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Abstract

Dialogue state tracking aims to maintain001
user intent as a consistent state across multi-002
domains to accomplish natural dialogue sys-003
tems. However, previous researches often fall004
short in capturing the multiple type of slots005
and fail to adequately consider the selection of006
discerning information. The increase in unnec-007
essary information correlates with a decrease in008
predictive performance. Therefore, the careful009
selection of high-quality information is impera-010
tive. Moreover, considering that the types of es-011
sential and available information vary for each012
slot, the process of selecting appropriate infor-013
mation may also differ. To address these issues,014
we propose HS2DG-DST, a Hierarchical Slot015
Selector and Dual Dynamic Graph-based DST.016
Our model is meticulously designed to differ-017
entiate slots and provide maximal information018
for optimal value prediction. We hierarchically019
classify slot types based on the multiple prop-020
erties. The two dynamic graphs in our model021
supply highly relevant information to each slot.022
Experimental results on MultiWOZ datasets023
demonstrate that our model outperforms state-024
of-the-art models.025

1 Introduction026

Task-oriented dialogue (TOD) systems are de-027

signed to accomplish specific goals, such as provid-028

ing weather forecasts or making restaurant reserva-029

tions (Zhang et al., 2020c). Dialogue state tracking030

(DST) within TOD systems aims to track user in-031

tents across various domains consistently.032

Previous researches employ ontology-based lex-033

icons to assign relevant values in DST models (Lee034

et al., 2019; Zhang et al., 2020a). On the other035

hand, some approaches focus on extracting values036

based on span labels (Gao et al., 2019; Heck et al.,037

2020; Chao and Lane, 2019; Lei et al., 2018) or038

generating values (Wu et al., 2019; Kim et al., 2020;039

Kumar et al., 2020; Ren et al., 2019).040

restaurant-area: center
restaurant-pricerange: expensive
restaurant-name: fitzbillies restaurant 

Fitzbillies restaurant serves British food.

Can I book a table for 5 at 11:30 on Tuesday, please?

Okay, the booking was successful. 
Is there anything else I can help you with?

Thank you. I also need a taxi to get from the 
hotel to the restaurant.

…

I'm looking for an expensive restaurant in the center of town.

I'm also looking for a place to stay. It needs to include free wifi
and in the same area as the restaurant.

The Gonville Hotel is a hotel in the center area.

No problem! I have booked you a cab.
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restaurant-booktime: 11:30
restaurant-bookpeople: 5
restaurant-bookday: Tuesday

hotel-area: east
hotel-internet: yes
hotel-name: gonville hotel

hotel-area: center
hotel-internet: yes
hotel-name: gonville hotel

taxi-departure: gonville hotel
taxi-destination: gonville hotel

taxi-departure: gonville hotel
taxi-destination: fitzbillies restaurant
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Figure 1: An example of multi-domain conversation
(right) and dialogue state tracking process (left) at
each turn. The green, blue, and yellow represent co-
referential slots in the context, and red emphasizes in-
correctly predicted states.

Using a single tracker to predict slots with di- 041

verse types overlooks the opportunity to leverage 042

supplementary information, such as possible values. 043

Therefore, previous studies (Zhang et al., 2020a; 044

Zhou and Small, 2019) attempt to classify slot 045

types into categorical and span. Other approaches 046

(Kim et al., 2020; Guo et al., 2021) differentiate 047

slots based on whether they are updated in the cur- 048

rent turn or inherit from the previous state. How- 049

ever, these studies only consider two types of slots, 050

which results in the neglect of the possibility that 051

a slot can belong to multiple types, such as both 052

"update" and "span" types. Consequently, a hierar- 053

chical approach is needed to handle slots that can 054

belong to multiple types simultaneously. 055

Effective co-reference resolution is crucial for 056

contextual understanding in DST. In Figure 1, 057

co-reference resolution is paramount when updat- 058

ing the "taxi-destination" slot. The system must 059

adeptly discern the user’s intent in referencing the 060

previously mentioned "restaurant-name" in state- 061

ments like "taxi from the hotel to the restaurant." 062

Accomplishing this task requires the ability to iden- 063

tify the most relevant information within the dia- 064

logue history, particularly the mention of the "Fitz- 065

billies restaurant." 066
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However, previous graph-based approaches067

(Feng et al., 2022; Guo et al., 2022; Zhang et al.,068

2022; Zeng and Nie, 2020; Zhou and Small, 2019;069

Lin et al., 2021) neglect the integration of rele-070

vant dialogue information into the model. Previ-071

ous models primarily focus on learning new re-072

lationships within the state, taking the dialogue073

context into consideration. For example, they may074

suggest correlations between taxi-destination and075

restaurant-name slots. Nonetheless, as noted by076

(Zhang et al., 2022), the emergence of state mo-077

mentum, indicative of models preserving predicted078

slot values, may lead to inaccuracies in the previ-079

ous dialogue state. In such scenarios, depending080

solely on state relations may result in inaccurate081

values. In contrast, in our approach, the retrieval of082

dialogue turns enables precise value prediction, as083

the dialogue turns themselves contain the correct084

information. Consequently, the adept retrieval of085

the most relevant dialogue information is essen-086

tial for accurately tracking values associated with087

co-referential slots.088

To address these challenges, we propose a novel089

approach called HS2DG-DST (Hierarchical Slot090

Selector and Dual Dynamic Graph-based DST).091

We emphasize that a slot can have both "update"092

and "span" types simultaneously. Thus, we intro-093

duce a hierarchical slot selector to provide a more094

detailed classification of slots. Furthermore, we095

utilizes two dynamic graphs, a value graph and a096

dialogue graph, to effectively manage semantic dia-097

logue information and provide relevant knowledge098

to the target slots. These graphs operate akin to in-099

formation retrieval, tailored to deliver the essential100

information for the selected slot. Finally, we utilize101

a fine-grained value-generation method for each102

target slot, enabling the model to generate values103

more precisely and accurately. Our contributions104

can be summarized as follows:105

• We introduce a novel framework called HS2DG-106

DST, designed to predict slot values hierarchi-107

cally and provide maximal information for fine-108

grained value prediction.109

• We design a dual dynamic graph to assist in in-110

formation management and enhance the accurate111

prediction of co-referential slots.112

• We conduct experiments on two variations of113

MultiWOZ datasets. Results show that our pro-114

posed model significantly outperforms state-of-115

the-art models.116

2 Related Work 117

We categorize existing research in DST from two 118

perspectives and introduce a knowledge selection 119

model that inspired the design of our graph model. 120

2.1 Dialogue State Tracking 121

In the early stage of DST, researches can be classi- 122

fied into two principal categories: ontology-based 123

DST (Henderson et al., 2014; Nouri and Hosseini- 124

Asl, 2018; Lee et al., 2019; Zhang et al., 2020a) and 125

open-vocabulary-based DST (Zhang et al., 2020b; 126

Gao et al., 2020; Chen et al., 2020; Feng et al., 127

2021; Kim et al., 2020). For instance, Kim et al. 128

(2020) treat dialogue state as a fixed-size memory 129

to efficiently update slot values. Guo et al. (2021) 130

propose dual slot selection to identify updated slots 131

effectively. In contrast, Zhang et al. (2020a) and 132

Zhou and Small (2019) distinguish slot types based 133

on the existence of a possible value set. Moreover, 134

Zeng and Nie (2020) introduce the state graph rep- 135

resenting the dialogue state, and Feng et al. (2022) 136

focus on learning new relationships within the slot 137

by considering the dialogue context. Additionally, 138

Guo et al. (2022) propose a top-k dialogue selec- 139

tion model that leverages updated slot selection 140

and establishes relationships between slots and di- 141

alogues. However, previous studies does not ad- 142

equately consider semantic dialogue information. 143

In our approach, we construct a graph that cap- 144

tures sophisticated relationships between dialogue 145

turns. Moreover, we develop an elaborate approach 146

for handling multiple slot types, resulting in fine- 147

grained value prediction in DST. 148

2.2 Semantic Document Graphs 149

In open-domain dialogue systems, incorporating 150

relevant background knowledge is crucial for im- 151

proving the quality of conversations. Li et al. 152

(2022) argue that previous approaches overlook the 153

inherent semantic connections between sentences 154

in real-world documents. To overcome this limi- 155

tation, they propose a semantic document graph 156

to capture the implicit connectivity between sen- 157

tences, enabling the selection of the most relevant 158

knowledge based on the dialogue context. We ex- 159

tend the idea of a semantic graph to DST by treating 160

the entire dialogue history as a document. Rather 161

than representing sentences as concepts, we utilize 162

selected slots to capture the relationships between 163

dialogue turns, facilitating accurate dialogue state 164

prediction through relevant knowledge acquisition. 165
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Figure 2: The overview of Dual Dynamic Graph-based DST with a Hierarchical Slot Selector, HS2DG-DST

3 Our Approach: HS2DG-DST166

Figure 2 illustrates an overview of our proposed167

model, HS2DG-DST, comprising four main com-168

ponents: encoder, hierarchical slot selector, dual169

dynamic graph, and state generator. In this work,170

we define the problem setting as predicting the di-171

alogue state at each turn t (t ≤ T ). The dialogue172

state is denoted as Bt = {(Sj , V j) | 1 ≤ j ≤ J},173

where Sj is the slot name and V j is the correspond-174

ing slot value. Here, J denotes the total number of175

slots. Similar to Guo et al. (2021), we refer to the176

concatenation of a domain name and a slot name177

as a "slot" (e.g., restaurant-area).178

3.1 Encoder179

We construct the input by concatenating each dia-180

logue turn Dt and the previous dialogue state Bt−1181

as follows:182

Xt = [CLS]t ⊕Dt ⊕Bt−1 (1)183

where [CLS]t is a special token aggregating the184

input information.185

The representation of each dialogue at turn t is186

denoted as Dt = Rt⊕;⊕Ut ⊕ [SEP ], where Rt187

represents the system response, Ut represents the188

user utterance, and ";" is a special token indicating189

the boundary between Rt and Ut. [SEP ] is used190

to mark the end of the dialogue turn.191

The representation of the state at turn t is Bt =192

B1
t⊕. . .⊕BJ

t , where Bj
t = [SLOT ]j⊕Sj⊕−⊕V j

t193

represents the j-th slot-value pair. "−" is a special194

token indicating the boundary between a slot and195

its corresponding value, and [SLOT ]j represents196

the aggregated information of the j-th slot-value197

pair.198

𝑼𝒔

𝑆𝐿𝑂𝑇 𝑗

categorical slot

𝐷𝑡
span slot

carryover |𝑈𝑠| = nc + ns
State 

Update 
Predictor Slot 

Classifier

Hierarchical Slot Selector

Figure 3: The process of hierarchical slot selection

3.2 Hierarchical Slot Selector 199

The hierarchical slot selector comprises a state up- 200

date predictor and a slot classifier. We first deter- 201

mine if a slot needs an update in the current turn 202

and then classify the relevant slots into categori- 203

cal or span slots. The overall process is illustrated 204

in Figure 3. This hierarchical approach enables 205

us to accurately identify slots with both "update" 206

and "span" types, facilitating fine-grained value 207

prediction in the subsequent module. 208

3.2.1 State Update Predictor 209

This module predicts the slots that need to be up- 210

dated while other slots inherit their values from 211

the previous dialogue state. We follow the training 212

mechanism described by Guo et al. (2021). We 213

define the set of updated slot indices as: 214

Us = { j | SUP(Sj) = update} (2) 215

This module serves two purposes. Firstly, it helps 216

alleviate computational costs by focusing on pre- 217

dicting only the updated slots. Secondly, identi- 218

fying whether a slot needs updating serves as an 219

indicator of the current dialogue’s relevance to that 220

specific slot. This information is essential for con- 221

structing the dialogue graph, as discussed in Sec- 222

tion 3.3.2 Dialogue Graph, where we provide how 223

the updated slots are utilized. 224
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3.2.2 Slot Classifier225

The updated slots can be classified into categor-226

ical or span slots based on the number of possi-227

ble values they can have. Categorical slots, such228

as "area," have a limited number of values {east,229

west, south, north, center}, which helps avoid out-230

of-vocabulary issues. In contrast, span slots like231

"name" or "time" cannot have predetermined val-232

ues, necessitating the use of a span prediction. Fur-233

ther details can be found in Appendix A.1 Classifi-234

cation of Slots.235

We can express the number of slots in each type236

as follows:237

|Us| = nc + ns (3)238

,where nc is the number of categorical slots, and239

ns is the number of span slots.240

3.3 Dual Dynamic Graph241

The dual dynamic graph consists of a value graph242

and a dialogue graph, both utilizing graph attention243

networks (GATs) (Veličković et al., 2018; Li et al.,244

2021). These graphs are responsible for updating245

co-referential slots and enhancing value prediction246

with additional information. The value graph is247

employed for categorical slots to select the most248

suitable value from a predefined ontology. Con-249

versely, the dialogue graph is used for span slots to250

identify the most relevant dialogue turn, leveraging251

an understanding of the semantic structure within252

the dialogue context.253

3.3.1 Value Graph254

The value graph comprises dialogue turn nodes255

D′
t, slot nodes S′, and possible value nodes P ′.256

These nodes allow for bidirectional feature ex-257

change among them. Specifically, possible value258

nodes are connected to slot nodes when a value259

is available for a given slot. However, if no value260

is presented, the slot nodes remain disconnected.261

Moreover, each dialogue turn node is connected262

to all slot nodes. The graph structure is visually263

represented in Figure 2.264

At each dialogue turn t, a weighted graph265

G = (V, E) is defined, where the set V represents266

the dialogue turn, slot, and possible value nodes,267

and the set E represents the connections between268

these nodes. The graph is represented by a binary269

symmetric adjacency matrix M of size N × N ,270

where N denotes the total number of nodes. Each271

node vi is associated with a feature vector xi, and272

these feature vectors are stored in the matrix X of273

size N × F , where F represents the input feature 274

dimension. 275

We utilize the graph attention mechanism intro- 276

duced by Lin et al. (2021) to perform graph opera- 277

tions. The initial node features X (0)
t for the graph 278

attention networks are obtained by concatenating 279

the dialogue turn embedding, slot embedding, and 280

possible value embedding, which are derived from 281

the encoder output. The dialogue turn embedding 282

is obtained from the [CLS]t token, capturing the 283

dialogue context for each turn, while the slot em- 284

bedding is obtained from the [SLOT ]j token, rep- 285

resenting the slot context. The possible value em- 286

bedding is initialized by tokenizing the candidate 287

value representations. 288

After conducting the graph operations, we ex- 289

tract an attention embedding from the final tensor 290

X (L)
t . We utilize this attention embedding to cap- 291

ture the relevance score between nodes. And then, 292

the index of the highest attention score is used to 293

determine the most appropriate possible value for 294

the updated slot, represented by pnc . 295

3.3.2 Dialogue Graph 296

In our dialogue graph design, we are inspired by the 297

work of Li et al. (2022), who proposed a semantic 298

document graph for selecting relevant knowledge 299

from documents. They represent sentence nodes 300

by multiple concepts, and the connections between 301

these concepts reflect the semantic relationships 302

within the sentences. We adapt this approach by 303

introducing a semantic dialogue graph, where we 304

incorporate updated slots (Sj where j ∈ Us) as 305

similar to concepts within dialogue turns. Updat- 306

ing a slot in a dialogue turn indicates the presence 307

of relevant information in that turn. Therefore, the 308

updated slots and dialogue turns are strongly corre- 309

lated. By leveraging these updated slots, we con- 310

struct a graph representing each dialogue’s mean- 311

ing and enhancing the semantic connections be- 312

tween dialogue turns. 313

The dialogue graph comprises dialogue turn 314

nodes D′
t and updated slot nodes S′′. The graph 315

connectivity is established through three types of 316

edges: 1) Edges between previous dialogue turn 317

nodes D′
t−1: These edges are sequentially con- 318

nected, making the graph aware of contextual turn 319

information. 2) Edges between dialogue turn nodes 320

and updated slot nodes: These edges connect each 321

dialogue turn node only to its corresponding up- 322

dated slot nodes, facilitating the effective represen- 323

tation of semantic information. 3) Edges between 324
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the current dialogue turn node D′
t and all other di-325

alogue turn nodes D′
t−1: These edges enable the326

current turn node to assess the correlations with the327

previous turn nodes.328

The graph attention mechanism is the same in329

the value graph. And the initial node features X (0)
t330

are obtained by concatenating the dialogue turn331

embedding and the slot embedding. By learning332

connections between each node, the dialogue graph333

captures semantic relationships between dialogue334

turns and provides relevant information to the target335

slots. The output of the dialogue graph is the most336

pertinent dialogue turn dns to the target slot.337

3.4 State Generator338

The selected possible values pnc and dialogue turns339

dns are combined with the current turn Dt and the340

previous dialogue state Bt−1 to update the state341

jointly. This is achieved by concatenating them342

to form a new input sequence, denoted as X =343

[CLS]⊕Dt ⊕ [SEP ]⊕ dns ⊕ [SEP ]⊕Bt−1 ⊕344

[SEP ]⊕ pnc .345

Subsequently, this sequence is fed into a frozen346

pre-trained language model, specifically ALBERT347

(Lan et al., 2019) to obtain the contextualized out-348

put representation Ht.349

3.4.1 Extractor350

To predict the values of span slots, we utilize a span-351

based extraction method. We employ two different352

linear layers Ws and We to predict the start and353

end labels. The attention-based representation of354

the j-th slot at turn t, denoted as Ht([SLOT ]jt ),355

is used in this process. From this, we obtain the356

representations p and q as follows:357

p = softmax(WsHt([SLOT ]jt )
⊤) (4)358

359
q = softmax(WeHt([SLOT ]jt )

⊤) (5)360

The position of the maximum value in each p and q361

corresponds to the predicted start and end positions362

of the slot value. Furthermore, we define Dialt363

as the concatenation of Dt and dns from the input364

sequence X . The span slot value is then extracted365

from the dialogue sentence using Dialt[p : q].366

3.4.2 Classifier367

For categorical slots, we employ a classification-368

based method to select an appropriate value. Let369

PVj denote the possible value set of the j-th slot.370

Similar to the extractor, we use the slot represen-371

tation as attention to the output representation Ht,372

resulting in Ht([SLOT ]jt )
⊤. We then pass this rep- 373

resentation through a linear layer Wc to obtain the 374

distribution over PVj : 375

y = softmax(WcHt([SLOT ]jt )
⊤) (6) 376

We select the slot value corresponding to the maxi- 377

mum value in the distribution. By finding the index 378

using argmax(y), we can obtain the categorical 379

slot value from the value set PVj . 380

3.4.3 Optimization 381

We utilize cross-entropy loss as the training objec- 382

tives for the extractor and the classifier during the 383

training process. 384

lossE = − 1

|Us|

|Us|∑
j

(p log p̂+ q log q̂) (7) 385

386

lossC = − 1

|Us|

|Us|∑
j

y log ŷ (8) 387

Here, p̂ and q̂ are the target values representing the 388

proportion of all possible start and end positions. 389

And ŷ is the target indicating the probability of 390

candidate values. 391

4 Experiments 392

4.1 Datasets and Metrics 393

4.1.1 Datasets 394

MultiWOZ (Budzianowski et al., 2018) is a multi- 395

domain human-human written dialogue dataset that 396

contains over 10K dialogues across 8 domains. It is 397

one of the most popular benchmarks in the DST lit- 398

erature. We conducted experiments on two variants 399

of the datasets: MultiWOZ 2.1 (Eric et al., 2020) 400

and MultiWOZ 2.2 (Zang et al., 2020). The labels 401

and utterances have been refined in subsequent ver- 402

sions. In particular, MultiWOZ 2.2 redefined the 403

datasets by dividing all slots into two types: non- 404

categorical and categorical. 405

4.1.2 Metrics 406

Joint Goal Accuracy (JGA) refers to the accuracy 407

of the dialogue state in each turn. It compares the 408

predicted dialogue state to the ground truth at every 409

turn, and it is correct only if all the predicted slot 410

values exactly match the ground truth. 411

Slot Accuracy (SlotAcc) considers individual slot- 412

level accuracy. It measures the ratio of successful 413

slot value predictions among all the slots of each 414

dialogue in the ground truth. 415
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Model MultiWOZ 2.1 MultiWOZ 2.2

JGA Slot Acc JGA Slot Acc Cate-joint Span-joint

TRADE 45.60 96.55 45.40 - 62.80 66.60
DSTQA 51.17 97.21 - - - -
DS-DST 51.21 97.35 51.70 - 70.60 70.10
SOM-DST 53.68 97.15 - - - -
TripPy 55.30 97.48 50.71 - - -
DST-as-Prompting 56.66 - 57.60 - - -
DSS-DST* 60.73 98.05 58.04 97.66 76.32 73.39
DiCoS-DST* 61.02 98.05 61.13 98.06 - -

Our Model (HS2DG-DST)* 65.91 98.31 66.01 98.43 80.76 80.27

Table 1: Performance comparison of the baseline models. * indicates a result in same experimental setting.

Model MultiWOZ 2.2

Our Model (HS2DG-DST) 66.01

w/o Bt−1 63.50 (-2.51)
w/o state update predictor 63.36 (-2.65)
w/o dual dynamic graph 61.52 (-4.49)

Table 2: Ablation study of main components. "w/o dual
dynamic graph" indicates that the model could not ac-
cess selected information from both graphs. "w/o Bt−1"
refers to the exclusion of the previous dialogue state as
input. And "w/o state update predictor" indicates that
all slots were updated at every turn.

4.2 Baseline Models416

TRADE (Wu et al., 2019) utilizes a copy mecha-417

nism, enabling knowledge transfer across domains.418

DSTQA (Zhou and Small, 2019) employs a GAT419

to learn inter-slot relationships and the questions420

allowing the model to handle unseen domains. DS-421

DST (Zhang et al., 2020a) proposes a dual strategy422

that combines categorical and non-categorical slots423

using a reading comprehension model. SOM-DST424

(Kim et al., 2020) treats the dialogue state as a425

fixed-size memory and dynamically overwrites it.426

TripPy (Heck et al., 2020) employs three copy427

mechanisms to extract span values from the di-428

alogue context. DST-as-Prompting (Lee et al.,429

2021) introduces a language modeling approach430

that utilizes schema-driven prompting to incorpo-431

rate task-aware history encoding. DSS-DST (Guo432

et al., 2021) proposes a dual slot selector that de-433

termines whether each slot needs to be updated.434

DiCoS-DST (Guo et al., 2022) dynamically selects435

relevant dialogue contents corresponding to each436

slot.437

4.3 Main Results 438

Table 1 provides a performance comparison be- 439

tween our HS2DG-DST model and other baselines 440

on the MultiWOZ datasets. The best result is high- 441

lighted in bold. Our model achieved state-of-the-art 442

performance on both MultiWOZ 2.1 and 2.2 test 443

sets, with JGAs of 65.91% and 66.01%, respec- 444

tively. Specifically, our model outperformed the 445

previous state-of-the-art by approximately 4.89%p 446

for MultiWOZ 2.1 and 4.88%p for MultiWOZ 2.2 447

in terms of JGA. In addition, we conducted experi- 448

ments on slot type classification to MultiWOZ 2.2. 449

In these experiments, "Cate-joint" refers to the JGA 450

specifically for categorical slots, while "Span-joint" 451

represents the JGA for span slots. Our model out- 452

performed existing public models by 80.76% and 453

80.27%, achieving a lead of 4.44%p and 6.88%p 454

in the cate-joint and span-joint, respectively. We 455

excluded DiCoS-DST (Guo et al., 2022) results 456

from the Table 1 cate-joint and span-joint as there 457

is no available information on its strengths in slot 458

classification. The consistent performance of our 459

model across different slot types can be attributed 460

to our elaborate slot type classification and effec- 461

tive utilization of optimal information (i.e., selected 462

possible values and dialogue turns). For further 463

analysis, please refer to Section 4.5.1 Slot Type 464

Classification. 465

4.4 Ablation Study 466

4.4.1 Effect of Main Components 467

To investigate the effectiveness of the main com- 468

ponents, we conducted an ablation study on the 469

MultiWOZ 2.2 with JGA presented in Table 2. The 470

results showed that removing each module led to 471

a decrease in JGA to varying degrees. Without 472
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Graph MultiWOZ 2.2

both graph in all slot connection 64.99
w/o value graph 64.12
w/o dialogue graph 64.12

dialogue graph in updated slot only 66.01
w/o value graph 65.05

value graph in updated slot only 65.83
w/o dialogue graph 62.86

Table 3: Ablation study of graph node connections. we
conducted two comparative experiments: all slot con-
nection and updated slot only. In the former experiment,
each dialogue turn node was connected to all slot nodes,
while in the latter, it was connected only to the updated
slot nodes.

Model MultiWOZ 2.2

Baseline Retriever 54.05
Our Model (HS2DG-DST) 66.01

Table 4: Performance comparison with a baseline re-
triever model.

the previous dialogue state, the JGA decreased by473

2.51%p due to the inability to refer to previously474

predicted values and address co-referential slots.475

Additionally, eliminating the state update predictor476

resulted in a 2.65%p decrease, along with the ab-477

sence of updated slot information for constructing478

the dialogue graph and increased memory usage.479

Removing the dual dynamic graph component, es-480

sential for managing co-referential information, led481

to a significant decrease of 4.49%p in JGA. This482

finding highlights the critical role of the dual dy-483

namic graph in providing semantic information.484

Each graph component is responsible for selecting485

relevant dialogue turns or possible values associ-486

ated with the target slot. Without these information,487

the model lacks the necessary context to make pre-488

cise predictions.489

4.4.2 Effect of Graph Node Connections490

To evaluate the effectiveness of our proposed graph491

structure in capturing semantic relationships be-492

tween each node, we conducted experiments for493

the impact of different node connections in the494

dual dynamic graph. Table 3 demonstrated the495

superior performance of the all slot connection496

graph compared to the baseline models, achieving497

a 64.99% of JGA. This result proves the effective-498

ness of including dialogue turn nodes in the graph.499

Furthermore, in the update slot only condition, the500

dialogue graph achieved the highest performance 501

at 66.01%, while the value graph achieved 65.83%. 502

Connecting only the updated slot nodes led to more 503

precise graph structures for capturing semantic con- 504

nections between dialogue turns. Moreover, we 505

conducted an ablation study on the separate graph 506

components, specifically the dialogue graph and 507

the value graph. The results showed that even with- 508

out the value graph, the dialogue graph in the up- 509

date slot only condition performed better than the 510

all slot connection condition. Additionally, the 511

JGA of the separate value graph in the update slot 512

only condition decreased by 2.97%p. These find- 513

ings consistently demonstrates the superiority of 514

the dialogue graph over the value graph. The di- 515

algoue graph, which selects the dialog turns, is 516

relatively more informative than the value graph, 517

so it performs better in our experiments. 518

4.4.3 Effect of Dialogue Graph 519

To empirically validate the effectiveness of our se- 520

mantic graph structure, we conducted an exper- 521

iment comparing it to a baseline retriever. We 522

adopted dense passage retrieval (DPR) (Karpukhin 523

et al., 2020), a renowned retrieval system in the 524

open-domain dialogue systems, as a point of com- 525

parison. The dialogue graph can be seen as a re- 526

trieval system that benefits from the graph structure 527

to capture relevant dialogue turn indexes. By lever- 528

aging the graph as a form of meta-information, our 529

graph model enhances retrieval performance. 530

We developed a baseline retriever model based 531

on DPR, using ALBERT (Lan et al., 2019) as an 532

encoder and extracting the output embedding from 533

the [CLS] token. The similarity between the cur- 534

rent and previous turns was calculated by taking 535

the dot product of their embeddings, and the most 536

similar turn was chosen as the relevant one. Sim- 537

ilar to the dialogue graph, the baseline retriever 538

selected the most pertinent dialogue turn dns , and 539

the remaining process of dialogue state tracking 540

was the same in both experiments. However, this 541

baseline model did not understand the connections 542

between dialogue turns, focusing only on individ- 543

ual turn embeddings. As shown in Table 4, the 544

baseline retriever achieved a JGA of only 54.05%. 545

This performance was significantly lower, with a 546

degradation of 11.96%p, compared to our proposed 547

model that incorporates more enhanced semantic 548

information between turns. This highlights the sub- 549

stantial improvement achieved by our approach to 550

selecting relevant information. 551
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Figure 4: Accuracy per slot name compared to DSS-
DST in the test set of MultiWOZ 2.2.

4.5 Analysis552

4.5.1 Slot Type Classification553

To assess the effectiveness of hierarchical slot selec-554

tor for fine-grained value predictions, we conducted555

experiments on each slot accuracy compared to556

DSS-DST. As shown in Figure 4, our model con-557

sistently outperformed DSS-DST in terms of slot558

accuracy. Our model achieved over 95.4% accuracy559

for all slots, while DSS-DST occasionally fell be-560

low 94% accuracy. This demonstrates the stability561

of our approach in accurately predicting each slot.562

In Table 1, DSS-DST demonstrated weak perfor-563

mance in span-joint metrics. This suggests a lack564

of consideration for slot classification in DSS-DST.565

In contrast, our model hierarchically classifies slots,566

resulting in the best overall performance with sta-567

bility and consistency across both metrics. These568

findings highlight the effectiveness of an elaborate569

approach in achieving better and more consistent570

results.571

4.5.2 Effect of Dialogue Information572

In Table 2, when we exclude all the information573

provided by the two graphs (w/o dual dynamic574

graph), the performance is 61.52%, which is sim-575

ilar to the 61.13% of DiCoS-DST. This indicates576

that the information selected by the graphs directly577

contributes to performance improvement. In Table578

3, when the model use only the dialogue graph (w/o579

value graph), the performance is 65.05%. This indi-580

cates that the dialogue graph alone, which includes581

dialogue information, achieved a performance of582

65%. Furthermore, in order to assess how effec-583

tively the proposed graph provides dialogue infor-584

mation, we conducted experiments comparing it585

to DPR in Section 4.4.3 and the performance is586

54.05%. This indicates that if a weak retrieval587

model provides incorrect dialogue turns, it can588

have a detrimental impact on performance. In con-589

clusion, the experimental results presented above590

Domain MultiWOZ 2.2

DSS-DST DiCoS-DST Our Model

Attraction 79.88 78.79 80.14
Hotel 62.47 58.02 71.75

Restaurant 75.79 75.14 81.63
Taxi 54.84 56.33 42.71
Train 76.25 77.26 79.87

Table 5: Domain specific accuracy of our model and
other baselines on the test data of MultiWOZ 2.2.

demonstrate the performance benefits of utilizing 591

dialogue turn information. 592

4.5.3 Domain-Specific Accuracy 593

Table 5 presents the domain-specific results, the ac- 594

curacy measured on subsets of the predicted state 595

specific to each domain. Our model achieved best 596

performance in four domains, with notable im- 597

provements in the hotel and restaurant domains, 598

which have many span slots. However, the per- 599

formance in the taxi domain was comparatively 600

lower than the other domains. Because we extract 601

the span labels from Dialt, the performance of 602

predicting span slots relies heavily on selecting 603

relevant dialogue turns using the dialogue graph. 604

The superior performance of our model in the hotel 605

and restaurant domains demonstrated the model’s 606

effectiveness in selecting relevant dialogue turns. 607

However, in the MultiWOZ datasets,the taxi do- 608

main frequently emerges in the last turn of a con- 609

versation. The larger number of dialogue turns 610

presents challenges in accurately determining its 611

relevance. This may explain the relatively lower 612

performance in the taxi domain. The statistical 613

analysis of the graphs can be found in Appendix 614

A.2 Graph Analysis. 615

5 Conclusion 616

In this paper, we proposed a novel hierarchical 617

slot selection framework via a dual dynamic graph 618

for multi-domain dialogue state tracking. Our ap- 619

proach involves fine-grained value prediction by 620

classifying slots into multiple types and incorporat- 621

ing complementary knowledge for target slots. The 622

proposed graphs effectively manage semantic infor- 623

mation through a semantic-aware graph structure 624

that determines relevant information for target slots. 625

Against the state-of-the-art DST methods, experi- 626

mental results on two variant multi-domain datasets 627

demonstrate the effectiveness of hierarchical slot 628

selection and dual dynamic graph. 629
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Limitations630

This paper proposes HS2DG-DST, a framework631

that utilizes an elaborate slot classification and op-632

timized information retrieval for value prediction.633

However, it currently relies solely on extracting634

span labels from dialogue turns, without incorporat-635

ing previously predicted values obtained from the636

previous dialogue state. This approach faces chal-637

lenges as the number of dialogue turns increases,638

complicating the selection of relevant dialogues.639

To mitigate this limitation, there is a need to de-640

velop a concise form of dialogue graph. Utilizing641

a more efficiently summarized form of the graph642

could offer a solution to this issue.643

Ethics Statement644

Improving the DST module in dialogue systems645

can enhance their ability to understand user require-646

ments and increase user satisfaction. Our proposed647

framework has the potential to enhance DST per-648

formance in industrial and commercial dialogue649

systems. Additionally, the concepts and techniques650

employed in our frameworks, such as hierarchi-651

cal slot selection and dual dynamic graph, can be652

applied to other natural language processing and653

machine learning applications, leading to perfor-654

mance improvements in various tasks.655
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A Appendix849

Type Sub Type Slot Name

Cate Slot

pricerange hotel-pricerange, restaurant-pricerange

area
attraction-area, hotel-area,
restaurant-area

number
hotel-bookpeople, hotel-bookstay,
hotel-stars, restaurant-bookpeople,
train-bookpeople

day
hotel-bookday, train-day,
restaurant-bookday

boolean hotel-internet, hotel-parking

station train-departure, train-destination

type hotel-type, attraction-type

Span Slot
name

attraction-name, hotel-name,
restaurant-name, restaurant-food

location taxi-departure, taxi-destination

time
restaurant-booktime, taxi-arriveby,
taxi-leaveat, train-arriveby, train-leaveat

Table 6: Type of Slots.

Sub Type Slot Name

pricerange cheap, expensive, moderate

area centre, east, north, south, west

number 0, 1, 2, 3, 4, 5, 6, 7,8, 9, 10, 15

day
monday, tuesday, wednesday,
thursday, friday, saturday, sunday

boolean yes, no

station

birmingham new street, bishops stortford,
broxbourne, cambridge, ely,
kings lynn, leicester, london kings cross,
london liverpool street, norwich,
peterborough, stansted airport, stevenage

hotel type guesthouse, hotel

attraction type

architecture, boat, cinema, college,
concerthall, entertainment, museum,
multiple sports, nightclub, park,
swimmingpool, theatre

Table 7: Possible Value Sets.

A.1 Classification of Slots850

In Table 6, we present the classification of all851

tracked slots, which can be further categorized into852

subtypes based on their meanings. For example,853

slots like bookpeople and stars, which have numer-854

ical values, are classified as a subtypes "number".855

Table 7 provides the possible value sets for each856

categorical slots. Although train station or attrac-857

tion type may be more suitable for span slots, they858

were classified as categorical slots in this study.859

This decision was made because the MultiWOZ860

datasets only mention a limited set of values for861

Graph Analysis Train Valid Test

total # of example 7900 1000 999
total # of value graph 7300 914 916
total # of dialogue graph 7614 981 978

avg # of dialogue turn node 5.63 7.37 7.37
max # of dialogue turn node 20 17 18

avg # of updated slot node 6.02 6.31 6.18
max # of updated slot node 14 13 13

Table 8: Statistical analysis of graph in the training,
validation, and test data of MultiWOZ 2.2.

these slots, and it is reasonable to predefine the 862

possible value sets. 863

A.2 Graph Analysis 864

In our analysis of the graph model in Table 8, we 865

find that among all dialogue examples, the major- 866

ity have dialogue graphs generated, while slightly 867

fewer examples have value graphs generated. This 868

suggests that most examples have both types of 869

graphs, although there are instances where only 870

one type is presented. On average, there are ap- 871

proximately 5 dialogue turn nodes in the training 872

datasets and 6 updated slot nodes in the dialogue 873

graphs. It is worth noting that the maximum num- 874

ber of nodes in the dialogue graph is limited to a 875

maximum of 34. 876

A.3 Implementation Details 877

We utilize a pre-trained ALBERT-base-uncased 878

model (Lan et al., 2019) with a hidden size 768 as 879

our encoder. The AdamW optimizer (Loshchilov 880

and Hutter, 2018) is employed with a warmup pro- 881

portion of 0.01 and an L2 weight decay of 0.01. 882

The peak learning rate for the state update predic- 883

tor is set to the same value as Guo et al. (2021). The 884

dual dynamic graph and state generator are trained 885

jointly, with initial learning rates of 1e-3 and 2e-5 886

for the two major components. Word dropout is ap- 887

plied by randomly replacing input tokens with the 888

special [UNK] token (Bowman et al., 2016) with 889

a probability of 0.1 (Srivastava et al., 2014). The 890

maximum sequence length for all inputs is fixed 891

at 512. During training, the ground truth updated 892

slots are used instead of predicted ones for the dual 893

dynamic graph and state generator. The training 894

process consists of 5 epochs. 895

The graph attention networks are trained with 896

768 hidden dimensions, the same as the encoder. 897

All GATs layers have output dimensions equal to 898

the input dimensions. The number of layers is 4, 899
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the number of heads per layer is 4, and the number900

of hops is 2.901

Furthermore, MultiWOZ 2.1 has no annotated902

span labels for slots. To address this, we preprocess903

the MultiWOZ datasets by converting value labels904

to span labels. We identify the occurrence of a905

value label in the dialogue and use it as the span906

start and end labels.907

We trained the entire model using a single RTX908

3090 GPU. The average time required for train-909

ing 1 epoch is approximately 2 to 3 hours, with910

variations possible depending on different develop-911

ment environments. The source code is available912

for reference on the official GitHub repository at913

https://github.com/HS2DG-DST.914

A.4 Experiment Details915

Due to disparate experimental conditions and the916

constraints of reproducing experiments, particu-917

larly when the reusability of the source code was918

limited. Consequently, it was unfeasible to re-919

conduct all baseline experiments. Meanwhile, as920

noted in Table 1, the two most recent models (DSS-921

DST and DiCoS-DST) were re-experimented in922

the same experimental setting as ours. We found923

that the obtained outcomes closely align with the924

performance reported in those respective papers.925

Thus we’ve added the results from the baselines926

(TRADE, DSTQA, DS-DST, SOM-DST, TripPy,927

DST-as-Prompting) to the Table, as we believe they928

are comparable, albeit not reimplemented.929
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