
Fast Local Search Algorithms for Clustering with
Adaptive Sampling and Bandit Strategies

Junyu Huang1, Qilong Feng1,∗ , Zhen Zhang2,3, Beirong Cui1, Jianxin Wang1,4,∗
1School of Computer Science and Engineering, Central South University

2School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business
3Xiangjiang Laboratory, Changsha, China

4The Hunan Provincial Key Lab of Bioinformatics, Central South University,
Changsha 410083, China

junyuhuangcsu@foxmail.com, csufeng@mail.csu.edu.cn, csuzz@foxmail.com
234711098@csu.edu.cn, jxwang@mail.csu.edu.cn

Abstract

Local search is a powerful clustering technique that provides high-quality solutions
with theoretical guarantees. With distance-based sampling strategies, local search
methods can achieve constant approximations for clustering with linear running
time in data size. Despite their effectiveness, existing algorithms still face scala-
bility issues as they require scanning the entire dataset for iterative center swaps.
This typically leads to an O(ndk) running time, where n is the data size, d is the
dimension, k is the number of clusters. To further improve the efficiency of local
search algorithms, we propose new methods based on adaptive sampling and bandit
strategies. Specifically, adaptive sampling can well approximate the distance-based
sampling distribution without maintaining pairwise distances between data points
and the centers, enabling fast and accurate sampling in sublinear time after an
Õ(nd) time preprocessing step. The bandit strategy models the best swap pair
selection as a bandit problem, where a grouping strategy is proposed for fast identi-
fication of the optimal swap pair. With these techniques, our proposed algorithm
can achieve constant approximation in expected running time Õ(nd+ k4) under
mild assumptions on optimal clusters and swap pair distributions. Our approach
also extends naturally to the k-median objective, achieving constant approximation
in expected running time Õ(nd+

√
nk3) without distributional assumptions. Em-

pirical results demonstrate that our algorithm achieves up to 1000× speedup over
existing local search methods on datasets with 100 million points, while delivering
comparable clustering quality. Compared to coreset-based approaches, it also
provides up to 80× speedup and consistently yields better clustering results.

1 Introduction

Clustering is a fundamental unsupervised learning problem with wide applications in machine
learning. It aims to partition a dataset into clusters such that points within the same cluster can share
high similarity. Among various formulations, k-means and k-median are widely studied for their
practical effectiveness. This paper focuses on these two problems in d-dimensional Euclidean space.

Over the past few decades, numerous heuristic and approximation algorithms have been developed
for the k-means and k-median problems. Among them, the Lloyd’s algorithm [27] remains the
most widely used in practice. However, a potential issue is that Lloyd’s algorithm may require an

∗Corresponding Authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

unbounded number of iterations to reach a convergence [1]. To address this, Arthur and Vassilvitskii
[1] proposed the k-means++ seeding method, which achieves an O(log k)-approximation for both
k-means and k-median in O(ndk) time, where n is the data size, d is the dimension, and k is
the number of clusters. Intuitively, k-means++ selects k centers sequentially, choosing each new
center with probability proportional to the (squared) distances from data points to their nearest
centers (also known as the D2-Sampling (or D-Sampling) strategy [25]). To further enhance the
clustering quality, local search methods are commonly employed to achieve constant approximations
[23, 2, 25, 11, 21, 7]. Starting from a random initial solution, local search aims to find iterative
improvements on clustering quality through center swaps between data points and the centers selected.
Kanungo et al. [23] proposed the first local search algorithm for k-means, achieving a polynomial-
time (9 + ϵ)-approximation. Arya et al. [2] gave the first local search algorithm for k-median,
achieving a polynomial-time (3+ϵ)-approximation. Recently, Cohen-Addad et al. [13] improved this
result for k-median to a polynomial-time (2.836 + ϵ)-approximation by introducing distance-based
potential functions, which is the current best approximation result for k-median with local search.

As contemporary datasets scale to hundreds of millions of entries, even algorithms with modest
polynomial complexity can become impractical. Hence, there has been growing interest in developing
local search algorithms that can achieve linear running time with respect to data size in d-dimensional
Euclidean space. Lattanzi and Sohler [25] proposed the LS++ algorithm. Instead of exhaustive
enumerations, LS++ selects exactly one point for swapping in via D2-Sampling strategy. They
proved that LS++ can achieve an O(1)-approximation for both k-means and k-median objectives in
time O(ndk2 log log k), using O(k log log k) local search steps. Choo et al. [11] further reduced the
number of local search steps to O(ϵk) for LS++, achieving an O(1/ϵ3)-approximation. Fan et al. [19]
narrows the swap candidates to exactly 2 using a greedy strategy, achieving an O(1)-approximation
in O(ndk log log k) time under mild assumptions on average cluster sizes. While single-swap local
search outperforms the seeding methods, there is still a gap on clustering quality guarantees compared
to multi-swap strategies. To bridge this gap, recent studies have focused on sampling-based multi-
swap methods. Huang et al. [21] proposed a (50(1+ 1/t) + ϵ)-approximation algorithm for k-means
with O(ndk2t+1 log(ϵ−1 log k)) time, where t is the swap size. Independently, Beretta et al. [7] gave
a 10.46-approximation algorithm for k-means in O(ndpoly(k)) time, which is the current best result
for k-means with linear runtime in data size. These local search methods can naturally be extended to
the general metric space to achieve O(1)-approximation and linear running time in the data size.

For clustering in general metric spaces, it has been proved that achieving any constant-factor ap-
proximation requires Ω(nk) time [29]. Therefore, a natural question arises: can we further improve
this bound in d-dimensional Euclidean space? Along this line of research, several algorithms have
been proposed. One approach is to incorporate the Euclidean spanners [20] with a near-linear time
graph-based clustering algorithm [31], where an O(c)-approximation can be achieved in O(n1+1/c)
time for k-median. However, its extension to the k-means objective remains unclear. Recently, la
Tour and Saulpic [24] proposed an O(1)-approximation framework with Õ(nd+ n1+1/c) 2 running
time for k-clustering, using geometric hashing and ball-covering strategies for center selections.
Alternatively, another direction focuses on coresets constructions [17, 5, 16, 14, 12], which aims to
reduce the data sizes to Õ(k/ϵ) with preserved (1 + ϵ)-approximation guarantees. While traditional
coresets methods require O(ndk) time, Draganov et al. [18] broke this barrier and gave an Õ(nd)

time coreset method. Combined with LS++, this yields an O(1)-approximation in Õ(nd+ k3d) time.

Although some existing algorithms can achieve faster than O(ndk) running times for k-median
and k-means problems, they appear to be less practical and may still encounter difficulties for
handling real-world large-scale datasets. For the almost linear-time algorithms [24, 31], while they
can offer compelling guarantees on clustering quality and running time, the practical implementations
often involve complex data structures. Consequently, it remains unclear whether these methods can
effectively scale to datasets with sizes over 100 million. As for coresets methods, even with sampling
and spread compression strategies [18], our experiments (see Appendix E.2) show that these methods
still face scalability issues. It can take over 2.5 hours of computations for datasets with 100 million
points (while our algorithm can produce higher-quality solutions within just 2 minutes).

In this paper, we aim to bypass the coresets construction methods and develop practical clustering
algorithms with theoretical guarantees for large-scale datasets. Given that local search is widely
used in large-scale clustering applications, our primary focus is still on local search algorithms.

2The Õ notation is used to hide polylogarithmic factors in n and d.

2

Specifically, our goal is to design local search algorithms with running time Õ(nd+ nξpoly(k)d) for
a fixed constant ξ ∈ [0, 1). This improves upon the running time of previous local search algorithms
in the common practical settings where k is relatively small compared to data size n. In the following,
we briefly remark on the challenges encountered in this setting. Firstly, it is a non-trivial task to break
the O(ndk) running time for sampling-based swap pair constructions. Existing linear-time local
search algorithms typically rely on D2-Sampling [25, 21, 19, 7] to avoid exhaustive enumerations.
However, this approach requires maintaining distances between data points and their nearest centers,
leading to an O(nd) update time for each local search step. Since Ω(k) steps are usually needed
for theoretical convergence, the total complexity for the sampling process becomes O(ndk). To
accelerate the sampling process, several approximation methods have been proposed, including
approximate D2-Sampling [3, 4], approximate nearest neighbor search [15], and projection-based
sampling [9]. However, these methods are primarily designed for finding initial seedings, where
centers are sampled sequentially. It remains unclear whether they can effectively handle the setting
for local search, in which centers may be frequently inserted and deleted. Secondly, identifying the
best swap pair at each local search step is computationally expensive, as evaluating the clustering cost
change for even a constant number of candidate swaps requires scanning the entire dataset, leading to
an O(ndk) complexity. To accelerate the best swap pair identification, recent approaches proposed
to formulate swap pair selection as a bandit problem [33, 32, 6]. Nevertheless, these methods still
require a search space that scales linearly with the data size n, resulting in a runtime complexity of
Õ(ndk). Moreover, their theoretical guarantees rely on restrictive assumptions, requiring the cost
changes induced by each swap pair to follow a Gaussian distributionN (γ, 1) with a constant mean γ.

1.1 Our Contribution

The main objective in this paper is to develop faster local search algorithms for clustering while
bypassing coresets construction methods. For k-means clustering, we first propose a sampling-based
algorithm achieving a constant approximation in expected running time Õ(nd+

√
nk4), assuming a

sub-Gaussian prior on cost changes of swap pairs. To accelerate the sampling process, we propose
an adaptive sampling method that dynamically maintains a tree structure to approximate sampling
distributions. The tree structure can be initialized in Õ(nd) time and updated within sublinear time.
Unlike previous tree embedding methods (i.e., HSTs [15, 24]), our approach dynamically maintains
a weight distribution for each internal node, enabling an approximate D2-Sampling process to be
executed on the tree. For the best swap pair identification, we model the task as a bandit problem,
regarding swap pairs as arms. Existing bandit methods usually require strict Gaussian assumptions
for cost changes of each swap pair [6, 33, 32] with constant mean and deviations. To relax this
assumption, we propose to combine sampling with a swap pair grouping strategy, which can eliminate
unnecessary swap pairs assuming sub-Gaussian prior on cost changes of swap pairs with bounded
deviations. With theses techniques, the best swap pair can be determined in subliner time Õ(k3).

To further enhance the scalability of local search algorithms, we propose a more practical local
search algorithm that adapts Metropolis-Hastings strategy for approximating the D2sampling process.
Metropolis-Hastings strategy generates candidate samples from a uniform proposal distribution and
employs rejection sampling to determine transitions between samples. We show that our algorithm
can effectively approximate the D2-Sampling distribution under mild assumptions regarding the
sizes and tail behavior of optimal clusters, which enables each sampling step to be executed in
Õ(n/k) time. By combining with bandit methods, a constant approximate solution can be obtained
in expected time Õ(nd+ k4). Experiments show that our algorithm can achieve clustering quality
comparable to existing local search methods, with up to 1000× speedup on datasets containing 100
million points. Compared to coresets, it provides up to 80× speedup with better clustering quality.

Finally, we extend our adaptive sampling approach to the k-median objective by introducing a
weighted sampling strategy. This strategy can estimate the k-median costs for swap pairs using
weighted samples drawn from the dynamic tree structure maintained. We show that clustering costs
can be approximated within a (1± ϵ) factor using Õ(

√
n/ϵ) samples. By incorporating swap pair

grouping strategy, sub-optimal swap pairs can be effectively filtered in Õ(
√
nk2/ϵ) time for each

local search step. Thus, our approach can give a constant approximation for the k-median objective
in expected Õ(nd+

√
nk3) time, without requiring any distribution assumptions on data points.

Putting all these together, we can get the following results.

3

Theorem 1. With sub-Gaussian prior on cost changes of swap pairs, there exists an algorithm for
k-means that can achieve constant approximation within expected running time Õ(nd+

√
nk4).

Theorem 2. With sub-Gaussian prior on cost changes of swap pairs and mild assumptions on optimal
clusters, there is a constant approximation algorithm for k-means with expected runtime Õ(nd+ k4).

Theorem 3. For the k-median problem, there exists an algorithm that can output a constant
approximate solution in expected Õ(nd+

√
nk3) running time without any data assumptions.

Table 1: Comparisons with existing local search methods (n: data size, d: dimension, t: swap size).

Objective Ref Approximation Assumption Running Time

k-means

[23] 9 + ϵ - ϵ−1dpoly(n, k)
[25] O(1) - O(ndk2 log log k)
[11] O(1) - O(ndk2)
[19] O(1) Average Cluster Sizes O(ndk log log k)
[21] 50(1 + 1/t) + ϵ - O(ndk2t+1 log(ϵ−1 log k))
[7] 10.46 - O(ndpoly(k))

This Paper
O(1) Sub-Gaussian Prior Õ(nd+

√
nk4)

O(1)
Sub-Gaussian Prior, Tailed

Behavior and Sizes of Optimal Clusters Õ(nd+ k4)

k-median

[2] 3 + ϵ - ϵ−1dpoly(n, k)
[25] O(1) - O(ndk2 log log k)
[11] O(1) - O(ndk2)
[19] O(1) Average Cluster Sizes O(ndk log log k)
[21] O(1) (< 50(1 + 1/t) + ϵ) - O(ndk2t+1 log(ϵ−1 log k))
[7] O(1) (< 10.46) - O(ndpoly(k))

This Paper O(1) - Õ(nd+
√
nk3)

Table 1 presents detailed comparisons with state-of-the-art results. For the k-means objective,
our algorithm achieves constant approximation while reducing the joint dependence on n and k,
improving the efficiency when k ≪ n. For the k-median objective, our method also ensures constant
approximation with faster running time without relying on any distributional assumptions.

2 Preliminary

In this paper, we use P ⊂ Rd and k to denote the set of the given dataset and the number of clusters
to be opened, respectively. For any two data point p, q ∈ Rd, let δ(p, q) and δ2(p, q) denote their
Euclidean and squared Euclidean distance, respectively. Given a set C ⊂ Rd of data points, denote
δ(P,C) =

∑
p∈P minc∈C δ(p, c) and δ2(P,C) =

∑
p∈P minc∈C δ2(p, c) as the clustering cost of

P with respect to C for the k-median and k-means objective, respectively. We use OPT to denote
the optimal clustering cost of the given clustering instance. The goal of the k-median (k-means)
clustering is to find a set C ⊂ Rd with size k while minimizing δ(P,C) (or δ2(P,C) for k-means).

The dimension of a given clustering instance can be reduced from d to O(logn) via the standard
Johnson-Lindenstrauss Transform, which incurs only constant factor approximation loss [22, 28].
Without loss of generality, we can assume that d = O(log n) through an Õ(nd) time preprocessing
step for dimensionality reduction

3 The BanditLS Algorithm

In this section, we present the BanditLS algorithm, which integrates adaptive sampling and bandit-
based strategies to accelerate local search for k-means. Our main objective is to design a local
search algorithm with running time Õ(nd+

√
npoly(k)), thereby reducing the combined impact of

parameters n and k on the running time. This can improve the efficiency of previous local search
methods, especially when k is relatively small compared to the data size n. While coreset-based
approaches can achieve Õ(nd + k3d) time, they often fail to scale well in practice due to time
overheads. For datasets with sizes over 100 million, the constructions for coresets can require several
hours of computation, making it less practical for large-scale scenarios (see Appendix E.2 for details).
The key challenges here lie in bypassing the coresets construction methods while accelerating both
the sampling process and identification of the best swap pairs during the local search swaps.

4

The formal description for the proposed BanditLS algorithm is given in Algorithm 1. We first outline
the main idea behind. To eliminate the O(ndk) overhead caused by explicitly maintaining pairwise
distances for D2-Sampling, we propose an adaptive sampling method. Specifically, we first embed
the dataset into a tree structure in near-linear preprocessing time, aiming to discretize the candidate
distances between points and centers from k down to O(log2(nd)). Instead of computing pairwise
distances, we then dynamically maintain weight distributions at internal nodes, capturing the distance
distribution between data points and their centers. Based on traversals of the maintained weight
distributions from root to the leaf, the D2-Sampling process can be approximated within sublinear
time. To efficiently select the best swap pair without exhaustive scans during the swaps, we formulate
the task as a bandit problem. Unlike previous methods relying on strict Gaussian assumptions for
all swap pairs, we propose a sampling-based grouping strategy that only requires assumptions for
high-impact swap pairs. This approach can filter out ineffective swaps using only Õ(k2) samples,
reducing the swap selection complexity from O(ndk) to be independent of the data size n.

Starting from a random solution, BanditLS proceeds in three main stages: (1) Tree construction
(steps 1–5) where the data is embedded into a bounded-height tree T ′ and centers are opened or
closed by marking the corresponding leaf nodes; (2) Swap pair construction (steps 6–9) where
an adaptive sampling strategy is used to approximate the D2-Sampling distribution via dynamic
weight distributions maintained, allowing efficient sampling without explicitly tracking nearest-center
distances; (3) Swap pair identification and tree updates (steps 10–17), where the best swap pair is
selected via a bandit model. To avoid restrictive assumptions, a grouping strategy is proposed to
include virtual swap pairs with zero cost changes, enabling sublinear time identification of promising
swap pairs under sub-Gaussian prior. These components together yield the improved runtime.

Algorithm 1 BamditLS(P, k, d, C, η, σ)

Input: A k-means clustering instance (P, k, d), a set C ⊂ Rd of random initial clustering centers, a
parameter η ∈ (0, 1), a parameter σ > 0 representing the prior knowledge on deviations.
Output: A set C ⊂ Rd of clustering centers.

1: T = Tree-Construction(P, k, d). ▷ Tree-Construction is detailed in Algorithm 4 in Appendix A
2: T ′ = Tree-Conversion(T). ▷ Tree-Conversion is detailed in Algorithm 6 in Appendix A
3: Call TREE-INIT(T ′) to initialize the dynamic data structure. ▷ Algorithm 7 in Appendix A
4: for c ∈ C do
5: Call the TREE-OPEN(T ′, c) algorithm to mark the leaf node in T ′ associated with c as active

and update the tree structure T ′. ▷ TREE-OPEN is detailed in Algorithm 8 in Appendix A
6: for i = 1 to Õ(

√
nk) do

7: x = Adaptive-Sampling(T ′, C). ▷ Adaptive-Sampling is in Algorithm 10 in Appendix A
8: Set sx = argminc∈C δ(x, c) and randomly sample a center q′ ∈ C\{sx}.
9: S1 = {(x, sx), (sx, sx)}, S2 = {(x, q′), (q′, q′)}.

10: o1 = BanditCS(P, k, d, C,S1, η, σ), o2 = BanditCS(P, k, d, C,S2, η, σ). ▷ Algorithm 2
11: if |o1| > 1 and |o2| > 1 then
12: Continue.
13: else
14: Let O = {oi : |oi| = 1, i ∈ {1, 2}}, and randomly choose an o′ from O.
15: C = C\{v} ∪ {u}, where (u, v) ∈ o′.
16: Call the TREE-CLOSE(T ′, v) algorithm to deactivate the leaf node in T ′ associated with v

and update the tree structure T ′. ▷ TREE-CLOSE is detailed in Algorithm 9 in Appendix A
17: Call the TREE-OPEN(T ′, u) algorithm to mark the leaf node in T ′ associated with u as active

and update the tree structure T ′.
18: return C.

3.1 Tree Construction and Adaptive Sampling

In this subsection, we give the analysis for the proposed tree construction and adaptive sampling
methods, which are the key components for accelerating the D2-Sampling process. The core
idea is to discretize the distances between data points and their centers by embedding them into a
dynamically maintained tree structure. This reduces the number of distinct distance categories from
k to O(log2(nd)), corresponding directly to the tree’s height. Thus, by traversing from root to the

5

leaves, the D2-Sampling process can be approximated within O(log2(nd)) time. Due to space limit,
we present the main ideas here and leave the detailed algorithmic descriptions in Appendix A.

Our approach begins by embedding the clustering instance into a tree structure T (see Algorithm 4 in
Appendix A.1 for details) with height H = O(log(d∆)), where ∆ is the aspect ratio of the clustering
instance3. Each node v ∈ T is assigned a level le(v), where leaf nodes have level 1, and the levels
increase by one at each node when moving upward toward the root (see step 7 of Algorithm 4).
For any two points p, q ∈ P , let vp,q denote their lowest common ancestor in T . The tree distance
between p and q is defined as δT (p, q) = 2

√
d · (2le(vp,q) − 2). Given a set C of centers, define

δT (p, C) = minc∈C δT (p, c) as the tree distance from data point p to the center in C that shares the
lowest common ancestor with p in T . For each node v ∈ T , let l(v) and r(v) denote its left and
right children, respectively. If v has only one child, the child of v is treated as its left child for the
ease of analysis. Given a node v of the tree T , let Bv denote the set of points corresponding to the
leaf nodes that are descendants of node v. Denote δT (Bv, C) =

∑
v′∈Bv

δT (v
′, C). The following

lemma shows that the tree structure T can well approximate the pairwise distances.

Lemma 1. (Cohen-Addad et al. [15]) δ(p, q) ≤ δT (p, q) and E[δT (p, q)] ≤ Õ(d) · δ(p, q).

Based on the tree structure, we will maintain weight distributions at each node of the tree T , enabling
a simulated D2-Sampling process by traversing from root to the leaves. However, since the internal
nodes may have O(n) children, sampling could require traversing O(n) branches, resulting in
Ω(n log(d∆)) running time. To address this issue, a tree conversion algorithm (Algorithm 6 in
Appendix A.2) is proposed to convert the tree structure T into a new tree structure T ′ with bounded
branches by creating auxiliary nodes. The following lemma shows that this process only adds an
O(log(d∆)) factor to the tree height while preserving the bounds for the expected pairwise distances.
Lemma 2. Let T ′ be the modified tree structure of the output for Algorithm 6. Then, each vertex in T ′

has at most 2 children, and the height of the tree T ′ can be bounded by O(log2(d∆)). Additionally,
it holds that δ(p, q) ≤ δT ′(p, q) and E[δT ′(p, q)] ≤ Õ(d) · δ(p, q).

Next, we describe how to maintain a data structure D to approximate the D2-Sampling distributions.
Let C be the set of centers dynamically maintained by the local search process. The data structure D
on T ′ should satisfy the following properties.

• Each non-auxiliary node v in the tree T ′ is assigned a level le(v), with leaf nodes assigned with
level 1. Along any path from a leaf to the root, the level increases by 1 at each non-auxiliary node,
while auxiliary nodes retain the same level as their parents.

• Each node v is associated with three values nl
v, nr

v, and n(v). For non-leaf nodes, nl
v and nr

v
denote the number of leaf nodes in the left and right subtrees of v, respectively. n(v) represents the
number of active leaf nodes (or opened centers) that are descendants of v. Each node v ∈ T ′ is
also associated with a weight w(v) where w(v) = δT ′(Bv, C).

• Each non-leaf node v ∈ T ′ is associated with a probability list p(v), which represents the proportion
of the total weights contributed by each of its children. If v has only one child, then p(v) = [1, 0].
If v has two children, p(v) = [lv, rv], where lv =

δT ′ (Bl(v),C)

δT ′ (Bv,C) , rv =
δT ′ (Br(v),C)

δT ′ (Bv,C) , and lv + rv = 1.

The data structure D can be initialized via a bottom-up traversal from the leaf nodes to the root (see
Appendix A.3 for details). However, center swaps during the local search process may influence
the properties of the maintained data structure. To address this issue, we propose two operations:
TREE-OPEN and TREE-CLOSE (as detailed in Appendix A.3). Specifically, TREE-OPEN marks
a leaf node as active and updates D along the path from the leaf to the root, while TREE-CLOSE
deactivates a marked leaf node and also updates the structure along the path from the leaf to the root.
The following lemma shows that both operations can achieve sublinear update time.
Lemma 3. The TREE-OPEN and TREE-CLOSE operations can run in time O(log2(d∆)) to update
the tree structure. Let C ′ be the set of centers after a swap. Then, each non-leaf node v ∈ T ′ holds a
probability list p(v) = [lv, rv], where lv =

δT ′ (Bl(v),C
′)

δT ′ (Bv,C′) and rv =
δT ′ (Br(v),C

′)

δT ′ (Bv,C′) .

Using the TREE-OPEN and TREE-CLOSE operations, we can always maintain a tree structure T ′

satisfying the properties of data structure D. The Adaptive-Sampling algorithm (Algorithm 10 in

3∆ =
maxp,q∈P δ(p,q)

minp′,q′∈P :p′ ̸=q′ δ(p′,q′) and can be compressed to poly(n, d) in time Õ(nd) (Draganov et al. [18]).

6

Appendix A.4) then performs a sampling process on T ′ to approximate the D2-Sampling distribution:
it initializes an empty set S and repeatedly performs sampling on the tree T ′ until a point is accepted.
Each sampling step starts at the root and proceeds down the tree, choosing children based on the
probability lists. Upon reaching a leaf, the corresponding point is selected using a rejection sampling
rule. The following lemma shows that D2-Sampling can be approximated within sublinear time.
Lemma 4. The Adaptive-Sampling Algorithm takes expected Õ(k) time to sample a data point x
with probability Ω(δ2(x,C)√

nδ2(P,C)
).

3.2 Bandit-Based Center Swap

In this subsection, we present the bandit-based center swap method, which aims to accelerate the best
swap pair selection process. Specifically, we reformulate the computation for clustering costs as a
best-arm identification problem, where each swap pair corresponds to an arm in a multi-armed bandit
framework. In this setting, we propose a grouping strategy to estimate the clustering costs. Due to
space limits, we leave the intuitive ideas here and leave the detailed analysis in Appendix B.

The proposed algorithm is given in Algorithm 2, which dynamically maintains confidence intervals
for the clustering costs of swap pairs via successive sampling (steps 7-8). As the sample sizes increase,
suboptimal swap pairs can gradually be eliminated. To achieve sublinear sample sizes, prior bandit
methods require strict Gaussian distribution assumptions on each swap pair [6, 33, 32] with constant
mean and deviations (see the proofs in Appendix 1 of [6] for details). To relax this, we propose to
include virtual swap pairs with zero cost changes and group them with other swap pairs. This enables
the elimination of suboptimal swap pairs after sampling Õ(k2) points, under a weaker assumption
that the swap pairs follow a sub-Gaussian distribution with bounded deviations.

Algorithm 2 BanditCS(P, k, d, C,S, η, σ)
Input: A k-means clustering instance (P, k, d), a set C ⊂ Rd of clustering centers, a swap group S
and a probability parameter 0 < η < 1, an σ > 0 representing the prior knowledge on deviations.
Output: A group Sswap of swap pairs.

1: Sswap = S, Sref = P , nref = 0, B = ∅.
2: µ̂s = 0 for s = (u, v) ∈ S.
3: while nref < Õ(k2) and |Sswap| > 1 do
4: Sample a data point b randomly and uniformly from P , and set B = B ∪ {b}.
5: For each s = (u, v) ∈ Sswap, let Gs(b) = δ2(b, C\{v} ∪ {u})− δ2(b, C).
6: for s ∈ Sswap do
7: µ̂s ← nref·µ̂s+Gs(b)

nref+1 .

8: Fs ← σ ·
√

2 ln(1/η)
nref+1 .

9: Sswap = {s ∈ Sswap : µ̂s −Fs ≤ miny∈Sswap(µ̂y + Fy)}, nref ← nref + 1.
10: return Sswap.

Let C be the set of the centers opened. Given a data point b randomly and uniformly sampled from the
dataset P and a swap pair (u′, v′) (u′ ∈ P , v′ ∈ C), the clustering cost changes induced by (u′, v′)
on b is defined as Gs(b) = δ2(b, C\{v′} ∪ {u′})− δ2(b, C). Under the following assumptions on
swap pairs with sub-Gaussian distribution and bounded deviations, with high probability, Algorithm 2
can return a swap pair with minimum clustering cost using Õ(k2) samples. Putting all these together,
Theorem 1 can be proved (the proofs is given in Appendix B).
Assumption 1. Let C be the set of centers before executing each step 10 of Algorithm 1. For each
swap pair s ∈ S1 ∪ S2, it is assumed that Gs(b) is σ2

s -sub-Gaussian for a randomly sampled point
b ∈ P , with a known bound σ2 = O((δ2(P,C)/|P |)2) and σ2 ≥ σ2

s .
Lemma 5. Let S be a set of swap pairs as input for Algorithm 2, which contains at least one swap
pair with a (1 − 1/100k) fraction of cost reduction. For η = O(n−4), Algorithm 2 can remove
non-promising swap pairs in S with high probability using Õ(k2) samples.

In practice (also in our experiments), since σ is usually unknown, we estimate σs for each swap pair
s as the standard deviation σs = STDy∈B[Gs(y)], which can be computed from the set of sampled
points in B accordingly.

7

4 A More Practical Algorithm for k-means Clustering

In this section, we propose a more practical local search algorithm for large-scale clustering scenarios.
The proposed algorithm is presented in Algorithm 3, where the intuitive idea behind is to combine
our bandit-based strategy with Metropolis-Hastings technique to accelerate the sampling process.
Due to space limit, we present the high-level idea here and leave the analysis in Appendix C.

Algorithm 3 BanditFastLS(P, k, d, C, η, σ)

Input: A k-means clustering instance (P, k, d), a set C ⊂ Rd of random initial clustering centers, a
parameter η ∈ (0, 1), a parameter σ representing the prior knowledge on deviations.
Output: A set C ⊂ Rd of clustering centers.

1: for i = 1 to Õ(k) do
2: Randomly sample a data point x ∈ P .
3: for i = 1 to Õ(n/k2) do
4: Randomly sample a data point y ∈ P .
5: Set x← y with probability min

{
1, δ2(y,C)

δ2(x,C)

}
.

6: sx = argminq∈C δ(q, x).
7: Randomly sample a point q′ from C\{sx}.
8: S1 = {(x, sx), (sx, sx)}, S2 = {(x, q′), (q′, q′)}.
9: o1 = BanditCS(P, k, d, C,S1, η, σ), o2 = BanditCS(P, k, d, C,S2, η, σ).

10: if |o1| > 1 and |o2| > 1 then
11: Continue.
12: else
13: Let O = {oi : |oi| = 1, i ∈ {1, 2}}, and randomly choose a swap pair o′ from O.
14: C = C\{v} ∪ {u}, where (u, v) ∈ o′.
15: return C.

Starting with a random initialization, the BanditFastLS algorithm consists of the following two stages:
(1) approximate sampling (steps 2-6); (2) bandit-based swap pair identification (steps 7-15). In the
approximate sampling stage, a Metropolis-Hastings strategy is used to approximate the D2-Sampling
distribution, where a Markov Chain of bounded length Õ(n/k2) is constructed. This reduces the
running time for D2-Sampling by eliminating the need to maintain distances between data points
and their closest centers. In the bandit-based swap pair identification stage, the bandit-based method
proposed in Section 3.2 is adapted to accelerate the swap pair selection process.

Under mild assumptions on optimal cluster sizes and tailed behavior of optimal clusters, we show that
the D2-Sampling distribution can be well approximated within Õ(n/k2) rounds of sample transitions,
where an improved running time can be achieved for swap pair construction. Putting all these together,
Theorem 2 can be proved (the proofs are given in Appendix C).

Assumption 2. Assume that the given dataset P is average where each optimal cluster has size Ω(k2).
For each optimal cluster P ∗

h , let c∗h be the optimal center for P ∗
h . We assume that each P ∗

h follows a
distribution F over Rd with exponential tails, i.e., ∃c, f such that Pr[δ

2(x, µ) > a] ≤ ce−fa holds
for x ∈ P ∗

h , where c, f are constants and µ is the mean of the distribution.

Lemma 6. After Õ(n/k2) Metropolis-Hastings sampling steps (steps 2-5 of Algorithm 3), if the
given clustering instance satisfies the properties in Assumption 2, we can sample a data point x ∈ P
with probability at least 0.5δ2(x,C)/δ2(P,C).

5 Extension to the k-median Objective

Our adaptive sampling and bandit-based methods naturally extend to the k-median objective. To
eliminate the assumptions and sub-Gaussian prior from the bandit process, we propose a weighted
sampling method that can estimate the k-median cost of each swap pair using a small number of
samples taken from the dynamic tree structure (see Algorithm 12 in Appendix D for details). This
method achieves a (1± ϵ) estimation error with only Õ(

√
n/ϵ) samples. By adapting key ideas from

bandit methods, we show that a constant-factor approximation can be obtained in Õ(nd +
√
nk3)

8

time for k-median, without relying on any distributional assumptions. Due to space limit, we leave
the detailed algorithmic description and analysis in Appendix D. Putting all these together, Theorem
3 can be proved (the proofs are given in Appendix D).

6 Experiments

In this section, we compare our proposed BanditFastLS algorithm (the proposed practical algorithm
in Section 4) with other state-of-the-art local search methods and coresets methods. For hardware, all
the experiments are conducted on a machine with 100 Intel Xeon Gold 6348 CPUs and 1TB memory.

Datasets. We evaluate our algorithm on both small and large-scale datasets from prior k-means
studies [21, 25]. Large-scale datasets include SYN (1M × 2), USC_1990 (2.45M × 68), SUSY (5M
× 17) and HIGGS (11M × 27) from UCI Machine Learning Repository 4. We also include a larger
dataset SIFT (100M × 128) 5. Small datasets are with sizes ranging from 150 to 50,000 used in [21].

Algorithms. We mainly compare our algorithm with the following: LSDS++ [19] (the fastest
single-swap local search with constant approximation), LS++ [25], MLS [21] (a fast version multi-
swap local search), and BanditPAM++ [32] (a near-linear time bandit-based algorithm). For our
algorithm (BanditFastLS), we set η = 1/(2n4) to satisfy theoretical guarantees. The number of
Metropolis-Hastings steps is fixed at 20, and we limit the maximum bandit samples to 50,000.

Experimental Setup. We evaluate our BanditFastLS algorithm against other local search algorithms,
following the setup in [25, 19, 21]. For fair comparison, the initial centers are randomly selected
instead of using a seeding method. For datasets with fewer than 50,000 points, we set k ranging from
3 to 10. For larger datasets, we set k ranging from 10 to 100. Each algorithm is executed for 10
times, and we report the average results with deviations and average runtime. To ensure fairness, all
algorithms perform 400 local search steps. Following [25], we apply 10 iterations of a faster Lloyd’s
algorithm (mini-batch Lloyd’s algorithm [30]) after each local search algorithm to finalize the centers.

Table 2: Results on the HIGGS (11 million) and SIFT (100 million) datasets with varying k, where
BanditPAM is excluded as it failed to return a solution within 24 hours in all cases.

Method Dataset k Cost Time(s) Dataset k Cost Time(s)

k-means++

HIGGS 10

1.6619E+08±1.3E+06 6.51

SIFT 10

1.1160E+13±2.14E+10 181.03
MLS 1.5606E+08±5.8E+06 1640.52 1.0707E+13±2.26E+10 24286.19

LSDS++ 1.6474E+08±5.4E+06 3017.32 1.0770E+13±1.03E+10 71639.26
LS++ 1.5861E+08±5.7E+06 4986.77 - >24h
Ours 1.5601E+08±5.4E+05 5.73 1.0541E+13±3.88E+10 99.81

k-means++

HIGGS 20

1.5143E+08±1.3E+06 9.25

SIFT 20

1.0094E+13±1.76E+10 190.74
MLS 1.4299E+08±2.6E+06 1764.63 - >24h

LSDS++ 1.4752E+08±2.6E+06 4416.25 - >24h
LS++ 1.4016E+08±2.6E+06 15148.29 - >24h
Ours 1.4335E+08±5.2E+05 5.73 9.6759E+12±1.67E+10 101.33

k-means++

HIGGS 30

1.4296E+08±1.1E+06 13.18

SIFT 30

9.6697E+12±5.2E+09 276.36
MLS 1.3396E+08±6.8E+04 2024.62 - >48h

LSDS++ 1.3835E+08±1.9E+06 5708.04 - >48h
LS++ 1.3422E+08±2.4E+05 29984.25 - >48h
Ours 1.3527E+08±4.7E+05 6.92 9.2386E+12±1.47E+10 105.85

k-means++

HIGGS 50

1.3119E+08±1.1E+05 20.58

SIFT 50

9.1171E+12±1.12E+09 381.74
MLS 1.2552E+08±8.6E+05 2952.91 - >48h

LSDS++ 1.2886E+08±8.8E+05 8106.93 - >48h
LS++ - >48h - >48h
Ours 1.2636E+08±3.3E+05 7.88 8.7442E+12±1.08E+10 125.89

k-means++

HIGGS 100

1.1998E+08±6.9E+05 40.98

SIFT 100

8.4774E+12±5.4E+09 677.93
MLS 1.1318E+08±1.0E+05 5817.75 - >48h

LSDS++ 1.1735E+08±1.0E+05 15002.14 - >48h
LS++ - >48h - >48h
Ours 1.1434E+08±1.3E+05 9.87 8.1305E+12±4.98E+09 163.82

Results. Table 2 and Table 3 (Appendix E) present comparison results on large-scale datasets with
more than 1 million points. On the SIFT dataset with 100 million points, even with moderate number

4https://archive.ics.uci.edu/ml/index.php
5http://corpus-texmex.irisa.fr/

9

of clusters to be opened (i.e., k = 10), only MLS, LSDS++, and BanditFastLS algorithms can
return feasible solutions within 24 hours. As the parameter k increases, it takes over 24-48 hours for
MLS, LSDS++, and LS++ algorithms to return a feasible solution. In contrast, our BanditFastLS
algorithm scales efficiently, producing comparable (or even better) clustering results within minutes.
Specifically, on dataset SIFT with k = 10, BanditFastLS is over 200× faster than competing methods.
With k = 100, it achieves up to 1000× speedup. By calculating the average results across all
large-scale datasets, BanditFastLS is approximately 210× faster than other local search methods,
with only a 2% increase in clustering costs. When comparing with the baseline algorithm mini-batch
k-means++, it also achieves better clustering quality and runtime on dataset SIFT for different choices
of parameter k. Table 4 (Appendix E) presents results on smaller datasets (datasets with fewer than
50,000 points), where all local search methods perform well, and MLS and LS++ slightly outperform
others in clustering quality. However, as data sizes and k increase, BanditFastLS consistently delivers
faster runtimes while maintaining comparable clustering performance.

We also evaluate the impact of varying parameters and compare our method with coresets in Appendix
E. The input parameters for the BanditFastLS algorithm include the probability parameter η and
the number of Metropolis-Hastings steps used to approximate the D2-Sampling distribution. Table
5 presents the results for datasets SYN, USC_1990, and SUSY, with a fixed number of clusters
k = 50 and a maximum sample size of 50,000, while the Metropolis-Hastings steps vary from 20
to 100. The results indicate that increasing the number of Metropolis-Hastings steps can improve
the overall clustering quality, with only a slight increase in the running time. However, the overall
clustering performance remains consistent, demonstrating that the algorithm is robust to variations in
the number of Metropolis-Hastings steps. This indicates that fixing the number of transition steps at
20 is sufficient to achieve high-quality clustering results with fast running time.

Tables 7 and 8 present a comparison between coreset construction time and the final clustering time
for our algorithm on large-scale datasets. The results show that our algorithm outperforms coreset
methods, achieving a 20x speedup on average compared to state-of-the-art coreset construction
techniques. In general, the experimental results show that our algorithm is robust across different
parameter settings and consistently outperforms coreset-based methods.

7 Conclusion, Broader Impact Discussion and Limitations

In this paper, we propose fast and practical clustering algorithms leveraging adaptive sampling and
bandit methods. Under mild statistical assumptions on data distributions, the proposed algorithms
can achieve better scalability while maintaining comparable clustering quality. Experiments show
that, compared with the state-of-the-art local search methods, our proposed algorithm can handle
datasets with sizes over 100 million while achieving up to 1000x speedup.

The main purpose of our work is to provide algorithmic insights to accelerate large-scale clustering
tasks, with no foreseeable negative societal impacts. One potential limitation is the statistical
assumptions. To guarantee constant approximation, statistical assumptions are introduced on swap
pairs and optimal clusters. However, such assumptions are difficult to validate in practice, as the
optimal clusters are usually unknown. Hence, designing fast local search algorithms without any
data distribution assumptions is an interesting future direction that deserves further studies. Another
potential limitation is the trade-off between clustering quality and efficiency. While our proposed
method reduces the combined influence of parameter k and data size n on the runtime complexities,
it may not scale well for a sufficiently large k (i.e., k = Ω(n)). This motivates future work on local
search algorithms design with strong approximation guarantees (comparable with enumeration-based
local search methods) and running time independent of the number of clusters k.

Acknowledgments and Disclosure of Funding

This work was supported by National Natural Science Foundation of China (62432016, 62502545,
62202161, 62172446), the Science and Technology Innovation Program of Hunan Province
(2025RC3207), Open Project of Xiangjiang Laboratory (25XJ03009), and Central South University
Research Program of Advanced Interdisciplinary Studies (2023QYJC023). This work was also
carried out in part using computing resources at the High Performance Computing Center of Central
South University.

10

References
[1] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In

Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027–
1035, 2007.

[2] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka
Pandit. Local search heuristic for k-median and facility location problems. In Proceedings of
the 33rd Annual ACM Symposium on Theory of Computing, pages 21–29, 2001.

[3] Olivier Bachem, Mario Lucic, S Hamed Hassani, and Andreas Krause. Approximate k-means++
in sublinear time. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, pages
1459–1467, 2016.

[4] Olivier Bachem, Mario Lucic, S Hamed Hassani, and Andreas Krause. Fast and provably
good seedings for k-means. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 55–63, 2016.

[5] Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable k-means clustering via lightweight
coresets. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1119–1127, 2018.

[6] Vivek Bagaria, Govinda Kamath, Vasilis Ntranos, Martin Zhang, and David Tse. Medoids in
almost-linear time via multi-armed bandits. In Proceedings of the 21st International Conference
on Artificial Intelligence and Statistics, pages 500–509. PMLR, 2018.

[7] Lorenzo Beretta, Vincent Cohen-Addad, Silvio Lattanzi, and Nikos Parotsidis. Multi-swap
k-means++. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, pages 26069–26091, 2023.

[8] Lorenzo Beretta and Jakub Tětek. Better sum estimation via weighted sampling. In Proceedings
of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2303–2338, 2022.

[9] Moses Charikar, Monika Henzinger, Lunjia Hu, Maximilian Vötsch, and Erik Waingarten.
Simple, scalable and effective clustering via one-dimensional projections. In Proceedings of the
37th International Conference on Neural Information Processing Systems, pages 64618–64649,
2023.

[10] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm. The
American Statistician, 49(4):327–335, 1995.

[11] Davin Choo, Christoph Grunau, Julian Portmann, and Václav Rozhon. k-means++: few more
steps yield constant approximation. In Proceedings of the 37th International Conference on
Machine Learning, pages 1909–1917, 2020.

[12] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, and
Omar Ali Sheikh-Omar. Improved coresets for euclidean k-means. In Proceedings of 36th
Annual Conference on Neural Information Processing Systems, pages 2679–2694, 2022.

[13] Vincent Cohen-Addad, Anupam Gupta, Lunjia Hu, Hoon Oh, and David Saulpic. An improved
local search algorithm for k-median. In Proceedings of the 33rd Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1556–1612, 2022.

[14] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. To-
wards optimal lower bounds for k-median and k-means coresets. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, pages 1038–1051, 2022.

[15] Vincent Cohen-Addad, Silvio Lattanzi, Ashkan Norouzi-Fard, Christian Sohler, and Ola Svens-
son. Fast and accurate k-means++ via rejection sampling. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Systems, pages 16235–16245, 2020.

[16] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework
for clustering. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 169–182, 2021.

11

[17] Yichuan Deng, Zhao Song, Yitan Wang, and Yuanyuan Yang. A nearly optimal size coreset
algorithm with nearly linear time. arXiv preprint arXiv:2210.08361, 2022.

[18] Andrew Draganov, David Saulpic, and Chris Schwiegelshohn. Settling time vs. accuracy
tradeoffs for clustering big data. Proceedings of the ACM on Management of Data, 2(3):1–25,
2024.

[19] Chenglin Fan, Ping Li, and Xiaoyun Li. Lsds++: Dual sampling for accelerated k-means++.
In Proceedigns of the 40th International Conference on Machine Learning, pages 9640–9649,
2023.

[20] Sariel Har-Peled, Piotr Indyk, and Anastasios Sidiropoulos. Euclidean spanners in high dimen-
sions. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
804–809, 2013.

[21] Junyu Huang, Qilong Feng, Ziyun Huang, Jinhui Xu, and Jianxin Wang. Linear time algorithms
for k-means with multi-swap local search. In Proceedings of the 37th International Conference
on Neural Information Processing Systems, pages 45651–45680, 2023.

[22] William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert
space. Contemporary mathematics, 26(189-206):1, 1984.

[23] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and
Angela Y Wu. A local search approximation algorithm for k-means clustering. In Proceedings
of the 18th Annual Symposium on Computational Geometry, pages 10–18, 2002.

[24] Max Dupré la Tour and David Saulpic. Almost-linear time approximation algorithm to euclidean
k-median and k-means. arXiv preprint arXiv:2407.11217, 2024.

[25] Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search. In
Proceedings of the 36th International Conference on Machine Learning, pages 3662–3671,
2019.

[26] HW Lewis. Medians and means in probabilistic risk assessments. Nuclear Science and
Engineering, 91(2):220–222, 1985.

[27] Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

[28] Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages 1027–1038, 2019.

[29] Ramgopal R Mettu and C Greg Plaxton. Optimal time bounds for approximate clustering.
Machine Learning, 56(1):35–60, 2004.

[30] David Sculley. Web-scale k-means clustering. In Proceedings of the 19th International
Conference on World Wide Web, pages 1177–1178, 2010.

[31] Mikkel Thorup. Quick k-median, k-center, and facility location for sparse graphs. SIAM Journal
on Computing, 34(2):405–432, 2005.

[32] Mo Tiwari, Ryan Kang, Donghyun Lee, Sebastian Thrun, Chris Piech, Ilan Shomorony, and
Martin Jinye Zhang. Banditpam++ faster k-medoids clustering. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, pages 73371–73382,
2023.

[33] Mo Tiwari, Martin Jinye Zhang, James Mayclin, Sebastian Thrun, Chris Piech, and Ilan
Shomorony. Banditpam: almost linear time k-medoids clustering via multi-armed bandits. In
Proceedings of the 34th International Conference on Neural Information Processing Systems,
pages 10211–10222, 2020.

12

Technical Appendices and Supplementary Material

A Tree Construction and Rejection Sampling

A.1 Tree Embedding

The formal description for the tree embedding method is presented in Algorithm 4. Given a k-means
clustering instance (P, k, d), the algorithm first scales the data points such that the minimum pairwise
distance of data points in P is 1 (step 1 of Algorithm 4). Then, it calculates an upper bound d′max
for the maximum pairwise distance between data points in P using a greedy strategy (step 3 of
Algorithm 4), which takes O(nd) time. Then, a random shift 0 ≤ s ≤ d′max (step 4 of Algorithm 4)
is applied to each coordinate of the dataset P . The root node r of the tree represents an axis-aligned
hypercube with side length 2d′max that contains the entire dataset (step 5 of Algorithm 4). Then, the
root node r is iteratively decomposed using a tree decomposition algorithm (step 6 of Algorithm 4)
to form a tree structure. First, the root node r is decomposed into 2d axis-aligned subcubes (step 3 of
Algorithm 5), where the obtained subcubes are associated with side length d′max and each data point
is assigned to the subcube that fully contains its coordinates. For every non-empty subcube, we create
a node and add it as a child of the root (step 5 of Algorithm 5). This process is recursively repeated for
each node until the side length of the subcube is smaller than 1√

d
(step 1 of Algorithm 5). The resulting

tree structure T has leaves at the same height, with a maximum tree height of H = O(log(d∆)) (∆
is the aspect ratio of the given clustering instance), and at most n nodes in each layer.

Algorithm 4 Tree-Construction(P, k, d)
Input: A k-means instance (P, k, d).
Output: An embedded tree structure T .

1: Rescale the data points in P such that the minimum pairwise distance between points in P is 1.
2: Initialize an empty tree structure T .
3: Randomly pick a data point p from P , and set d′max = 2maxq∈P δ(q, p).
4: Add a random shift 0 ≤ s ≤ d′max to each coordinate of each data point in dataset P .
5: Create a hypercube r centered at p with side length 2d′max, and set r as the root node for T .
6: Call the Tree-Decomposition(T , r, 2d′max) algorithm to recursively decompose the root node.
7: Assign a level le(v) to each node v ∈ T , where leaf nodes have level 1 with levels increasing

progressively toward the root.
8: return T .

Algorithm 5 Tree-Decomposition(T ,B, lB)
Input: A tree structure T , a tree node B ∈ T with side length lB.
Output: A decomposed tree structure T .

1: if lB < 1/
√
d then

2: STOP.
3: Decompose B into 2d axis-aligned subcubes with side length lB/2.
4: Assign data points to the subcubes that fully contain them.
5: Set the non-empty subcubes as children of B.
6: for each non-empty child node B′ of B do
7: Execute Tree-Decomposition(T ,B′, lB/2).

A.2 Binary Tree Construction

Our objective is to maintain a weight distribution for each node in the tree structure T to simulate a
D2-Sampling process by traversing from the root node to the leaves. However, since non-leaf nodes
can have up to O(n) children for the tree structure T , the sampling process on the tree structure may
involve O(n) branches, leading to a running time of Ω(n log(d∆)). To address this issue, we propose
an algorithm to transform the tree structure T into a binary tree T ′ while preserving the pairwise
distance approximation on the tree metric.

13

The tree conversion algorithm is presented in Algorithm 6. For each node in the tree structure T with
more than 2 children, the tree conversion algorithm creates auxiliary nodes to connect the children
and their parent to construct the binary tree structure (steps 3-5 of Algorithm 6). To maintain the
expected approximation of pairwise distances, auxiliary nodes are assigned the same level as their
parent nodes (step 7 of Algorithm 6). The following lemma shows that this process only add an
O(log(d∆)) factor to the tree height while preserving the expected pairwise distances.

Lemma 2. Let T ′ be the modified tree structure of the output for Algorithm 6. Then, each vertex in T ′

has at most 2 children, and the height of the tree T ′ can be bounded by O(log2(d∆)). Additionally,
it holds that δ(p, q) ≤ δT ′(p, q) and E[δT ′(p, q)] ≤ O(d) · δ(p, q).

Proof. Consider an arbitrary non-leaf node v ∈ T . Let vc1 , vc2 , ..., vcs be the children of v. In
Algorithm 6, it adds s auxiliary vertices v′c1 , v

′
c2 , ..., v

′
cs . According to the connection rule stated in

steps 4-5 of Algorithm 6, v has only one child v′c1 . By renaming vc1 , ..., vcs as v′cs+1
, v′cs+2

, ..., v′c2s ,
each auxiliary vertex v′ci for some i ∈ [2, s] can have at most 2 children v′c2i and v′c2i+1

. Therefore,
each vertex in T ′ has at most two children. Since each node has at most n children in T (where n
is the data size), adding n auxiliary nodes are enough to connect the children with the parent and
auxiliary nodes. This adds a tree depth of at most O(logn) for each node. Therefore, the overall
height of the tree T ′ can be bounded by O(log2(d∆)).

For the pairwise distances approximation, we consider any two point p, q ∈ P . Let vp,q be the node
representing the lowest common ancestor of p and q in T . Denote v′p,q as the lowest common ancestor
of p and q in T ′. Since auxiliary nodes maintain the same tree level as their parent nodes, it follows
directly that le(vp,q) = le(v′p,q). Consequently, the properties of the approximate pairwise distance
stated in Lemma 1 also holds for the transformed tree structure T ′.

Algorithm 6 Tree-Conversion(T)
Input: A tree structure T .
Output: A new tree structure T ′.

1: Add all nodes of T into T ′, and keep their original levels.
2: for each v ∈ T do
3: Consider each non-leaf node v ∈ T with more than 2 children, where its children are denoted

as vc1 , vc2 , ..., vcs . Create s auxiliary nodes v′c1 , v
′
c2 , ..., v

′
cs .

4: For each i ∈ [s], set the parent of vci in T ′ as v′c⌊(i+s)/2⌋
.

5: For each i ∈ [2, s], set the parent of v′ci in T ′ as v′c⌊i/2⌋ .
6: Set the parent node of v′c1 as v.
7: Assign each auxiliary node a level that is the same as its parent node.
8: return T ′.

A.3 Maintaining a Dynamic Data Structure D

Once the tree structure is constructed, clustering centers are opened by marking the corresponding leaf
nodes as active. However, during the local search process, center swaps can significantly influence
the tree structure constructed. Hence, to overcome this issue, we propose TREE-INIT, TREE-OPEN
and TREE-CLOSE operations to maintain a dynamic tree structure during the local search process
while maintaining the pairwise distance approximation. In general, the TREE-INIT operation sets up
the necessary components for the dynamic structure D by traversing from the leaf nodes to the root.
TREE-OPEN marks a leaf node as an active center and updates D along the path from the leaf to the
root, while TREE-CLOSE deactivates a marked leaf node and also updates the structure along the
path from the leaf to the root. In the following, for better consistency, we also list the properties for
the data structure as presented in the main context. Let C be the set of centers dynamically adjusted
by the local search process. The data structure D on T ′ should satisfy the following properties.

• Each non-auxiliary node v in the tree T ′ is assigned a level le(v), with leaf nodes assigned with
level 1. Along any path from a leaf to the root, the level increases by 1 at each non-auxiliary node,
while auxiliary nodes retain the same level as their parents.

14

• Each node v is associated with three values nl
v, nr

v, and n(v). For non-leaf nodes, nl
v and nr

v
denote the number of leaf nodes in the left and right subtrees of v, respectively. n(v) represents the
number of active leaf nodes (or opened centers) that are descendants of v. Each node v ∈ T ′ is
also associated with a weight w(v) where w(v) = δT ′(Bv, C).

• Each non-leaf node v ∈ T ′ is associated with a probability list p(v), which represents the proportion
of the total weights contributed by each of its children. If v has only one child, then p(v) = [1, 0].
If v has two children, p(v) = [lv, rv], where lv =

δT ′ (Bl(v),C)

δT ′ (Bv,C) , rv =
δT ′ (Br(v),C)

δT ′ (Bv,C) , and lv + rv = 1.

We first show that the above data structure can be initialized in time O(nd log2(d∆)) by traversing
the tree T ′ in a bottom up manner, which we call a TREE-INIT operation.

Algorithm 7 TREE-INIT(T ′)

Input: A tree structure T ′.
Output: A tree structure T ′ initialized with data structure D.

1: For each leaf node v ∈ T ′, initialize nl
v = 1, nr

v = 0, n(v) = 0, w(v) = d′max, where d′max is
the estimation for maximum pairwise distance during Tree-Construction (Algorithm 4).

2: Enumerate in a bottom-up manner in T ′ such that the children of a node is always visited earlier
than the parent node.

3: for v ∈ T ′ do
4: if v is a non-leaf node then
5: if v has only one child v′ then
6: nl

v = nl
v′ + nr

v′ , nr
v = 0, n(v) = 0, w(v) = w(v′), p(v) = [1, 0].

7: else
8: Let v′1 and v′2 be the left and right child node for v.
9: nl

v = nl
v′
1
+ nr

v′
1
, nr

v = nl
v′
2
+ nr

v′
2
, n(v) = 0, w(v) = w(v′1) + w(v′2).

10: p(v) = [
nl
v

nl
v+nr

v
,

nr
v

nl
v+nr

v
].

Specifically, for each v ∈ T ′, the level le(v) has been set when performing the Tree-Construction
and Tree-Conversion algorithms. By traversing from the leaf nodes to the root, nl

v, nr
v can also be

initialized accordingly (step 6 and steps 8-9 of Algorithm 7). For each node v ∈ T ′, n(v) is set as 0
since there are no active centers (centers that are opened) during the data structure initialization. For
each node v with a single child, the probability list p(v) is initialized as p(v) = [1, 0] (i.e, v has only
a left child node). On the other hand, for each node v with two children, the list p(v) is initialized as

p(v) = [
nl
v

nl
v+nr

v
,

nr
v

nl
v+nr

v
]. For each leaf node v ∈ T ′, its weights w(v) is set as w(v) = d′max. The

weights of the internal nodes are updated by taking a summation of the weights of its children.

Next, we introduce the TREE-OPEN and TREE-CLOSE operations. Given a data point p ∈ P , the
TREE-OPEN operation marks the leaf node vp associated with p as active and then traverses along
the path from vp to the root node for updating the probability list and weights for the nodes. The
formal description for the TREE-OPEN process is described in Algorithm 8.

The TREE-OPEN algorithm updates the tree structure T ′ when a clustering center is opened. It
begins by marking the leaf node vp corresponding to the opened center as active and setting its
weight to zero (step 1 of Algorithm 8). The algorithm then traverses up the tree to the root, updating
weights at each node based on whether its child nodes contain opened centers. Depending on whether
the child node is a left or right child node, subtree weights are adjusted accordingly (steps 4-16 of
Algorithm 8). The total weight of each node is updated as the weight sum of its left and right subtree,
and the probability list is updated accordingly (step 15 of Algorithm 8). This process dynamically
adapts the tree structure while maintaining the data structure D, ensuring that the D2-Sampling can
be approximated without requiring a full tree reconstruction.

Given a node v in a tree structure T ′, recall that we use l(v) and r(v) to denote its left child node
and right child node, respectively. For the ease of analysis, if v has only one child node v′, then
we regard v′ as the left child for v. Let Bv denote the set of points corresponding to the leaf nodes
that are descendants of node v. In the following, we use C to denote the set of centers that have
been opened before executing a single local search step. Then, a data point p ∈ P is ready to
be inserted to C as a newly selected center. For each center q ∈ C ∪ {p}, denote vq as the leaf

15

Algorithm 8 TREE-OPEN(T ′, p)

Input: A tree structure T ′, a center p to be opened.
Output: A tree structure T ′ with marked leaves and updated weight and probability distribution.

1: Let vp be the leaf node associated with p, mark vp as active and set w(vp) = 0, n(vp) = 1.
2: Traverse the tree towards the root forming a path v0, v1, ..., vt, where v0 = vp and vt = vr.
3: for each i ∈ [t] do
4: if vi−1 is the left child of vi then
5: if n(vi) = 0 then
6: wr

vi = 2
√
d · (2le(vi) − 2) · nr

vi , w
l
vi = w(vi−1).

7: else
8: wr

vi = w(r(vi)), wl
vi = w(vi−1).

9: else
10: if n(vi) = 0 then
11: wl

vi = 2
√
d · (2le(vi) − 2) · nl

vi , w
r
vi = w(vi−1).

12: else
13: wl

vi = w(l(vi)), wr
vi = w(vi−1).

14: n(vi) = n(vi) + 1, w(vi) = wl
vi + wr

vi .
15: Let p(vi) = [lvi , rvi] be the probability list associated with node vi, and set lvi =

w(l(vi))
w(l(vi))+w(r(vi))

and rvi =
w(r(vi))

w(l(vi))+w(r(vi))
.

16: return T ′.

node in T ′ that is associated with q. Define L(q) = {v0, v1, ..., vt} as the set of the tree nodes
representing the path from the leaf node vq to the root node vr, where v0 = vq and vt = vr. Recall
that δT ′(Bv, C) =

∑
v′∈Bv

δT ′(v′, C) is the sum of the tree distances (defined on T ′) between the
leaf nodes in Bv to the centers in C. The following lemma shows that the probability list maintained
for each tree node can well represent the D2-Sampling distribution.

Lemma A.1. For each q ∈ C ∪ {p} and a tree node vi ∈ L(q), it holds that lvi =
δT ′ (Bl(vi)

,C∪{p})
δT ′ (Bvi

,C∪{p}) ,

rvi =
δT ′ (Br(vi)

,C∪{p})
δT ′ (Bvi

,C∪{p}) and w(vi) = δT ′(Bvi , C ∪ {p}).

Proof. The proof is based on an induction.

For each center q ∈ C ∪ {p}, denote vq as the active leaf node associated with q. Consider the base
case for C = {s} where s is the first center added to C. We will show that the properties stated in
Lemma A.1 holds for vs. Note that through TREE-INIT, each non-leaf node v ∈ T ′ is assigned a
probability list p(v) = [lv, rv], where lv =

nl
v

nl
v+nr

v
, rv =

nr
v

nl
v+nr

v
. Each leaf node is also assigned a

weight w(v) = d′max. For ease of analysis, without loss of generality, we can assume that vi ∈ L(s)
is the left child of vi+1 ∈ L(s). The proof for the base case also uses an induction. Firstly, consider
the node v1 ∈ L(s). Since v0 = vs is marked as active, the weight for v0 is set as w(v0) = 0 (step 1
of Algorithm 8). Then, for the node v1, we have Bl(v1) = {v0} and wl

v1 is set as wl
v1 = w(v0) = 0

(step 6 of Algorithm 8), which corresponds to the sum of the distances of data points in Bl(v1) to the
opened center s. Then, since n(v1) is set as 0 through TREE-INIT, we have wr

v1
= 2
√
d·(22−2)·nr

v1
(step 6 of Algorithm 8). Since all the paths from leaf nodes to the root node have the same length, it
holds that δT ′(a, s) = 4

√
d for each a ∈ Br(v1) and δT ′(Br(v1), s) = 4

√
d ·nr

v1 = wr
v1 . By updating

w(v1) as wl
v1 + wr

v1 , we have w(v1) = δT ′(Bv1 , s).

Now, assume for each i ∈ [j − 1] and p(vi) = [lvi , rvi], it holds that lvi =
δT ′ (Bl(vi)

,s)

δT ′ (Bvi
,s) , rvi =

δT ′ (Br(vi)
,s)

δT ′ (Bvi
,s) and w(vi) = δT ′(Bvi , s). Then, we consider the node vj . Since n(vj) is set as zero

through TREE-INIT, we have wl
vj = w(vj−1) = δT ′(Bvj−1

, s) and wr
vj = 2

√
d · (2le(vj) − 2) · nr

vj

(step 6 of Algorithm 8). Since all the leaf nodes are at the same height and the auxiliary nodes do not
increase the node level, it holds that δT ′(a, s) = 2

√
d · (2le(vj) − 2) for each a ∈ Br(vj). Hence, we

can get that δT ′(Br(vj), s) = 2
√
d · (2le(vj) − 2) · nr

vj . Therefore, we have wl
vj = δT ′(Bl(vj), s) and

wr
vj

= δT ′(Br(vj), s). Then, it holds that w(vj) = wl
vj +wr

vj = δT ′(Bvj , s) (step 14 of Algorithm 8),

16

which proves the case for vj . Thus, we can conclude that C = {s}, where s is the first center added
to C, holds for Lemma A.1.

Next, given a set C ′ of opened centers, we assume that for each q ∈ C ′ and a tree node vi ∈ L(q), it

holds that lvi =
δT ′ (Bl(vi)

,C′)

δT ′ (Bvi
,C′) , rvi =

δT ′ (Br(vi)
,C′)

δT ′ (Bvi
,C′) and w(vi) = δT ′(Bvi , C ′). Let g be a center that

will be added to C ′, we will show the case holds for C ′ ∪ {g}.
The TREE-OPEN operation traverses from the leaf node vg to the root node vr to update the weights
and probability distributions. For ease of analysis, without loss of generality, we can also assume that
vi ∈ L(g) is the left child of vi+1 ∈ L(g). The proof for C ′ ∪ {g} is also based on an induction. We
first consider the node v1. Since v0 = vg is marked as active, the weight for v0 is set as w(v0) = 0
(step 1 of Algorithm 8). We have Bl(v1) = {v0} and wl

v1 is set as 0 (step 6 or step 8 of Algorithm 8),
which corresponds to δT ′(Bl(v1), C ′ ∪ {g}). Then, for analyzing the value of wr

v1 , there are two
subcases that may happen: (1) n(v1) > 0; (2) n(v1) = 0. If subcase (1) happens, v1 must have
been visited before g is added to C ′ by the TREE-OPEN operation, and v1 belongs to L(q′) for
some q′ ∈ C. According to the induction assumption, we have wr

v1 = w(r(v1)) = δT ′(Br(v1), C ′)
(step 8 of Algorithm 8). Note that since g does not belong to Br(v1), adding g to C ′ will not
induce distance change (no lower common ancestors are added) for the nodes in Br(v1). Therefore,
wr

v1
= δT ′(Br(v1), C ′) = δT ′(Br(v1), C ′ ∪ {g}). If subcase (2) happens, according to step 6 of

Algorithm 8, we also have wr
v1 = δT ′(Br(v1), g). Note that since n(v1) = 0, it holds trivially that

wr
v1

= δT ′(Br(v1), {g}) = δT ′(Br(v1), C ∪ {g}). For both cases, by updating w(v1) as wl
v1 + wr

v1 ,
we have w(v1) = δT ′(Bv1 , C ′ ∪ {g}).

Assume for i ∈ [j − 1] and p(v) = [lvi , rvi], it holds that lvi =
δT ′ (Bl(vi)

,C′∪{g})
δT ′ (Bvi

,C′∪{g}) , rvi
=

δT ′ (Br(vi)
,C′∪{g})

δT ′ (Bvi
,C′∪{g}) and w(vi) = δT ′(Bvi , C ′ ∪ {g}). We then consider the node vj . We have

wl
vj

= w(vj−1) = δT ′(Bvj−1
, C ′∪{g}) according to the induction assumption (step 6 or step 8 of Al-

gorithm 8). Then, there are also two subcases that may happen: (1) n(vj) > 0; (2) n(vj) = 0. If sub-
case (1) happens, vj must have been visited by the TREE-OPEN operation and vj belongs to L(q′) for
some q′ ∈ C ′. According to the induction assumption, we have wr

vj = w(r(vj)) = δT ′(Br(vj), C ′).
Note that since g does not belong to Br(vj), adding g to C ′ will not induce distance change for
the leaf nodes in Br(vj) and hence wr

vj = δT ′(Br(vj), C ′) = δT ′(Br(vj), C ′ ∪ {g}). If subcase
(2) happens, we also have wr

vj = δT ′(Br(vj), g). Note that since n(vj) = 0, it holds trivially
that wr

vj = δT ′(Br(vj), g) = δT ′(Br(vj), C ′ ∪ {g}). By updating w(vj) as wl
vj + wr

vj
, we have

w(vj) = δT ′(Bvj , C ′ ∪ {g}).

Finally, consider the tree nodes in L(q′) for some q′ ∈ C ′ that do not belong to L(g). For each
such node v, a key observation is that g does not belong to Bv. Hence, for each node v′ ∈ Bv, the
tree distance between v′ to its closest opened center on the tree remains the same, where we have
lv =

δT ′ (Bl(v),C∪{g})
δT ′ (Bv,C∪{g}) and rv =

δT ′ (Br(v),C∪{g})
δT ′ (Bv,C∪{g}) , and w(v) = δT ′(Bv, C ∪ {g}).

Putting all these together and using the induction, Lemma A.1 can be proved.

Lemma A.2. Assume that the current set of active centers (or opened centers) on the tree T ′ is C.
Given a data point p ∈ P , TREE-OPEN operation runs in time O(log2(d∆)) to update the data
structure D such that each non-leaf node v ∈ T ′ holds a probability list p(v) = [lv, rv], where
lv =

δT ′ (Bl(v),C∪{p})
δT ′ (Bv,C∪{p}) and rv =

δT ′ (Br(v),C∪{p})
δT ′ (Bv,C∪{p}) .

Proof. According to Lemma A.1, the properties stated in Lemma A.2 hold for each node v ∈ L(q)
where q ∈ C ∪ {p}. Then, we only need to consider the tree nodes that do not belong to L(q) for any
q ∈ C∪{p}. For each such node v, observe that v is never visited during the TREE-OPEN operations,
and hence Bv does not contain any leaf node that are associated with the centers in C. For each such
node v, since no leaf nodes that are descendants of v have been marked as active nodes, the tree
distances between any leaf node v′ ∈ Bv to the opened centers in C are the same. According to TREE-
INIT, we have lv =

nl
v

nl
v+nr

v
and rv =

nr
v

nl
v+nr

v
. Then, it holds that lv =

nl
v

nl
v+nr

v
=

δT ′ (Bl(v),C∪{p})
δT ′ (Bv,C∪{p}) and

rv =
nr
v

nl
v+nr

v
=

δT ′ (Br(v),C∪{p})
δT ′ (Bv,C∪{p}) .

17

As for the running time, the TREE-OPEN process traverses from the leaf node associated with p to
the root node. Since each node along the path has at most 2 children and the tree structure T ′ has
height O(log2(d∆)), the running time can be bounded by O(log2(d∆)).

Then, we can present the TREE-CLOSE operation. Based on a set C of centers that have been opened,
the TREE-CLOSE operation aims to delete a center p ∈ C. Specifically, the TREE-CLOSE operation
deactivates the leaf node vp associated with p and then traverses along the path from vp to the root
node to update the probability list and weights for the nodes. The formal description for the TREE-
CLOSE process is described in Algorithm 9. The TREE-CLOSE algorithm updates the tree structure
T ′ when a clustering center is removed, ensuring the data structure D remains consistent. It begins
by deactivating the leaf node vp associated with the p (step 2 of Algorithm 9). Then, it identifies
the first ancestor v′ that still has at least two remaining active leaf node in its descendants (step 3 of
Algorithm 9). If v′ does not exist, it assigns a maximum weight d′max for vp (step 5 of Algorithm 9).
Otherwise, it updates the weight based on the tree level of v′ (step 7 of Algorithm 9). The algorithm
then traverses from vp to the root, adjusting weights and probability distributions at each node to
reflect the center closure. During the updates, the weights are recalculated to maintain the hierarchical
structure (steps 9-25 of Algorithm 9). The probability list is updated accordingly to ensure that the
tree can still well approximate the D2-Sampling process. By dynamically modifying the weight
distributions and probability values, TREE-CLOSE ensures that center closures are properly handled
without requiring a full tree reconstruction. The following lemma shows that the probability list
maintained for each tree node can still well represent the D2-Sampling distribution based on tree
distances between data points. Since the proof for Lemma A.3 is similar to those for Lemma A.2 and
Lemma A.1, we omit the proof here.

Algorithm 9 TREE-CLOSE(T ′, p)

Input: A tree structure T ′.
Output: A tree structure T ′ with updated leaves, weights and probability distributions.

1: Let v0, v1, ..., vt be a path along the leaf node vp associated with p to the root node vr, where
v0 = vp and vt = vr.

2: Deactivate vp, and set n(vp) = n(vp)− 1.
3: Traverse along the nodes v0, ..., vt to find the first node v′ such that n(v′) > 1.
4: if v′ does not exist then
5: Set w(vp) = d′max.
6: else
7: w(vp) = 2

√
d · (2le(v′) − 2).

8: for each i ∈ [t] do
9: if vi−1 is the left child of vi then

10: if n(vi)− 1 = 0 then
11: if v′ does not exist then
12: wr

vi = d′max · nr
vi

, wl
vi

= d′max · nl
vi .

13: else
14: wr

vi = 2
√
d · (2le(v′) − 2) · nr

vi , w
l
vi = 2

√
d · (2le(v′) − 2) · nl

vi .
15: else
16: wr

vi = w(r(vi)), wl
vi = w(vi−1).

17: else
18: if n(vi)− 1 = 0 then
19: if v′ does not exist then
20: wr

vi = d′max · nr
vi

, wl
vi

= d′max · nl
vi .

21: else
22: wr

vi = 2
√
d · (2le(v′) − 2) · nr

vi , w
l
vi = 2

√
d · (2le(v′) − 2) · nl

vi .
23: else
24: wl

vi = w(l(vi)), wr
vi = w(vi−1).

25: n(vi) = n(vi)− 1, w(vi) = wl
vi + wr

vi
26: Let p(vi) = [lvi , rvi] be the probability list associated with node vi, and set lvi =

w(l(vi))
w(l(vi))+w(r(vi))

and rvi =
w(r(vi))

w(l(vi))+w(r(vi))
.

27: return T ′.

18

Lemma A.3. Assume that the current set of centers opened is C, where C also corresponds to
the set of active leaf nodes in T ′. Given a center c ∈ C, TREE-CLOSE operation runs in time
O(log2(d∆)) to update the tree structure such that each non-leaf node v ∈ T ′ holds a probability
list p(v) = [lv, rv], where lv =

δT ′ (Bl(v),C\{p})
δT ′ (Bv,C\{p}) and rv =

δT ′ (Br(v),C\{p})
δT ′ (Bv,C\{p}) .

Putting all these together, Lemma 3 can be proved.

A.4 The Adaptive Sampling Strategy

Based on the TREE-OPEN and TREE-CLOSE operations, during the whole local search process,
we can always maintain a tree T ′ such that each non-leaf node v ∈ T ′ holds a probability list
p(v) = [lv, rv], where lv =

δT ′ (Bl(v),C)

δT ′ (Bv,C) and rv =
δT ′ (Br(v),C)

δT ′ (Bv,C) . However, since the tree structure
only guarantees the approximation loss in expectation (see Lemma 1 and Lemma 2 for details),
directly performing a sampling on the tree structure may lead to unbounded success probability.
Partly inspired by previous work [15], we propose an adaptive sampling algorithm to overcome this
issue, which coverts the expected distance-based sampling distribution into the true distance-based
sampling distribution. The formal adaptive sampling algorithm is presented in Algorithm 10.

Algorithm 10 Adaptive-Sampling(T ′, C)

Input: A tree structure T ′, a set C of clustering centers.
Output: A sampled point x.

1: S = ∅.
2: while S = ∅ do
3: Let v be the root node of the tree T ′.
4: while v is not a leaf node do
5: Let p(v) = [lv, rv] be the probability list for v. ▷ p(v) is detailed in Section 3.1
6: Update v to be its left child with probability lv and to be its right child with probability rv .
7: Let x be the point associated with the leaf node v.
8: Add x to S with probability min

{
1, δ(x,C)

δT ′ (x,C)

}
, where δT ′(x,C) is the tree distance between

point x to C in the tree structure T ′. ▷ Tree distance is detailed in Section 3.1
9: return x ∈ S.

The Adaptive-Sampling algorithm samples a data point x by leveraging the tree structure T ′ to align
with the D2-Sampling distribution. The process begins by initializing an empty set S and repeatedly
drawing samples until a valid point is accepted (steps 4-8 of Algorithm 10). The sampling process
starts from the root node and traverses the tree downward, selecting the left or right child based on
the probability list associated with each node (steps 5-6 of Algorithm 10). Once a leaf node v is
reached, it identifies the corresponding data point x and applies a rejection sampling step (step 8 of
Algorithm 10), where x is accepted with probability min

{
1, δ(x,C)

δT ′ (x,C)

}
. The process repeats until a

point is successfully accepted, where the sampled point is then returned by the algorithm.

The following lemmas show that the rejection sampling process can well approximate the D2-
Sampling distribution with bounded expected running time.

Lemma A.4. The probability of inserting a point x to the set S in Adaptive-Sampling algorithm is
δ(x,C)∑

p∈P δ(p,C) .

Proof. According to Lemma 2, we have δT ′(x,C) ≥ δ(x,C), and thus δ(x,C)
δT ′ (x,C) ≤ 1. Based on

Lemma A.2 and Lemma A.3, during the local search process, the tree T ′ always maintain a probability
list p(v) = [lv, rv] for each non-leaf node v ∈ T ′ where lv =

δT ′ (Bl(v),C)

δT ′ (Bv,C) and rv =
δT ′ (Br(v),C)

δT ′ (Bv,C) .
Hence, the probability of sampling a data point x ∈ P becomes

δT ′(x,C)∑
p∈P δT ′(p, C)

· δ(x,C)

δT ′(x,C)
,

19

which is independent of the term δT ′(x,C). Since the term
∑

p∈P δT ′(p, C) is the same for each

x ∈ P and does not depend on x, the probability of adding any point x to S is δ(x,C)∑
x∈P δ(x,C) according

to the rejection sampling rule.

Lemma A.5. The expected number of iterations for Adaptive-Sampling to return a sampled point
x ∈ P can be bounded by Õ(d).

Proof. Consider a single step for sampling a data point x ∈ P using Adaptive-Sampling. According
to Lemma A.4, the probability of adding a data point x ∈ P to S is δ(x,C)∑

p∈P δT ′ (p,C) . Denote the
random variable N as the number of steps executed when at least one data point x ∈ P is added to
S. Let q be the probability that a data point x ∈ P is added to S within a single sampling step (i.e.,
steps 3-8 of Algorithm 10). Then, we have

q =

∑
x∈P δ(x,C)∑

p∈P δT ′(p, C)
.

This indicates that q data points are added to S in expectation within a single sampling step. We can
get that

E[N] =

+∞∑
i=1

(1− q)i−1 · q · i

= 1/q.

By combining with Lemma 2, we have E[N] ≤
∑

x∈P δT ′ (x,C)∑
p∈P δ(p,C) for a fixed tree T ′. By taking the

expectation over the randomness of tree-embedding, we have E[N] ≤
∑

x∈P δT ′ (x,C)∑
p∈P δ(p,C) ≤ Õ(d), which

proves the lemma.

Lemma A.6. The Adaptive-Sampling takes expected time Õ(k) to sample a data point x ∈ P with
probability at least δ2(x,C)√

nδ2(P,C)
.

Proof. According to Lemma A.4, we can get that the probability of sampling a data point x ∈ P is
δ(x,C)∑

p∈P δ(p,C) . By using Caushy Inequality, we have∑
p∈P

δ2(p, C)

∑
p∈P

12

 ≥
∑

p∈P

δ(p, C)

2

,

which implies that
δ(P,C) ≤

√
n ·
√

δ2(P,C).

Then, we can get that each data point x ∈ P can be sampled with probability at least δ(x,C)
δ(P,C) ≥

δ(x,C)
√
n·
√

δ2(P,C)
= 1√

n
·
√

δ2(x,C)
δ2(P,C) ≥

δ2(x,C)√
nδ2(P,C)

, where the last step follows from δ2(x,C)
δ2(P,C) ≤ 1.

As for the running time, TREE-CLOSE and TREE-OPEN operations take time O(log2(d∆)). Each
sampling step traversing from the root node of the tree to the leaf node of the tree takes time
O(log2(d∆)) (steps 3-7 of Algorithm 10). Querying the true distance between the sampled data point
x to its closest center in C takes O(kd) time (step 8 of Algorithm 10). According to Lemma A.5, the
expected number of iterations for sampling a data point x is Õ(d). Finally, with Õ(nd) preprocessing
time before tree construction, the aspect ratio ∆ and the dimension d can be reduced to poly(n, d)
and O(logn), respectively. The overall expected running time for sampling a data point x ∈ P using
Adaptive-Sampling is Õ(k).

20

B Bandit-Based Center Swap

In this subsection, we present the bandit-based center swap method. For the existing local search
methods, even with sampling-based swap pair construction, a clustering cost estimation process is
required to pick the best swap pair among the candidate swap pairs. However, in the worst case, this
process requires scanning the entire dataset for distance and data point reassignment calculations,
which leads to a running time of Ω(nd) for each center swap step.

To further accelerate the best swap pair selection process, our proposed bandit-based method (Al-
gorithm 2) can identify the swap pair inducing the best clustering cost reduction with sub-linear
runtime assuming sub-Gaussian prior on swap pairs. The high-level idea behind is to reformulate the
deterministic clustering cost estimation process as a statistical bandit problem. By regarding each
swap pair as an arm in the bandit framework, selecting the swap pair that yields the best clustering
cost reduction can be modeled as a best-arm identification problem. To give the detailed analysis, we
first introduce the following folklores for statistics.

Lemma B.1. If a ≤ X ≤ b holds with probability 1 for a random variable X , then X is a
(b−a

2)2-sub-Gaussian6, where (b−a
2)2 is the variance proxy.

Lemma B.2. (Hoeffding’s Inequality) Let X1, ..., Xn be n i.i.d. sub-Gaussian random variables

with variance proxy σ2. Then, for any ϵ > 0, it holds that Pr

(
1
n

∑n
i=1 Xi − E[X] ≥ ϵ

)
≤ e−

nϵ2

2σ2 .

We begin the formal analysis of the proposed bandit-based center swap method by first presenting a
reduction of the best swap pair selection problem to a bandit problem. Given a group Si (i = 1, 2)
containing several swap pairs as the input for Algorithm 2, let Sswap = Si and Sref = P be the sets of
the reference swap pairs and reference points, respectively. In the modeled bandit problem, each swap
pair s ∈ Sref is regarded as an arm and the goal is to identify the swap pair (u, v) ∈ Sswap with the
maximum clustering cost reduction, i.e., (u, v) = argmin(u′,v′)∈Sswap δ

2(P,C ∪ {u′}\{v′}). Given
a data point b randomly sampled from the dataset P , for each swap pair s = (u′, v′) ∈ Sswap, the
clustering cost change induced by (u′, v′) on b ∈ Sref is defined as Gs(b) = δ2(b, C\{v′} ∪ {u′})−
δ2(b, C). Given a setH of data points, let Gs(H) =

∑
b∈H Gs(b). Define µs = Gs(P)/|Sref|. The

best swap pair s also has the smallest value of Gs(P)/|Sref|.
The bandit-based center swap algorithm is outlined in Algorithm 2 (denoted as the BanditCS algo-
rithm). BanditCS algorithm iteratively samples data points from the referenced points to estimate
the average changes in clustering cost for the swap pairs, where a confidence interval is maintained
for each candidate swap pair s ∈ Sswap. In each iteration, the algorithm updates both the mean
estimate µ̂s of the average cost reduction and the interval length Fs (step 7 of Algorithm 2) for each
s ∈ Sswap based on the sampled points. From these updates, a confidence interval [µ̂s −Fs, µ̂s +Fs]
is computed (step 8 of Algorithm 2). The confidence interval captures the uncertainty around the
estimated average clustering cost reduction based on the current samples. As more samples are
collected, the intervals are narrowed to reflect the true average clustering reduction for the swap pairs.
The algorithm then eliminates swap pairs with less promising estimates (step 9 of Algorithm 2). This
process continues until only one swap pair remains or a predefined number of sample sizes is reached.
We show that under the sub-Gaussian prior on swap pairs with significant clustering cost reduction,
the bandit-based algorithm (Algorithm 2) can always return the best swap pair with high probability.

Assumption 1. Let C be the set of centers before executing each step 10 of Algorithm 1. For each
swap pair s ∈ S1 ∪ S2, it is assumed that Gs(b) is σ2

s -sub-Gaussian for a randomly sampled point
b ∈ P , with a known bound σ2 = O((δ2(P,C)/|P |)2) and σ2 ≥ σ2

s .

Lemma 5. Let S be a set of swap pairs as input for Algorithm 2, which contains at least one swap
pair with a (1 − 1/100k) fraction of cost reduction. For η = O(n−4), Algorithm 2 can remove
non-promising swap pairs in S with high probability using Õ(k2) samples.

Proof. We first prove that the best swap pair will never be eliminated during the whole bandit process
with high probability. The proof begins by showing that with probability at least 1 − 1/n2, all
confidence intervals maintained by Algorithm 2 can well approximate the real mean of the clustering
cost change for each swap pair s ∈ Sswap. Let B denote the set of the sampled points obtained after

6A random variable X is a σ2-sub-Gaussian if Pr[X > t] ≤ 2e
− t2

σ2

21

executing step 4 of Algorithm 2. Then, we consider a fixed swap pair s ∈ Sswap. Let ûs be the average
of the |B| i.i.d. samples in B drawn from Sref where Sref = P . Since each Gs(b) has a bounded value,
random variable Xs = Gs(B) can be regarded as a σ2

s -sub-Gaussian variable for some σ2
s > 0. By

using the Hoeffding’s Inequality (Lemma B.2), we can get that

Pr(|µs − µ̂s| > Fs) ≤ 2e
− |B|·F2

s
2σ2

s .

According to the definition of Fs (step 8 of Algorithm 2), we have Fs = σ ·
√

2 ln(1/η)
nref+1 , where η is

the input parameter for Algorithm 2 to control the success probability, nref is the number of samples
that have been taken, σ is provided as input to Algorithm 2 as prior knowledge (serving as an upper
bound on each σs). Then, we have

2e
− |B|·F2

s
2σ2

s = 2e
− |B|·σ2·2 ln(1/η)

2σ2
s ·(nref+1) ≤ 2e− ln(1/η),

where the last step follows from nref + 1 = |B| and σ2 ≥ σ2
s according to Assumption 1.

Let η = 1
2n4 . We have Pr(|µs − µ̂s| > Fs) ≤ 1/n4. Then, µs ∈ [µ̂s −Fs, µ̂s + Fs] holds for each

s ∈ Sswap with probability at least 1− 1
n3 by taking a union bound over the success probability of all

the swap pairs in Sswap. Since there are at most |P | sampling steps, we can get that with probability at
least 1− 1

n2 , the intervals maintained can always reflect the true mean of the clustering cost reduction,
i.e., µs ∈ [µ̂s −Fs, µ̂s + Fs] holds for each s ∈ Sswap during the whole bandit process.

Let s∗ = argmins∈Sswap Gs(P) be the optimal target swap pair. Since µ̂s∗ − Fs∗ ≤ µs∗ , we have
µ̂s∗ − Fs∗ ≤ µs′ ≤ µ̂s′ + Fs′ holds for any s′ ∈ Sswap such that s′ ̸= s∗. This indicates that the
optimal swap pair with maximum clustering cost reduction will never be removed.

According to the grouping strategy, there are two cases that may happen (see Lemma B.3 for details):
(1) either S1 or S2 contains a swap pair (u, v) such that δ2(P,C\{v} ∪ {u}) ≤ (1− 1

100k)δ
2(P,C);

(2) S1 and S2 do not contain any swap pair (u, v) such that δ2(P,C\{v}∪{u}) ≤ (1− 1
100k)δ

2(P,C).
If case (2) happens, since each swap group contains a virtual swap pair with zero clustering cost
change, the virtual swap pair will not be removed. Hence, if the set of swap pair returned by Algorithm
2 has size 1, the swap pair will not induce clustering cost increase. Then, we consider that case (1)
happens. For a swap pair s ∈ Sswap, let ζs = µs − µ∗

s . For nref =
200σ2

ζ2
s

lnn, we have

2(Fs + Fs∗) = 4σ
√
2 ln(n4)/nref

≤ ζs
= µs − µs∗ .

Then, we can get that
µ̂s −Fs ≥ µs − 2Fs

= µs∗ + ζs − 2Fs

≥ µs∗ + 2Fs

> µ̂s∗ + Fs.

This implies that after randomly and independently sampling 200σ2

ζ2
s

lnn points from Sref, the swap
pair s ∈ Sswap can be removed from Sswap because its confidence interval is entirely outside the
confidence interval of s∗.

Furthermore, in case (1), the given swap pair set Sswap contains a swap pair s∗ = (u, v) satisfying
δ2(P,C ∪ {u}\{v}) ≤ (1− 1

100k)δ
2(P,C) and a virtual swap pair s = (u, u) with zero clustering

cost change. Then, it holds that s∗ = (u, v) and µs∗ ≤ − δ2(P,C)
|Sref|100k . Since the virtual swap pair

can only induce zero clustering cost change, we have ζs∗ ≥ δ2(P,C)
|Sref|100k . Then, observe that σ2 ≤

O((δ2(P,C)/|Sref|)2) according to Assumption 1, we can get that

nref =
200σ2 · lnn

ζ2s
≤ O(log n) ·O

((
δ2(P,C)

|Sref|

)2
)
· (100k|Sref|)2

(δ2(P,C))2
= O(k2 logn),

22

which implies that by randomly and independently sampling Õ(k2) points from reference point set
Sref, the best swap pair in S can be returned by Algorithm 2.

During the swap pair construction process, the BanditLS algorithm (Algorithm 1) constructs swap
pairs by finding the center sx ∈ C closest to x and a randomly selected center q′ ∈ C \ {sx} (steps
8-9 of Algorithm 1), where A = {(x, sx), (x, q′)} serves as the candidate swap pairs. The following
lemma shows that if x is sampled with probability δ2(x,C)/δ2(P,C), with constant probability,
there exists at least one swap pair that can induce certain fraction of clustering cost reduction.

Lemma B.3. (Fan et al. [19]) Let x be a data point sampled with probability δ2(x,C)/δ2(P,C) from
P . If δ2(P,C) > 2000OPT , then either with constant probability, there exists at least one swap
pair (u, v) ∈ A such that δ2(P,C ∪ {u}\{v}) ≤ (1− 1

100k)δ
2(P,C), or with probability Ω(λ/k),

there exists at least one swap pair (u, v) ∈ A such that δ2(P,C ∪ {u}\{v}) ≤ (1− 1
100λ)δ

2(P,C),
where λ denotes the number of lonely centers (1 ≤ λ ≤ k − 1).

According to Lemma 5, for the swap groups S1 and S2 provided as input to Algorithm 2, the algorithm
can return a set o′1 for S1 and a set o′2 for S2. Algorithm 2 guarantees that if |o′i| = 1, then o′i contains
the best swap pair of Si for each i ∈ {1, 2}. By taking a union bound success probability over the
entire local search process, Algorithm 2 can always return the best swap pair with constant probability
for each input swap pair group Si. According to Lemma B.3, with certain probability, there exists
one swap pair that can induce at least a (1− 1/100k) fraction of reduction on clustering cost in each
local search step. Then, with high probability, Algorithm 2 can return a set o′i of swap pairs with
|o′i| = 1. Since the final swap pair is randomly picked from o′i with |o′i| = 1, we can get that with
certain probability, the clustering cost can be reduced for each local search step.

Lemma B.4. After O(
√
nk log(n∆)) rounds of local search steps, Algorithm 1 can return a constant

approximate solution in expectation.

Proof. According to Lemma 5 and Lemma B.3, if sampling with distribution δ2(x,C)/δ2(P,C)
(where x ∈ P), then there are two cases that may happen: (1) with constant probability, the clustering
cost can be reduced by a factor of at least (1− 1

100k) for a single local search step; (2) with probability
Ω(λ/k), the clustering cost can be reduced by a factor of (1− 1

100λ). Based on Lemma A.6, each data

point can be sampled with probability at least δ2(x,C)√
n·δ2(P,C)

(where x ∈ P) using Adaptive-Sampling
strategy. Hence, either the clustering cost can be reduced by a factor of at least (1 − 1

100k) with
probability Ω(1√

n
), or the clustering cost can be reduced by a factor of at least (1 − 1

100λ) with

probability Ω(λ
k
√
n
) . Let R = 2αk

√
n log(n∆), where α is a sufficiently large constant. We begin by

examining case (1) of the local search process. Following the formulation in [25], we define a random
process X that starts from an initial clustering cost δ2(P,C ′), where C ′ is an O(n∆)-approximation.
During R/2 iterations, this process reduces δ2(P,C ′) by a multiplicative factor of (1− 1

100k) with
probability η = 1

β
√
n

, while adding an additive term of 2000OPT after R/2 iterations for some
constant β. From this, we can derive that

E[X] = 2000OPT + δ2(P,C ′)

R/2∑
i=1

(
R/2

i

)
(η)i(1− η)R/2−i

(
1− 1

100k

)i

= δ2(P,C ′)
(
1− η

100k

)R/2

+ 2000OPT

≤ δ2(P,C ′)

n∆
+ 2000OPT .

Next, we consider case (2) and define a new random process X ′. Over R/2 iterations of sampling
and swaps, the process decreases δ2(P,C ′) by a multiplicative factor of (1− 1

100λ) with probability
η′ = λ

β
√
nk

, and increases the final cost δ2(P,C ′) by an additive term of 2000OPT for some constant
β. In this case, we can similarly derive that

23

E[X ′] = 2000OPT + δ2(P,C ′)

R/2∑
i=1

(
R/2

i

)
(η′)i(1− η′)R/2−i

(
1− 1

100λ

)i

= δ2(P,C ′)

(
1− η′

100λ

)R/2

+ 2000OPT

≤ δ2(P,C ′)

n∆
+ 2000OPT ,

For R = 2αk
√
n log(n∆) iterations, there are at least αk

√
n log(n∆) iterations such that either case

(1) or case (2) happens. It is easy to see that the random process X or X ′ can dominate the local
search process and hence E[δ2(P,C)] < E[X ′] and E[δ2(P,C)] < E[X] hold, where C is the set
of the final clustering centers returned by the local search algorithm. Then, we can get that

E[δ2(P,C)] ≤ E[X](or E[δ2(P,C)] ≤ E[X ′])

≤
∑
C′

E[δ2(P,C ′)]Pr(C
′)

≤
∑
C′

Pr(C
′)(

δ2(P,C ′)

n∆
+ 2000OPT)

≤ E[δ2(P,C ′)]

n∆
+ 2000OPT.

Since the set C ′ is an O(n∆)-approximate initial solution, we have E[δ2(P,C)] ≤ O(1)OPT by
setting α as a large enough constant.

Putting all these together, Theorem 1 can be proved.

Theorem 1. With sub-Gaussian prior on cost changes of swap pairs, there exists an algorithm for
k-means that can achieve constant approximation within expected running time Õ(nd+

√
nk4).

Proof. The approximation guarantees on clustering quality follows from Lemma B.4. Then, we
analyze the running time. The tree initialization (steps 1-3 of Algorithm 1) takes time O(nd log(n∆)).
Note that ∆ and the dimension d can be compressed to ∆ = poly(n, d) and O(logn), respectively,
using the methods proposed in [18, 28]. Hence, the running time for initialization becomes Õ(nd).
During the local search steps, there are at most Õ(

√
nk) iterations. The Adaptive-Sampling takes

time Õ(k) for each local search step according to Lemma A.6. For the bandit-based center swap
process, finding the closest center in C for the sampled data point x takes time Õ(k) in step 6 of
Algorithm 1. For each swap pair constructed, the bandit-based clustering cost estimation takes
Õ(k2) samples. The algorithm needs to calculate the true distances between the samples to their
nearest centers, which takes Õ(k3) time. Hence, the bandit process takes an overall running time of
Õ(k3) (steps 9-13 of Algorithm 1). Finally, updating the tree structure through TREE-OPEN and
TREE-CLOSE operations take time Õ(1) for each local search step. Since there are at most Õ(

√
nk)

local search steps, the total running time is Õ(nd+
√
nk4).

C A More Practical Algorithm with Metropolis Hastings

The Metropolis-Hastings strategy is widely used in statistics for sampling from complex probability
distributions, where several initialization schemes with sub-linear (or linear) running time were
proposed [3, 4]. In the following, we show that under mild assumptions, the Metropolis-Hastings
strategy can be used to approximate the D2-Sampling distribution within Õ(n/k2) rounds of sample
transitions during the local search process. The following lemma is a folklore for Metropolis-Hastings.

Lemma C.1. (Chib and Greenberg [10]) Let π denote the target distribution defined on P that
one wish to approximate using Metropolis-Hastings process. Given a parameter β > 0, if the

24

proposal distribution q satisfies that q(x) ≥ βπ(x) for all x ∈ P , then after T = O(1/β) steps, the
distribution of the Metropolis-Hastings chain dominates π/2.

The following lemma shows that under a tailed behavior of distributions on data points, the ratio
between the maximum distances to the optimal clustering center and the average clustering cost can
be bounded by a function that is sublinear in the data size n.

Lemma C.2. (Bachem et al. [3]) Let F be a probability distribution over Rd with finite variance that
has at most exponential tails, i.e., ∃c, t such that Pr[δ

2(x, µ) > a] ≤ ce−at, where c, t are constants.
Let X be a set of n points independently sampled from F . Then, with high probability, for sufficiently
large n, α = maxx∈X δ2(x,µ(X))

1
n

∑
x′∈X δ2(x′,µ(X))2

= O(log2 n).

Based on Lemma C.1, Lemma C.2 and Assumption 2, Lemma 6 can be proved.

Assumption 2. Assume that the given dataset P is average where each optimal cluster has size Ω(k2).
For each optimal cluster P ∗

h , let c∗h be the optimal center for P ∗
h . We assume that each P ∗

h follows a
distribution F over Rd with exponential tails, i.e., ∃c, f such that Pr[δ

2(x, µ) > a] ≤ ce−fa holds
for x ∈ P ∗

h , where c, f are constants and µ is the mean of the distribution.

Lemma 6. After Õ(n/k2) Metropolis-Hastings sampling steps (steps 2-5 of Algorithm 3), if the given
clustering instance satisfies the properties in Assumption 2, we can sample a data point x ∈ P with
probability at least 0.5δ2(x,C)/δ2(P,C).

Proof. For any data point p ∈ P and a given set C of clustering centers opened, let sp =
argminc′∈C δ(p, c′) be its closest center in C. We first show that if the given clustering instance
satisfies the property of average sizes (i.e., each optimal cluster has size Ω(k2)), the distance between
p and sp can be bounded. Without loss of generality, we can assume that p lies in some optimal
cluster P ∗

j where c∗j is its optimal clustering center. Let OPTj be the clustering cost of P ∗
j with

respect to c∗j , i.e., OPTj = δ2(P ∗
j , c

∗
j). Denote sc∗j as the nearest data point in C to c∗j . Then, we

can get that δ2(c∗j , sc∗j) ≤ minq∈C∗
j
δ2(c∗j , sq) ≤

∑
q∈C∗

j

2δ2(c∗j ,q)+2δ2(q,sq)

|C∗
j |

≤ 2OPTj+2δ2(C∗
j ,C)

|C∗
j |

≤

O
(

OPTj+δ2(C∗
j ,C)

k2

)
, where the second step follows from the triangle inequality, and the last step

follows from the assumption that |C∗
j | = Ω(k2) (Assumption 2) holds for each j ∈ [k]. Denote

dmax
j = maxx∈P∗

j
δ2(x, c∗j). Then, we have

δ2(p, sp) ≤ δ2(p, sc∗j)

≤ 2δ2(p, c∗j) + 2δ2(c∗j , sc∗j)

≤ 2dmax
j +O

(
δ2(C∗

j , C)/k2 +OPTj/k
2
)

.

We now prove that p(x) ≥ π(x)/2, where p(x) is the probability of sampling x using Õ(n/k2) steps
of Metropolis Hastings (with a uniform proposal distribution 1/n) and π(x) = δ2(x,C)/δ2(P,C)

is the target D2-Sampling distribution. Let β = k2

τn log2 n
for some large enough constant τ . For

each optimal cluster P ∗
j , according to Assumption 2, we assume that P ∗

j follows a distribution F

with exponential tails. Then, according to Lemma C.2, we have αj =
|C∗

j |·d
max
j

δ2(P∗
j ,c∗j)

= O(log2 n). This
implies that

δ2(p, sp) = O

(
δ2(C∗

j , C) +OPTj

k2

)
· log2 n.

25

For each x ∈ P , let ϕ(x) be the index of the optimal cluster that x belongs to, i.e., x ∈ P ∗
ϕ(x). Then,

it holds that

βπ(x) ≤ k2

τn log2 n
· δ

2(x,C)

δ2(P,C)

≤ k2

τn log2 n
· δ

2(x, sx)

δ2(P,C)

≤ k2

τn log2 n
·
O

(
δ2(C∗

ϕ(x),C)+OPTϕ(x)

k2

)
· log2 n

δ2(P,C)

≤ 1

n
,

where the last step follows from the fact that O
(

δ2(C∗
j ,C)+OPTj

k2

)
≤ O

(
δ2(P,C)/k2

)
holds for

each C∗
j , since C∗

j ⊆ P and δ2(P,C) ≥ OPT . The proof can be concluded using Lemma C.1.

Putting all these together, Theorem 2 can be proved.

Theorem 2. With sub-Gaussian prior on cost changes of swap pairs and mild assumptions on optimal
clusters, there is a constant approximation algorithm for k-means with expected runtime Õ(nd+ k4).

Proof. We first prove the approximation guarantees on clustering quality. According to Lemma 6,
with Õ(n/k2) Metropolis-Hastings steps, we can sample a data point x ∈ P with probability at least
0.5δ2(x,C)/δ2(P,C) for each data point x ∈ P . Then, similar to the analysis for Lemma B.4, after
Õ(k) local search steps, we can obtain a constant approximation in expectation.

As for the running time, each approximate D2-Sampling step based on Metropolis-Hastings strategy
takes Õ(n/k2) transitions, where each transition needs to calculate the distance between the data
point sampled to its nearest center in C. Hence, the overall running time for the approximate sampling
process in a single local search step is Õ(nd/k). According to Theorem 1, each bandit step takes time
Õ(k3d). Finally, since Õ(k) rounds of local search steps are required to return a constant approximate
solution, the total running time is Õ(nd+ k4) using dimension reduction techniques.

D Extension to the k-median Objective

In this section, we show how to extend our proposed adaptive sampling method to the k-median
objective without relying on any data distribution assumptions. The formal algorithm is presented
in Algorithm 11, where the high level idea behind is to replace the bandit process with a weighted
sampling strategy (Algorithm 12) to remove the assumptions on sub-Gaussian prior for swap pair.

Similar to the idea for the k-means objective, the algorithm begins by embedding the given k-
median instance into a tree structure T ′, where the pairwise distances can be well approximated
on the tree metric (steps 1-3 of Algorithm 11). Then, during each local search step, an adaptive
sampling process is used to approximate the D-Sampling (which refers to the sampling distribution
of δ(p, C)/δ(P,C) for a given set C of centers opened) process. Instead of modeling the best swap
pair identification task as a bandit problem, the algorithm adapts a weighted sampling strategy to
estimate the clustering cost induced by each swap pair (Algorithm 12). For each swap pair to be
estimated, the Weighted-Sampling algorithm first performs the swaps on the tree structure T ′ based
on TREE-OPEN and TREE-CLOSE operations (steps 1-3 of Algorithm 12). Then, it independently
takes Õ(

√
n/ϵ) samples using the adaptive sampling method (step 8 of Algorithm 12). The intuitive

idea is to leverage the properties by adaptive sampling method such that each data point p ∈ P can be
sampled with probability linearly related to the distance of p to its nearest centers opened. This would
give a good approximation to the inverse value of the clustering cost for k-median objective using
weighted summation of the samples drawn. With this technique, the time complexity for clustering
cost estimation can be reduced from O(nk) to be sub-linear in the data size n.

26

Algorithm 11 LS-KMedian(P, k, d, C)

Input: A k-median clustering instance (P, k, d), a set C ⊂ Rd of random clustering centers.
Output: A set C ⊂ Rd of clustering centers.

1: T = Tree-Construction(P, k, d). ▷ Tree-Construction is detailed in Algorithm 4 in Appendix A
2: T ′ = Tree-Conversion(T). ▷ Tree-Conversion is detailed in Algorithm 6 in Appendix A
3: Call TREE-INIT(T ′) to initialize the dynamic data structure. ▷ Algorithm 7 in Appendix A
4: for c ∈ C do
5: Call the TREE-OPEN(T ′, c) algorithm to mark the leaf node in T ′ associated with c as active

and update the tree structure T ′. ▷ TREE-OPEN is detailed in Algorithm 8 in Appendix A
6: for i = 1 to Õ(k) do
7: x = Adaptive-Sampling(T ′, C) ▷ Adaptive-Sampling is in Algorithm 10 in Appendix A
8: Set sx = argminc∈C δ(x, c) and randomly sample a center q′ ∈ C\{sx}.
9: o = {(x, sx), (sx, sx), (x, q′)}.

10: for oi ∈ o do
11: EST (oi) =Weighted-Sampling(P, k, d, T ′, oi, 1/400k).
12: g1 = {(x, sx), (sx, sx)}, g2 = {(x, q′), (q′, q′)}.
13: gm1

= argming∈g1 EST (g), gm2
= argming∈g2 EST (g).

14: for g ∈ g1 do
15: if EST (g) · 400k−1

400k+1 > EST (gm1
) then

16: remove g from g1.
17: for g ∈ g2 do
18: if EST (g) · 400k−1

400k+1 > EST (gm2
) then

19: remove g from g2.
20: Let O = {gi : |gi| = 1, i ∈ {1, 2}}, and randomly choose a swap pair o′ from O.
21: C = C\{v} ∪ {u}, where (u, v) ∈ o′.
22: Call the TREE-CLOSE(T ′, v) algorithm to deactivate the leaf node in T ′ associated with v

and update the tree structure T ′. ▷ TREE-CLOSE is detailed in Algorithm 9 in Appendix A
23: Call the TREE-OPEN(T ′, u) algorithm to mark the leaf node in T ′ associated with u as active

and update the tree structure T ′.
24: return C.

In the following, we give the detailed analysis for the proposed algorithm. The following lemma
can be directly obtained via Lemma A.6, which is an extension from the k-means objective to the
k-median objective.

Lemma D.1. The Adaptive-Sampling takes expected time Õ(k) to sample a data point x ∈ P with
probability δ(x,C)

δ(P,C) .

According to Lemma D.1, each data point is sampled with probability proportional to the distance
to its nearest centers opened. In the following, we will show that by modeling the clustering cost
estimation as a sum estimation problem, the clustering cost can be well approximated within a factor
of (1± ϵ) using Õ(

√
n/ϵ) samples.

For the clustering problem, given a swap pair (u, v), the clustering cost of δ(P,C\{v} ∪ {u}) can be
decomposed into δ(P,C\{v} ∪ {u}) =

∑
p∈P δ(p, C\{v} ∪ {u}), which can further be modeled as

a sum estimation task. Our main objective is to estimate the sum W =
∑

p∈P δ(p, C\{v} ∪ {u})
using as small number of samples as possible. The following lemma shows that if proportional
sampling is allowed (i.e., the D-Sampling), one can estimate the sum using Õ(

√
n/ϵ) samples.

Lemma D.2. (Beretta and Tětek [8]) Given a set U where each item a ∈ U has a weight w(a), let
W =

∑
a∈U w(a) be the summation of the weights in U . Let S = {a1, ..., am} be a set of elements

sampled mn = O(
√
|U |/ϵ) times from U such that each ai ∈ S is sampled with probabilities

proportional to their weights. For each s ∈ S, define cs to be the number of times s is sampled. Then,

W ′ =
(
mn

2

)
·
(∑

s∈S
(cs2)
w(s)

)−1

gives an estimation for W that induces multiplicative error of (1± ϵ)

with probability at least 2/3.

27

Algorithm 12 Weighted-Sampling(P, k, d, T ′, s, ϵ)

Input: A k-median clustering instance (P, k, d), a tree structure T ′, a swap pair s, and a parameter
0 < ϵ < 1.
Output: The estimation of the clustering cost induced by the swap pair s.

1: Let s = (u, v) be the swap pair to be estimated.
2: Call the TREE-CLOSE(T , v) algorithm to deactivate the leaf node associated with v and update

the tree structure T ′. ▷ TREE-CLOSE is detailed in Algorithm 9 in Appendix A
3: Call the TREE-OPEN(T , u) algorithm to mark the leaf node associated with u as active and

update the tree structure T ′. ▷ TREE-OPEN is detailed in Algorithm 8 in Appendix A
4: InitializeW = ∅, C ′ = C\{v} ∪ {u}.
5: for m = 1 to O(log n) do
6: Initialize an empty setM = ∅, and set mn = 0.
7: for i = 1 to O(

√
n/ϵ) do

8: s =Adaptive-Sampling(T ′, C ′), mn = mn + 1.
9: if s ∈M then

10: cs = cs + 1.
11: else
12: cs = 1,M =M∪ {s}.

13: W ′ =
(
mn

2

)
·
(∑

s∈M
(cs2)

δ(s,C′)

)−1

,W =W ∪ {W ′}.

14: Sort the values inW with increasing order and let W be the median value.
15: return W .

Lemma D.2 indicates that through D-Sampling (sampling with probabilities proportional to the
weights), the weighted sum can be closely estimated using O(

√
n/ϵ) samples. Since Lemma D.1

guarantees that the Adaptive-Sampling process can sample each data point a ∈ P with probability
δ(a,C\{v} ∪ {u})/δ(P,C\{v} ∪ {u}), the following lemma can be directly obtained.

Lemma D.3. Given a swap pair (u, v) and a set C of centers opened as the input for Algorithm 12,
let C ′ = C\{v}∪{v} be the set of centers obtained after performing the swap. For the m-th iteration
of Algorithm 12 (steps 6-13), an estimation W ′ can be obtained in step 13 of Algorithm 12 such that
W ′ ∈ [(1− ϵ)δ(P,C ′), (1 + ϵ)δ(P,C ′)] with probability at least 2/3.

However, since there are Õ(k) local search steps, we need to boost the success probability to guarantee
a union bound of success probability over all the local search steps. According to the analysis in
weighted sampling process [8], 1/W ′ is an unbiased estimation for 1/W and the success probability
is established by using Chebyshev inequality. Hence, based on a standard Median of Means trick
[26] (step 5 and step 14 of Algorithm 12), the success probability for finding an accurate estimation
can be boosted to 1− 1/n2 by constructing O(logn) groups and taking the median value. Hence,
we have the following result.

Lemma D.4. Given a swap pair (u, v) and a set C of centers opened as the input for Algorithm 12,
let C ′ = C\{v}∪{v} be the set of centers obtained after performing the swap. An estimation W can
be returned by Algorithm 12 such that W ∈ [(1− ϵ)δ(P,C ′), (1 + ϵ)δ(P,C ′)] with high probability
of at least 1− 1/n2.

Next, we will show that by carefully adjusting the parameter ϵ and introducing a judging criteria, the
clustering cost can be reduced by a factor of (1− 1/100k) with constant probability for each local
search step. The basic idea behind is to add a virtual swap pair (x, x) for some x ∈ C to serve as
baseline, where swap pairs that fail to induce clustering cost reductions can be filtered by the virtual
swap pair. The following lemma shows that using the virtual swap pair as a baseline, the optimal
swap pair among the swap pair set that induces the maximum reduction on clustering cost will never
be removed (steps 12-19 of Algorithm 11) .

Lemma D.5. Let gi (i ∈ {1, 2}) be the swap groups constructed in step 12 of Algorithm 11. For each
swap group gi, let ti = argmin(u,v)∈gi δ

2(P,C\{v} ∪ {u}) be the swap pair in gi with minimum
clustering cost. Then, ti will never be removed during the subsequent steps 14-19 of Algorithm 11

28

Proof. Given a swap pair a ∈ o (where o is the set of swap pairs constructed in step 9 of Algorithm 11),
we use cost(a) = δ(P,C\{v} ∪ {u}) to denote the true clustering cost induced by the swap pair a,
where a = (u, v). According to Lemma D.4, by taking a union bound over the success probability,
we can assume without loss of generality that the clustering cost estimation EST (oi) for each swap
pair oi ∈ o should satisfy EST (oi) ∈ [(1 − 1/400k)cost(oi), (1 − 1/400k)cost(oi)] by setting
ϵ = 1/400k. Consider an arbitrary swap group gi for some i ∈ {1, 2}. Let gmi

be the swap
pair in gi with minimum clustering cost estimations (step 13 of Algorithm 11). According to the
judging criteria (step 15 and step 18 of Algorithm 11), a swap pair g ∈ gi is removed only if its cost
estimation EST (g) satisfies EST (g) · 400k−1

400k+1 > EST (gmi
). For the best swap pair ti, it hods that

EST (ti) · 400k−1
400k+1 ≤ cost(ti) · (1 + 1/400k) · 400k−1

400k+1 ≤
400k−1
400k cost(gmi

) ≤ EST (gmi
), where the

first and third inequalities follow from Lemma D.4, the second inequality follows from that ti is the
swap pair with minimum clustering cost. This indicates that the optimal swap pair will never be
removed from the set gi of candidate swap pairs.

Lemma D.5 implies that the optimal swap pair in each swap group gi (i ∈ {1, 2}) will never be
removed by adding virtual swap pairs. Then, we will demonstrate that the clustering cost can be
reduced significantly with certain probability for each local search step. According to Lemma B.3,
with certain probability, for a single local search step, there exists at least one swap pair (u, v) ∈ o
such that the clustering cost can be reduced by a factor of at least (1 − 1/100k). The following
lemma shows that if such swap pair exists, the virtual swap pair and swap pairs with clustering cost
larger than the virtual swap pair must be removed.

Lemma D.6. If there exists at least one swap pair (u, v) ∈ gi such that δ(P,C\{v} ∪ {u}) ≤
(1− 1/100k)δ(P,C), then swap pairs in gi with clustering cost larger than δ(P,C) will be removed

Proof. Given a swap pair ti = (u, v) such that δ(P,C\{v} ∪ {u}) ≤ (1− 1/100k)δ(P,C), it holds
that

EST (ti) ≤ (1 + 1/400k)cost(ti)
≤ (1 + 1/400k)(1− 1/100k)δ(P,C)

≤ (1− 3/400k)δ(P,C),
where the first inequality follows from Lemma D.4, and the second inequality follows from the
definition of ti. For any swap pair g ∈ gi with clustering cost cost(g) ≥ δ(P,C), it holds that

EST (g) · 400k − 1

400k + 1
≥ cost(g) · (1− 1/400k) · 400k − 1

400k + 1

≥ δ(P,C) · (400k − 1)2

400k(400k + 1)

> δ(P,C) · (1− 3/400k),
where the second inequality follows from the definition for g. This indicates that g will be removed
from gi according to the judging criteria.

By combining Lemma D.5 and Lemma D.6, the clustering cost will not increase during each local
search step. Then, based on Lemma B.3, in each local search step, with certain probability, there
exists at least one swap pair (u, v) ∈ o such that the clustering cost can be reduced by a factor of at
least (1 − 1/100k). By grouping such (u, v) with the virtual swap pair, the virtual swap pair will
be removed from gi for some i ∈ {1, 2}. Since the final swap pair is randomly picked from gi with
|gi| = 1, we can get that with certain probability, the clustering cost can be reduced by a factor of at
least (1− 1

100k) for each local search step.

Corollary D.4. For the LS-KMedian algorithm, either with constant probability, there exists at least
one swap pair such that the clustering cost can be reduced by a factor of (1 − 1/100k), or with
probability Ω(λ/k), there exists at least one swap pair such that the clustering cost can be reduced
by a factor of (1− 1/100λ) where λ denotes the number of lonely centers (1 ≤ λ ≤ k − 1)

Putting all these together, Theorem 3 can be proved.

Theorem 3. For the k-median problem, there exists an algorithm that can output a constant
approximate solution in expected Õ(nd+

√
nk3) running time without any data assumptions.

29

Proof. We first prove the approximation guarantees on clustering quality. According to Corollary
D.4, with certain probability, the clustering cost of P with respect to C can be reduced by a certain
fraction for each local search step. Then, similar to the analysis for Lemma B.4, after Õ(k) local
search steps, we can obtain a constant approximation in expectation.

As for the running time, since ∆ can be compressed to ∆ = poly(n, d) using the method proposed
in [18], the running time for initialization becomes Õ(nd). Each weighted sampling step requires
to take Õ(

√
n/ϵ) samples for ϵ = 1/400k. During this process, the Adaptive-Sampling algorithm

is used to take samples, where each sample can be picked within time Õ(k). The weighted sum
calculations (step 13 of Algorithm 12) involves distance calculation between the sampled point to the
centers after swaps, which takes Õ(k) time. Hence, the overall running time for weighted sampling
during each local search step can be bounded by Õ(

√
nk2) since d can be compressed to O(logn)

with Õ(nd) preprocessing time. Finally, since Õ(k) rounds of local search steps are required to
return a constant approximate solution, the total running time is Õ(nd+

√
nk3).

E Complementary Experiments

In this section, we present complementary experiments on both large-scale and small datasets. We
also evaluate the robustness of the BanditFastLS algorithm by testing it with varying parameters.

E.1 Comparison results on other large-scale datasets

Table 3 presents the comparison results with other local search algorithms (with mini-batch k-means++
as baseline) on datasets SYN, USC_1990, and SUSY, with k varying from 10 to 100. The results
demonstrate that our algorithm still outperforms other local search methods in terms of running time,
while achieving much better clustering quality than the mini-batch k-means++ seeding method.

Table 3: Comparison results on datasets SYN, USC_1990 and SUSY with varying k, where algorithms
fail to return a feasible solution within 24 hours are not included

Method Dataset k Cost Time(s) Dataset k Cost Time(s) Dataset k Cost Time(s)

k-means++

SUSY 10

3.3500E+07±1.0E+05 3.83

USC_1990 10

2.6026E+08±7.2E+06 2.30

SYN 10

6.0714E+05±2.2E+04 0.59
MLS 3.0343E+07±2.1E+05 541.31 2.3742E+08±1.5E+06 499.16 5.7427E+05±9.9E+03 39.43

LSDS++ 3.1304E+07±2.6E+05 689.29 3.0945E+08±3.2E+06 318.04 5.8056E+05±1.1E+04 53.44
LS++ 3.0320E+07±2.8E+05 849.06 2.3658E+08±2.9E+04 519.16 5.6226E+05±9.9E+02 42.86
Ours 3.0147E+07±2.3E+05 3.67 2.4089E+08±4.1E+06 1.12 6.7609E+05±1.0E+04 0.41

k-means++

SUSY 20

2.7035E+07±2.9E+05 7.49

USC_1990 20

1.9725E+08±1.7E+06 2.97

SYN 20

1.7295E+05±8.5E+03 0.93
MLS 2.5031E+07±2.2E+05 583.90 1.8733E+08±8.5E+06 520.58 1.6154E+05±5.2E+03 54.72

LSDS++ 2.6054E+07±2.9E+05 1243.77 2.3949E+08±2.3E+06 385.16 1.6429E+05±2.5E+03 82.52
LS++ 2.4979E+07±1.6E+05 1308.89 1.8364E+08±1.2E+06 552.81 1.5655E+05±3.9E+02 59.69
Ours 2.5031E+07±2.2E+05 2.65 1.8621E+08±1.3E+06 1.24 1.6223E+05±4.9E+03 0.52

k-means++

SUSY 30

2.4013E+07±7.4E+04 8.06

USC_1990 30

1.6686E+08±5.3E+06 4.01

SYN 30

8.1212E+04±2.3E+03 2.06
MLS 2.2411E+07±1.3E+05 670.05 1.5792E+08+1.5E+06 563.51 7.7512E+04±2.2E+03 91.40

LSDS++ 2.3328E+07±2.7E+05 1304.99 2.0604E+08±1.6E+06 452.68 7.7667E+04±4.5E+02 209.71
LS++ 2.2327E+07±2.7E+05 1410.85 1.5389E+08±1.3E+06 558.81 7.3313E+04±1.6E+02 118.18
Ours 2.2367E+07±1.5E+05 3.42 1.5797E+08±3.2E+06 1.69 7.7674E+04±1.8E+03 0.69

k-means++

SUSY 50

2.0866E+07±9.2E+03 9.67

USC_1990 50

1.3367E+08±1.3E+06 5.69

SYN 50

2.9880E+04±5.1E+02 3.46
MLS 1.9473E+07±8.8E+04 976.36 1.2963E+08±1.4E+06 583.55 3.0487E+04±1.1E+03 252.19

LSDS++ 2.0605E+07±7.4E+04 1851.97 1.7092E+08±1.3E+06 575.61 2.9883E+04±1.9E+02 326.07
LS++ 1.9474E+07±8.8E+04 2690.15 1.2440E+08±8.9E+05 675.84 2.7670E+04±1.1E+02 274.49
Ours 1.9527E+07±2.2E+05 4.22 1.2875E+08±1.6E+06 2.10 3.0961E+04±2.1E+03 0.95

k-means++

SUSY 100

1.7419E+07±4.2E+03 21.54

USC_1990 100

1.0421E+08±8.0E+05 11.36

SYN 100

7.7096E+03±9.0E+01 7.92
MLS 1.6400E+07±1.8E+04 1939.63 9.9924E+07±8.7E+05 829.40 7.2171E+03±1.7E+03 354.77

LSDS++ 1.7404E+07±1.8E+04 4305.32 1.3849E+08±1.5E+06 931.35 7.9350E+03±4.6E+01 368.98
LS++ 1.6403E+07±1.7E+04 6809.98 9.6182E+07±3.2E+05 921.09 7.1562E+03±3.1E+01 514.95
Ours 1.6321E+07±2.9E+04 6.54 9.9865E+07±1.5E+06 3.58 1.1788E+04±2.1E+03 1.79

Table 4 presents the comparison results on small datasets with sizes smaller than 50,000, where the
number of clusters k ranges from 3 to 10. The results indicate that all local search algorithms achieve
fast running times, with the MLS and LS++ algorithms delivering better clustering quality.

E.1.1 Experiments with Varying Parameters

In this subsection, we present experiments on the BanditFastLS algorithm with varying parameters.
The input parameters for the BanditFastLS algorithm include the probability parameter η and the
number of Metropolis-Hastings steps used to approximate the D2-Sampling distribution. As outlined
in the main text, we fix the number of Metropolis-Hastings steps at 20 and set η = 1/(2n4) to meet
the success probability guarantees specified in theoretical analysis. However, since controlling η to

30

Table 4: Comparison results on small datasets
Method Dataset k Cost Time(s) k Cost Time(s) k Cost Time(s)

k-means++

iris(150, 4) 3

82.9406 ± 4.7260 0.0466 ± 0.0673

5

56.5191 ± 9.1071 0.0119 ± 0.0124

10

28.4889 ± 0.4447 0.0109 ± 0.0035
MLS 79.7067 ± 0.9330 0.0384 ± 0.0108 46.8863 ± 0.0941 0.0561 ± 0.0020 26.9977 ± 0.2052 0.1363 ± 0.0076

LSDS++ 82.7830 ± 1.7754 0.3606 ± 0.1130 54.1480 ± 1.6025 0.2589 ± 0.0241 27.8720 ± 0.6112 0.2754 ± 0.0238
LS++ 80.2948 ± 1.4146 0.1811 ± 0.1508 47.9004 ± 2.1091 0.1299 ± 0.0322 27.0137 ± 0.2987 0.2350 ± 0.1657

BanditPAM++ 79.1369 ± 0.0946 0.5786 ± 0.6218 46.9289 ± 0.0497 0.3037 ± 0.0514 26.6409 ± 0.1368 0.4544 ± 0.1304
Ous 80.9941 ± 1.9905 0.2752 ± 0.0218 50.6115 ± 1.8605 0.3150 ± 0.0319 31.9050 ± 4.8661 0.0011 ± 0.0007

k-means++

seeds(210, 7) 3

677.4968 ± 102.5994 0.0034 ± 0.0004

5

433.2457 ± 16.6050 0.0013 ± 0.0001

10

236.8584 ± 4.1258 0.0035 ± 0.0033
MLS 589.4259 ± 0.7753 0.0410 ± 0.0016 391.0053 ± 7.4491 0.0677 ± 0.0030 205.3238 ± 3.1704 0.1624 ± 0.0062

LSDS++ 620.9806 ± 11.6413 0.2780 ± 0.0196 423.7777 ± 11.9984 0.2579 ± 0.0164 224.7185 ± 4.1107 0.2510 ± 0.0417
LS++ 588.3799 ± 0.6264 0.3623 ± 0.4091 391.5538 ± 7.7126 0.1619 ± 0.1479 207.2282 ± 9.9328 0.1386 ± 0.0453

BanditPAM++ 589.3587 ± 0.4321 0.3941 ± 0.0856 401.2967 ± 0.5204 0.4950 ± 0.0233 204.6278 ± 0.5762 0.8999 ± 0.1004
Ous 590.3719 ± 2.1562 0.2585 ± 0.0103 412.7108 ± 14.2730 0.2919 ± 0.0117 225.5556 ± 10.4282 0.4719 ± 0.0364

k-means++

glass(214, 9) 3

673.7093 ± 61.0323 0.0027 ± 0.0034

5

480.4887 ± 36.5133 0.0032 ± 0.0038

10

259.2790 ± 19.0167 0.0019 ± 2.0887
MLS 591.0264 ± 1.2844 0.0413 ± 0.0022 412.2717 ± 11.4333 0.0679 ± 0.0025 233.0858 ± 2.3131 0.1808 ± 0.0135

LSDS++ 639.6517 ± 8.5006 0.2859 ± 0.0432 452.4635 ± 8.8701 0.2671 ± 0.0069 259.8102 ± 2.7534 0.2866 ± 0.0202
LS++ 591.7814 ± 2.1027 0.3063 ± 0.3206 409.3808 ± 9.9240 0.1185 ± 0.0658 232.0718 ± 1.4021 0.1917 ± 0.1221

BanditPAM++ 590.4112 ± 1.1400 0.2913 ± 0.0289 472.0507 ± 1.8650 1.1673 ± 0.8264 256.4949 ± 9.8140 2.5653 ± 0.7060
Ous 624.1871 ± 59.2087 0.3070 ± 0.0263 452.6347 ± 36.7350 0.3959 ± 0.0546 349.6041 ± 80.9667 0.0012 ± 0.0006

k-means++

Who(440, 8) 3

9.4490E+10 ± 5.7E+09 0.0064 ± 0.0087

5

5.9574E+10 ± 2.8E+09 0.0037 ± 0.0006

10

3.2918E+10 ± 9.1E+08 0.0262 ± 0.0215
MLS 8.0098E+10 ± 4.1E+08 0.0651 ± 0.0030 5.3603E+10 ± 3.6E+08 0.1029 ± 0.0051 3.1506E+10 ± 4.9E+08 0.2661 ± 0.0145

LSDS++ 8.6153E+10 ± 1.3E+08 0.2797 ± 0.0621 5.9399E+10 ± 2.1E+08 0.2436 ± 0.0341 3.5621E+10 ± 9.2E+07 0.2482 ± 0.0369
LS++ 8.0694E+10 ± 2.2E+08 0.0835 ± 0.0607 5.4099E+10 ± 9.9E+07 0.1393 ± 0.1090 3.2729E+10 ± 2.3E+08 0.1374 ± 0.0141

BanditPAM++ 8.1643E+10 ± 1.8E+08 1.1234 ± 0.2641 5.8113E+10 ± 7.9E+07 2.6745 ± 0.6594 3.7597E+10± 8.2E+07 3.8934 ± 0.4584
Ous 8.2792E+10 ± 2.8E+08 0.2589 ± 0.0149 5.8621E+10 ± 3.2E+08 0.3268 ± 0.0080 4.0189E+10 ± 1.9E+08 0.6269 ± 0.0814

k-means++

HCV(572, 12) 3

2933536.2344 ± 303207.7251 0.0083 ± 0.0043

5

1991419.0036 ± 143383.5953 0.0124 ± 0.0094

10

1145322.5900 ± 65050.74 0.0096 ± 0.0037
MLS 2566187.0550 ± 10524.6421 0.0826 ± 0.0029 1790989.3510 ± 7429.1685 0.1334 ± 0.0045 1033273.0030 ± 15612.5191 0.3511 ± 0.0187

LSDS++ 2846575.4020 ± 54350.9164 0.2377 ± 0.0240 2037949.9033 ± 27678.9084 0.2526 ± 0.0382 1173584.9667 ± 19802.3962 0.3486 ± 0.0073
LS++ 2587609.7490 ± 49288.0561 0.2323 ± 0.2572 1789778.9990 ± 2822.7958 0.1320 ± 0.0957 1023768.3390 ± 12822.3782 0.1701 ± 0.0885

BanditPAM++ 3136455.9693 ± 3678.1983 1.9193 ± 0.7104 1934469.8632 ± 59989.9421 2.0508 ± 0.3165 1299891.1575 ± 4938.8460 4.5757 ± 1.1338
Ous 3449750.6830 ± 153601.3066 0.3066 ± 0.0429 2854923.0060 ± 297723.1772 0.3989 ± 0.0538 2158395.9250 ± 276279.0021 0.9130 ± 0.2162

k-means++

TRR(5456, 24) 3

171489.6701 ± 2650.3350 0.0536 ± 0.0081

5

155222.1022 ± 5454.1228 0.0229 ± 0.0320

10

126569.1958 ± 2963.7521 0.0447 ± 0.0350
MLS 167903.1180 ± 1857.3234 0.1487 ± 0.0062 141810.7915 ± 467.8543 0.2057 ± 0.0087 118420.3319 ± 622.6128 0.4891 ± 0.0296

LSDS++ 209246.6860 ± 5331.1176 2.6622 ± 1.2351 179101.5287 ± 2737.6226 5.3360 ± 0.5287 148514.0536 ± 1800.9521 4.9595 ± 1.0135
LS++ 166839.3052 ± 1179.3739 1.1227 ± 0.6979 142451.1482 ± 855.7568 1.9264 ± 0.7808 118149.6283 ± 513.2673 1.3803 ± 0.9263

BanditPAM++ 170295.3619 ± 577.6118 16.1555 ± 3.0836 143081.7860 ± 41.0930 18.3144 ± 2.4909 118273.6474 ± 158.3774 66.2000 ± 4.0447
Ous 167123.6863 ± 1672.7972 0.2831 ± 0.0037 142957.2886 ± 1337.6564 0.3013 ± 0.0157 119295.0631 ± 1353.9847 0.3378 ± 0.0136

k-means++

UrbanGB(360,177, 2) 3

125974.5199 ± 8535.3156 0.0967 ± 0.0743

5

63808.1555 ± 7709.2704 0.1036 ± 0.0412

10

28715.5645 ± 1627.9409 0.3084 ± 0.3052
MLS 115109.9601 ± 496.8671 4.5662 ± 0.2834 56324.6142 ± 163.7329 11.2501 ± 2.3645 24900.2479 ± 350.4709 34.1285 ± 1.9756

LSDS++ 121851.8675 ± 3816.3231 21.9543 ± 2.1897 59322.6458 ± 933.4838 19.9614 ± 1.2814 26812.1929 ± 525.1158 22.3443 ± 1.6450
LS++ 117413.8981 ± 3560.6927 8.4238 ± 2.2973 56341.0427 ± 222.1342 17.1557 ± 2.9083 24835.4868 ± 400.0881 15.0960 ± 3.4364

BanditPAM++ 119056.4776 ± 60.0795 1398.2442 ± 92.5744 56181.3117 ± 11.2802 3348.5389 ± 494.1768 25029.3040 ± 21.5183 5144.3904 ± 106.0113
Ous 119006.9273 ± 4346.7823 0.3242 ± 0.0261 56937.8839 ± 868.1835 0.3318 ± 0.0127 25352.2220 ± 855.9602 0.4082 ± 0.0082

balance the efficiency of the algorithm is impractical, we instead manage the bandit process by fixing
the maximum sample size at 50,000.

Table 5 presents the results for datasets SYN, USC_1990, and SUSY, with a fixed number of clusters
k = 50 and a maximum sample size of 50,000, while the Metropolis-Hastings steps vary from 20
to 100. The results indicate that increasing the number of Metropolis-Hastings steps can improve
the overall clustering quality, with also a slight increase in the running time. However, the overall
clustering performance remains consistent, demonstrating that the algorithm is robust to variations in
the number of Metropolis-Hastings steps. This indicates that fixing the number of transition steps at
20 is sufficient to achieve high-quality clustering results with fast running time.

Table 5: Results with varying Metropolis-Hastings steps on datasets SYN, USC_1990, and SUSY,
where k is fixed at 50 and the maximum sample size is fixed at 50,000.

Method Datasets Steps (Transition) Cost Time(s)

Ours SYN

20 3.0940E+04±2.1E+03 1.42
40 3.1489E+04±2.1E+03 1.46
60 3.1231E+04±1.1E+03 1.71
80 3.1253E+04±1.1E+03 1.73

100 3.0834E+04±8.9E+02 1.88

Ours USC_1990

20 1.2757E+08±1.3E+06 3.78
40 1.2999E+08±3.5E+06 5.47
60 1.2771E+08±1.5E+06 4.72
80 1.2893E+08±3.4E+06 4.96

100 1.2740E+08±1.6E+06 4.35

Ours SUSY

20 1.9573E+07±2.2E+05 3.93
40 1.9526E+07±7.4E+04 3.75
60 1.9615E+07±2.8E+05 3.95
80 1.9621E+07±2.4E+05 3.91

100 1.9466E+07±1.0E+05 4.26

Table 6 presents the results for datasets SYN, USC_1990, and SUSY with a fixed number of clusters
k = 50 and 20 Metropolis-Hastings steps, while the maximum sample size varies from 50,000 to
250,000 during the bandit process. The results show that increasing the sample size improves the
clustering quality, with also a slight increase in the running time. However, the overall clustering

31

performance remains stable, indicating that the algorithm is robust to different choices of maximum
sample sizes. Fixing the sample size at 50,000 is sufficient to achieve high-quality clustering solutions
with fast running time.

Table 6: Results with varying maximum sample size on datasets SYN, USC_1990, and SUSY, where
k is fixed at 50 and the Metropolis-Hastings step is fixed at 20.

Method Datasets Maximum Samples Cost Time(s)

Ours SYN

50,000 3.1404E+04±1.1E+03 1.38
100,000 3.2266E+04±2.4E+03 1.48
150,000 3.0020E+04±7.9E+02 1.79
200,000 3.0758E+04±1.9E+03 2.18
250,000 3.0456E+04±1.3E+03 2.17

Ours USC_1990

50,000 1.2790E+08±3.2E+06 4.55
100,000 1.2734E+08±9.8E+05 4.14
150,000 1.2756E+08±1.6E+06 3.98
200,000 1.2761E+08±1.4E+06 4.73
250,000 1.2859E+08±1.8E+06 4.23

Ours SUSY

50,000 1.9563E+08±1.6E+05 3.57
100,000 1.9576E+08±1.7E+05 3.97
150,000 1.9500E+08±7.4E+04 4.33
200,000 1.9713E+08±2.6E+05 3.61
250,000 1.9479E+08±4.9E+04 5.20

E.2 Comparison with Coresets Methods

In this subsection, we give additional experiments by comparing our proposed BanditFastLS algorithm
with coresets methods.

Algorithms. We compare our BanditFastLS algorithm against 2 different fast coresets construction
methods, which is summarized as follows.

• Lightweight Coreset: The lightweight coreset are constructed by sampling data points using a mix-
ture of sampling distributions [5]. The sensitivity is calculated by s(p) = 1/|P |+δ2(p, µ)/δ2(P, µ),
where P is the given dataset, µ is the 1-means solution for P . This method runs in O(nd/ϵ) time but
provides a weaker guarantee, where there is an ϵδ2(P, µ) term of additive error for some ϵ ∈ (0, 1).

• Fast-Coreset: This is the coreset construction method proposed in [18], where aspect ratio and
rejection sampling methods are used to construct the coresets. The proposed algorithm can run in
Õ(nd) time for constructing a coreset with (1 + ϵ)-approximation guarantee.

Parameter Settings. In all datasets, a preprocessing step is used to remove the data points that are
co-located at the same position. Following the settings in [18], we default the coreset size as 40k and
we only run the dimension-reduction step on datasets with high dimensions (d ≥ 50).

Experimental Setup. For a fair comparison, we report both the time taken to construct the coreset
and the total time required to obtain the final clustering solutions. After constructing the coresets, we
use the LS++ algorithm [25], which provides significantly better clustering quality than other local
search algorithms, to finalize the clustering centers on the coresets. Each algorithm is executed 10
times, and we report the average clustering costs along with deviations and the average running time.

Datasts. We mainly compare our algorithm with coresets methods on large-scale datasets, as local
search methods have already demonstrated fast and accurate clustering performance on smaller
datasets. Large-scale datasets include SYN (1M × 2), USC_1990 (2.45M × 68), SUSY (5M × 17)
and HIGGS (11M × 27) from UCI Machine Learning Repository 7. We also include a larger dataset
SIFT (100M × 128) 8.

7https://archive.ics.uci.edu/ml/index.php
8http://corpus-texmex.irisa.fr/

32

Results. Tables 7 and 8 present a comparison between coreset construction time and the final
clustering time for our algorithm on large-scale datasets. The results show that our algorithm
outperforms coreset methods, achieving a 20x speedup on average compared to state-of-the-art
coreset construction techniques.

Table 7: Comparison of the coreset construction time and the final clustering time of our algorithm
on the SYN, USC_1990, and SUSY datasets.

Method Dataset k Time(s) Dataset k Time(s) Dataset k Time(s)

Fast-Coreset
SYN 10

407.41
USC_1990 10

1052.54
SUSY 10

918.94
LightWeight 2.09 96.15 54.28

Ours 0.41 1.12 3.67
Fast-Coreset

SYN 20
445.09

USC_1990 20
1186.93

SUSY 20
954.93

LightWeight 2.11 95.25 55.13
Ours 0.52 1.24 2.65

Fast-Coreset
SYN 30

441.29
USC_1990 30

1199.86
SUSY 30

917.64
LightWeight 2.09 94.91 54.72

Ours 0.69 1.69 3.42
Fast-Coreset

SYN 50
598.33

USC_1990 50
1034.49

SUSY 50
941.23

LightWeight 2.09 95.49 54.52
Ours 0.95 2.10 4.22

Fast-Coreset
SYN 100

524.78
USC_1990 100

1037.78
SUSY 100

903.07
LightWeight 2.12 94.49 54.53

Ours 1.79 3.58 6.54

Table 8: Comparison of coreset construction time and final clustering time for our algorithm on the
datasets HIGGS and SIFT.

Method Dataset k Time(s) Dataset k Time(s)

Fast-Coreset
HIGGS 10

2311.19
SIFT 10

> 24h
LightWeight 185.56 7687.46

Ours 5.73 99.81
Fast-Coreset

HIGGS 20
2479.21

SIFT 20
> 24h

LightWeight 184.01 7031.09
Ours 5.73 101.33

Fast-Coreset
HIGGS 30

2193.73
SIFT 30

> 24h
LightWeight 183.76 7007.87

Ours 6.92 105.85
Fast-Coreset

HIGGS 50
2126.65

SIFT 50
> 24h

LightWeight 184.81 6964.60
Ours 7.88 125.89

Fast-Coreset
HIGGS 100

2195.06
SIFT 100

> 24h
LightWeight 184.92 6965.15

Ours 9.87 163.82

Tables 9 and 10 present a comparison between coreset-based local search methods and our Bandit-
FastLS algorithm on large-scale datasets. The results show that our algorithm not only delivers better
clustering quality but also provides at least a 10x speedup on the running time. On average, our
algorithm achieves a 5% improvement on clustering quality, while the running time is 50 times faster
than coreset-based local search methods.

33

Table 9: Comparison of the coreset construction methods and our algorithm on SYN, USC_1990,
and SUSY datasets using LS++ as the solver on the coresets.

Method Dataset k Cost Time(s) Dataset k Cost Time(s) Dataset k Cost Time(s)

Fast-Coreset
SYN 10

1.42E+06±1.5E+05 413.76
USC_1990 10

9.14E+08±6.2E+08 1070.35
SUSY 10

3.26E+07±1.1E+05 957.91
LightWeight 1.29E+06±4.1E+05 8.53 2.90E+08±3.9E+06 118.93 3.31E+07±2.5E+05 94.28

Ours 6.76E+05±1.0E+04 0.41 2.40E+08±4.1E+06 1.12 3.01E+07±2.3E+05 3.67
Fast-Coreset

SYN 20
4.25E+05±2.9E+04 451.46

USC_1990 20
2.39E+08±7.8E+06 1209.99

SUSY 20
2.71E+07±2.6E+05 997.49

LightWeight 2.91E+05±6.7E+04 8.72 2.16E+08±9.5E+06 123.08 2.66E+07±5.7E+05 103.83
Ours 1.62E+05±4.9E+03 0.52 1.86E+08±1.3E+06 1.24 2.50E+07±2.2E+05 2.65

Fast-Coreset
SYN 30

1.69E+05±1.5E+04 448.03
USC_1990 30

2.21E+08±1.9E+07 1226.02
SUSY 30

2.40E+07±5.1E+04 965.04
LightWeight 1.87E+05±3.7E+04 8.94 1.91E+08±9.2E+06 127.43 2.41E+07±1.4E+05 101.54

Ours 7.76E+04±1.8E+03 0.69 1.57E+08±3.2E+06 1.69 2.23E+07±1.5E+05 3.42
Fast-Coreset

SYN 50
5.19E+04±1.1E+04 636.26

USC_1990 50
1.75E+08±1.1E+07 1065.87

SUSY 50
2.00E+07±7.0E+04 996.84

LightWeight 7.76E+04±3.3E+04 9.56 1.49E+08±3.3E+06 138.59 2.08E+07±1.2E+05 110.29
Ours 3.09E+04±2.1E+03 0.95 1.28E+08±1.6E+06 2.10 1.95E+07±2.2E+05 4.22

Fast-Coreset
SYN 100

1.28E+04±4.0E+02 534.09
USC_1990 100

1.24E+08±5.9E+05 1092.78
SUSY 100

1.76E+07±8.9E+04 981.29
LightWeight 2.56E+04±2.8E+03 11.12 1.15E+08±1.1E+06 161.66 1.74E+07±1.0E+05 128.02

Ours 1.17E+04±2.1E+03 1.79 9.98E+07±1.5E+06 3.58 1.63E+07±2.9E+04 6.54

Table 10: Comparison of the coreset construction methods and our algorithm on HIGGS and SIFT
datasets using LS++ as the solver on the coresets.

Method Dataset k Cost Time(s) Dataset k Cost Time(s)

Fast-Coreset
HIGGS 10

1.6622E+08±1.2E+06 2422.77
SIFT 10

- > 24h
LightWeight 1.6637E+08±1.5E+06 297.14 1.1254E+13±6.4E+10 8853.91

Ours 1.5601E+08±5.4E+05 5.73 1.0541E+13±3.88E+10 99.81
Fast-Coreset

HIGGS 20
1.5221E+08±6.7E+05 2587.18

SIFT 20
- > 24h

LightWeight 1.5463E+08±4.7E+05 282.25 1.0275E+13±2.3E+10 8470.58
Ours 1.4335E+08±5.2E+05 5.73 9.6759E+12±1.67E+10 101.33

Fast-Coreset
HIGGS 30

1.4296E+08±9.0E+05 2310.14
SIFT 30

- > 24h
LightWeight 1.4364E+08±4.1E+05 291.58 9.8193E+12±1.16E+10 8586.20

Ours 1.3527E+08±4.7E+05 6.92 9.2386E+12±1.47E+10 105.85
Fast-Coreset

HIGGS 50
1.3297E+08±1.9E+05 2263.74

SIFT 50
- > 24h

LightWeight 1.4255E+08±1.2E+05 316.89 9.2619E+12±2.6E+10 9267.05
Ours 1.2636E+08±3.3E+05 7.88 8.7442E+12±1.08E+10 125.89

Fast-Coreset
HIGGS 100

1.2011E+08±1.5E+04 2398.43
SIFT 100

- > 24h
LightWeight 1.2050E+08±2.5E+05 373.28 8.6150E+12±1.7E+10 10891.71

Ours 1.1434E+08±1.3E+05 9.87 8.1305E+12±4.98E+09 163.82

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction can reflect the paper’s
contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work have been discussed in the Conclusion part.

34

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions have been clearly stated in the main context.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All implementation details, parameter settings, and datasets are fully disclosed
to ensure the experiments can be reliably reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.

35

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to both data and code, along with detailed
instructions in the supplemental material for faithful reproduction of the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper specifies all datasets details, including data preprocessing, hy-
perparameters, selection procedures, and optimizer settings, ensuring the results are fully
understandable and reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper reports standard deviations over multiple runs to indicate the
statistical significance of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This paper provides sufficient information on computer resources needed to
reproduce the experiments.

Guidelines:

37

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The potential positive societal impacts and negative societal impacts have been
discussed in the Conclusion part.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

38

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: The paper does not involve pretrained language models, image generators, or
any datasets or models with potential misuse risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets, including code and datasets, are properly credited, and
their licenses and terms of use are explicitly acknowledged and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

39

paperswithcode.com/datasets

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Our Contribution

	Preliminary
	The BanditLS Algorithm
	Tree Construction and Adaptive Sampling
	Bandit-Based Center Swap

	A More Practical Algorithm for k-means Clustering
	Extension to the k-median Objective
	Experiments
	Conclusion, Broader Impact Discussion and Limitations
	Tree Construction and Rejection Sampling
	Tree Embedding
	Binary Tree Construction
	Maintaining a Dynamic Data Structure D
	The Adaptive Sampling Strategy

	Bandit-Based Center Swap
	A More Practical Algorithm with Metropolis Hastings
	Extension to the k-median Objective
	Complementary Experiments
	Comparison results on other large-scale datasets
	Experiments with Varying Parameters

	Comparison with Coresets Methods

