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Figure 1: Efficient motion transfer with FastVMT: By eliminating redundant attention computa-
tions and reusing previously computed gradients, we achieve faster motion transfer for single-as well
as multi-object motion, camera ego-motion, and complex articulations.

ABSTRACT

Video motion transfer aims to synthesize videos by generating visual content
according to a text prompt while transferring the motion pattern observed in a ref-
erence video. Recent methods predominantly use the Diffusion Transformer (DiT)
architecture. To achieve satisfactory runtime, several methods attempt to accelerate
the computations in the DiT, but fail to address structural sources of inefficiency.
In this work, we identify and remove two types of computational redundancy
in earlier work: motion redundancy arises because the generic DiT architecture
does not reflect the fact that frame-to-frame motion is small and smooth; gradient
redundancy occurs if one ignores that gradients change slowly along the diffusion
trajectory. To mitigate motion redundancy, we mask the corresponding attention
layers to a local neighborhood such that interaction weights are not computed
unnecessarily distant image regions. To exploit gradient redundancy, we design
an optimization scheme that reuses gradients from previous diffusion steps and
skips unwarranted gradient computations. On average, FastVMT achieves a 3.43×
speedup without degrading the visual fidelity or the temporal consistency of the
generated videos.

1 INTRODUCTION

Motion transfer aims to generate a novel video by transferring the dynamics of a reference video
sequence to a target sequence, while preserving the target’s appearance and semantics. For instance,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the reference video might show an action sequence performed by an actor, which shall be transferred
to a target subject while preserving their identity; or the reference might prescribe a particular camera
path through the scene, which one would like to replicate for the target scene (see Fig. 1). In other
words, motion transfer offers an intuitive interface for controllable motion synthesis, with applications
ranging from movie productions and game development to digital advertising and content creation on
social media platforms.

Recent advances in video motion transfer increasingly leverage large, foundational generative video
models. These models typically employ the DiT architecture within a denoising diffusion loop1. They
are not only capable of synthesizing high-quality videos from noise, but can also be conditioned with
text or image prompts to control the video style and content. A variety of motion transfer approaches
have emerged that leverage these powerful visual priors, in either training-based and training-free
fashion. Training-based methods (e.g., MotionDirector (Zhao et al., 2023b), MOFT (Zhang et al.,
2023), DeT (Shi et al., 2025)) extract the motion patterns of a specific reference video by fine-tuning
the parameters of the diffusion backbone. For example, MotionDirector (Zhao et al., 2023b) and
DreamMotion (Jeong et al., 2024a) adopt dual-path versions of low-rank adaptation (Hu et al., 2022)
to disentangle the representations of motion and appearance in the diffusion DiT. Although they
are capable of generating videos whose motion follows the reference, they suffer from practical
limitations: overfitting to every new reference video is time-consuming (e.g., up to 2 hours on an
A100 GPU) and therefore unsuitable for open-domain and real-time settings.

To achieve efficient and generally applicable motion transfer, attention has shifted to training-free
frameworks (Pondaven et al., 2025a; Xiao et al., 2024; Yatim et al., 2024b). They obviate the need
for per-video fine-tuning and thus enable significantly faster synthesis (e.g., ≈10 minutes on an
A100 GPU). The training-free approach also exploits the gradual, iterative denoising process of
contemporary video foundation models: The reference video is first inverted into the embedding
space of the DiT to extract features that encode the motion. Then the output video is synthesized by
denoising diffusion, guided by both a text prompt and the gradient between the motion embeddings
of the source and target video.

Our work is motivated by the observation that, in existing implementations of this pipeline, both
the extraction of motion embedding from DiT backbone and the computation of motion gradients
introduce considerable redundancy. Rather elementary properties of videos, and of the associated
generative process, suggest that the computational cost of training-free motion transfer can be reduced
considerably. (i) Motion redundancy: To extract the motion embeddings from latents (Yatim et al.,
2024a) or attention maps (Pondaven et al., 2025a) in the inversion stage, it is not necessary to
calculate pairwise similarities between all tokens of consecutive frames. Frame-to-frame motion has
limited magnitude and is locally smooth, hence motion features can be computed more efficiently,
see Fig. 2(a). (ii) Gradient redundancy: In the denoising stage, there is no need to recalculate all
gradients at each timestep. We find that motion transfer is a case of “stable gradient optimization”.
Motivated by the idea of deterministic sampling to upgrade DDPM (Ho et al., 2020) to DDIM (Song
et al., 2020), we examine the gradient updates in consecutive optimization steps and observe that they
tend to be similar, see Fig. 2(b). Consequently, gradients can be reused over multiple iterations.

Based on these observations, FastVMT makes two contributions to achieve efficient motion transfer.

(1) Instead of extracting motion embeddings token by token, as in DiTFlow (Pondaven et al., 2025b),
we design a sliding-window strategy that operates on downsampled attention maps and an
associated corresponding window loss, to perform a more reliable and more efficient local search
for motion correspondence.

(2) We address gradient redundancy with a step-skipping gradient computation. Gradients are
recalculated only at selected iteration steps, between those steps, the most recent values are
reused so as to reduce the total number of gradient calculations and amortize them better.

These two tricks enable high-fidelity video generation with camera trajectories and/or object motions
according to the source video, see Fig. 1. Extensive experiments and user studies confirm that
FastVMT achieves state-of-the-art performance both qualitatively and quantitatively, with up to
14.91× lower latency. Furthermore, FastVMT delivers a 3.43× speedup with minimal performance
degradation, preserving near-lossless quality across various evaluation metrics when compared to the
original training-free video motion transfer pipeline.

1In this paper, the term “diffusion” includes flow-based interpolants (Lipman et al., 2022; Liu et al., 2022).
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Figure 2: Motivation of our method. Training-free video motion transfer can benefit from redun-
dancies, both at the level of the DiT architecture and of the iterative diffusion process. (a) Motion
redundancy: Video motion is small and locally consistent, so a motion token in one frame will only
ever match tokens in the next frame within a local neighborhood. (b) Gradient redundancy: Gradient
updates in consecutive optimization steps are mostly similar (visualized here with PCA). There is no
need to recompute them at every single step.

2 RELATED WORK

Text-to-video generation. Text-to-video generation aims to synthesize realistic videos by precisely
matching both the visual content and motion dynamics described in the input prompt. Previous
works (Chen et al., 2024; Guo et al., 2023; He et al., 2022; Wang et al., 2023; Xiong et al., 2025;
Yang et al., 2024a) introduce temporal modules in UNet architectures to generate coherent videos. To
generate complex video motion, the advancement of Diffusion Transformer-based methods for text-
to-video generation exhibits superior performance in both spatial quality and temporal consistency.
These models (Liu et al., 2024; Yang et al., 2024b; Xu et al., 2024; Kong et al., 2024; Wang et al.,
2025a) demonstrate the power of scaling transformers to produce highly realistic video clips from
detailed prompts, unlocking potential for diverse downstream video generation tasks.

Video motion transfer. Motion transfer focuses on generating novel videos while transferring motion
from reference videos, differing from video-to-video translation (Zhao et al., 2023a; Ma et al., 2025;
Liu et al., 2023) by decoupling spatial appearance and temporal motion. Early approaches rely on
explicit control signals such as poses (Ma et al., 2024; Zhao et al., 2023a), depths (Gen, 2023; Xing
et al., 2024), and bounding boxes (Wang et al., 2024b). Training-based methods (Zhao et al., 2023b;
Jeong et al., 2024a; Ren et al., 2024) employ spatial-temporal decoupled attention mechanisms by a
dual-path LoRA architecture. Recent works (Ren et al., 2024; Wu et al., 2024) improving motion-
appearance disentanglement, though they remain time-consuming and non-reusable. Training-free
methods (Hu et al., 2024; Pondaven et al., 2025a; Yesiltepe et al., 2024; Ling et al., 2024; Xiao
et al., 2024) extract motion embeddings during inference, with DiTFlow (Pondaven et al., 2025a)
proposing attention motion flow optimization. However, existing methods suffer from computational
redundancy in both the architectural and diffusion process perspectives. In contrast, we first analyze
the redundancy in training-free motion transfer and design the sliding-window motion extraction and
step-skipping optimization to improve efficiency.

3 METHOD

Given an input video I = [I1, ..., In], and the prompt P describing the target video content, we
aim to design an efficient training-free framework to generate a novel video J = [J1, ...,Jn]
following the input prompt P , while preserving the same camera pose changes and object motion.
To achieve this, we propose FastVMT, an efficient framework using DiT-based video generative
model (Wang et al., 2025a) to transfer motion efficiently. The pipeline of our method is shown in
Fig. 4. We first analyze the existing redundancy in previous works and introduce our motivation
in Sec. 3.1. The sliding-window motion extraction strategy is present in Sec. 3.2. To improve the
motion consistency, we design the corresponding window loss in Sec. 3.3. Finally, in Sec. 3.4, we
propose the step-skipping gradient optimization to ensure gradient efficiency.

3
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3.1 MOTIVATION

We summarize the two observed redundancies of state-of-the-art approaches in the training-free video
motion transfer task and propose the modules to address them.

Motion redundancy. In the inversion stage, existing training-free video motion transfer ap-
proaches (Pondaven et al., 2025a; Xiao et al., 2024; Yatim et al., 2024b) utilize the global token
similarity to obtain the reference motion flow. Specifically, for every optimization step, each token
requires calculating the similarity with all tokens in the next attention map. However, we note that
every motion token will only correspond with a token in nearby regions in the next attention map.
As shown in Fig. 2(a), the corresponding token in the dog’s nose would only appear around nearby
regions rather than on the road. Therefore, such a property about temporal consistency makes it
unreasonable to extract the motion flow by calculating token-by-token similarity globally. To address
this, we introduce the sliding-window motion extraction strategy. Only the regional tokens are
calculated for efficient motion extraction. Meanwhile, such a design enables correcting the mismatch
during the motion extraction, as shown in Fig. 5, ensuring the motion consistency of generated results.
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Figure 3: Illustration of step-skipping gradient
optimization. We observe that skipping some
steps in the gradient optimization step does not
degrade the motion transfer performance. When
we increase the skipping step, the optimization tra-
jectory is similar until 3-step skipping.

Gradient redundancy. During the optimization
process of training-free motion transfer methods,
a significant computational bottleneck emerges
from the repetitive gradient calculations per-
formed at each inner optimization step. Specifi-
cally, for every denoising timestep, the optimiza-
tion loop performs gradient computation across
all inner optimization steps to update the latent
representation. However, we observe that the
gradient updates exhibit high similarity across
consecutive optimization steps within the same
denoising timestep. As shown in Fig. 2(b), the
PCA analysis reveals that gradient patterns re-
main relatively stable across adjacent optimiza-
tion steps. Therefore, such “stable gradient op-
timization” makes it unnecessary to compute
gradients at every optimization step. To address
this, we introduce the step-skipping gradient op-
timization strategy. Only specific optimization steps require gradient computation, while intermediate
steps reuse cached gradients for efficient optimization (in Fig. 3).

3.2 EFFICIENT ATTENTION WINDOW

Attention acquisition. We leverage the inherent attention mechanism within video Diffusion
Transformers (DiTs) to extract fine-grained motion patterns, based on the premise that correlated
content across video frames is naturally captured by the self-attention layer’s query-key interactions.

Given an input video I = [I1, ..., In], and the prompt P of target video content, we utilize the 3D
VAE encoder (Wang et al., 2025a) to obtain its latent representation zref = E(xref ). To obtain
a clean motion signal, this latent is passed through a specific DiT block at a low denoising step,
typically t = 0. For our tile-based approach, we first partition the spatial dimensions into tiles of size
(th, tw). For each tile, we select a representative query at the tile center and compute its attention with
all keys in the target frame. For any pair of frames (i, j) in the video, the representative cross-frame
attention map Arep

ij is computed as:

Arep
ij = softmax

(
Q

(i)
rep(K(j))T√

Dh

· τ

)
∈ RNtiles×S (1)

where Ntiles =
H
th
× W

tw
is the number of tiles, S = H ×W is the spatial token length, and τ is the

temperature parameter. From this representative attention map, we estimate the window center for
each tile as:

c(ij)uv =

S∑
s=1

Arep
ij [s] · pos(s) (2)
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Figure 4: Overview of our method. Left: Given a reference video, we first leverage the sliding
window to extract motion embedding from attention during the inversion stage. At the denoising
stage, we calculate the total loss and leverage the step-skipping gradient optimization to guide
the video generation. Right: The Step-skipping gradient optimization is proposed to improve
gradient redundancy. Additionally, we introduce the corresponding-window loss to boost the motion
consistency of generated videos.

where pos(s) denotes the spatial position of token s. This estimated center guides the subsequent
window-constrained Attention Motion Flow (AMF) computation, enabling efficient motion extraction
while maintaining spatial precision.

Sliding-window motion extraction. To enhance the computational efficiency and precision of
AMF extraction, we propose a novel sliding window strategy that mitigates the redundant computa-
tions inherent in prior methods. Our approach leverages the observation that long-range query-key
interactions in self-attention layers yield diminished motion information, and the most relevant keys
for an object are typically confined to a local spatial window due to finite motion speeds.

We extract AMF from query Q and key K, both of shape (N,H,W,D), where H and W denote the
height and width of the latent representation, and N is the number of frames. Here,Q = {q1, . . . , qN},
with qi, i ∈ {1, . . . , N} representing the query tensor for a specific frame, and K follows a similar
notation. Unlike prior methods that compute AMF across all q-k pairs while attending to the entire
spatial dimension, our approach employs a sliding window to constrain computations both temporally
and spatially:

Twindow(qi) = {qj : j ∈ [i,min(i+ sf , N)]}, Swindow(kh,w) = {kh′,w′ : (h′, w′) ∈ W l
h,w} (3)

where sf represents the temporal span andW l
h,w denotes a spatial window of size l × l centered at

position (h,w). To determine the optimal window center, we partition each frame into spatial blocks
and select representative queries. The window center for each block is computed as:

c
(ij)
block = Pblock + argmax(h,w)

(
Q(i)

rep · (K(j))T
)
h,w

(4)

where Pblock is the block center position and the argmax operation yields the displacement vector
from representative query-key interactions.

Our approach significantly enhances efficiency. Temporally, it reduces the time complexity from
O(F 2) to O(F ), where F is the number of frames, enabling scalable video generation. Spatially,
by constraining computations to a local window containing the most relevant keys, we eliminate
redundant calculations, thereby achieving precise AMF extraction with minimal quality loss.

3.3 CORRESPONDING-WINDOW LOSS

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

OursAttn i W/o sliding window

Wrong correspond. Right correspond. ✅❌

Figure 5: Illustration of attention motion flow
extraction with sliding window. Without the slid-
ing window, attention tokens are prone to incorrect
correspondences (middle). Incorporating a sliding
window improves alignment, leading to better mo-
tion consistency(right).

Motivated by the observation that motion in-
formation is predominantly captured by closely
adjacent query-key pairs, we design a weighted
AMF loss and a corresponding-window loss to
enhance motion transfer accuracy with temporal
stability. The weighted AMF loss aligns the mo-
tion patterns between reference and generated
videos by computing the L2 distance between
their respective displacement matrices, which is
formulated as:

LAMF =
1

|F|
∑

(i,j)∈F

w|j−i| · ∥∆ref
ij −∆gen

ij ∥
2
2

(5)
where F represents all frame pairs within the
temporal span sf , and the weights are defined
as:

wd =

{
1.0− α · d−1

sf−1 if d ≤ sf

0 otherwise
(6)

where α is set as 0.2 to provide linear decay, and d = |j − i| represents the frame distance.

To enhance temporal consistency, we introduce a corresponding-window loss that penalizes inconsis-
tencies in key representations across adjacent frames within the sliding windows:

Lwindow =
1

F

F−1∑
i=0

1

P

P∑
p=1

1

Ni − 1

Ni−1∑
t=1

∥∥∥K̄(p)
i→jt+1

− K̄
(p)
i→jt

∥∥∥2
2
, (7)

where K̄
(p)
i→j denotes the mean key representation within the sliding window W

(p)
i→j for tile p when

anchoring at frame i and comparing with target frame j.

The total loss combines both components with appropriate weighting:
Ltotal = λAMF · LAMF + λwindow · Lwindow, (8)

where λAMF is set to 5 to emphasize motion alignment, and λtrack is set to 1 to balance the
corresponding-window loss. This dual-component loss ensures both accurate motion transfer and
temporal stability, effectively addressing motion consistency challenges in video generation.

3.4 STEP-SKIPPING GRADIENT OPTIMIZATION

Despite the computational efficiency introduced by our sliding window strategy, optimizing the
latent representation remains computationally intensive due to the high cost of back propagation
through multiple DiT blocks. Through empirical analysis, we observe a high degree of similarity
in the gradients of the latent representation across consecutive optimization steps. Leveraging this
insight, we propose an interval-based gradient reuse strategy that selectively computes gradients
while maintaining optimization effectiveness.

Our step-skipping optimization operates with a fixed interval ∆ during the inner optimization loop.
For a total of J optimization steps, gradient computation occurs only when the current step j satisfies
the condition j mod ∆ = 0, or when using the full AMF mode. The algorithm can be formalized as:

Lj =

{
∇xLtotal(xj) if j mod ∆ = 0 or mode = AMF
xj · gcached otherwise

(9)

where gcached represents the gradient from the most recent computation step. This strategy reduces
gradient computations from J to approximately ⌈J/∆⌉ per guidance step, achieving a theoretical
speedup of ∆/⌈J/∆⌉× in the optimization phase. The cached gradient gcached is updated after each
actual gradient computation:

gcached = gj when j mod ∆ = 0 (10)
This approach significantly reduces computational overhead while maintaining motion transfer quality,
as the gradient similarity across consecutive steps ensures that cached gradients remain effective for
optimization guidance.
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A leopard is running in the snow.

An astronaut is walking in front of the magma. A dragon is flying over the snow-capped mountains.
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Figure 6: Gallery of our method. Given a reference video, our FastVMT is capable of generating
high-quality video clips that faithfully preserve diverse motion patterns. More visual results can be
found in Appendix C.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In our experiment, we employ the open-sourced video generation model WAN-2.1 (Wan et al.,
2025) as the base text-to-video generation model. The denoising steps are employed for 50 for
all experiments. Unless stated, the output resolution is 480× 832 with F = 81 frames (internally
rounded to 4k+1). Latents are initialized as Gaussian noise of shape

(
1, 16, F−1

4 + 1, H
8 ,

W
8

)
.

Latent tiling is enabled with tile_size =(30, 52) and tile_stride =(15, 26) in VAE space;
this yields a per-frame token grid of h = H

8 by w = W
8 for the DiT. During motion transfer, as

Pondaven et al. (2024), we enable our sliding-window based AMF guidance at the first 20% outer
denoising steps; each guided step runs a 10-step latent-only inner optimization with AdamW and
a linear learning-rate decay 0.003 → 0.002. At each guided diffusion step t, we form a reference
latent by adding step-consistent noise to cached clean latents and perform a forward pass with null
text to extract queries/keys from the 15th DiT block. More details can be found in the Appendix 5.

4.2 COMPARISON WITH BASELINES

Qualitative comparison. We compare our approach with the state-of-the-art video motion trans-
fer methods visually: MOFT (Xiao et al., 2024), MotionInversion (Wang et al., 2024a), Motion-
Clone (Ling et al., 2024), SMM (Yatim et al., 2024b), MotionDirector (Zhao et al., 2023b), DiT-
Flow (Pondaven et al., 2024), and DeT (Shi et al., 2025). For fair comparison, we adapt the Wan-2.1
as the same backbone. Our experimental results demonstrate that FastVMT achieves superior perfor-
mance and greater versatility across a wide range of motion transfer scenarios. As illustrated in Fig. 8,
these works (Xiao et al., 2024; Yatim et al., 2024b; Pondaven et al., 2025a; Shi et al., 2025) have the
challenge of handling complicated interaction motion. In contrast, our method enables generating
videos with aligned movement patterns, preserving the spatial relationships between moving subjects.

Quantitative comparison. We compare our method with the state-of-the-art video motion transfer on
on 50 high-quality videos selected from the DAVIS dataset (Perazzi et al., 2016). For fair comparison,
we employ Wan-2.1 as the same backbone. Previous works are constrained by the limited video
length, with evaluations conducted using only 32 frames at a resolution of 830× 480. In this context,
we classify the state-of-the-art (SOTA) methods into two categories: training-free and tuning-based,

7
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Table 2: Comparison with state-of-the-art video motion transfer methods. Red and Blue denote
the best and second best results, respectively. User study scores are reported in Appendix 5.

Method Quantitative Metrics Vbench Metrics

Text Sim.↑ Motion Fid.↑ Temp. Cons.↑ Time (s)↓ Sub. Cons.↑ Back. Cons.↑ Aes. Qual.↑ Motion Smooth.↑

Training-Based Methods
MotionInversion (Jeong et al., 2024b) 0.2388 0.6515 0.9605 632.41 0.9339 0.9372 0.4062 0.9532
MotionDirector (Zhao et al., 2023b) 0.2336 0.4524 0.9531 806.64 0.9173 0.9379 0.3443 0.9633
DeT (Shi et al., 2025) 0.2187 0.6116 0.9818 2745.60 0.9787 0.9654 0.3559 0.9598

Training-Free Methods
MOFT (Xiao et al., 2024) 0.2297 0.6511 0.9797 595.81 0.9593 0.9413 0.4581 0.9716
MotionClone (Ling et al., 2024) 0.2304 0.7315 0.9722 397.05 0.9601 0.9545 0.4615 0.9616
SMM (Yatim et al., 2024b) 0.2374 0.7353 0.9366 809.70 0.8907 0.9352 0.5770 0.9702
DiTFlow (Pondaven et al., 2025a) 0.2091 0.4062 0.9822 626.83 0.9557 0.9678 0.5310 0.9801
Ours 0.2422 0.7471 0.9865 184.18 0.9809 0.9684 0.5778 0.9891

based on whether they leverage spatial/temporal LoRA for optimizing complex motion patterns.
(a) Time: We record the total time required for completing the motion transfer process, including
any inference-time optimization. Leveraging proposed sliding-window motion extraction and step-
skipping gradient optimization, FastVMT is the fastest method. Its runtime is faster than training-free
methods, while delivering better performance. (b) Motion Fidelity: As in Yatim et al. (2024b), we
use motion fidelity to assess the similarity of tracklets between reference and generated videos. (c)
Temporal Consistency: We measure frame-to-frame coherence by calculating the average feature
similarity of consecutive video frames using CLIP (Radford et al., 2021). (d) Text Similarity: CLIP
is used to extract features from the target video, and the average cosine similarity between the input
prompt and video frames is computed. (f) User Study: To account for the limitations of automatic
metrics in capturing real-world preferences, we conducted a user study with 20 volunteers. They
ranked methods based on motion preservation, appearance diversity, text alignment, and overall
quality, using a 1 (best) to 8 (worst) scale. The average rank per method (lower ranks are better)
is presented in Appendix.5. Our method outperforms others in both automated metrics and user
preferences.

Table 1: Quantitative ablation. Red and Blue denote best, 2nd.

Method Text Sim.↑ Motion Fid.↑ Temp. Cons.↑ Time(s)↓

w/o Sliding Wind. 0.2352 0.6912 0.9654 227
w/o Cor. Loss 0.2345 0.5942 0.9762 183
w/o Step Skip. 0.2317 0.7044 0.9881 302

Ours 0.2422 0.7471 0.9865 184

Motion Fid.

Motion Smooth.

Background 
Cons.

Temp. Cons.

Text-Frame
Sim.

AestheticSubject Cons.

Ours

w/o step skipping
w/o cor skipping
w/o sliding wind.

Figure 7: Quantitative ablation comparison on Vbench
metrics. We select the seven metrics to evaluate the effec-
tiveness of the proposed strategy.

In addition, we collect 40 real-world
videos and 40 high-quality generated
videos by advanced text-to-video gen-
erative models (Kong et al., 2024;
Wang et al., 2025b). For each video,
we generate 5 different prompts. Four
metrics in VBench (Huang et al.,
2023) are employed for a more accu-
rate evaluation (in Tab. 2). (1) Sub-
ject Consistency: We assess whether
the identity of the subject is preserved
across frames. (2) Motion Smooth-
ness: The metric evaluates inter-
frame continuity using learned motion
priors. (3) Aesthetic Quality uses
a LAION-trained aesthetic predictor
to score visual appeal. (4) Back-
ground Consistency: We evaluate
the coherence of the background. Our
proposed method significantly outper-
forms all baseline approaches across
every video quality metric, thereby
showcasing the state-of-the-art perfor-
mance in novel video.

4.3 ABLATION STUDY

Effectiveness of sliding-window based motion extraction. As shown in Tab. 1 and Fig. 7, removing
the sliding window mechanism results in performance degradation across multiple metrics and
increased computational overhead and inference time. In Fig. 10, we present the visual results without
sliding windows. It is clear to observe a light reduction in motion fidelity and temporal consistency,
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Ref video smm MOFT Motion Director DeT Motion Inversion DitFlow OursMotion Clone

A spacecraft is moving in the Space base.

A knight on horseback is  galloping outside the castle.

Figure 8: Qualitative comparison with baselines. We perform the visual comparison with various
baselines using various kinds of motions. Our method obtains better performance in various motions.
More visual results can be found in Appendix C.

confirming that our approach effectively balances computational efficiency with motion transfer
quality. Additionally, we also show the visual comparison of attention motion extraction in various
attention layers in DiT (see Fig. 9). The motion extraction is more accurate in the middle layer of
DiT. The quantitative ablation about it is provided in Appendix 5.

Right correspondance Wrong correspondance

Ref video 10th / 30 Layer 15th / 30 Layer 20th / 30 Layer

Ti
m
e

Figure 9: Illustration of token correspondence perfor-
mance in various attention layers of DiT. We extract the
different attention correspondence in the DiT. It is easy to
observe that the middle attention layer in DiT has better
performance.

Ti
m
e

w/o step skipping w/o corr. loss w/o sliding window Ours

302s 183s 227s 184s

Figure 10: Qualitative ablation about proposed modules.
The reference video is on the left top of the first column.
The prompt is “A white cat is running in the ground”.

Effectiveness of corresponding-
window loss. Tab. 1 and Fig. 7 reveal
that excluding the corresponding-
window loss leads to substantial
degradation in motion fidelity, high-
lighting its essential role in maintaining
accurate motion transfer. As shown
in Fig. 10, equipping with this loss
function effectively constrains temporal
inconsistencies to ensure robust motion
alignment, while introducing minimal
computational overhead (less than
1% increase in processing time), thus
preserving both accuracy and efficiency.

Effectiveness of step skipping gradi-
ent upgrading. The step-skipping strat-
egy significantly reduces computational
time while preserving video generation
quality. As demonstrated in Tab. 1 and
Fig. 7, this optimization achieves sub-
stantial time savings with negligible im-
pact on motion fidelity and temporal
consistency, validating the effectiveness
of gradient reuse in our framework.

5 CONCLUSION

In this work, we introduced FastVMT, a training-free video motion transfer framework that explicitly
addresses motion redundancy in diffusion transformer architectures and gradient redundancy along
the diffusion trajectory. To eliminate the motion redundancy, we propose the sliding-window strategy
associated with corresponding window loss to achieve a more reliable and more efficient local search
for motion correspondence. To migrate gradient redundancy, We introduce a step-skipping gradient
computation to ensure computational efficiency. By incorporating the proposed strategies, our
method achieves a 3.43× average speedup without compromising either visual fidelity or temporal
consistency. We believe this line of work opens new opportunities for building more efficient and
practical generative video motion transfer.

9
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REPRODUCIBILITY STATEMENT

All quantitative tables, qualitative images, and video results in this work are reproducible and
correspond to raw model outputs without manual editing or post-hoc alteration, except for minimal
format conversion and compression. After the review process, we will release a partial public
repository to support reproduction, including inference scripts, example data, and example videos.
The datasets, configurations, and procedures used for training and evaluation are documented in
Section 4.1 and Appendix 5. We will also provide fixed configuration files and random seeds so that
independent runs can reproduce the visual results within expected stochastic variation.

ETHICS STATEMENT

Our work studies motion-transfer video editing. The proposed dataset contains videos of people,
vehicles, and landscape camera motions. To mitigate representational bias in demonstrations, we
curated and display examples spanning different races, genders, and styles in the main text and
appendix. All illustrative videos shown in this paper are sourced from publicly available web content;
we respect the original licenses and terms of service and use the content solely for research purposes.
We will not publicly release the dataset prior to completing the insertion of AI-generated watermarks
and an ethics/content-safety audit. We explicitly prohibit harmful or deceptive uses of our methods
and data, including deepfake attacks and other malicious generative behaviors. When any portion
of our code is made public, we will enforce visible and/or machine-detectable watermarking during
inference to help deter misuse. Any future releases will be accompanied by usage terms that forbid
impersonation, harassment, or other malicious applications, and we will remove or restrict content
that raises privacy, legal, or safety concerns.
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A DYNAMIC VIDEOS

We show more video motion transfer results produced by our method in an MP4 file, which can be
found in the file: demo.mp4.

B MORE DETAILS ABOUT IMPLEMENTATION

B.1 IMPLEMENTATION DETAILS

Our sliding-window based AMF uses a tile grid of 3×4 tokens, a temporal span sf = 5, a local search
window l = 21 (half-width 10), and temperature τ = 1.0. The AMF loss between the reference and
current sample is a weighted squared ℓ2 over temporal offsets with linear weights 1.0→ 0.8 across
offsets, normalized by the number of offsets and tokens; gradients update only the latent x. To reduce
cost, within the inner loop we recompute Q/K and tile-AMF every interval= 3 steps and reuse
the cached gradient on intermediate steps.

B.2 HUMAN EVALUATION

We conducted a user study via a questionnaire comprising 8 distinct input videos spanning 4 categories:
camera motion, complex human motion, single object, and multiple objects. Videos were generated
using our proposed method alongside other baseline approaches. The user study interface is illustrated
in Figures 1 and 2. Owing to page constraints, only two generated videos are presented here.
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Algorithm 1 FastVMT Algorithm

Require: zref: reference video latent, zgen: generating latent
Ensure: Optimized zgen

1: function OPTIMIZATION(zref, zgen)
2: Align noise level: z′ref ← MatchNoise(zref, zgen)
3: Do inference: DiT(z′ref, zgen)
4: Extract self attn features: qgen,kgen,qref,kref ← AttnFeatures
5: Calculate displacement matrix: D ← CalDisplace(q, k)
6: Computing loss: L ← LossFunc(Dgen,Dref)
7: Backpropagate and optimize: z′gen ← Optimization(zgen)

8: Output z′gen
9: end function

10: for t = 1 to n do
11: if t < Topt then
12: zgen ← OPTIMIZATION(zref, zgen)
13: end if
14: zgen ← DENOISE(zgen)
15: end for

Table 1: User Study Comparison for State-of-the-Art Video Motion Transfer Methods. The
results show the average rank (1=best, 8=worst) for all the methods; lower is better. Red and Blue
denote the best and second best results.

Method User Study

Motion Pres.↓ Gen. Qual.↓ Text Align.↓ Overall↓

Training-Free Methods
MOFT (Xiao et al., 2024) 5.213 4.088 4.700 4.667
MotionClone (Ling et al., 2024) 5.300 4.688 5.362 5.117
SMM (Yatim et al., 2024b) 4.338 6.075 4.975 5.129
DiTFlow (Pondaven et al., 2025a) 4.713 3.200 4.088 4.000

Tuning-Based Methods
MotionInversion (Jeong et al., 2024b) 5.050 6.350 5.075 5.492
MotionDirector (Zhao et al., 2023b) 5.325 5.862 5.575 5.588
DeT (Shi et al., 2025) 4.350 3.175 3.825 3.783
Ours 1.712 2.562 2.400 2.225

B.3 CORRESPONDING-WINDOW LOSS

We compute the head-averaged self-attention queries and keys from a fixed DiT block, denoted by
Q,K ∈ RF×H×W×D for F frames, an H ×W spatial token grid, and channel dimension D. The
spatial grid is partitioned into non-overlapping tiles {Tp}Pp=1 of size (th, tw), where P = H

th
W
tw

. For
an anchor frame i ∈ {0, . . . , F − 1} and a temporal neighborhood Ji = { i+ 1, . . . ,min(i+ sf −
1, F − 1) } with Ni = |Ji|, we define, for each tile p, a fixed-size windowW(p)

i→j ⊂ {1, . . . ,H} ×
{1, . . . ,W} on the target frame j ∈ Ji (windowing rule specified in the main paper). The window-
averaged key feature is

K̄
(p)
i→j =

1

|W(p)
i→j |

∑
(u,v)∈W(p)

i→j

Kj(u, v) ∈ RD, Kj(u, v) = K[j, u, v, :].

Stacking these per-tile temporal features yields K(p)
i =

[
K̄

(p)
i→j

]
j∈Ji

∈ RNi×D. The tracking loss
penalizes first-order temporal variations of the window means across adjacent target frames and
averages over tiles and anchors:

∆K
(p)
i (t) = K̄

(p)
i→jt+1

−K̄(p)
i→jt

, t = 1, . . . , Ni−1, L(i)
window =

1

P

P∑
p=1

1

Ni − 1

Ni−1∑
t=1

∥∥∥∆K
(p)
i (t)

∥∥∥
2
,
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Figure 1: Input video, target prompt, and video choices as presented in the user study questionnaire.
Owing to page constraints, only two videos are shown here.

Figure 2: User study choices: Participants are prompted to rank 8 videos in descending order of
preference.

Lwindow =
1

F

F−1∑
i=0

L(i)
window.

Equivalently, writing K
(p)
i ∈ RNi×D as a temporal sequence, the inner sum is the mean L2 norm

of the finite differences K
(p)
i [2:] − K

(p)
i [1:−1]. In practice we compute K̄

(p)
i→j in FP32 before

reduction, and the overall guidance objective during latent optimization combines attention motion
flow matching and tracking:

L = λamf Lamf + λwindow Lwindow,

with constants λamf > 0 and λwindow > 0.
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Table 2: Ablation comparison of different attention layers (30 in total). Red and Blue denote the
best and second best results, respectively.

Method Text Sim.↑ Motion Fid.↑ Temp. Cons.↑ Sub. Cons.↑ Back. Cons.↑ Aes. Qual.↑ Motion Smooth.↑

10-th layer 0.2241 0.7128 0.9730 0.9610 0.9530 0.5595 0.9736
15th layer(Ours) 0.2422 0.7471 0.9865 0.9809 0.9684 0.5778 0.9891
20-th layer 0.2319 0.7213 0.9701 0.9549 0.9414 0.5606 0.9791

Table 3: Ablation study about temporal span. Red and Blue denote the best and second best
results, respectively.

Temp. Span Sub. Cons. Back. Cons. Aes. Qual. Motion Smooth.

span-3 0.9592 0.9461 0.5690 0.9899
span-5 0.9809 0.9684 0.5778 0.9891
span-7 0.9711 0.9608 0.5522 0.9858

C MORE COMPARSONS

In Fig. 5, we present additional comparisons to assess the performance of the proposed method. It is
clear that previous works exhibit inconsistent motion. In contrast, our approach effectively resolves
the issue of motion consistency.

D MORE RESULTS

D.1 MORE VISUAL RESULTS

We presented more visualizations in Figure 3 and 4, where each reference video is paired with two
distinct motion transferred videos. In particular, Fig. 7 presents two challenging visual cases: one
featuring complex object motion and another involving complex camera motion. The first set of
images shows an astronaut doing a front flip off the deck into the water. The second set of images
illustrates a complex camera move, where the viewpoint rises rapidly from ground level and then
pushes in for a close-up of the subject.

An athlete is running in a park

A horse-drawn carriage goes on a rural path 

A tiger is running on a hill

A tiger emerged from wilderness

A lunar rover is ascending a small hill

A wolf is running in a forest

A panda is walking on a playground

A spaceship is driving to ironman
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Figure 3: More visual results. We provide more visual results to evaluate the performance.
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Table 4: Ablation study about gradient skip interval. Red and Blue denote the best and second
best results, respectively.

Skip Interval Sub. Cons. Back. Cons. Aes. Qual. Motion Smooth.

interval-1 0.9824 0.9695 0.5762 0.9853
interval-2 0.9809 0.9684 0.5778 0.9891
interval-3 0.9651 0.9328 0.5521 0.9528

Table 5: Ablation study about window size. Red and Blue denote the best and second best results,
respectively.

Wind. Size Sub. Cons. Back. Cons. Aes. Qual. Motion Smooth.

17-size 0.9625 0.9521 0.5680 0.9881
21-size 0.9809 0.9684 0.5778 0.9891
25-size 0.9639 0.9550 0.5495 0.9860

D.2 MORE ABLATION RESULTS

We conduct an ablation study to evaluate the impact of selecting different attention layers for motion
extraction. As illustrated in Table 2, our choice of the middle attention layer achieves the best
performance in motion transfer.

We evaluated our ablation samples on Vbench metrics. The results are presented in Table 8.

We have further conducted our ablation experiments on some important hyperparameters. Ablation
results of window size, sliding stride, temporal span and gradient skip interval are shown in Table 5734

D.3 MORE QUANTITATIVE COMPARISON

We further conducted our experiment using MTBench. Our quantitative results are shown in Table 6.

E EXPERIMENT DETAILS

All experiments presented in this study were conducted utilizing NVIDIA A100-80GB GPUs for
fair comparison. The reference videos were carefully curated from publicly available sources on the
internet, ensuring a diverse and representative dataset for evaluation purposes.

F GPU USAGE

We evaluated our method with the Wan2.1-14B model. During generation of 41-frame videos, the
peak GPU memory usage remained below 60 GB. This modest memory footprint demonstrates that
our approach is GPU-memory efficient. Inference process can be performed on a single 80-GB GPU
without memory pressure, facilitating broader accessibility and deployment in resource-constrained
environments.

G LIMITATIONS AND POTENTIAL SOCIAL IMPACT

G.1 LIMITATION

As observed in prior work (Pondaven et al., 2025a), existing frameworks are still bounded by the
capacity of the pre-trained video backbone, making it challenging to handle out-of-distribution
prompts or motions. For instance, highly complex human actions (such as Thomas Flair) remain
particularly difficult. When the generated video content and the conditioning prompt exhibit semantic
inconsistency or conflict, the quality of motion transfer can degrade significantly, often leading to
unsatisfactory or unstable results.

The pairwise design adopted by AMF, while beneficial for capturing motion correspondences,
inevitably introduces higher memory consumption compared to prior methods. Although this
overhead does not critically affect short video synthesis, it may pose practical challenges when
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Table 6: Comparison with state-of-the-art video motion transfer methods on MTBench. Red
and Blue denote the best and second best results.

Method Quantitative Metrics Vbench Metrics

Text Sim.↑ Motion Fid.↑ Temp. Cons.↑ Time (s)↓ Sub. Cons.↑ Back. Cons.↑ Aes. Qual.↑ Motion Smooth.↑

Training-Based Methods
MotionInversion (Jeong et al., 2024b) 0.2190 0.6945 0.9634 632.41 0.9291 0.9587 0.4882 0.9658
MotionDirector (Zhao et al., 2023b) 0.2351 0.6270 0.9599 806.64 0.9644 0.9435 0.3771 0.9650
DeT (Shi et al., 2025) 0.2317 0.5225 0.9609 2745.60 0.9540 0.9409 0.5063 0.9682

Training-Free Methods
MOFT (Xiao et al., 2024) 0.2238 0.5187 0.9375 595.81 0.9471 0.9344 0.3672 0.9683
MotionClone (Ling et al., 2024) 0.2161 0.5601 0.9775 397.05 0.9664 0.9550 0.5047 0.9660
SMM (Yatim et al., 2024b) 0.2112 0.5641 0.9468 809.70 0.9720 0.9444 0.4554 0.9595
DiTFlow (Pondaven et al., 2025a) 0.2296 0.5126 0.9575 626.83 0.9402 0.9438 0.5156 0.9625
Ours 0.2434 0.7182 0.9809 184.18 0.9734 0.9690 0.5367 0.9781

Table 7: Ablation study about stride. Red and Blue denote the best and second best results,
respectively.

Slid. Stride Sub. Cons. Back. Cons. Aes. Qual. Motion Smooth.

stride-1 0.9809 0.9684 0.5778 0.9891
stride-3 0.9627 0.9630 0.5660 0.9875
stride-5 0.9629 0.9444 0.5699 0.9850

scaling to long video generation. Looking ahead, we believe that this issue can be mitigated through
systematic engineering optimizations, such as more efficient memory management strategies, model
compression, or hierarchical generation schemes.

Additionally, we present two failure cases in Fig. 6. This figure presents two failure cases of the
proposed method. The first set of images shows Spider-Man and Iron Man riding motorcycles,
while the second set depicts two robots roller skating in an outdoor urban environment. Despite the
method’s overall strong performance, the challenge arises in handling occlusions, as highlighted in
the red boxes. This issue could be addressed in the future with the use of a more advanced video
diffusion model, which may improve the handling of such visual obstacles.

G.2 POTENTIAL SOCIAL IMPACT

The potential social impact of FastVMT and efficient video motion transfer technologies is far-
reaching, with applications spanning across multiple industries. In the entertainment sector, partic-
ularly in film, gaming, and digital content creation, the ability to quickly and accurately transfer
motion from one video sequence to another enables faster production cycles and more dynamic
storytelling, reducing costs and enhancing creativity. This could democratize high-quality video
production, making it accessible to smaller studios and independent creators who previously lacked
the resources to produce complex motion sequences.

In the advertising industry, FastVMT offers new opportunities for creating personalized and engaging
content. Brands can easily adapt their campaigns to various demographics by transferring motion
from diverse sources, ensuring relevance and resonance with their audience. Additionally, this
technology could be employed for real-time video adaptation in interactive applications, further
improving customer experiences.

Beyond media and entertainment, the technology also holds promise in education, remote work, and
healthcare. Virtual simulations and immersive training environments could benefit from enhanced
motion transfer capabilities, allowing for realistic and adaptable scenarios. This could support
remote learning, telemedicine, and virtual conferences, making such interactions more engaging and
effective.

Overall, FastVMT’s ability to reduce computation costs and improve video synthesis efficiency can
drive widespread innovation, making advanced video manipulation more accessible, affordable, and
impactful across various sectors, ultimately shaping the future of digital media and interaction.

H THE USAGE OF LARGE LANGUAGE MODELS

In this paper, the usage of the LLM mainly falls into the following aspects:
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A firefighter is running on a road

A knight is running near the castle

A robot is surfing

A horse is surfing

A gorilla is doing exercises

A fencer is doing exercises

A lion lies down near its owner

An alpaca lies down near its owner
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Figure 4: More visual results. We provide more visual results to evaluate the performance.

Table 8: Vbench metrics evaluated of the ablation samples. Red and Blue denote the best and
second best results, respectively.

Method Sub. Cons. Back. Cons. Aes. Qual. Motion Smooth.

w/o Sliding Wind. 0.9686 0.9437 0.5628 0.9667
w/o Cor. Loss 0.9753 0.9574 0.5629 0.9705
w/o Step Skip. 0.9852 0.9617 0.5623 0.9887
Ours 0.9809 0.9684 0.5778 0.9891

• Grammar checking and format optimization: In the paragraphs of the paper, LLMs are
used for grammar error checking and format checking of charts and graphs.

• Language polishing: The text description part of the paper uses LLMs to polish and
optimize the language expression.

• All authors are responsible for the content generated by the LLMs.
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input SMM MOFT MotionDirector DeT MotionInversion DitFlow OursMotion Clone

Figure 5: More qualitative comparison with baselines. We provide more visual comparison with
various baselines using various kinds of motions. Our method demonstrates superior performance
across a range of motion types.

A Spider-Man and Iron man are riding motorcycles Two cars are roller skating in an outdoor urban

Figure 6: Failure case of proposed. Even though our method achieves good performance, we still
have a challenge when handling the occlusion. This failure can be mitigated by a powerful video
diffusion model in the future.

An astronaut is doing a front flip into the water. A detective is standing at the train station.

Figure 7: Complex cases of proposed. Our method also performs well in some cases with complex
object motion and camera movement.
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