

2

)
sin_add_pi_div_two_add_pi sin (X) = cos

(
X + π ∗ (2 ∗ K + 1) + π

2

)
sin_neg_add_pi_div_two_add_pi sin (X) = − cos

(
−X + π ∗ (2 ∗ K + 1) + π

2

)
cos_add_pi_div_two cos (X) = sin

(
2 ∗ π ∗ K + X + π

2

)
cos_add_pi_div_two_add_pi cos (X) = − sin

(
X + π ∗ (2 ∗ K + 1) + π

2

)
cos_neg_add_pi_div_two_add_pi cos (X) = − sin

(
−X + π ∗ (2 ∗ K + 1) + π

2

)
tan_add_pi_div_two tan (X) = − 1

tan(π∗K+X+π
2)

sin_neg_add_pi_div_two sin (X) = cos
(
2 ∗ π ∗ K− X + π

2

)
cos_neg_add_pi_div_two cos (X) = sin

(
2 ∗ π ∗ K− X + π

2

)
tan_neg_add_pi_div_two tan (X) = 1

tan(π∗K−X+π
2)

sin_two_mul sin (2 ∗ X) = 2 ∗ sin (X) ∗ cos (X)

sin_three_mul sin (3 ∗ X) = −4 ∗ sin3 (X) + 3 ∗ sin (X)

cos_two_mul_1 cos (2 ∗ X) = 2 ∗ cos2 (X)− 1

cos_two_mul_2 cos (2 ∗ X) = − sin2 (X) + cos2 (X)

cos_two_mul_3 cos (2 ∗ X) = 1− 2 ∗ sin2 (X)

cos_three_mul cos (3 ∗ X) = 4 ∗ cos3 (X)− 3 ∗ cos (X)

tan_two_mul tan (2 ∗ X) = 2∗tan(X)
1−tan2(X)

sin_sq_cos_two_mul sin (X)2 = 1−cos(2∗X)
2

cos_sq_cos_two_mul cos (X)2 = 1+cos(2∗X)
2

cos_eq_sin_two_mul cos (X) = sin(2∗X)
2∗sin(X)

sin_eq_sin_two_mul sin (X) = sin(2∗X)
2∗cos(X)

Table 16: Examples of identities in our pre-defined rule bank. Notations (2/3).

Identity Rule Name Example

sin_add_sin sin (X) + sin (Y) = 2 ∗ sin
(X+Y

2

)
∗ cos

(X−Y
2

)
sin_sub_sin sin (X)− sin (Y) = 2 ∗ sin

(X−Y
2

)
∗ cos

(X+Y
2

)
cos_add_cos cos (X) + cos (Y) = 2 ∗ cos

(X−Y
2

)
∗ cos

(X+Y
2

)
cos_sub_cos cos (X)− cos (Y) = −2 ∗ sin

(X−Y
2

)
∗ sin

(X+Y
2

)
tan_add_tan tan (X)+ tan (Y) = (1− tan (X) ∗ tan (Y)) ∗ tan (X + Y)

tan_sub_tan tan (X)− tan (Y) = (1 + tan (X) ∗ tan (Y)) ∗ tan (X− Y)

tan_sub_tan_2 tan (X)− tan (Y) = sin(X−Y)
cos(X)∗cos(Y)

tan_div_two_1 tan (X/2) = 1−cos(X)
sin(X)

tan_div_two_2 tan (X/2) = sin(X)
1+cos(X)

sin_mul_sin sin (X) ∗ sin (Y) = cos(X−Y)−cos(X+Y)
2

sin_mul_cos sin (X) ∗ cos (Y) = sin(X+Y)+sin(X−Y)
2

cos_mul_sin sin (Y) ∗ cos (X) = sin(X+Y)−sin(X−Y)
2

cos_mul_cos cos (X) ∗ cos (Y) = cos(X−Y)+cos(X+Y)
2

tan_mul_tan tan (X) ∗ tan (Y) = tan(X)−tan(Y)
tan(X−Y) − 1

tan_mul_tan_2 tan (X) ∗ tan (Y) = − tan(X)+tan(Y)
tan(X+Y) + 1

sin_add sin (X + Y) = sin (X) ∗ cos (Y) + sin (Y) ∗ cos (X)

sin_sub sin (X− Y) = sin (X) ∗ cos (Y)− sin (Y) ∗ cos (X)

cos_add cos (X + Y) = − sin (X) ∗ sin (Y) + cos (X) ∗ cos (Y)

cos_sub cos (X− Y) = sin (X) ∗ sin (Y) + cos (X) ∗ cos (Y)

tan_add tan (X + Y) = tan(X)+tan(Y)
1−tan(X)∗tan(Y)

tan_sub tan (X− Y) = tan(X)−tan(Y)
1+tan(X)∗tan(Y)

tan_eq_sin_div_cos tan (X) = sin(X)
cos(X)

sin_div_cos_eq_tan sin(X)
cos(X) = tan (X)

sin_sq_add_cos_sq sin2 (X) + cos2 (X) = 1

sin_sq sin2 (X) = 1− cos2 (X)

cos_sq cos2 (X) = 1− sin2 (X)

Table 17: Examples of identities in our pre-defined rule bank. Notations (3/3).

①

②

③

④

(a)

Begin

Success?

Input an

equation

Rule

matching

Expression

transform

End

Success?

Yes

Answer matched

No

NoDisplay new

expression

Yes

Display

expression

(b)
Figure 7: The interactive annotation system for trigonometry reduction. (a) The interface of our system. Region ①
shows the problem to be annotated. Region ② is the main interaction area where annotators input an equation for
the current step. The system then matches it with the rule bank, performs a one-step transformation, and outputs a
new problem state. Region ③ shows the annotation history and region ④ includes interactive buttons for annotators
to change or reset the problem, check examples, and trigonometry knowledge to help their annotation. (b) The
workflow of our annotation system.

focus{repeat {apply congr_arg _}},
simp,
ring,
conv {to_lhs, rw ← this,},
have : sin(5*pi/6) = 1/2,
rw sin_five_pi_div_six,

Split,

...Error

goals accomplished ✓

rw sin_eq_neg_sin_add_int_mul_two_pi_add_pi
(5*pi/6) (3),

rw sin_eq_neg_sin_add_int_mul_two_pi_add_pi
(5*pi/6) (2),

Search

state: ⊢ -sin(35*pi/6)=1/2

have : sin(5*pi/6) = -sin(35*pi/6), ... have : sin(pi/6)=-sin(35*pi/6),

state: 2 goals
⊢ sin(5*pi/6) = -sin(35*pi/6)
this : sin(5*pi/6) = -sin(35*pi/6)

⊢ -sin(35*pi/6) = 1/2

filed_simp,

ErrorError PathProof Path

Figure 8: Case 1. The light yellow dotted line indicates the remaining proof steps. Due to page constraints, we do
not draw the entire proof tree.

conv {to_rhs, rw ← this,},
have : sin(-pi) = sin(-4*pi/3) * cos(-pi/3) - sin(-pi/3) * cos(-4*pi/3),
have : sin(-pi) = sin((-4*pi/3) - (-pi/3)),
apply congr_arg,
ring,
rw this,
rw sin_sub,
ring,
conv {to_rhs, rw ← this,},
have : cos(-pi) - cos(pi) = - 2 * sin(0) * sin(-pi),

search failed

field_simp at *

Search

state: ⊢ cos (-pi) - cos pi = (-2) * (-sin (-pi / 3) * cos ((-4) * pi / 3)
+ sin ((-4) * pi / 3) * cos (-pi / 3)) * sin 0

have : (-2) * sin(0) * (sin((-4) * pi / 3) * cos(-pi / 3) - sin(-pi / 3) * cos((-4) * pi / 3))
= -2*(-sin(-pi/3)*cos(-4*pi/3) + sin(-4*pi/3)*cos(-pi/3))*sin(0),

state: 2 goals
⊢ (-2) * sin 0 * (sin ((-4) * pi / 3) * cos (-pi / 3) - sin (-pi / 3) * cos ((-4) * pi / 3))
= (-2) * (-sin (-pi / 3) * cos ((-4) * pi / 3) + sin ((-4) * pi / 3) * cos (-pi / 3)) * sin 0
this : (-2) * sin 0 * (sin ((-4) * pi / 3) * cos (-pi / 3) - sin (-pi / 3) * cos ((-4) * pi / 3))
= (-2) * (-sin (-pi / 3) * cos ((-4) * pi / 3) + sin ((-4) * pi / 3) * cos (-pi / 3)) * sin 0
⊢ cos (-pi) - cos pi = (-2) * (-sin (-pi / 3) * cos ((-4) * pi / 3) + sin ((-4) * pi / 3) * cos (-pi / 3)) * sin 0

state:this : (-2) * sin 0 * (sin ((-4) * pi / 3) * cos (-pi / 3) - sin (-pi / 3) * cos ((-4) * pi / 3))
= (-2) * (-sin (-pi / 3) * cos ((-4) * pi / 3) + sin ((-4) * pi / 3) * cos (-pi / 3)) * sin 0
⊢ cos (-pi) - cos pi = (-2) * (-sin (-pi / 3) * cos ((-4) * pi / 3) + sin ((-4) * pi / 3) * cos (-pi / 3)) * sin 0

Figure 9: Case 2. The light yellow dotted line indicates the remaining proof steps. Due to page constraints, we do
not draw the entire proof tree.

Algorithm 1 Theorem Generator
1: function GENERATE_THEOREM(len of step L, rule listR)
2: Randomly select a rule fromR:r0 ∼ Uniform(R).
3: Initialize the parameters X , Y , K in r0 and get its initialization state in lean and expression:

Pstate, eq0 ← INITIALIZE(r0).
4: Init Tacticprove, Pcount: ∅, 0← INIT()
5: for t← 1 to 200 do
6: Randomly select a rule fromR:Rt ∼ Uniform(R).
7: Match the formula Rl on the left side of the Rt equation with the formulas el and er

on the left and right sides of eqt−1, and return the matching parameters. Since there are multi-
ple matches, a matching result can be randomly selected: Paral ← RULE_MATCHING(Rl, el),
Parar ← RULE_MATCHING(Rl, er).

8: Substitute the parameters into Rt.
9: if Paral is not NULL then

10: Rl ← PARAMETER_REPLACEMENT(Rl, Paral),
11: Rr ← PARAMETER_REPLACEMENT(Rr, Paral),
12: else if Parar is not NULL then
13: Rl ← PARAMETER_REPLACEMENT(Rl, Parar),
14: Rr ← PARAMETER_REPLACEMENT(Rr, Parar),
15: end if
16: Perform equation replacement operation: eqt ← EQUATION_REPLACEMENT(eqt−1, Rl, Rr).
17: Get the tactics corresponding to the rule: TacticsRt ← Rt.GET_TACTICS(eqt−1, Rl, Rr).
18: Obtain the tactic of adjusting the cross terms in eqt−1:
19: if Paral is not NULL then
20: Tacticsterm ← GET_CROSS_TERM(el, Rp), if Paral is not NULL.
21: else if Parar is not NULL then
22: Tacticsterm ← GET_CROSS_TERM(er, Rp), elif Parar is not NULL.
23: end if
24: Apply TacticsRt and Tacticsterms to LEAN-GYM to obtain the GOALlean in lean:

GOALlean, ERROR← APPLY_TACTICS(Tacticsterm, TacticsRt).
25: if ERROR is not NULL then
26: continue
27: end if
28: Align the proof goal equation eqlean in GOALlean with eqt: Tacticsalign ←

GET_CROSS_TERM(eqlean, eqt).
29: Apply Tacticsalign to lean: GOALt, ERROR← APPLY_TACTICS(Tacticsalign).
30: if ERROR is not NULL then
31: continue
32: end if
33: Tacticprove ← Tacticprove ∪ Tacticsalign ∪ Tacticsterm ∪ TacticsRt .
34: Pcount ← Pcount + 1.
35: if Pcount = L then
36: break
37: end if
38: end for
39: return Tacticprove
40: end function

lemma Trigo_0_17_FTGL : sin(-19*pi/6)=1/2:=
begin

have : sin(-19*pi/6) = sin(-7*pi/6),
{

rw sin_eq_sin_add_int_mul_two_pi (-19*pi/6) (1),
repeat {apply congr_arg _},
simp,
linarith,

},
rw this,
have : sin(-7*pi/6) = -sin(7*pi/6),
{

rw sin_eq_neg_sin_neg_add_int_mul_two_pi (-7*pi/6) (0),
repeat {apply congr_arg _},
simp,
linarith,

},
rw this,
have : sin(7*pi/6) = -sin(pi/6),
{

rw sin_eq_neg_sin_add_int_mul_two_pi_add_pi (7*pi/6) (-1),
repeat {apply congr_arg _},
simp,
linarith,

},
rw this,
rw sin_pi_div_six,
norm_num,

end

Table 18: Example 1 of TRIGO-real

lemma Trigo_5_36_KOPV
(h0 : sin(pi/18) ≥ 0)
(h1 : -cos(pi/18) + sin(pi/18) ≤ 0)
(h2 : -sin(pi/18) + cos(pi/18) ̸= 0) :
sqrt(1 - sin(pi/9))/(-sqrt(1 - cos(17*pi/18)**2) + cos(35*pi/18))=1:=

begin
rw ← sin_sq,
have : sin(pi/9) = 2*sin(pi/18)*cos(pi/18),
{

have : sin (pi/9) = sin(2*(pi/18)),
{

apply congr_arg,
ring,

},
rw this,
rw sin_two_mul,

},
rw this,
have : 1 - 2*sin(π/18)*cos(π/18) = sin(pi/18)**2 + cos(pi/18)**2
- 2*sin(pi/18)*cos(pi/18),
{

rw sin_sq_add_cos_sq,
},
rw this,
have : sin(pi/18)**2 + cos(pi/18)**2 - 2*sin(pi/18)*cos(pi/18) =
(-cos(pi/18) + sin(pi/18))**2,
{

ring_exp,
},
rw this,
have : sin(17*pi/18) = sin(pi/18),
{

rw sin_eq_sin_neg_add_int_mul_two_pi_add_pi (17*pi/18) (0),
repeat {apply congr_arg _},
simp,
linarith,

},
rw this,
have : cos(35*pi/18) = cos(pi/18),
{

rw cos_eq_cos_neg_add_int_mul_two_pi (35*pi/18) (1),
repeat {apply congr_arg _},
simp,
linarith,

},
rw this,
repeat {rw sqrt_sq_eq_abs},
rw abs_eq_self.mpr h0,
rw abs_eq_neg_self.mpr h1,
norm_num,
field_simp,

end

Table 19: Example 2 of TRIGO-real

lemma Trigo_0 : sin(107*pi)=0:=
begin
have : cos(pi/2) = sin(107*pi),
{

rw cos_eq_sin_add_pi_div_two_add_int_mul_two_pi (pi/2) (53),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
conv {to_lhs, rw ← this,},
have : cos(pi/2) = 0,
{

rw cos_pi_div_two,
},
rw this,
end

Table 20: Example 1 of TG-1

lemma Trigo_3 : -sin(-pi/4)**2 + cos(-pi/4)**2=- sin(51*pi):=
begin
have : cos(-pi/2) = -sin(-pi/4) ** 2 + cos(-pi/4) ** 2,
{

have : cos(-pi/2) = cos(2*(-pi/4)),
{

apply congr_arg,
ring,

},
rw this,
rw cos_two_mul',
ring,

},
conv {to_lhs, rw ← this,},
have : cos(-pi/2) = - sin(51*pi),
{

rw cos_eq_neg_sin_add_pi_div_two_add_int_mul_two_pi_add_pi
(-pi/2) (25),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
rw this,
end

Table 21: Example 2 of TG-1

lemma Trigo_1 (h0:sin(1187*pi/12) ̸= 0) (h1:(2*sin(1187*pi/12))̸= 0):
-sin(1187*pi/6)/(2*sin(1187*pi/12))=sqrt(2) / 4 + sqrt(6) / 4:=
begin
have : -(sin(1187*pi/6) / (2*sin(1187*pi/12))) = -sin(1187*pi/6)
/(2*sin(1187*pi/12)),
{

field_simp at *,
},
conv {to_lhs, rw ← this,},
have : cos(1187*pi/12) = sin(1187*pi/6) / (2*sin(1187*pi/12)),
{

have : sin(1187*pi/6) = sin(2*(1187*pi/12)),
{

apply congr_arg,
ring,

},
rw this,
rw sin_two_mul,
field_simp at *,
ring,

},
conv {to_lhs, rw ← this,},
have : cos(pi/12) = -cos(1187*pi/12),
{

rw cos_eq_neg_cos_neg_add_int_mul_two_pi_add_pi (pi/12) (49),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
conv {to_lhs, rw ← this,},
have : cos(pi/12) = sqrt(2)/4 + sqrt(6)/4,
{

rw cos_pi_div_twelve,
},
rw this,
end

Table 22: Example 1 of TG-2

lemma Trigo_2 (h0 : cos((4*pi/3)/2) ̸= 0) (h1 : (cos(4*pi/3)+1) ̸= 0)
(h2 : (1+cos(4*pi/3))̸= 0) : cos(-5*pi/6)/(cos(4*pi/3)+1)=-sqrt(3):=
begin
have : cos((-5)*pi/6)/(cos(4*pi/3)+1) = cos(-5*pi/6)/(cos(4*pi/3)+1),
{

field_simp at *,
},
have : sin(4*pi/3) = cos(-5*pi/6),
{

rw sin_eq_cos_neg_add_pi_div_two_add_int_mul_two_pi (4*pi/3) (0),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
conv {to_lhs, rw ← this,},
have : sin(4*pi/3)/(1+cos(4*pi/3)) = sin(4*pi/3)/(cos(4*pi/3) + 1),
{

field_simp at *,
repeat {left},
ring,

},
conv {to_lhs, rw ← this,},
have : tan(2*pi/3) = sin(4*pi/3) / (1 + cos(4*pi/3)),
{

have : tan(2*pi/3) = tan((4*pi/3)/2),
{

apply congr_arg,
ring,

},
rw this,
rw tan_div_two',
repeat {assumption},

},
conv {to_lhs, rw ← this,},
have : tan(2*pi/3) = - sqrt(3),
{

rw tan_two_pi_div_three,
},
rw this,
end

Table 23: Example 2 of TG-2

lemma Trigo_2 (h0:cos(-pi/2)̸= 0) (h1:(2*cos(-pi/2))̸= 0):-cos(0)*cos(229*pi/2)
+ sin(0) * sin(-pi)/(2*cos(-pi/2))=0:=
begin
have : -cos(0) * cos(229*pi/2) + sin(0) * (sin(-pi) / (2*cos(-pi/2))) = -cos(0)
*cos(229*pi/2) + sin(0)*sin(-pi)/(2*cos(-pi/2)),
{

field_simp at *,
},
conv {to_lhs, rw ← this,},
have : sin(-pi/2) = sin(-pi) / (2 * cos(-pi/2)),
{

have : sin(-pi) = sin(2*(-pi/2)),
{

apply congr_arg,
ring,

},
rw this,
rw sin_two_mul,
field_simp at *,
ring,

},
conv {to_lhs, rw ← this,},
have : cos(0) * -cos(229*pi/2) + sin(0) * sin(-pi/2) = -cos(0)*cos(229*pi/2)
+ sin(0)*sin(-pi/2),
{

field_simp at *,
},
conv {to_lhs, rw ← this,},
have : cos(-pi/2) = -cos(229*pi/2),
{

rw cos_eq_neg_cos_add_int_mul_two_pi_add_pi (-pi/2) (57),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
conv {to_lhs, rw ← this,},
have : sin(0)*sin(-pi/2) + cos(0)*cos(-pi/2) = cos(0)*cos(-pi/2) + sin(0)*sin(-pi/2),
{

field_simp at *,
},
conv {to_lhs, rw ← this,},
have : cos(pi/2) = sin(0) * sin(-pi/2) + cos(0) * cos(-pi/2),
{

have : cos(pi/2) = cos((0) - (-pi/2)),
{

apply congr_arg,
ring,

},
rw this,
rw cos_sub,
ring,

},
conv {to_lhs, rw ← this,},
have : cos(pi/2) = 0,
{

rw cos_pi_div_two,
},
rw this,
end

Table 24: Example 1 of TG-3

lemma Trigo_0_7_HOEW_extend : -2*sin(709*pi/12)*cos(709*pi/12)=-1/2:=
begin
have : -(2*sin(709*pi/12) * cos(709*pi/12)) =
-2*sin(709*pi/12)*cos(709*pi/12),
{

field_simp at *,
},
conv {to_lhs, rw ← this,},
have : sin(709*pi/6) = 2 * sin(709*pi/12) * cos(709*pi/12),
{

have : sin(709*pi/6) = sin(2*(709*pi/12)),
{

apply congr_arg,
ring,

},
rw this,
rw sin_two_mul,

},
conv {to_lhs, rw ← this,},
have : sin(163*pi/6) = -sin(709*pi/6),
{

rw sin_eq_neg_sin_add_int_mul_two_pi_add_pi (163*pi/6) (45),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
conv {to_lhs, rw ← this,},
have : sin(23*pi/6) = sin(163*pi/6),
{

rw sin_eq_sin_neg_add_int_mul_two_pi_add_pi (23*pi/6) (15),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
conv {to_lhs, rw ← this,},
have : sin(23*pi/6) = -sin(pi/6),
{

rw sin_eq_neg_sin_neg_add_int_mul_two_pi (23*pi/6) (2),
repeat {apply congr_arg _},
simp,
linarith,

},
rw this,
rw sin_pi_div_six,
norm_num,
end

Table 25: Example 1 of TG-E

lemma Trigo_169 : sin(69*pi/2)=- sin(-pi) ** 2 + cos(-pi) ** 2:=
begin
have : cos(-2*pi) = sin(69*pi/2),
{

rw cos_eq_sin_add_pi_div_two_add_int_mul_two_pi (-2*pi) (18),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
conv {to_lhs, rw ← this,},
have : cos(-2*pi) = - sin(-pi) ** 2 + cos(-pi) ** 2,
{

have : cos(-2*pi) = cos(2*(-pi)),
{

apply congr_arg,
ring,

},
rw this,
rw cos_two_mul',
ring,

},
rw this,
end

lemma Trigo_80 : sin(475*pi/6)=1 - 2 * sin(pi/3) ** 2:=
begin
have : cos(2*pi/3) = sin(475*pi/6),
{

rw cos_eq_sin_add_pi_div_two_add_int_mul_two_pi (2*pi/3) (39),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
conv {to_lhs, rw ← this,},
have : cos(2*pi/3) = 1 - 2 * sin(pi/3) ** 2,
{

have : cos(2*pi/3) = cos(2*(pi/3)),
{

apply congr_arg,
ring,

},
rw this,
rw cos_two_mul'',

},
rw this,
end

Please simulate the above two proofs and write code to prove the following lemma with theorem proving language Lean.
Please enter the code edit box.

lemma Trigo_209 : sin(181*pi/3)*cos(pi/6)=cos(-pi/3) / 2 + cos(0) / 2:=

Table 26: Examplers 1 for GPT-4

lemma Trigo_209 : sin(181 * pi / 3) * cos(pi / 6) = cos(-pi / 3) / 2 +
cos(0) / 2 :=
begin
have h1 : sin(181 * pi / 3) = cos(pi / 3),
{

rw cos_eq_sin_add_pi_div_two_add_int_mul_two_pi (pi / 3) (30),
focus {repeat {apply congr_arg _}},
simp,
ring,

},
have h2 : cos(pi / 6) = sin(pi / 2 - pi / 6),
{

rw sin_eq_cos_add_pi_div_two_subtract (pi / 2 - pi / 6),
},
rw [h1, h2],
have h3 : pi / 3 = pi / 2 - pi / 6,
{

apply eq.symm,
rw [sub_eq_add_neg, add_comm, sub_eq_add_neg],
simp,

},
rw h3,
have h4 : cos(pi / 2 - pi / 3) = cos(-pi / 3) / 2 + cos(0) / 2,
{

rw cos_half_angle_sub,
simp,
ring,

},
rw h4,
end

Table 27: Output 1 of GPT-4.

lemma Trigo_210 : sin(pi/6)*cos(pi/2)+sin(pi/2)*cos(pi/6)
=sqrt(3)/2:=

begin
have : sin(2*pi/3) = sin(pi/6) * cos(pi/2) + sin(pi/2) * cos(pi/6),
{

have : sin(2*pi/3) = sin((pi/6) + (pi/2)),
{

apply congr_arg,
ring,

},
rw this,
rw sin_add,
ring,

},
conv {to_lhs, rw ← this,},
have : sin(2*pi/3) = sqrt(3) / 2,
{

rw sin_two_pi_div_three,
},
rw this,
end

Please use the theorem proving language lean to imitate the above example to prove the following
lemma:

lemma Trigo_254 : sin(11*pi/12)*cos(-pi/6)+sin(-pi/6)*cos(11*pi/12)
= sqrt(2)/2:=

begin
have : sin(3*pi/4)=sin(11*pi/12)*cos(-pi/6)+sin(-pi/6)*cos(11*pi/12),
{

have : sin(3*pi/4) = sin((11*pi/12) + (-pi/6)),
{

apply congr_arg,
ring,

},
rw this,
rw sin_add,
ring,

},
conv {to_lhs, rw ← this,},
have : sin(3*pi/4) = sqrt(2) / 2,
{

rw sin_three_pi_div_four,
},
rw this,
end

Please use the theorem proving language lean to imitate the above example to prove the following
lemma:

lemma Trigo_436 : -sin(379*pi/2)=sin(-2*pi) * cos(pi/2) + sin(pi/2)

* cos(-2*pi):=

Table 28: Examplers 2 for GPT-4

begin
have : -sin(379pi/2) = sin(-2pi) * cos(pi/2) + sin(pi/2) * cos(-2pi),
{

have : -sin(379pi/2) = sin((-2pi) + (381pi/2)),
{

apply congr_arg,
rw [mul_comm (-2) pi, mul_comm (381/2) pi],
ring,

},
rw this,
rw sin_add,
ring,

},
conv {to_lhs, rw ← this,},
have : -sin(379pi/2) = sin(pi/2),
{

rw neg_sin_periodicity,
rw mul_comm,
have : (379 * (pi / 2)) % (2 * pi) = pi / 2,
{

-- we have 379pi/2 = 189*pi + pi/2
rw [eq_sub_iff_add_eq, sub_mul, add_halves],
have : 379 = 2 * 189 + 1, by linarith,
rw [this, mul_add, mul_one, add_assoc],

},
rw this,

},
rw this,
end

Table 29: Output 2 of GPT-4.

lemma Trigo_169 : sin(69*pi/2)=- sin(-pi) ** 2 + cos(-pi) ** 2:=
begin
have : cos(-2*pi) = sin(69*pi/2),
{

rw cos_eq_sin_add_pi_div_two_add_int_mul_two_pi (-2*pi) (18),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
conv {to_lhs, rw ← this,},
have : cos(-2*pi) = - sin(-pi) ** 2 + cos(-pi) ** 2,
{

have : cos(-2*pi) = cos(2*(-pi)),
{

apply congr_arg,
ring,

},
rw this,
rw cos_two_mul',
ring,

},
rw this,
end

lemma Trigo_80 : sin(475*pi/6)=1 - 2 * sin(pi/3) ** 2:=
begin
have : cos(2*pi/3) = sin(475*pi/6),
{

rw cos_eq_sin_add_pi_div_two_add_int_mul_two_pi (2*pi/3) (39),
focus{repeat {apply congr_arg _}},
simp,
ring,

},
conv {to_lhs, rw ← this,},
have : cos(2*pi/3) = 1 - 2 * sin(pi/3) ** 2,
{

have : cos(2*pi/3) = cos(2*(pi/3)),
{

apply congr_arg,
ring,

},
rw this,
rw cos_two_mul'',

},
rw this,
end

Please simulate the above two proofs and write code to prove the following lemma with theorem
proving language Lean. Please enter the code edit box.

Table 30: Examplers 1 for GPT-3.5

lemma Trigo_260 : sin(181*pi/3)cos(pi/6) = -sin(pi/3)cos(pi/6):=
begin
have : sin(181*pi/3)cos(pi/6) = -sin(pi/3)cos(pi/6),
{

repeat {rw [mul_comm _ (cos _)]},
have eq1 : 181pi/3 = 60(3) + pi/3, ring,
rw [sin_add,sin_pi,cos_pi,zero_mul,add_zero, neg_zero,
sin_pi_div_two,cos_pi_div_two, mul_one,cos_pi_div_six],
rw [sin_eq_cos_sub_pi_div_two,sin_eq_cos_sub_pi_div_two pi,
cos_zero],
rw [cos_add, cos_div_sqrt_three, sin_div_sqrt_three,
mul_div_cancel_left _ (show (2 ̸= 0), by norm_num)],
rw [eq1,sin_add,sin_pi,cos_pi,mul_neg_eq_neg_mul_symm,neg_zero,
cos_pi_div_two, mul_one, sin_pi_div_six],
rw [sin_eq_cos_sub_pi_div_two,sin_eq_cos_sub_pi_div_two pi,
cos_zero],
rw [cos_add,cos_div_sqrt_three,sin_div_sqrt_three,
mul_div_cancel_left _ (show (2 ̸= 0), by norm_num)],
ring,

},
rw this,
rw [cos_eq_sin_add_pi_div_two (-pi/3), cos_eq_sin_add_pi_div_two 0,
sin_pi_div_six, cos_pi_div_six],
ring,
end

Table 31: Output 1 of GPT-3.5.

lemma Trigo_210 : sin(pi/6)*cos(pi/2) + sin(pi/2)*cos(pi/6)
=sqrt(3)/2:=

begin
have : sin(2*pi/3) = sin(pi/6) * cos(pi/2) + sin(pi/2) * cos(pi/6),
{

have : sin(2*pi/3) = sin((pi/6) + (pi/2)),
{

apply congr_arg,
ring,

},
rw this,
rw sin_add,
ring,

},
conv {to_lhs, rw ← this,},
have : sin(2*pi/3) = sqrt(3) / 2,
{

rw sin_two_pi_div_three,
},
rw this,
end

Please use the theorem proving language lean to imitate the above example to prove the following
lemma:

lemma Trigo_254 : sin(11*pi/12)*cos(-pi/6)+sin(-pi/6)*cos(11*pi/12)
=sqrt(2)/2:=

begin
have : sin(3*pi/4)=sin(11*pi/12)*cos(-pi/6)+sin(-pi/6)*cos(11*pi/12),
{

have : sin(3*pi/4) = sin((11*pi/12) + (-pi/6)),
{

apply congr_arg,
ring,

},
rw this,
rw sin_add,
ring,

},
conv {to_lhs, rw ← this,},
have : sin(3*pi/4) = sqrt(2) / 2,
{

rw sin_three_pi_div_four,
},
rw this,
end

Please use the theorem proving language lean to imitate the above example to prove the following
lemma:

lemma Trigo_436 : -sin(379*pi/2)=sin(-2*pi) * cos(pi/2) + sin(pi/2)

* cos(-2*pi):=

Table 32: Examplers 2 for GPT-3.5

begin
rw [sin_neg,cos_neg,sin_two_pi,cos_two_pi,sin_pi_half,
cos_pi_half,zero_mul,add_zero],
rw [sin_pi,cos_pi,neg_zero,zero_add,mul_neg_eq_neg_mul_symmetric],
end

Table 33: Output 2 of GPT-3.5.

import data.real.basic
import analysis.special_functions.trigonometric.basic

open real

lemma Trigo_5 : -sin(538 * real.pi / 3) = cos(433 * real.pi / 6) :=
begin

-- Use the fact that sin(x + real.pi/2) = cos(x) and
-- cos(x + real.pi/2) = -sin(x)
have h : cos(433 * real.pi / 6) =
-sin(433 * real.pi / 6 + real.pi / 2),
{ rw cos_add_pi_div_two },

-- Simplify both sides of the equation
have h : 433 * real.pi / 6 = 538 * real.pi / 3,
{ rw [div_eq_div_iff, mul_comm 433, mul_comm 538], norm_num },

-- Substitute h into h
have h : cos(538 * real.pi / 3)
= -sin(538 * real.pi / 3 + real.pi / 2),
{ rw [←h , h] },

-- Now,we use the periodicity of the sine function:
-- sin(x+2*real.pi*n) = sin(x) for any integer n
have h : sin(538 * real.pi / 3) = sin(538 * real.pi / 3 + 2

* real.pi * 179),
{ rw sin_periodic_int_mul_real.pi 179 },

-- Simplify the right-hand side of h
have h : 538 * real.pi / 3 + 2 * real.pi * 179 = 538 * real.pi / 3
+ real.pi / 2,
{ rw [div_eq_div_iff, mul_comm 538, mul_comm 3], norm_num },

-- Combine h , h , and h to get the final result
rw [←h , h , h],

end

Table 34: Zero-shot test case 1 of GPT-4.

import data.real.basic
import analysis.special_functions.trigonometric.basic

open real
open_locale real

lemma Trigo_0 : sin(107 * π) = 0 :=
begin

-- Use the periodicity of the sine function and
-- the fact that sin(pi*n)=0 for any integer n
have h : sin(107 * π) = sin(π * 107),
{ rw mul_comm },

-- Apply sin_int_mul_pi
rw [h, sin_int_mul_pi],

end

Table 35: Zero-shot test case 2 of GPT-4.

import data.real.basic
import trigonometry.exponential

lemma Trigo_5 : -sin(538 * real.pi / 3) = cos(433 * real.pi / 6) :=
begin

rw [←sub_eq_zero, ←sin_neg, sub_neg_eq_add, add_comm, sin_add],
rw [div_mul_comm, sin_int_mul_pi, cos_int_mul_pi, mul_zero,
sub_zero, add_zero, mul_one],
rw [div_mul_comm, cos_int_mul_pi, sin_int_mul_pi, mul_zero,
sub_zero, add_zero, mul_one],
simp only [int.cast_add, int.cast_sub, int.cast_bit0, int.cast_one],
norm_num,

end

Table 36: Zero-shot test case 1 of GPT-3.5.

import data.real.basic
import trigonometry.angle

lemma Trigo_0 : sin (107 * π) = 0 :=
begin

rw [mul_comm, ←mul_assoc, ←sin_int_add_pi, sin_pi],
norm_num,

end

Table 37: Zero-shot test case 2 of GPT-3.5.

common_calc_steps = [
"focus{repeat {apply congr_arg _}}",
"try {simp}",
"ring"

]

congrarg_linarith = [
"{",
"apply congr_arg",
"ring",
"},",

]

class sin_two_pi_div_three:
def __init__(self):

self.rule = "sin(2*pi/3)=sqrt(3)/2"
self.no_mapping = True
self.has_nonzero = False

def get_tactics(self, mapping, left, right):
return ["rw sin_two_pi_div_three"]

class tan_add_int_mul_pi:
def __init__(self):

self.rule = "tan(X)=tan(pi*K + X)"
self.has_nonzero = False

def get_tactics(self, mapping, left, right):
_k, _x = mapping[K], mapping[X]
steps = [

f'rw tan_eq_tan_add_int_mul_pi ({_x}) ({_k})',
] + common_calc_steps

return steps

class sin_neg_add_int_mul_two_pi_add_pi:
def __init__(self):

self.rule = "sin(X)=sin(-X + pi*(2*K + 1))"
self.has_nonzero = False

def get_tactics(self, mapping, left, right):
_k, _x = mapping[K], mapping[X]
steps = [

f'rw sin_eq_sin_neg_add_int_mul_two_pi_add_pi ({_x}) ({_k})',
] + common_calc_steps

return steps

class sin_two_mul:
def __init__(self):

self.rule = "sin(2*X)=2*sin(X)*cos(X)"
self.has_nonzero = False

def get_tactics(self, mapping, left, right):
_x = mapping[X]
have_goal = f"have : sin ({2*_x}) = sin(2*({_x}))"
steps = [

have_goal,
] + congrarg_linarith + \
["rw this",

"rw sin_two_mul",
"try {ring}"

]
return steps

Table 38: Examples of mapping rule to tactics. The Python classes corresponding to each rule are listed below, with
the ‘get_tactics‘ method used to return their corresponding tactics. ‘self.rule‘ specifies their corresponding rule,
‘self.no_mapping‘ specifies whether to replace the parameters X, Y, K in the rule, and ‘self.has_nonzero‘ specifies
whether to include the condition that the denominator is not zero before proof.

