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Abstract: When a robot is exploring an unknown dynamical system, we often
face the following important question: what is the minimum number of samples
needed for effective learning of its governing laws and accurate prediction of its
future evolution behavior, and how to select these critical samples? In this work,
we propose to explore this problem based on a design approach. Starting from
a small initial set of samples, we adaptively discover critical samples to achieve
increasingly accurate learning of the system evolution. We establish a multi-step
reciprocal prediction network where forward and backward evolution networks
are designed to learn the temporal evolution behavior in the forward and back-
ward time directions, respectively. Very interestingly, we find that the desired
network modeling error is highly correlated with the multi-step reciprocal predic-
tion error, which can be directly computed from the current system state. This
allows us to perform a dynamic selection of critical samples from regions with
high network modeling errors for dynamical systems. Our extensive experimen-
tal results demonstrate that our proposed method is able to dramatically reduce
the number of samples needed for effective learning and accurate prediction of
evolution behaviors of unknown dynamical systems by up to hundreds of times.
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1 Introduction

When a robot is exploring an unknown dynamical system, such as aerodynamic, climate, or fluid
dynamic systems, it needs to collect sensor data samples to learn, model, and predict the behavior
of the dynamic system. The behaviors of dynamical systems in the physical world are governed by
their underlying physical laws [1, 2]. In many areas of science and engineering, ordinary differential
equations (ODEs) and partial differential equations (PDEs) play important roles in describing and
modeling these physical laws [3, 4, 5, 6, 7, 8]. Recently, learning-based methods for complex and
dynamic system modeling have become an important area of research in machine learning [4, 9, 10].
There are two major approaches that have been explored. The first approach typically tries to identify
all the potential terms in the unknown governing equations from a priori dictionary, which includes
all possible terms that may appear in the equations [3, 11, 12, 4, 5, 13, 14, 15, 16]. The second
approach for data-driven learning of unknown dynamical systems is to approximate the evolution
operator of the underlying equations, instead of identifying the terms in the equations [8, 17, 18, 19].

Many existing data-driven approaches for learning the evolution operator typically assume the avail-
ability of sufficient data, and often require a large set of measurement samples to train the neural
network, especially for high-dimensional systems. For example, to effectively learn a neural net-
work model for the 2D Damped Pendulum ODE system, existing methods typically need more than
10,000 samples to achieve sufficient accuracy [8, 17]. This number increases dramatically with the
dimensions of the system. For example, for the 3D Lorenz system, the number of needed samples
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used in the literature is often increased to one million. We recognize that, in practical dynamical
systems, such as ocean, cardiovascular and climate systems, it is very costly to collect observation
samples. This leads to a new and important research question: what is the minimum number of sam-
ples needed for robust learning of the governing laws of an unknown system and accurate prediction
of its future evolution behavior?

In this work, we propose a critical sampling scheme for accurately learning the evolution behaviors
of unknown dynamical systems. We start with a small set of initial samples, then iteratively discover
and collect critical samples to obtain more accurate network modeling of the system. During critical
sampling, the basic rule is to select the samples from regions with high network modeling errors
so that these selected critical samples can maximally reduce the overall modeling error. However,
the major challenge here is that we do not know network modeling error. To address this challenge,
we establish a multi-step reciprocal prediction framework where a forward evolution network and
a backward evolution network are designed to learn and predict the temporal evolution behavior in
the forward and backward time directions, respectively. Our hypothesis is that, if the forward and
backward prediction models are both accurate, starting from an original state A, if we perform the
forward prediction for K times and then perform the backward prediction for another K times, the
final prediction result Ā should match the original state A. The error between Ā and A is referred to
as the multi-step reciprocal prediction error.

Very interestingly, we find that the network modeling error is correlated with the multi-step recipro-
cal prediction error. Note that multi-step reciprocal prediction error can be directly computed from
the current system state, without the need to know the ground-truth system state. This allows us
to perform a dynamic selection of critical samples from regions with high network modeling errors
and develop an adaptive learning method for dynamical systems. Our extensive experimental results
demonstrate that our proposed method is able to dramatically reduce the number of samples needed
for effective learning and accurate prediction of evolution behaviors of unknown dynamical systems.

2 Method

2.1 Problem Formulation

In this work, we focus on learning the evolution operator Φ∆ : Rn → Rn for autonomous dynamical
systems, which maps the system state from time t to its next state at time t + ∆: u(t + ∆) =
Φ∆(u(t)). It should be noted that, for autonomous systems, this evolution operator Φ∆ remains
invariant over time. It only depends on the time difference ∆. For an autonomous system, its
evolution operator completely characterizes the system evolution behavior [8, 17, 20].

Our goal is to develop a deep neural network method to accurately learn the evolution operator and
robustly predict the long-term evolution of the system using a minimum number of selected critical
samples. Specifically, to learn the system evolution over time, the measurement samples for training
the evolution network are collected in the form of pairs. Each pair represents two solution states
along the evolution trajectory at time instances t and t+∆. For simplicity, we assume that the start
time is t = 0. Using a high-accuracy system solver, we generate J system state vectors {uj(0)}Jj=1

at time 0 and {uj(∆)}Jj=1 at time ∆ in the computational domain D. Thus, the training samples are

SF = {[uj(0) → uj(∆)] : uj(0),uj(∆) ∈ Rn, 1 ≤ j ≤ J}. (1)

It is used to train the forward evolution network Fθ which approximates the forward evolution
operator Φ∆.

2.2 Multi-Step Reciprocal Prediction Error and Critical Sampling

In this section, we show that there is a strong correlation between the multi-step reciprocal prediction
error and the network modeling error of the temporal evolution network Fm

θ .

(1) Multi-step reciprocal prediction. In our multi-step reciprocal prediction scheme, we have
a forward temporal evolution network Fm

θ and a backward evolution network Gm
ϑ , which model
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Figure 1: Illustration of the proposed idea of multi-step reciprocal prediction error.

the system evolution behaviors in the forward and backward time directions. The forward and
backward evolution networks, Fθ and Gϑ, allow us to iteratively predict the system’s evolution in
both forward and backward directions. As illustrated in Figure 1, if the forward and backward
evolution networks Fm

θ and Gm
ϑ are both well-trained, accurately approximating the forward and

backward evolution operators, for an arbitrarily given system state u(0), the one-step reciprocal
prediction error E[u(0)] = ∥u(0)− ū(0)∥ = ∥u(0)−Gm

ϑ [Fm
θ [u(0)]]∥ should approach zero. Now,

we extend this one-step reciprocal prediction to K steps. As illustrated in Figure 1, starting from the
initial condition u(0), we repeatedly apply the forward evolution network Fm

θ to perform K-step
prediction of the system future states, û(k∆) = Fm,(k)

θ [u(0)] , where k = 1, · · · ,K−1,K, Fm,(k)
θ

represents the k-fold composition of Fm
θ :

Fm,(k)
θ = Fm

θ ◦ Fm
θ ◦ · · · ◦ Fm

θ︸ ︷︷ ︸
k−fold

. (2)

After K steps of forward evolution prediction, then, starting with û(K∆), we per-
form K steps of backward evolution prediction using network Gm

ϑ : ū(k∆) =

Gm,(K−k)
ϑ [û(K∆)], k = K − 1, · · · , 1, 0, where

Gm,(K−k)
θ = Gm

θ ◦ Gm
θ ◦ · · · ◦ Gm

θ︸ ︷︷ ︸
(K−k)−fold

(3)

and reach back to time t = 0. If the forward and backward evolution networks are both accurate,
the forward prediction path and the backward prediction path should match each other. Motivated
by this, we define the multi-step reciprocal prediction error for the forward evolution network Fm

θ

as the deviation between the forward and backward prediction paths:

E[u(0)] =
K∑

k=0

∥∥∥û(k∆)− ū(k∆)
∥∥∥2. (4)

Note that, when computing E[u(0)], we only need the current system state u(0), the forward and
backward evolution networks Fm

θ and Gm
ϑ .

(2) Critical sampling and adaptive evolution operator learning. In this work, we find that there
is a strong correlation between the network modeling error E [u(0)] and the multi-step reciprocal
prediction error E[u(0)]. This correlation allows us to predict E [u(0)] using E[u(0)] which can
be computed directly from the current system state without the need to know the ground-truth state.
Therefore, once we are able to predict the network modeling error E [u(0)] using the multi-step recip-
rocal prediction error E[u(0)], we can develop a critical sampling and adaptive evolution learning al-
gorithm. The central idea is to select samples from locations with large values of error E[u(0)] using
the following iterative peak finding algorithm. Note that u(0) ∈ Rn. Write u(0) = [u1, u2, · · · , un].
Let Sm

F = {[uj(0) → uj(∆)] : 1 ≤ j ≤ Jm} be the current sample set. To determine the locations
of new samples, {uj(0)|Jm + 1 ≤ j ≤ Jm+1}, we find the peak value of multi-step reciprocal
prediction error E[u(0)] at every sampling point u(0) in the solution space D. The corresponding
peak location is chosen to be uJm+1(0) and the corresponding sample [uJm+1(0) → uJm+1(∆)]
is collected. This process is repeated for Jm+1 − Jm times to collect Jm+1 − Jm samples in Ωm,
which is added to the current sample set:

Sm+1
F =Sm

F

⋃
Ωm={[uj(0)→uj(∆)] : 1≤j≤Jm+1}. (5)
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Table 1: Samples for learning the system evolution using the baseline method and our method.

Dynamical System
Baseline Our Work

Ratio
Samples Prediction Error Samples Prediction Error

Damped Pendulum 14400 0.02630 ± 0.01200 417 0.02411 ± 0.00991 34.53
2D Nonlinear 14400 0.00037 ± 0.00021 925 0.00035 ± 0.00015 15.57
Lorenz System 1000000 0.19685 ± 0.07768 1765 0.19357 ± 0.05695 566.57
Viscous Burgers’ Eq. 500000 0.01679 ± 0.00878 19683 0.01652 ± 0.00818 25.40

Figure 2: The critical sampling and adaptive learning results on four dynamical systems.

3 Experimental Results

3.1 Experimental Settings

We consider four representative systems with ODEs and PDEs as their governing equations, as
summarized in Table 2 in Appendix. They include (1) the Damped Pendulum ODE equation, (2) a
nonlinear ODE equation, (3) the Lorenz system, and (4) the Viscous Burgers’ equation (PDE). In
Appendix, we provide detailed experimental settings and implementation details.

3.2 Performance Results

We choose the evolution learning method developed in [8, 17] as our baseline. On top of this
method, we implement our proposed method of critical sampling and adaptive evolution learning.
We demonstrate that, to achieve the same modeling error, our method needs much fewer samples.

Table 1 compares the numbers of samples needed for learning the system evolution by the baseline
method and our critical sampling and adaptive learning method. The prediction errors are evalu-
ated on 50 arbitrarily chosen solution trajectories in the computational domain. Average errors and
standard deviations are reported for each dynamical system. For example, for the Lorenz system,
it needs 1,000,000 samples to achieve the modeling error of 0.197. Using our proposed critical
sampling method, the number of samples can be reduced to 1,765, while achieving an even smaller
modeling error 0.194. The number of samples has been reduced by 567 times. For the Viscous
Burgers’ PDE system, the number of samples is also reduced by 25 times.

Figure 2 shows the performance comparison results for the four dynamical systems listed in Table
2. In each sub-figure, the horizontal dashed line shows the average network modeling error achieved
by the baseline method for the number of samples shown in the legend. This number is empirically
chosen since it is needed for the network to achieve a reasonably accurate and robust learning per-
formance. We can see that as more and more samples are selected by our critical sampling method,
the network modeling error quickly drops below the average modeling error of the baseline method.

4 Conclusion

In this work, we have studied the critical sampling for the adaptive evolution operator learning
problem. We have made an interesting finding that the network modeling error is correlated with
the multi-step reciprocal prediction error. With this, we are able to perform a dynamic selection of
critical samples from regions with high network modeling errors and develop an adaptive sampling-
learning method for dynamical systems. Extensive experimental results demonstrate that our method
is able to dramatically reduce the number of samples needed for effective learning and accurate
prediction of the evolution behaviors.
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APPENDIX

In Appendix, we provide more algorithm implementation details, further discussion on related work,
further analytical understanding, and additional experimental results for in-depth understanding of
our proposed method.

A Experimental Settings and Implementation Details

In this section, we provide more details on system configurations and algorithm implementation.

A.1 Dynamical Systems Studied in this Work

In this paper, we consider four representative systems with ODEs and PDEs as their governing
equations. They include (1) the Damped Pendulum ODE in R2, (2) a nonlinear ODE system in R2,
(3) the Lorenz system (ODE) in R3, and (4) the Viscous Burgers’ equation (PDE). Their governing
equations are shown in Table 2.

Table 2: Overview of the 4 governing equation systems we demonstrate in this work.

SYSTEM GOVERNING EQUATIONS

DAMPED PENDULUM EQUATION

{
d
dt
u1 = u2,

d
dt
u2 = −0.2u2 − 8.91 sinu1.

A 2D NONLINEAR EQUATION

{
d
dt
u1 = u2 − u1

(
u1

2 + u2
2 − 1

)
,

d
dt
u2 = −u1 − u2

(
u1

2 + u2
2 − 1

)
.

LORENZ SYSTEM


d
dt
u1 = 10 (u2 − u1) ,

d
dt
u2 = u1 (28− u3)− u2,

d
dt
u3 = u1u2 − (8/3)u3.

VISCOUS BURGERS’ EQUATION

{
ut +

(
u2

2

)
x
= 0.1uxx, (x, t) ∈ (−π, π)× R+,

u(−π, t) = u(π, t) = 0, t ∈ R+.

A.2 System Configurations

For the ODE examples, we follow the procedure in Qin et al. [8] to generate the training data pairs
{[uj(0),uj(∆)]} as follows. First, we generate J system state vectors {uj(0)}Jj=1 at time 0 based
on a uniform distribution over a computational domain D. Here, D is the region where we are
interested in the solution space. It is typically chosen to be a hypercube prior to the computation,
which will be explained in the following. Then, for each j, starting from uj(0), we solve the true
ODEs for a time lag of ∆ using a highly accurate ODE solver to generate uj(∆). Notice that, once
the data is generated, we assume that the true equations are unknown, and the sampled data pairs
are the only known information during the learning process.

For the first example dynamical system listed in Table 2, its computational domain is D = [−π, π]×
[−2π, 2π]. We choose ∆ = 0.1. For the second system, the computational domain is D = [−2, 2]

2.
The time lag ∆ is set as 0.1. For the third system, the computational domain is D = [−25, 25]

2 ×
[0, 50]. The time lag ∆ is set as 0.01.

For the Viscous Burgers’ PDE system, because the evolution operator is defined between infinite
dimensional spaces, and we approximate it in a modal space, namely, a generalized Fourier space,
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in order to reduce the problem to finite dimensions as in Wu and Xiu [17]. We follow the same
procedure specified in Wu and Xiu [17] to choose a basis of the finite dimensional space Vn to
represent the solutions, then apply the projection operator to project the snapshot data to Vn to
obtain the training data in the generalized Fourier space. The choice of basis functions is fairly
flexible, any basis suitable for spatial approximation of the solution data can be used. Once the basis
functions are selected, a projection operator Pn : V → Vn is applied to obtain the solution in the
finite dimensional form.

The approximation space is chosen to be relatively larger as Vn = span {sin (jx) : 1 ⩽ j ⩽ n} with
n = 9. The time lag ∆ is taken as 0.05. The domain D in the modal space is set as [−1.5, 1.5] ×
[−0.5, 0.5] × [−0.2, 0.2]

2 × [−0.1, 0.1]
2 × [−0.05, 0.05]

2 × [−0.02, 0.02], from which we sample
the training samples.

Our task is to demonstrate how our proposed method is able to significantly reduce the number of
samples needed for evolution learning. Specifically, for the baseline method, we use random sam-
pling, randomly selecting locations in the solution space to collect samples for evolution learning.
For example, for the first dynamical system, Damped Pendulum system (ODE) in a 2-D space, the
baseline method use 14400 samples to achieve an average network modeling error of 0.026. We then
use our method to adaptively discover critical samples and refine the evolution network to reach the
same or even smaller network modeling error. We demonstrate that, to achieve the same modeling
error, our proposed method needs much fewer samples.

A.3 Implementation Details

In all examples, we use the recursive ResNet (RS-ResNet) architecture in He et al. [21], Qin et al.
[8], which is a block variant of the ResNet and has been proven in Qin et al. [8], Wu and Xiu [17] to
be highly suitable for learning flow maps and evolution operators.

For all the 4 systems, the batch size is set as 10. In the two 2-dimensional ODE systems, we use the
one-block ResNet method with each block containing 3 hidden layers of equal width of 20 neurons,
while in the 3-dimensional ODE system, we use the one-block ResNet method with each block
containing 3 hidden layers of equal width of 30 neurons. For the final PDE system, we use the
four-block ResNet method with each block containing 3 hidden layers of equal width of 20 neurons.
Adam optimizer with betas equal (0.9, 0.99) is used for training. In the two 2-dimensional ODE
systems, all the networks are trained with 150 epochs. In the Lorenz system and Viscous Burgers’
equation, all the networks are trained with 60 epochs. The initial learning rate is set as 10−3 , and
will decay gradually to 10−6 during the training process. All networks are trained using PyTorch on
one RTX 3060 GPU.

In the four example systems, we evaluate the performance of our models on time duration t ∈ [0, 20],
t ∈ [0, 10], t ∈ [0, 5], t ∈ [0, 2], respectively. For the first two ODE systems, the network modeling
error is evaluated by average MSE error at each time step on 50 different arbitrarily chosen solution
trajectories. For the Lorenz system, we evaluate the network by average MSE error at each time
step under 50 different initial conditions. For the final PDE system, the network modeling error
is evaluated by the average L2 norm error on 100 points at time t = 2 under 50 different initial
conditions.
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