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ABSTRACT

Fine-tuning large language models (LLMs) using reinforcement learning (RL) ob-
jectives has gained traction, especially in scenarios where labeled data is limited.
Building on its success in the language domain, recent efforts have extended RL-
based fine-tuning to multimodal tasks. Visual-RFT, for instance, applied Group
Relative Policy Optimization (GRPO) to fine-tune multimodal LLMs (MLLMs)
across various visual perception benchmarks, achieving notable improvements
over standard supervised fine-tuning (SFT). However, its scope was limited by
a narrow evaluation of RL adaptation strategies. In this work, we expand the
landscape by introducing new RL-based baselines on the same benchmarks and
conducting a deeper analysis of GRPO’s training dynamics. We identify key limi-
tations—such as reduced generation diversity, constrained policy exploration, and
suboptimal reward formulation and aggregation. To address these, we propose
DEVA: a framework that enhances Diversity via a flow-based training objective,
encourages broader policy Exploration through global entropic regularization, and
leverages alignment Volume as a non-verifiable reward combined with harmonic
Aggregation. Applied to GRPO and other RL methods, DEVA delivers consistent
gains in both quantitative (+5 to +13 points) and qualitative metrics. We further
provide visualizations, ablations, and analyses to unpack the contributions of each
component in our framework.

1 INTRODUCTION

Recent progress in large reasoning models (LRMs) (Jaech et al., 2024) has demonstrated substantial
gains on complex reasoning tasks, including mathematics and program synthesis. These improve-
ments are often attributed to enhanced inference-time strategies, where models perform intermediate
reasoning before producing final outputs. A notable example is o1 from OpenAI1, which reportedly
achieves significant performance boosts by fine-tuning on small, domain-specific datasets. While o1
remains closed-source, recent open-source efforts such as DeepSeek (Guo et al., 2025) highlights
the effectiveness of incorporating verifiable rewards (Lambert et al., 2024; Guo et al., 2025; Team
et al., 2025) during reinforcement learning (RL). In this paradigm, reward signals for algorithms like
Group Relative Policy Optimization (GRPO) (Shao et al., 2024) are computed using deterministic
rules derived from ground-truth solutions, offering more reliable and computationally efficient alter-
native to preference-based reward models (Ouyang et al., 2022b; Liu et al., 2024b; Zang et al., 2025)
or process reward models (Cui et al., 2025; Wang et al., 2025a) that provide fine-grained feedback.

Reinforcement Learning (RL) offers distinct advantages over Supervised Fine-Tuning (SFT) for
model adaptation. Prior work by Chu et al. (2025) demonstrates that RL-based fine-tuning promotes
generalization, whereas SFT tends to encourage memorization. Generalization is particularly critical
when working with small-scale datasets, as in our setting, to mitigate overfitting. In essence, SFT
relies on “ground truth” responses and typically requires large-scale data, employing next-token
prediction as the fine-tuning objective in multimodal large language models (MLLMs). Conversely,
RL-based fine-tuning iteratively updates the model by leveraging feedback signals derived from
its own responses across multiple episodes. This paradigm has been widely adopted in domains
such as scientific reasoning and code generation. In this work, we focus on fine-tuning for visual
perception tasks using the ViRFT benchmark (Liu et al., 2025b). ViRFT introduces rule-based,

1https://openai.com/form/rft-research-program
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verifiable reward functions for GRPO, augmented with reasoning steps to refine model outputs,
where rewards are aligned with task-specific metrics (e.g., IoU for object detection). This framework
achieves substantial improvements over standard SFT, underscoring the efficacy of RL in enhancing
visual perception and reasoning capabilities.

Method Avg. Std (↑)

GRPO 0.234
+ GFlowNet Loss 0.262
DAPO 0.201
+ GFlowNet Loss 0.240
BNPO 0.193
+ GFlowNet Loss 0.221

Figure 1: Effect of GFlowNet Loss on
Reward Avg. Std. for the LISA dataset.

In this work, we introduce a fine-tuning strategy de-
signed to improve upon RL-based adaptation. Unlike
test-time scaling approaches, which are orthogonal to our
focus, we concentrate exclusively on fine-tuning meth-
ods. Specifically, we target key limitations of GRPO
and related RL variants for MLLM adaptation. A pri-
mary challenge lies in lack of diversity in rule-based re-
ward functions, where outputs within a group often re-
ceive nearly identical rewards. This results in negligible
advantage estimates, leading to vanishing policy gradi-
ents and ineffective policy updates. To address this, we
propose incorporating GFlowNet-based loss (Bengio et al., 2023) as an auxiliary training objective
alongside the RL objective. GFlowNet training objectives have previously been employed to gen-
erate diverse reasoning trajectories in scientific domains (Yu et al., 2024a; Kwon et al., 2024). In
contrast, our goal is to enhance reward diversity within groups, thereby providing stronger learning
signals. To the best of our knowledge, this is the first work to integrate GFlowNet loss with GRPO.
As illustrated in Fig. 1, introducing GFlowNet objective significantly increases reward diversity
(measured by average standard deviation), which in turn translates into improved visual recognition
performance, as demonstrated in our experiments.

GRPO and related RL algorithms incorporate an additional regularization term to ensure training
stability, typically by penalizing the KL divergence between the per-token probability distributions
of the policy model and a reference model. However, this localized, token-level regularization con-
strains the policy model’s exploration capability, which can negatively impact visual perception
recognition performance. To address this limitation, we propose a global entropic divergence regu-
larization term. Specifically, we compute the entropy of the output distribution for all tokens sepa-
rately for both the policy and reference models, and then measure the divergence between these en-
tropy values. This global regularization encourages broader exploration of the policy space, which is
particularly important for visual perception tasks, as it facilitates adapting a general-purpose MLLM
to a specialized set of vision-oriented tasks.

Figure 2: Evolution of Pairwise Align-
ment Rewards on the LISA dataset.

In ViRFT, rewards are verifiable and derived from
ground-truth annotations used during fine-tuning. For
correct predictions, an accuracy-based reward is em-
ployed. However, no verifiable reward can be assigned
to intermediate reasoning traces due to the absence of
ground-truth reasoning steps. To address this gap, we
introduce an alignment reward that encourages consis-
tency between the reasoning trace, the input image, and
the query. As illustrated in Fig. 2, pairwise alignment
combined with aggregation introduces heterogeneous re-
ward dynamics, where individual reward pairs peak and
decline at different iterations. Empirically, this misalign-
ment leads to sub-optimal visual perception performance.
To overcome this limitation, we propose a reward that is
inversely proportional to the hyper-volume spanned by the three modalities, ensuring unified align-
ment across all components. Furthermore, we investigate strategies for aggregating multiple re-
wards. Our analysis reveals that simple arithmetic summation is sub-optimal, as dominant rewards
can overshadow others, degrading performance. In contrast, harmonic aggregation proves more ef-
fective by enforcing simultaneous improvement across all rewards. We term our framework DEVA,
reflecting its focus on enhancing Diversity and Exploration while incorporating alignment Volume
as a non-verifiable reward that can be Aggregated through principled mechanisms.

In summary, our key contributions are as follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1. We introduce a GFlowNet-based objective to improve reward diversity among sampled
responses, yielding stronger policy gradients and more effective training.

2. We enhance policy exploration via a global entropic divergence loss, providing coarse-
grained control over token-level probabilities.

3. We propose a novel non-verifiable reward that minimizes the hyper-volume among image,
query, and response representations, and explore aggregation strategies beyond arithmetic
summation, identifying harmonic aggregation as superior.

4. We evaluate our approach on the ViRFT benchmark, which includes tasks such as reasoning
grounding, classification, and detection. We also implement additional RL-based baselines
for comparison. Our proposed framework, DEVA, achieves significant improvements over
these baselines (Fig. 3) and is supported by extensive ablation studies and analyses.

2 RELATED WORK

Multimodal Large Language Models (MLLMs) are an extension of large language models, where
the model also processes visual input in addition to text input to produce a description of the visual
input based on the query. One of the very popular MLLM includes GPT-4o (OpenAI, 2024), which
produces excellent image understanding and reasoning. There are also other family of MLLMs that
processes both images and text (Wang et al., 2024; Li et al., 2024; Zhang et al., 2024; Liu et al.,
2024a). Recently, the MLLMs are involved in a two-stage training procedure: (a) pre-training and
(b) post-training. The post-training stage is to specialize the MLLM to a particular task i.e. math,
coding, perception. The post-training stage can involve fine-tuning using either supervised fine-
tuning (SFT) or reinforcement learning (RL). RL has been useful to improve performance as well
as instruction following and reasoning abilities. This has shown significant improvement in perfor-
mance for LLMs Ziegler et al. (2019); Stiennon et al. (2022); Ouyang et al. (2022a); Ramamurthy
et al. (2023); Zang et al. (2024); Carta et al. (2023); Sun et al. (2024); Snell et al. (2023); Abdulhai
et al. (2023); Zhou et al. (2024a); Yao et al. (2023). Recently, RL especially GRPO and their variants
have been used explicitly for multimodal perception and reasoning tasks Liu et al. (2025b); Zhou
et al. (2025); Huang et al. (2025); Tan et al. (2025). In this paper, we mainly focus on improving
GRPO and its variants for multimodal perception.

Figure 3: Effect of applying DEVA to various RL
algorithms with Qwen2VL-2B & 7B model on
LISA test set.

Reinforcement Fine-tuning Recently, there
has been advent of reasoning models like Ope-
nAI’s o1 Jaech et al. (2024), which produced
substantial improvement in performance in rea-
soning. This has been enabled through rein-
forcement learning (RL) techniques. In do-
main of LLMs, there has been studies that
have explored improving LLMs’ performance
in reasoning tasks such as solving mathemat-
ical problems (Shao et al., 2024; Yang et al.,
2024; Ying et al., 2024; Cai et al., 2024; Luong
et al., 2024) and coding (Shao et al., 2024; Yang
et al., 2024; Ying et al., 2024; Cai et al., 2024;
Luong et al., 2024). Recently, there has been
breakthrough in Deepseek-R1-Zero (Guo et al.,
2025), which showed that using RL (GRPO) can be enough to produce reasoning capabilities. For
MLLMs, RL has traditionally been used for reducing hallucinations and human preference model-
ing (Sun et al., 2023a; Zhao et al., 2023; Zhou et al., 2024b; Sun et al., 2023b; Yu et al., 2024b; Liu
et al., 2024d; Yu et al., 2024c; Zhou et al., 2024c). However, there were still some gaps on enhancing
reasoning and visual perception of MLLMs. Recently, ViRFT (Liu et al., 2025b) was introduced that
applied GRPO to a broad range of visual perception tasks. There has been a plethora of works ad-
dressing the limitations of GRPO. These include PPO (Schulman et al., 2017b), PAPO (Wang et al.,
2025b), DAPO (Yu et al., 2025), Dr GRPO (Liu et al., 2025a), BNPO (Xiao et al., 2025), GRPO-
CARE (Chen et al., 2025), CPPO (Lin et al., 2025) and GSPO (Zheng et al., 2025). Our method
also falls in this category where we improve reward diversity, aggregation and policy exploration.
Our proposed framework is shown in 4.
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Figure 4: Our proposed DEVA framework can be applied on top of GRPO and its variants. Our
contributions are highlighted with light bulb. This includes (a) diversity loss Ldiv to improve reward
diversity (b) regularization loss Lreg to improve exploration ability of policy model. (c) Alignment
volume for synchronized alignment of image, question and responses. (d) Reward aggregation.

3 METHODOLOGY

3.1 BACKGROUND

We introduce the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024), which
differs from methods like PPO (Schulman et al., 2017a) that requires a separate critic model, mak-
ing fine-tuning inefficient. GRPO avoids a critic by comparing rewards of candidate responses
for feedback, enabling efficient training. For an input query q, the policy generates responses
{o1, o2, . . . , oG} with rewards {r1, r2, . . . , rG}. Rewards are normalized into advantages to opti-
mize the per-token objective:

J(θ) = E[q,{oi}]
1

G

G∑
i=1

1

|oi|

{
min

[
πθ

πθold

Ai, clip
(

πθ

πθold

, 1− ϵ, 1 + ϵ

)
Ai

]
− βDKL [πθ∥πref ]

}
(1)

where Ai =
ri−mean({rj})

std({rj}) . πθold is the policy in previous iteration while πref is reference pol-
icy before fine-tuning starts. GRPO is often paired with verifiable rewards (Lambert et al., 2024;
Guo et al., 2025; Team et al., 2025), using direct verification function instead of a learned reward
model (Ouyang et al., 2022b; Liu et al., 2024b; Zang et al., 2025). This checks prediction-ground
truth matches, effective for tasks with objective outcomes like math and coding. For visual tasks,
rule-based rewards apply: classification uses accuracy (1 for correct, 0 otherwise), while detection
uses IoU and bounding box confidence. Both tasks include format reward to enforce structured
outputs (e.g., <think>, <answer>).

3.2 IMPROVED REWARD DIVERSITY

We motivated in Fig. 1 that GFlowNet based training objectives improve diversity of rewards. Here,
we proceed to describe it. We follow the notation in (Kwon et al., 2024). GFlowNets are derived
from token-wise Markov Decision Process (MDP) such that ⟨S,A, f⟩. The state space S consists of
tokens generated so far. The action space A is the vocabulary, from where the next token is gener-
ated. The transition function f is string concatenation, that facilitates the autoregressive process of
MLLMs by appending at input. This state transitions go on until model produces end-of-sequence
(EOS) token (⊤). To summarize, the trajectory obtained from this auto-regressive generation is de-
noted as o = on := o1:n⊤, which encompasses the automated output response. The initial state is
denoted as s0 := q, which is the question. The terminal state is denoted as sf := q; o.

Our model policy operates within this MDP, which is structured as a directed acyclic graph (DAG)
and enriched with a positive semi-definite function F called flow. We have three types of special
states in the graph: (a) initial state s0, which does not have any parent (b) terminal states sf with
no children (c) intermediate states s, which can have both parent and children states. The reward is
generally defined on terminal states.

4
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Flow is defined on trajectories τ := (s0 → s1 → · · · → sn) ∈ T , as F : T → R≥0. The state
flow F (s) is the sum of flows through all trajectories that pass through state s. On the other hand,
the edge flow F (s → s′) is the sum of flows through all trajectories that include transition from s to
s′. Since, all trajectories begin as s0, the flow F (s0) serves as a normalization constant Z used to
define a probability distribution over the graph.

A flow is Markovian if there is a distribution π(· | s) over children of each non-terminal state s such
that trajectory probability is given as π(τ) =

∏n
t=1 π(st | st−1) = F (τ)/Z. The forward model

policy i.e. the probability distribution π(st+1 | st) allows sampling of state trajectories i.e. output
tokens. There is a backward policy πB(st+1 | st). Both these policies can be expressed as flows
such that π(st+1 | st) = F (st → st+1)/F (st) and πB(st | st+1) = F (st → st+1)/F (st+1).

GFlowNets are trained using objectives that are derived from balance conditions. These balance
conditions ensure that the network flow aligns with the graph’s underlying dynamics. In our case,
we empirically found detailed balance condition to be effective. For the training objective, we
consider F in terms of π, i.e. F (s) = r(s)/π(sf | s) with the condition that r(s) := F (s → sf ) =
F (s)π(sf | s) for terminating states. Since, the auto-regressive text generation is forward only, we
consider the backward transition as redundant i.e. πB(s

′ | s) = 1. For a transition from state s to s′,
the condition can be expressed as F (s)π(s′ | s) = F (s′)πB(s | s′) . This constraint is expressed as
a loss function in the log space as follows:

Ldiv(F, π, πB) =
∑

s→s′∈A

(
log

F (s)π(s′ | s)
F (s′)πB(s | s′)

)2

The above expression can be rewritten in terms of reward and the policy with the following assump-
tions πB(·) = 1 and F (s) = r(s)/π(sf | s) as

Ldiv(π; r) =

n−1∑
t=1

(
log

r(ot | o1:t−1)π(⊤ | o1:t+1)

r(ot+1 | o1:t)π(⊤ | o1:t)
+ log π(ot+1 | ot)

)2

(2)

Here, π(·) = πθ(·). The reward r(ot | o1:t−1) is defined from reference model policy πref(·) as

log r(ot | o1:t−1) = log πref(ot | o1:t−1) + exp

(
1

γ
log πref(⊤ | o1:t−1)

)
(3)

This design of reward function is made such that model does not deviate that much from reference.
The presence of ⊤ makes sure that model can terminate appropriately. The hyper-parameter γ ∈
(0, 1] is used to control strength of reward signal.

3.3 BETTER EXPLORATION

As presented in Eq. 1, the GRPO loss function incorporates a KL divergence term between the
current policy distribution and a reference policy distribution. This regularization operates at the
token level, aiming to prevent excessive deviation from the reference distribution. However, because
the loss is computed locally on a per-token basis, it inherently limits exploration of the overall policy
space. To enable broader policy exploration, we introduce a sequence-level metric in place of the
token-level metric. This shift ensures that divergence is assessed globally, allowing greater flexibility
in token-level distributions. By default, we define the regularization term Lreg as the mean squared
error between the average entropy of the policy model and that of the reference model, expressed as

Lreg = || 1
m

m∑
t=1

Hθ
t − 1

n

n∑
t=1

Href
t ||22 (4)

Here, Lreg is computed for each group element, where m and n denote the sequence lengths of
the policy and reference models, respectively. Hθ

t and Href
t represent the entropy of the tth token

in the policy and reference outputs. Alternative regularization objectives have been considered in
Appendix J.
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3.4 ALIGNMENT HYPER-VOLUME AND REWARD AGGREGATION

We present the methodology for computing the alignment hyper-volume and its integration into the
reward framework. To estimate the volume in a high-dimensional space, we embed the image (i),
query (q), and response (o) into a shared representation space. Notably, full image information is
unnecessary; instead, a mask (m) is applied to extract relevant patches. This mask is derived by
thresholding self-attention scores obtained from image–text token interactions within the language
decoder (details in Appendix G). The embeddings are then computed using an encoder (e.g., a
foundational model) as follows:

fi = Φi(i
′), fq = Φq(q), fo = Φo(o), where i′ = i ◦m (5)

where ◦ denotes the Hadamard product. The resulting representations fi, fq , and fo are normalized
to unit norm, constraining them to the surface of a unit hypersphere. The enclosed volume of the
induced parallelotope is then computed via the determinant of the Gram matrix G:

V = Vol(fi, fq, fo) = (detG(fi, fq, fo))
1/2, G(fi, fq, fo) =

[
fi · fi fi · fq fi · fo
fq · fi fq · fq fq · fo
fo · fi fo · fq fo · fo

]
. (6)

Here, · denotes the inner product and det the determinant. The objective is to minimize V . To
convert this into a reward rv , we adopt an inverse relationship: rv = max((aV −1 − b)2, c), where
a, b, and c are hyperparameters. Although rv is non-verifiable (lacking ground truth), it can be com-
bined with verifiable rewards such as format reward rform and task reward rtask via an aggregation
function fagg:

r = fagg(rform, rtask, rv) (7)

By default, fagg is the arithmetic sum, though we also explore alternatives such as scaled geometric
mean, scaled harmonic mean, and learned aggregation networks (pre-trained separately from the
policy). Further details are provided in Appendix H.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We follow the experimental setup and evaluation protocol of (Liu et al., 2025b) to examine whether
our framework can adapt to and improve existing RL algorithms. We first consider few-shot learning,
where the model is fine-tuned on a small number of samples for classification and detection tasks.
Each sample consists of a triplet: question (q), image (i), and response (o). We compare against
several RL baselines, including PPO (Schulman et al., 2017b), PAPO (Wang et al., 2025b), DAPO
(Yu et al., 2025), Dr GRPO (Liu et al., 2025a), BNPO (Xiao et al., 2025), GRPO-CARE (Chen et al.,
2025), CPPO (Lin et al., 2025), GMPO (Zhao et al., 2025), and GSPO (Zheng et al., 2025), along
with a Chain-of-Thought (CoT) variant of supervised fine-tuning (SFT). Beyond few-shot tasks,
we evaluate on the LISA dataset (Lai et al., 2024), which focuses on reasoning-based grounding,
requiring the MLLM to interpret a query and predict bounding boxes for target objects. Following
(Liu et al., 2025b), we use Qwen2-VL-2/7B (Wang et al., 2024). Additional results on few-shot and
open-vocabulary detection using LVIS (Gupta et al., 2019), along with hyperparameter details, are
provided in Appendix B.

4.2 FEW-SHOT CLASSIFICATION

We evaluate our approach on four fine-grained image classification datasets: Flower102 (Nils-
back & Zisserman, 2008), Pets37 (Parkhi et al., 2012), FGVC-Aircraft (Maji et al., 2013), and
Car196 (Krause et al., 2013). These datasets pose significant challenges due to the high visual simi-
larity among categories. Table 1 reports the average accuracy across different shot settings for these
datasets (values in parentheses), alongside COCO few-shot detection results.

As shown in Table 1, recent RL algorithms such as PAPO, GSPO, and GRPO-CARE outperform
Visual-RFT, primarily due to sequence-level policy optimization strategies that optimize entire re-
sponses rather than token-wise references. PAPO, further specialize in multimodal settings by apply-
ing rewards to images and their perturbations. However, when DEVA and its ablations are applied on

6
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Table 1: Few-Shot results We conducted 1-shot, 2-shot, 4-shot, 8-shot, and 16-shot experiments on
8 categories from COCO dataset. In paranthesis, we show the results for fine-grained classification
dataset. Metric for COCO and fine-grained classification are mAP and accuracy respectively. We
also report 4 shot results on COCO using Qwen2-VL 7B. Best is bold and second best is underlined.

Model 1-shot 2-shot 4-shot 8-shot 16-shot 4-shot

Qwen2-VL-2B | 7B (Wang et al., 2024) 19.6 (56.0) 19.6 (56.0) 19.6 (56.0) 19.6 (56.0) 19.6 (56.0) 43.0

+ SFT 19.5 (51.7) 21.0 (58.8) 25.2 (55.6) 30.2 (60.3) 31.3 (64.0) 44.1
+ SFT-CoT 25.2 (59.2) 27.7 (64.2) 29.7 (66.4) 34.7 (70.2) 36.1 (74.2) 48.2
+ PPO (Schulman et al., 2017b) 31.2 (75.8) 38.5 (78.4) 36.7 (79.2) 40.3 (81.4) 43.9 (81.6) 51.6
+ PAPO (Wang et al., 2025b) 34.0 (81.1) 42.0 (84.2) 41.2 (81.9) 48.0 (85.9) 47.2 (86.2) 55.1
+ DAPO (Yu et al., 2025) 33.9 (81.3) 41.8 (83.9) 41.0 (82.3) 47.7 (86.2) 46.9 (86.6) 55.0
+ Dr GRPO (Liu et al., 2025a) 34.3 (82.2) 42.3 (84.5) 41.5 (83.0) 47.9 (86.5) 47.8 (86.6) 55.6
+ BNPO (Xiao et al., 2025) 34.2 (82.0) 42.3 (85.1) 40.8 (82.9) 46.7 (87.0) 47.5 (87.4) 54.2
+ GRPO-CARE (Chen et al., 2025) 34.7 (82.5) 43.0 (85.5) 41.7 (83.5) 47.5 (86.7) 48.3 (87.1) 55.3
+ CPPO (Lin et al., 2025) 34.3 (81.9) 43.1 (86.7) 42.7 (83.8) 47.9 (87.3) 48.2 (86.9) 55.9
+ GMPO (Zhao et al., 2025) 34.3 (81.5) 42.4 (84.0) 41.2 (83.0) 47.2 (85.9) 47.1 (86.5) 54.5
+ GSPO (Zheng et al., 2025) 35.0 (82.6) 43.3 (85.2) 42.6 (84.0) 48.9 (87.8) 48.3 (88.0) 56.0
+ Visual-RFT (Liu et al., 2025b) 33.6 (80.3) 41.5 (83.5) 40.6 (81.9) 47.4 (85.1) 46.8 (85.3) 54.3
+ DEVA (Div.) 36.8 (83.0) 44.2 (86.9) 43.9 (84.5) 49.9 (88.2) 49.5 (88.7) 57.6
+ DEVA (Div. + Explor.) 37.9 (84.1) 45.6 (87.2) 45.0 (85.1) 50.8 (88.8) 50.1 (89.0) 58.2
+ DEVA (Div. + Explor. + Align. Vol.) 38.9 (85.2) 46.8 (88.0) 46.2 (86.3) 51.7 (89.4) 51.2 (89.8) 59.1
+ DEVA (Div. + Explor. + Align. Vol. + Agg.) 40.0 (86.1) 47.9 (88.8) 47.3 (87.1) 52.9 (90.0) 52.8 (91.1) 60.0

top of Visual-RFT (vanilla GRPO), they consistently outperform all baselines. Even incorporating
only diversity loss surpasses the strong GSPO baseline. Our full framework—combining diversity
loss, exploration regularization, alignment volume reward, and harmonic aggregation—achieves a
substantial 5–6 point improvement over Visual-RFT and 3–4 points over GSPO. Notably, gains
from DEVA persist across increasing shot sizes. Additionally, incorporating CoT-style reasoning
during fine-tuning further enhances performance compared to standard SFT.

4.3 FEW-SHOT OBJECT DETECTION

We extend evaluation to few-shot object detection. Specifically, we select eight COCO classes and
vary number of fine-tuning samples per class (1, 2, 4, 8, and 16) to construct highly data-constrained
training sets. Qwen2-VL-2B is fine-tuned across all settings, while Qwen2-VL-7B is fine-tuned for
4-shot case. The mean Average Precision (mAP) across all categories is reported in Table 1.

Both SFT and RL-based fine-tuning methods consistently outperform the baseline Qwen2-VL-2B
and Qwen2-VL-7B models, following trends similar to those observed in few-shot classification.
Our CoT-based dataset curation strategy yields an additional 4–6 point improvement over vanilla
SFT. While RL-based methods surpass Visual-RFT, our proposed DEVA framework, when applied
on top of Visual-RFT, delivers substantial gains. Specifically, the full DEVA configuration achieves
a 5–6 point improvement over Visual-RFT, and in the 4-shot Qwen2-VL-7B setting, DEVA provides
approximately +6 points over Visual-RFT and outperforms GSPO by about +4 points. Importantly,
each component of DEVA—diversity loss, exploration regularization, alignment volume reward, and
aggregation—contributes meaningfully, with each addition yielding roughly +1 point improvement.

4.4 REASONING GROUNDING

Here, we consider task of reasoning grounding, where the goal is to ground an object of interest
depending on query. This kind of task is generally difficult for specialized models which cannot
process and understand user’s question. To address this task, the LISA (Lai et al., 2024) benchmark
was introduced. We finetune both Qwen2-VL 2B/7B model (Wang et al., 2024) on small-scale
dataset of 239 samples. On this setup, we evaluate specialized models, SFT methods as well as RL
methods. The results of comparison studies are shown in Table 2.

From results, we see that the zero-shot quantitative performance of Qwen2-VL-2B and Qwen2-
VL-7B, have improved performance compared to specialized models like OV-Seg, X-Decoder and
GroundedSAM. Furthermore, SFT-CoT produces improved performance compared to SFT. As ex-
pected, our DEVA framework when applied on top of Visual-RFT produces staggering +5-13pts
improvement. Furthermore, we see that improvement from just using diversity loss itself produces
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Table 2: Reasoning Grounding Results on LISA Lai et al. (2024). Visual-RFT surpasses SFT in
reasoning grounding with 239 training images. We show results for both Qwen2-VL-2B and 7B.
Best is bold and second best is underlined.

Model mIoUtest mIoUval gIoUtest mIoUtest mIoUval gIoUtest

OV-Seg (Liang et al., 2023) 28.4 30.5 26.1 28.4 30.5 26.1
X-Decoder (Zou et al., 2023) 28.5 29.1 24.3 28.5 29.1 24.3
GroundedSAM (Liu et al., 2024c) 26.2 28.6 21.3 26.2 28.6 21.3

Qwen2-VL-2B | 7B (Wang et al., 2024) 26.9 30.1 25.3 40.4 45.2 38.0

+ SFT 28.3 29.7 25.3 39.1 43.9 37.2
+ SFT-CoT 30.3 33.7 28.3 40.5 45.4 38.9
+ PPO (Schulman et al., 2017b) 33.6 36.9 33.2 41.3 46.1 40.1
+ PAPO (Wang et al., 2025b) 38.2 41.4 35.6 44.2 47.9 43.8
+ DAPO (Yu et al., 2025) 39.4 42.6 37.2 44.7 48.1 43.7
+ Dr GRPO (Liu et al., 2025a) 38.2 41.4 36.3 44.3 48.5 44.0
+ BNPO (Xiao et al., 2025) 38.1 41.3 37.0 44.5 48.9 44.2
+ GRPO-CARE (Chen et al., 2025) 39.4 42.6 36.1 45.1 49.1 44.7
+ CPPO (Lin et al., 2025) 40.1 43.3 36.2 45.6 49.2 45.0
+ GMPO (Zhao et al., 2025) 40.5 43.2 35.6 44.7 46.2 43.5
+ GSPO (Zheng et al., 2025) 41.3 44.5 37.1 46.0 49.9 46.1
+ Visual-RFT (Liu et al., 2025b) 37.6 34.4 34.4 43.9 47.1 43.7
+ DEVA (Div.) 43.6 44.8 39.4 46.1 50.1 47.0
+ DEVA (Div. + Explor.) 44.7 45.9 40.1 47.2 51.6 47.8
+ DEVA (Div. + Explor. + Align. Vol.) 46.7 46.9 41.3 48.1 52.8 48.2
+ DEVA (Div. + Explor. + Align. Vol. + Agg.) 48.9 47.3 42.3 49.5 53.5 48.9

higher improvement in performance compared to the highly competitive GSPO. The trend is re-
peated for the Qwen2-VL-7B model as well.

4.5 ADDITIONAL ANALYSES

We show visualization results on fine-grained classification and reasoning grounding in Fig. 5. From
results, we see both SFT and Visual-RFT fail to identify class or localize object. For classification,
both GSPO and DEVA (applied on Visual-RFT) produces correct responses with reasonable reason-
ing traces. For visual grounding, GSPO produces correct reasoning traces but still produces incorrect
localization. DEVA produces correct reasoning trace as well as more compact bounding boxes.

Figure 5: Top two rows are for classification task and bottom two rows are for reasoning grounding. Com-
parison is done across SFT, Visual-RFT, GSPO and DEVA. Results on SFT and Vi-RFT are reproduced.

In Figure 6 (a), we show attention visualization using the tools introduced in (Zhang et al., 2025).
The fine-grained classification task is shown on the first two rows. The goal is to identify the model
of the plane and car respectively. From the attention plot, we can see that the heatmaps generated
from SFT, Visual-RFT and GSPO focus a lot on the background. On the other hand, the heatmap for
DEVA focuses on the interior and the edges to better identify the model of the plane or the car. For
the visual grounding task as well, the heatmap focuses more on the object of interest. For example,
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in the third row DEVA can compactly localize the hammock. Similarly, DEVA can better localize
the truck in the background instead of the car which is being incorrectly localized by other methods.

Figure 6: This figure consists of (a) Attention visualization for the classification and reasoning
grounding (b) Quantitative performance of different variants on reasoning grounding.

In Fig. 6 (b), we consider different variations and design choices of our DEVA framework. We
see that on alternative design choices, the performance always drop on the test set when using both
Qwen2-VL-2B and Qwen2-VL-7B. Also, we see that drop in performance when using a learnable
aggregation method (i.e. a neural network) is minimal compared to that when using default har-
monic aggregation, hinting that performance of the heuristic aggregation strategy matches that of
the learned aggregation strategy. Furthermore, we see larger drop in performance when using al-
ternative alignment schemes especially, when using pairwise alignment reward or using different
hyper-parameters for the alignment volume reward.

In Fig. 7, we observe how the mIoU varies for different epochs for different RL algorithms as dif-
ferent components of the DEVA framework are added to the RL algorithm. The results are reported
on the test set of the LISA dataset. Overall, we see that all the components of the DEVA framework
are important and they lead to improved performance across all checkpoints.

Figure 7: Performance (LISA dataset) over different epochs for different RL algorithms.

5 CONCLUSION

In this work, we presented DEVA, a novel framework designed to enhance GRPO and its variants
when employed as training objectives for adapting MLLMs to visual perception tasks. We focus on
challenging tasks such as fine-grained classification, object detection, and reasoning-based ground-
ing. DEVA integrates four key components: (a) a diversity loss to enrich reward diversity and
strengthen training signals, (b) an entropy-based divergence loss as a principled alternative to KL
divergence for improved policy exploration, (c) an alignment volume reward to better align MLLMs
with perception objectives, and (d) an optimal reward aggregation strategy for robust reward mod-
eling. Our analysis reveals that each component plays a critical role in boosting Visual-RFT perfor-
mance across tasks, both quantitatively and qualitatively. Notably, even introducing diversity loss
alone surpasses the strong GSPO baseline. Furthermore, attention map visualizations demonstrate
that DEVA achieves superior object localization compared to existing methods. Looking ahead, we
aim to extend DEVA to more complex visual-agentic tasks.
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A USE OF LARGE LANGUAGE MODEL

In this paper, we use GPT V only for refining and polishing the text in the paper.

B IMPLEMENTATION DETAILS

For datasets and benchmarking, we follow exact protocol and input prompts as introduced in (Liu
et al., 2025b) following guidelines 2. A few-shot learning approach is considered for image classi-
fication and object detection task and for the rest we consider fine-tuning on a small-scale dataset.
For the SFT-CoT dataset, we generate a CoT reasoning dataset using Qwen2.5-VL-32B-Instruct (Bai
et al., 2025) with the input as the image and the prompt as the following:

Question: <QUERY>
Answer: <OUTPUT>
Generate reasoning: Explain step by step how to find the answer
from the image.

Here, <QUERY> and <OUTPUT> is replaced by the corresponding query and output in the training
dataset. The generated reasoning is the ground-truth answer that will be used to train the model
using SFT.

For fine-grained image classification benchmark, we consider four datasets: Flower102 (Nils-
back & Zisserman, 2008), Pets37 (Parkhi et al., 2012), FGVC-Aircraft (Maji et al., 2013) and
Car196 (Krause et al., 2013). For evaluation, we consider 1-shot, 2-shot, 4-shot, 8-shot and 16-shot
protocol with the Qwen2-VL-2B model. For GRPO and their variants, we always use 8 genera-
tions. For all the datasets, we train for 8 epochs except for Pets37, where we train for 24 epochs.
For training, we use a batch size of 8 distributed across 8 GPUs. We use bf16 datatype during the
fine-tuning and gradient accumulation steps of 2. We follow the training setup in the lines of the

2https://github.com/Liuziyu77/Visual-RFT/tree/main
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description 3. For different baselines used for comparison, we use their open-source implementa-
tion and report results for the best hyper-parameter configuration. For DEVA, we use the following
hyper-parameters: γ = 0.5 (Equation 3), the default weight on diversity Ldiv and regularization loss
Lreg are both 1e−4. The default values of a, b and c are 1.0, 0.0 and 2.0, respectively. For computing
alignment features in Eq. 5, we use BLIP-2 Li et al. (2023) as the feature extractor, where we use
the output of the Q-Former as the alignment features. These are then used to compute the alignment
volume.

We also apply a few-shot learning setup for the object detection task. Specifically, we selected 8
classes from the COCO dataset and vary the number of fine-tuning samples per class. This includes
1, 2, 4, 8, and 16 training samples per class. This is done to construct training sets with very limited
data. For this setup, we finetune Qwen2-VL-2B, while we fine-tune the Qwen2-VL-7B for the 4-
shot case. The mAP for the 8 classes is calculated and the average is reported. The eight classes
taken from the COCO dataset includes: bus, train, fire hydrant, stop sign, cat, dog, bed, toilet. The
hyper-parameters are the same as that of fine-grained classification task except that for the 7B model,
we use 4 generations for computing GRPO instead of 8.

We also evaluate on the LISA grounding benchmark, where the task is to ground the relevant part of
an image given a query and an image. For the LISA grounding dataset, we finetune both the Qwen2-
VL-2B and the Qwen2-VL-7B on 239 training samples. After finetuning is done, the model is then
evaluated on the test and validation split of the LISA grounding benchmark. The hyper-parameters
are the same as fine-grained classification except that fine-tuning is done for 6 epochs and for the 7B
model, we use 4 generations instead of 8 for computing GRPO.

For Table 3, we use the same hyper-parameters as fine-grained classification except that for evalua-
tion on the COCO dataset, the model is fine-tuned for 2 epochs while for evaluation using the LVIS
dataset, the model is fine-tuned for 4 epochs.

C ADDITIONAL COMPARISON STUDIES

Table 3: Object Detection Results First six columns show open vocabulary results on COCO dataset. We
trained on 65 base categories and tested on 15 novel categories. Seventh and ninth column show few-shot
results on LVIS dataset of 6 rare categories. We conducted 10-shot experiments on 6 rare categories from the
LVIS dataset. Eighth and tenth column shows open vocabulary object detection results on LVIS dataset. We
trained on the 65 base categories of the COCO dataset and tested on the 13 rare categories of the LVIS dataset.
The parenthesis in the last column of the first row are the results of GroudingDINO-B (Liu et al., 2024c). Best
results are shown in bold and second best results are underlined.

Models mAPn mAPb mAPall mAPn mAPb mAPall mAP mAP mAP mAP

Qwen2-VL-2B | 7B | | 2B | 7B 9.8 6.0 6.7 26.3 17.5 19.2 4.0 2.7 15.4 15.7 (23.9)

+ SFT 13.6 7.8 8.9 25.7 17.5 19.0 10.0 7.6 27.6 24.0
+ SFT-CoT 17.1 12.8 12.2 29.3 20.8 22.1 13.5 12.2 28.9 27.4
+ PPO (Schulman et al., 2017b) 27.6 16.2 17.3 33.2 23.1 24.9 16.3 17.2 30.1 28.5
+ PAPO (Wang et al., 2025b) 32.2 21.3 24.6 37.0 27.9 28.3 22.4 22.1 35.2 32.3
+ DAPO (Yu et al., 2025) 32.3 21.6 25.7 36.2 27.8 27.1 23.1 22.0 35.4 32.0
+ Dr GRPO (Liu et al., 2025a) 33.1 22.4 26.3 37.0 28.9 28.5 24.2 23.1 36.7 33.3
+ BNPO (Xiao et al., 2025) 32.0 21.9 25.8 37.2 27.5 28.1 24.6 24.0 37.5 34.1
+ GRPO-CARE (Chen et al., 2025) 33.6 23.1 27.2 38.0 28.9 29.5 25.6 24.2 36.6 33.0
+ CPPO (Lin et al., 2025) 33.2 24.2 27.1 39.1 29.5 30.3 24.0 24.3 37.2 34.2
+ GMPO (Zhao et al., 2025) 32.5 23.1 26.4 37.8 28.3 29.2 24.3 23.9 35.2 33.3
+ GSPO (Zheng et al., 2025) 34.6 25.2 28.2 39.6 30.1 31.2 25.3 25.2 37.6 35.5
+ Visual-RFT (Liu et al., 2025b) 31.3 20.6 22.6 35.8 25.4 27.4 19.4 20.7 33.8 30.4
+ DEVA (Div.) 37.8 28.1 30.2 41.3 32.8 34.0 26.2 27.3 40.1 37.2
+ DEVA (Div. + Explor.) 38.9 30.0 31.3 42.5 33.9 35.1 27.4 28.6 41.4 38.6
+ DEVA (Div. + Explor. + Align. Vol.) 39.9 31.3 32.5 43.9 34.6 36.8 28.7 29.9 42.8 39.8
+ DEVA (Div. + Explor. + Align. Vol. + Agg.) 41.9 32.3 33.3 45.0 35.7 38.1 30.1 32.0 43.9 41.2

In Table 3, we report additional results on the open-vocabulary setup. The goal of this setup is to
understand whether reinforcement fine-tuning can aid in better generalization compared to super-
vised fine-tuning (SFT). Specifically, we finetune both Qwen2-VL-2B and Qwen2-VL-7B on 65
base categories and evaluate on 13 novel categories. We also evaluate on the base categories as well
as combination of base and novel categories. As expected, we can see that when we apply DEVA
on top of Visual-RFT, it produces an improvement of +10-12 pts improvement in mAP across novel
categories, base categories and an aggregated set of categories. We can even outperform the highly
competitive GSPO by + 5 pts improvement in mAP.

3https://github.com/Liuziyu77/Visual-RFT/issues/97
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Table 4: Few-shot results on Fine-grained Classification dataset. We evaluated four fine-grained
image classification datasets when DEVA is added to existing RL algorithms.

Model 1-shot 2-shot 4-shot 8-shot 16-shot

Qwen2-VL-2B (Wang et al., 2024) 56.0 56.0 56.0 56.0 56.0

+ PAPO (Wang et al., 2025b) 81.1 84.2 81.9 85.9 86.2
+ PAPO + DEVA 86.4 89.4 87.3 91.4 91.6
+ DAPO (Yu et al., 2025) 81.3 83.9 82.3 86.2 86.6
+ DAPO + DEVA 86.5 89.1 87.4 91.5 91.8
+ GRPO-CARE (Chen et al., 2025) 82.5 85.5 83.5 86.7 87.1
+ GRPO-CARE + DEVA 87.4 90.4 88.5 92.2 92.6
+ CPPO (Lin et al., 2025) 81.9 86.7 83.8 87.3 86.9
+ CPPO + DEVA 87.1 91.5 89.0 92.7 92.4
+ GSPO (Zheng et al., 2025) 82.6 85.2 84.0 87.8 88.0
+ GSPO + DEVA 87.8 90.6 89.3 93.2 93.4

Table 5: Reasoning Grounding Results on LISA Lai et al. (2024). We evaluated reasoning
grounding results when DEVA is added to existing RL algorithms.

Model mIoUtest mIoUval gIoUtest mIoUtest mIoUval gIoUtest

Qwen2-VL-2B | 7B (Wang et al., 2024) 26.9 30.1 25.3 40.4 45.2 38.0

+ PAPO (Wang et al., 2025b) 38.2 41.4 35.6 44.2 47.9 43.8
+ PAPO + DEVA 44.6 47.7 42.0 50.3 54.4 50.1
+ DAPO (Yu et al., 2025) 39.4 42.6 37.2 44.7 48.1 43.7
+ DAPO + DEVA 45.8 48.9 43.3 51.2 54.8 49.9
+ GRPO-CARE (Chen et al., 2025) 39.4 42.6 36.1 45.1 49.1 44.7
+ GRPO-CARE + DEVA 45.6 48.7 42.3 51.3 55.2 50.2
+ CPPO (Lin et al., 2025) 40.1 43.3 36.2 45.6 49.2 45.0
+ CPPO + DEVA 46.3 49.4 42.8 51.9 55.6 50.6
+ GSPO (Zheng et al., 2025) 41.3 44.5 37.1 46.0 49.9 46.1
+ GSPO + DEVA 47.2 50.3 43.4 52.3 56.2 51.4

We also evaluate the model trained on COCO on 13 rare categories of the LVIS dataset. This is
shown in the eight and tenth column of the Table 3. DEVA essentially produces +10 pts improve-
ment over Visual-RFT and +5-6 pts improvement over GSPO. Finally, we also evaluate 10-shot
object detection performance within the LVIS dataset of 6 rare categories. We show similar im-
provement in performance compare to Visual-RFT and GSPO. To summarize, from Table 3, it is
clear that DEVA is more effective for open vocabulary setup and can easily boost generalization
capabilities.

D BOOSTING COMPETITIVE METHODS

In this section, we analyze whether DEVA can boost existing competitive methods. This is shown
for fine-grained image classification dataset in Table 4 and for LISA reasoning grounding dataset in
Table 5. In Table 4, we see that our proposed method can produce +4-5 pts improvement in accuracy
when applied to existing RL algorithms. For reasoning grounding task in Table 4, we also observe
similar trends, where our proposed framework can produce improvements upto +6-7 pts in IoU.

E EFFECT OF LOW RANK ADAPTATION

For adapting the multi-modal model on small-scale fine-tuning data, our default setup is to finetune
the whole model. In this section, we consider the situation where we finetune LoRA instead of fine-
tuning the whole model. We consider different variations for LoRA. This includes changing ranks
for LoRA and also the attachment points. The adaptors are attached on the Q,K, V matrices in
the transformer layers of the large language model (LLM) and/or vision encoder (VE). The results
are shown in Table 6. From the results, we see that fine-tuning LoRA instead of full finetuning

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Reasoning Grounding Results on LISA (Lai et al., 2024). We evaluated reasoning
rounding results when DEVA is added to existing RL algorithms and finetuned using LoRA (Hu
et al., 2022).

Model mIoUtest mIoUval gIoUtest mIoUtest mIoUval gIoUtest

Qwen2-VL-2B | 7B (Wang et al., 2024) 26.9 30.1 25.3 40.4 45.2 38.0

+ DEVA (Full Fine-tuning) 48.9 47.3 42.3 49.5 53.5 48.9

+ DEVA (Rank = 16, Attach: LLM) 45.2 44.0 38.2 46.2 50.3 45.3
+ DEVA (Rank = 32, Attach: LLM) 45.7 44.5 38.8 46.9 50.9 46.0
+ DEVA (Rank = 64, Attach: LLM) 46.1 45.2 39.5 47.6 51.5 46.9

+ DEVA (Rank = 16, Attach: VE) 43.7 42.2 36.3 44.0 48.2 43.2
+ DEVA (Rank = 32, Attach: VE) 44.2 43.0 37.0 44.8 48.9 43.9
+ DEVA (Rank = 64, Attach: VE) 44.9 43.8 38.0 45.4 49.6 44.6

+ DEVA (Rank = 16, Attach: VE + LLM) 46.5 45.9 40.5 48.0 52.0 47.1
+ DEVA (Rank = 32, Attach: VE + LLM) 47.9 46.8 41.2 48.8 52.9 47.8
+ DEVA (Rank = 64, Attach: VE + LLM) 48.5 47.1 41.9 49.1 53.4 48.5

produces subpar performance, which is expected since LoRA modifies a very small subspace of
the parameter space compared to full finetuning. As expected, higher ranks for LoRA produces
higher IoU since it closely approximates full fine-tuning. When LoRA is attached to both VE and
LLM, visual perception capabilities for multimodal LLMs are enhanced better compared to attaching
LoRA to either VE or LLM. Furthermore, results show that it is more effective to attach LoRA to
LLM instead of VE. This might be because the LLMs are more responsible for multimodal reasoning
tasks and need to be adapted to the specific visual grounding task. On the other hand, the VE is
already capable in handling perception tasks. This empirical evidence has also been highlighted
before in (Cocchi et al., 2025).

F EFFECT ON OTHER MODELS

In this subsection, we test whether our method is applicable to other models: GLM-Edge (GLM
et al., 2024) and LLAVA (Liu et al., 2023) in Table 7. We observe that our framework DEVA
produces significant improvement in IoU over Visual-RFT and also surpasses the IoU of GSPO.
However, the gap between GSPO and our proposed DEVA framework is diminished for LLAVA1.5-
7B. Overall, we see DEVA is more effective for smaller models. This suggests that our framework
can be very effective for small-scale devices to be deployed on edge devices.

Table 7: Reasoning Grounding Results on LISA Lai et al. (2024). using the GLM-Edge
model (GLM et al., 2024). and LLAVA1.5 (Liu et al., 2023)

Model mIoUtest mIoUval gIoUtest mIoUtest mIoUval gIoUtest

GLM-Edge-V-2B | LLAVA1.5-7B 24.4 27.5 22.5 38.9 42.3 35.4

+ SFT 26.8 27.2 22.6 36.2 41.1 34.3
+ SFT-CoT 28.6 31.2 25.6 38.3 42.7 36.2
+ PPO (Schulman et al., 2017b) 31.1 34.4 30.4 39.2 43.4 37.3
+ PAPO (Wang et al., 2025b) 35.4 38.7 32.9 42.0 45.3 41.0
+ DAPO (Yu et al., 2025) 36.9 40.0 34.4 42.2 45.3 41.0
+ Dr GRPO (Liu et al., 2025a) 35.4 38.7 33.5 41.5 45.7 41.2
+ BNPO (Xiao et al., 2025) 35.3 38.6 34.2 41.7 46.1 41.4
+ GRPO-CARE (Chen et al., 2025) 36.9 40.0 33.3 42.3 46.3 41.9
+ CPPO (Lin et al., 2025) 37.6 40.8 33.4 42.8 46.4 42.2
+ GMPO (Zhao et al., 2025) 36.3 40.5 32.9 41.8 46.2 41.8
+ GSPO (Zheng et al., 2025) 38.5 42.0 34.3 43.2 47.1 43.3
+ Visual-RFT (Liu et al., 2025b) 34.8 31.8 31.6 42.0 44.3 41.0
+ DEVA (Div.) 41.1 42.2 36.6 43.2 47.3 44.2
+ DEVA (Div. + Explor.) 42.2 43.3 37.3 44.3 48.8 45.0
+ DEVA (Div. + Explor. + Align. Vol.) 44.2 44.4 38.5 45.2 50.0 45.4
+ DEVA (Div. + Explor. + Align. Vol. + Agg.) 46.4 44.8 39.5 46.6 50.7 46.1
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G MASK COMPUTATION FOR MAPPING IMAGES FOR ALIGNMENT VOLUME

Our goal is to obtain the binary mask m in the image for computing alignment reward defined in
Eq. 5. For computing the binary mask m, we need to do a forward pass of the image and text query
through the multi-modal large language model to obtain attention scores and backtrack them to the
image to obtain relevant patches. The details of obtaining relevant patches are described below.

Attention-to-patch mask. We consider that i ∈ RH×W×3 is resized by the image processor to
i′ ∈ RH′×W ′×3. If we have patch size p = 14, the visual encoder yields a grid of patches of size
Hp = H ′/p, Wp = W ′/p, and Nv = HpWp visual tokens. In the multimodal sequence, visual
tokens are arranged continuously as V = { tok | tokvs < tok < tokve } between special tokens at
positions tokvs and tokve, respectively.

Decoder attentions over visual tokens. At decoding step t (when predicting text token ot), layer
ℓ ∈ {1, . . . , L} and head h ∈ {1, . . . ,H} produces self-attention matrix A(ℓ,h,t) ∈ RTt×Tt , whose
row t is distribution over source positions i ∈ {1, . . . , Tt}. We define an aggregated score such that

s
(t)
i =

L∑
ℓ=1

H∑
h=1

wℓ uh A
(ℓ,h,t)
t,i (i ∈ V), (8)

with nonnegative weights wℓ, uh such that
∑L

ℓ=1 wℓ = 1 and
∑H

h=1 uh = 1.

We apply a min–max normalization over visual positions:

s̃
(t)
i =

s
(t)
i −minj∈V s

(t)
j

maxj∈V s
(t)
j −minj∈V s

(t)
j + ε

∈ [0, 1]. (9)

Aggregating multiple answer tokens. We consider the case when the mask considers multiple
output tokens. In that case, we let T be the indices and vt ≥ 0 with

∑
t∈T vt = 1. We define

s̃i =
∑
t∈T

vt s̃
(t)
i . (10)

Mapping visual tokens to the patch grid. Index visual tokens locally as k ∈ {1, . . . , Nv} (in
order within V). Map k to patch coordinates (r, c) via

r = 1 +

⌊
k − 1

Wp

⌋
, c = 1 +

(
(k − 1) mod Wp

)
. (11)

Let i(k) denote the absolute sequence index corresponding to the k-th visual token. The patch-level
score map S ∈ [0, 1]Hp×Wp is

Sr,c = s̃ i(k). (12)

Upsampling and binarization. Let Up be bilinear upsampling by factor p. The soft mask over I ′
is

M = Up(S) ∈ [0, 1]H
′×W ′

. (13)
A binary mask at threshold τ ∈ (0, 1) is given by

m(x, y) = 1[M(x, y) ≥ τ ] . (14)

The threshold τ is given as 0.5.

H DIFFERENT REWARD AGGREGATION TECHNIQUES

In this method, we consider different reward aggregation techniques like arithmetic mean, geomet-
ric mean, harmonic mean and neural network, etc. Let us consider that we have three types of
rewards: format reward rform, task reward rtask and volume reward rv . In that case, we consider
the following types of aggregation.
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Arithmetic Sum: For the scaled arithmetic mean, we consider the aggregated reward r = (rform+
rtask + rv).

Geometric Mean: For the scaled geometric mean, we consider the aggregated reward r =
3(rformrtaskrv)

1/3

Harmonic Mean: For the scaled harmonic mean, we consider the aggregated reward r =
9/((1/rform) + (1/rtask) + (1/rv))

Neural Network: For the neural network Φ(·), we consider the following formulation for predic-
tion. It takes in the three reward scalars rform, rtask and rv and produces an aggregated reward
r such that r = Φ(rform, rtask, rv). When we use this neural network, it is a multi-stage training
procedure:

• Stage 1: We train the policy model with the harmonic reward using the GRPO training
objective for the same epoch numbers as standard fine-tuning.

• Stage 2: With the same GRPO training objective, we freeze the policy model and train
the neural network based predictor that takes in three reward scalars to produce the desired
reward. This training is done for half the number of epochs as standard fine-tuning.

• Stage 3: During the final stage, we freeze the neural network based predictor and fine-tune
the policy model for the same number of epochs as standard fine-tuning.

The neural network architecture is two-layered with input size of 3, hidden state size of 2 and output
size as 1.

I METRIC PROGRESSION CURVES

In this section, we report results on the LISA reasoning dataset, how different metrics progress over
different iterations. It is important to note that the progression of rewards and their dynamics over
training iterations does not always correlate proportionally with the final evaluation metric i.e. mIoU
on visual grounding tasks.

In Figure 8, we observe how the total reward progresses over training iterations for different RL
algorithms. The results are shown for different algorithms as the diversity loss (Ldiv) and exploration
loss (Lreg) is added to existing loss term. We observe that as we add the diversity loss Ldiv , the
reward curve (as shown by the orange curve) converges faster and reaches a higher saturation value.
Similarly, as we add the exploration loss Lreg , the reward curve (as shown by the green curve)
converges much faster and reaches a much higher value.

Figure 8: This figure shows how the total reward progresses for different RL algorithms as diversity loss Ldiv
and regularization loss Lreg for improved exploration is added.

In Figure 9, we also observe how the total reward progresses over training iterations for different
RL algorithms as our full framework DEVA is applied on top of existing RL algorithms like ViRFT,
DAPO, PAPO and GSPO. We also try out different aggregation methods: (a) Arithmetic Sum (b)
Scaled Geometric Mean (c) Scaled Harmonic Mean (d) Neural Network etc. From the results in
Table 9 (a), we observe that the reward curve reaches different saturation values for different RL
algorithms with GSPO producing the highest reward value. The difference in the reward curves
for different methods diminishes when alternative aggregation methods are used. This suggests that
there is consistency in the reward curves when different aggregation methods are used. Furthermore,
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the rate of increase of the reward curve is the fastest when scaled harmonic mean and neural network
is used.

Figure 9: In this figure, we plot the reward curves when our full framework DEVA is applied to different RL
algorithms. We consider different aggregation methods like (a) Arithmetic Sum (b) Scaled Geometric Mean (c)
Scaled Harmonic Mean (d) Neural network

In Figure 10, we also observe how the KL divergence of token probabilities between the reference
model and the current policy model varies with training steps for different methods. With the addi-
tion of diversity loss, there is a slight increase in KL divergence, when the diversity loss is added to
each of the RL algorithms. This is because increasing the diversity produces more variable amount
of reasoning traces and hence produces more higher range of KL divergence values. When the ex-
ploration loss is added to the RL algorithm, it further increases the KL divergence range leading to
better exploration.

Figure 10: This figure shows how the KL divergence in Eq. 1 varies for different RL algorithms as diversity
loss Ldiv and regularization loss Lreg for improved exploration is added.

J ADDITIONAL HYPERPARAMETER STUDIES

Figure 11: This figure consists of (a) Surface curve of mIoU for hyper-parameters a and b using
Qwen-VL-2B on LISA reasoning dataset. (b) Surface curve of mIoU for hyper-parameters a and b
using Qwen-VL-7B on LISA reasoning dataset.
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In Fig. 11, we observe variation in mIoU on LISA test set for both (a) Qwen-VL-2B and (b) Qwen-
VL-7B, when the hyper-parameters a and b are varied while c is fixed at 2 for the volume reward
alignment defined in Section 3.4 in the main section. As expected, the default setting of a = 1.0 and
b = 0.0, produces the most optimal performance.

In Table 8, we observe how the mIoU varies for different variations. With respect to the entropy
divergence loss defined in Eq. 4, we consider the following variations: (a) Partition 2: When mean
squared error is computed separately for 2 partitions of the tokens of the reference model and policy
model. (b) Partition 3: When mean squared error is computed separately for 3 partitions of the
tokens of the reference model and the policy model. (c) OT: We consider the optimal transport
distance (Courty et al., 2016) between the two entropy vectors obtained from the reference model
and the policy model. The cost matrix is computed such that each element is the cosine distance
between CLIP (Radford et al., 2021) embedding of the two words.

Furthermore, we consider feature extractors defined in Eq. 5. This includes CLIP (Radford et al.,
2021) and SigLip2 (Tschannen et al., 2025). Overall, we observe that a model with larger capacity
produces better performance. However, all model variants produce poorer performance compared
to the default version of DEVA.

Table 8: Reasoning Grounding Results on LISA Lai et al. (2024). Selected metrics are shown for
different model variations.

Model mIoUtest mIoUtest

Qwen2-VL-2B | 7B (Wang et al., 2024) 26.9 40.4

+ DEVA (Default) 48.9 49.5

+ DEVA (Explor. Loss: Partition=2) 48.0 48.7
+ DEVA (Explor. Loss: Partition=3) 46.5 47.6
+ DEVA (Explor. Loss: OT) 48.5 48.9

+ DEVA (Embed: CLIP B-16) 46.3 47.1
+ DEVA (Embed: CLIP L-14) 47.5 48.9
+ DEVA (Embed: SigLip2 B-16) 46.9 47.8
+ DEVA (Embed: SigLip2 L-16) 47.8 49.0
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