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Abstract

Dialogue state tracking aims to maintain
user intent as a consistent state across multi-
domains to accomplish natural dialogue sys-
tems. However, previous researches often fall
short in capturing the multiple type of slots
and fail to adequately consider the selection of
discerning information. The increase in unnec-
essary information correlates with a decrease in
predictive performance. Therefore, the careful
selection of high-quality information is impera-
tive. Moreover, considering that the types of es-
sential and available information vary for each
slot, the process of selecting appropriate infor-
mation may also differ. To address these issues,
we propose HS2DG-DST, a Hierarchical Slot
Selector and Dual Dynamic Graph-based DST.
Our model is meticulously designed to differ-
entiate slots and provide maximal information
for optimal value prediction. We hierarchically
classify slot types based on the multiple prop-
erties. The two dynamic graphs in our model
supply highly relevant information to each slot.
Experimental results on MultiWOZ datasets
demonstrate that our model outperforms state-
of-the-art models.

1 Introduction

Task-oriented dialogue (TOD) systems are de-
signed to accomplish specific goals, such as provid-
ing weather forecasts or making restaurant reserva-
tions (Zhang et al., 2020c). Dialogue state tracking
(DST) within TOD systems aims to track user in-
tents across various domains consistently.

Previous researches employ ontology-based lex-
icons to assign relevant values in DST models (Lee
et al., 2019; Zhang et al., 2020a). On the other
hand, some approaches focus on extracting values
based on span labels (Gao et al., 2019; Heck et al.,
2020; Chao and Lane, 2019; Lei et al., 2018) or
generating values (Wu et al., 2019; Kim et al., 2020;
Kumar et al., 2020; Ren et al., 2019).
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Figure 1: An example of multi-domain conversation
(right) and dialogue state tracking process (left) at
each turn. The green, blue, and yellow represent co-
referential slots in the context, and red emphasizes in-
correctly predicted states.

Using a single tracker to predict slots with di-
verse types overlooks the opportunity to leverage
supplementary information, such as possible values.
Therefore, previous studies (Zhang et al., 2020a;
Zhou and Small, 2019) attempt to classify slot
types into categorical and span. Other approaches
(Kim et al., 2020; Guo et al., 2021) differentiate
slots based on whether they are updated in the cur-
rent turn or inherit from the previous state. How-
ever, these studies only consider two types of slots,
which results in the neglect of the possibility that
a slot can belong to multiple types, such as both
"update" and "span" types. Consequently, a hierar-
chical approach is needed to handle slots that can
belong to multiple types simultaneously.

Effective co-reference resolution is crucial for
contextual understanding in DST. In Figure 1,
co-reference resolution is paramount when updat-
ing the "taxi-destination" slot. The system must
adeptly discern the user’s intent in referencing the
previously mentioned "restaurant-name" in state-
ments like "taxi from the hotel to the restaurant."
Accomplishing this task requires the ability to iden-
tify the most relevant information within the dia-
logue history, particularly the mention of the "Fitz-
billies restaurant."



However, previous graph-based approaches
(Feng et al., 2022; Guo et al., 2022; Zhang et al.,
2022; Zeng and Nie, 2020; Zhou and Small, 2019;
Lin et al., 2021) neglect the integration of rele-
vant dialogue information into the model. Previ-
ous models primarily focus on learning new re-
lationships within the state, taking the dialogue
context into consideration. For example, they may
suggest correlations between raxi-destination and
restaurant-name slots. Nonetheless, as noted by
(Zhang et al., 2022), the emergence of state mo-
mentum, indicative of models preserving predicted
slot values, may lead to inaccuracies in the previ-
ous dialogue state. In such scenarios, depending
solely on state relations may result in inaccurate
values. In contrast, in our approach, the retrieval of
dialogue turns enables precise value prediction, as
the dialogue turns themselves contain the correct
information. Consequently, the adept retrieval of
the most relevant dialogue information is essen-
tial for accurately tracking values associated with
co-referential slots.

To address these challenges, we propose a novel
approach called HS2DG-DST (Hierarchical Slot
Selector and Dual Dynamic Graph-based DST).
We emphasize that a slot can have both "update"
and "span" types simultaneously. Thus, we intro-
duce a hierarchical slot selector to provide a more
detailed classification of slots. Furthermore, we
utilizes two dynamic graphs, a value graph and a
dialogue graph, to effectively manage semantic dia-
logue information and provide relevant knowledge
to the target slots. These graphs operate akin to in-
formation retrieval, tailored to deliver the essential
information for the selected slot. Finally, we utilize
a fine-grained value-generation method for each
target slot, enabling the model to generate values
more precisely and accurately. Our contributions
can be summarized as follows:

* We introduce a novel framework called HS2DG-
DST, designed to predict slot values hierarchi-
cally and provide maximal information for fine-
grained value prediction.

* We design a dual dynamic graph to assist in in-
formation management and enhance the accurate
prediction of co-referential slots.

* We conduct experiments on two variations of
MultiWOZ datasets. Results show that our pro-
posed model significantly outperforms state-of-
the-art models.

2 Related Work

We categorize existing research in DST from two
perspectives and introduce a knowledge selection
model that inspired the design of our graph model.

2.1 Dialogue State Tracking

In the early stage of DST, researches can be classi-
fied into two principal categories: ontology-based
DST (Henderson et al., 2014; Nouri and Hosseini-
Asl, 2018; Lee et al., 2019; Zhang et al., 2020a) and
open-vocabulary-based DST (Zhang et al., 2020b;
Gao et al., 2020; Chen et al., 2020; Feng et al.,
2021; Kim et al., 2020). For instance, Kim et al.
(2020) treat dialogue state as a fixed-size memory
to efficiently update slot values. Guo et al. (2021)
propose dual slot selection to identify updated slots
effectively. In contrast, Zhang et al. (2020a) and
Zhou and Small (2019) distinguish slot types based
on the existence of a possible value set. Moreover,
Zeng and Nie (2020) introduce the state graph rep-
resenting the dialogue state, and Feng et al. (2022)
focus on learning new relationships within the slot
by considering the dialogue context. Additionally,
Guo et al. (2022) propose a top-k dialogue selec-
tion model that leverages updated slot selection
and establishes relationships between slots and di-
alogues. However, previous studies does not ad-
equately consider semantic dialogue information.
In our approach, we construct a graph that cap-
tures sophisticated relationships between dialogue
turns. Moreover, we develop an elaborate approach
for handling multiple slot types, resulting in fine-
grained value prediction in DST.

2.2 Semantic Document Graphs

In open-domain dialogue systems, incorporating
relevant background knowledge is crucial for im-
proving the quality of conversations. Li et al.
(2022) argue that previous approaches overlook the
inherent semantic connections between sentences
in real-world documents. To overcome this limi-
tation, they propose a semantic document graph
to capture the implicit connectivity between sen-
tences, enabling the selection of the most relevant
knowledge based on the dialogue context. We ex-
tend the idea of a semantic graph to DST by treating
the entire dialogue history as a document. Rather
than representing sentences as concepts, we utilize
selected slots to capture the relationships between
dialogue turns, facilitating accurate dialogue state
prediction through relevant knowledge acquisition.
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Figure 2: The overview of Dual Dynamic Graph-based DST with a Hierarchical Slot Selector, HS2DG-DST

3 Our Approach: HS2DG-DST

Figure 2 illustrates an overview of our proposed
model, HS2DG-DST, comprising four main com-
ponents: encoder, hierarchical slot selector, dual
dynamic graph, and state generator. In this work,
we define the problem setting as predicting the di-
alogue state at each turn ¢ (¢ < T'). The dialogue
state is denoted as B; = {(S7,V7) |1 <j < J},
where S7 is the slot name and V7 is the correspond-
ing slot value. Here, J denotes the total number of
slots. Similar to Guo et al. (2021), we refer to the
concatenation of a domain name and a slot name
as a "slot" (e.g., restaurant-area).

3.1 Encoder

We construct the input by concatenating each dia-
logue turn D; and the previous dialogue state By
as follows:

Xy =[CLS]; ® Dy @ By_1 (D

where [C'LS]; is a special token aggregating the
input information.

The representation of each dialogue at turn ¢ is
denoted as Dy = R;®; ®U; & [SEP], where R;
represents the system response, U; represents the
user utterance, and ";" is a special token indicating
the boundary between R; and U;. [SEP] is used
to mark the end of the dialogue turn.

The representation of the state at turn ¢ is By =
B!®...®B/, where B{ = [SLOT]J@SJ@ EBVJ
represents the j-th slot-value pair. "—" is a special
token indicating the boundary between a slot and
its corresponding value, and [SLOT)’ represents
the aggregated information of the j-th slot-value
pair.
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Figure 3: The process of hierarchical slot selection

3.2 Hierarchical Slot Selector

The hierarchical slot selector comprises a state up-
date predictor and a slot classifier. We first deter-
mine if a slot needs an update in the current turn
and then classify the relevant slots into categori-
cal or span slots. The overall process is illustrated
in Figure 3. This hierarchical approach enables
us to accurately identify slots with both "update"
and "span" types, facilitating fine-grained value
prediction in the subsequent module.

3.2.1 State Update Predictor

This module predicts the slots that need to be up-
dated while other slots inherit their values from
the previous dialogue state. We follow the training
mechanism described by Guo et al. (2021). We
define the set of updated slot indices as:

Us ={j| SUP(S) = update} ()

This module serves two purposes. Firstly, it helps
alleviate computational costs by focusing on pre-
dicting only the updated slots. Secondly, identi-
fying whether a slot needs updating serves as an
indicator of the current dialogue’s relevance to that
specific slot. This information is essential for con-
structing the dialogue graph, as discussed in Sec-
tion 3.3.2 Dialogue Graph, where we provide how
the updated slots are utilized.



3.2.2 Slot Classifier

The updated slots can be classified into categor-
ical or span slots based on the number of possi-
ble values they can have. Categorical slots, such
as "area," have a limited number of values {east,
west, south, north, center}, which helps avoid out-
of-vocabulary issues. In contrast, span slots like
"name" or "time" cannot have predetermined val-
ues, necessitating the use of a span prediction. Fur-
ther details can be found in Appendix A.1 Classifi-
cation of Slots.

We can express the number of slots in each type
as follows:

|Us| =N+ Ng (3)

,where n. is the number of categorical slots, and
ng is the number of span slots.

3.3 Dual Dynamic Graph

The dual dynamic graph consists of a value graph
and a dialogue graph, both utilizing graph attention
networks (GATs) (Velickovié et al., 2018; Li et al.,
2021). These graphs are responsible for updating
co-referential slots and enhancing value prediction
with additional information. The value graph is
employed for categorical slots to select the most
suitable value from a predefined ontology. Con-
versely, the dialogue graph is used for span slots to
identify the most relevant dialogue turn, leveraging
an understanding of the semantic structure within
the dialogue context.

3.3.1 Value Graph

The value graph comprises dialogue turn nodes
D;, slot nodes S’, and possible value nodes P’.
These nodes allow for bidirectional feature ex-
change among them. Specifically, possible value
nodes are connected to slot nodes when a value
is available for a given slot. However, if no value
is presented, the slot nodes remain disconnected.
Moreover, each dialogue turn node is connected
to all slot nodes. The graph structure is visually
represented in Figure 2.

At each dialogue turn ¢, a weighted graph
G = (V, &) is defined, where the set V represents
the dialogue turn, slot, and possible value nodes,
and the set £ represents the connections between
these nodes. The graph is represented by a binary
symmetric adjacency matrix M of size N x N,
where N denotes the total number of nodes. Each
node v; is associated with a feature vector x;, and
these feature vectors are stored in the matrix X" of

size N x F, where F' represents the input feature
dimension.

We utilize the graph attention mechanism intro-
duced by Lin et al. (2021) to perform graph opera-
tions. The initial node features Xt(o) for the graph
attention networks are obtained by concatenating
the dialogue turn embedding, slot embedding, and
possible value embedding, which are derived from
the encoder output. The dialogue turn embedding
is obtained from the [C'LS]; token, capturing the
dialogue context for each turn, while the slot em-
bedding is obtained from the [SLOT)’ token, rep-
resenting the slot context. The possible value em-
bedding is initialized by tokenizing the candidate
value representations.

After conducting the graph operations, we ex-
tract an attention embedding from the final tensor
Xt(L). We utilize this attention embedding to cap-
ture the relevance score between nodes. And then,
the index of the highest attention score is used to
determine the most appropriate possible value for
the updated slot, represented by p™c.

3.3.2 Dialogue Graph

In our dialogue graph design, we are inspired by the
work of Li et al. (2022), who proposed a semantic
document graph for selecting relevant knowledge
from documents. They represent sentence nodes
by multiple concepts, and the connections between
these concepts reflect the semantic relationships
within the sentences. We adapt this approach by
introducing a semantic dialogue graph, where we
incorporate updated slots (S7 where j € Uy) as
similar to concepts within dialogue turns. Updat-
ing a slot in a dialogue turn indicates the presence
of relevant information in that turn. Therefore, the
updated slots and dialogue turns are strongly corre-
lated. By leveraging these updated slots, we con-
struct a graph representing each dialogue’s mean-
ing and enhancing the semantic connections be-
tween dialogue turns.

The dialogue graph comprises dialogue turn
nodes D; and updated slot nodes S”. The graph
connectivity is established through three types of
edges: 1) Edges between previous dialogue turn
nodes Dj_;: These edges are sequentially con-
nected, making the graph aware of contextual turn
information. 2) Edges between dialogue turn nodes
and updated slot nodes: These edges connect each
dialogue turn node only to its corresponding up-
dated slot nodes, facilitating the effective represen-
tation of semantic information. 3) Edges between



the current dialogue turn node D; and all other di-
alogue turn nodes D;_;: These edges enable the
current turn node to assess the correlations with the
previous turn nodes.

The graph attention mechanism is the same in
the value graph. And the initial node features Xt(o)
are obtained by concatenating the dialogue turn
embedding and the slot embedding. By learning
connections between each node, the dialogue graph
captures semantic relationships between dialogue
turns and provides relevant information to the target
slots. The output of the dialogue graph is the most
pertinent dialogue turn d™s to the target slot.

3.4 State Generator

The selected possible values p™c and dialogue turns
d™s are combined with the current turn D; and the
previous dialogue state B;_1 to update the state
jointly. This is achieved by concatenating them
to form a new input sequence, denoted as X =
[CLS|® Dy & [SEP) @ d" & [SEP] & Bi—1 &
[SEP] @ pe.

Subsequently, this sequence is fed into a frozen
pre-trained language model, specifically ALBERT
(Lan et al., 2019) to obtain the contextualized out-
put representation H,.

3.4.1 Extractor

To predict the values of span slots, we utilize a span-
based extraction method. We employ two different
linear layers W and W, to predict the start and
end labels. The attention-based representation of
the j-th slot at turn ¢, denoted as H;([SLOT])),
is used in this process. From this, we obtain the
representations p and g as follows:

p = softmax(W,H,([SLOTI]))")  (4)

q = softmax(W.H,([SLOTI)T)  (5)

The position of the maximum value in each p and ¢
corresponds to the predicted start and end positions
of the slot value. Furthermore, we define Dial;
as the concatenation of D; and d™* from the input
sequence X. The span slot value is then extracted
from the dialogue sentence using Dial;[p : q].

3.4.2 C(lassifier

For categorical slots, we employ a classification-
based method to select an appropriate value. Let
PV’ denote the possible value set of the j-th slot.
Similar to the extractor, we use the slot represen-
tation as attention to the output representation Hy,

resulting in H;([SLOT H ) T. We then pass this rep-
resentation through a linear layer W, to obtain the
distribution over PV7:

Yy = softmaX(WCHt([SLOT]g)T) (6)

We select the slot value corresponding to the maxi-
mum value in the distribution. By finding the index
using argmax(y), we can obtain the categorical
slot value from the value set PV7.

3.4.3 Optimization

We utilize cross-entropy loss as the training objec-
tives for the extractor and the classifier during the
training process.

|Us|
1 . .
lossp = WA > (plogp+qlogq) (7)
5hg
|Us|
lossc = —m Zleg@ @)
sty

Here, p and § are the target values representing the
proportion of all possible start and end positions.
And 3 is the target indicating the probability of
candidate values.

4 Experiments

4.1 Datasets and Metrics
4.1.1 Datasets

MultiwOZ (Budzianowski et al., 2018) is a multi-
domain human-human written dialogue dataset that
contains over 10K dialogues across 8 domains. It is
one of the most popular benchmarks in the DST lit-
erature. We conducted experiments on two variants
of the datasets: MultiwOZ 2.1 (Eric et al., 2020)
and MultiwOZ 2.2 (Zang et al., 2020). The labels
and utterances have been refined in subsequent ver-
sions. In particular, MultiwOZ 2.2 redefined the
datasets by dividing all slots into two types: non-
categorical and categorical.

4.1.2 Metrics

Joint Goal Accuracy (JGA) refers to the accuracy
of the dialogue state in each turn. It compares the
predicted dialogue state to the ground truth at every
turn, and it is correct only if all the predicted slot
values exactly match the ground truth.

Slot Accuracy (SlotAcc) considers individual slot-
level accuracy. It measures the ratio of successful
slot value predictions among all the slots of each
dialogue in the ground truth.



Model MultiwOZ 2.1 MultiwO0Z 2.2
JGA Slot Acc JGA Slot Acc Cate-joint Span-joint
TRADE 45.60 96.55 45.40 - 62.80 66.60
DSTQA 51.17 97.21 - - - -
DS-DST 51.21 97.35 51.70 - 70.60 70.10
SOM-DST 53.68 97.15 - - - -
TripPy 55.30 97.48 50.71 - - -
DST-as-Prompting 56.66 - 57.60 - - -
DSS-DST* 60.73 98.05 58.04  97.66 76.32 73.39
DiCoS-DST* 61.02 98.05 61.13  98.06 - -
Our Model (HS2DG-DST)*  65.91 98.31 66.01 98.43 80.76 80.27

Table 1: Performance comparison of the baseline models. * indicates a result in same experimental setting.

Model MultiwOZ 2.2
Our Model (HS2DG-DST) 66.01
w/o By 63.50 (-2.51)
w/o state update predictor 63.36 (-2.65)
w/o dual dynamic graph 61.52 (-4.49)

Table 2: Ablation study of main components. "w/o dual
dynamic graph" indicates that the model could not ac-
cess selected information from both graphs. "w/o B;_1"
refers to the exclusion of the previous dialogue state as
input. And "w/o state update predictor" indicates that
all slots were updated at every turn.

4.2 Baseline Models

TRADE (Wu et al., 2019) utilizes a copy mecha-
nism, enabling knowledge transfer across domains.
DSTQA (Zhou and Small, 2019) employs a GAT
to learn inter-slot relationships and the questions
allowing the model to handle unseen domains. DS-
DST (Zhang et al., 2020a) proposes a dual strategy
that combines categorical and non-categorical slots
using a reading comprehension model. SOM-DST
(Kim et al., 2020) treats the dialogue state as a
fixed-size memory and dynamically overwrites it.
TripPy (Heck et al., 2020) employs three copy
mechanisms to extract span values from the di-
alogue context. DST-as-Prompting (Lee et al.,
2021) introduces a language modeling approach
that utilizes schema-driven prompting to incorpo-
rate task-aware history encoding. DSS-DST (Guo
et al., 2021) proposes a dual slot selector that de-
termines whether each slot needs to be updated.
DiCoS-DST (Guo et al., 2022) dynamically selects
relevant dialogue contents corresponding to each
slot.

4.3 Main Results

Table 1 provides a performance comparison be-
tween our HS2DG-DST model and other baselines
on the MultiWwOZ datasets. The best result is high-
lighted in bold. Our model achieved state-of-the-art
performance on both MultiWOZ 2.1 and 2.2 test
sets, with JGAs of 65.91% and 66.01%, respec-
tively. Specifically, our model outperformed the
previous state-of-the-art by approximately 4.89%p
for MultiwOZ 2.1 and 4.88%p for MultiwOZ 2.2
in terms of JGA. In addition, we conducted experi-
ments on slot type classification to MultiwOZ 2.2.
In these experiments, "Cate-joint" refers to the JGA
specifically for categorical slots, while "Span-joint"
represents the JGA for span slots. Our model out-
performed existing public models by 80.76% and
80.27%, achieving a lead of 4.44%p and 6.88%p
in the cate-joint and span-joint, respectively. We
excluded DiCoS-DST (Guo et al., 2022) results
from the Table 1 cate-joint and span-joint as there
is no available information on its strengths in slot
classification. The consistent performance of our
model across different slot types can be attributed
to our elaborate slot type classification and effec-
tive utilization of optimal information (i.e., selected
possible values and dialogue turns). For further
analysis, please refer to Section 4.5.1 Slot Type
Classification.

4.4 Ablation Study
4.4.1 Effect of Main Components

To investigate the effectiveness of the main com-
ponents, we conducted an ablation study on the
MultiWwOZ 2.2 with JGA presented in Table 2. The
results showed that removing each module led to
a decrease in JGA to varying degrees. Without



Graph MultiwOZ 2.2
both graph in all slot connection 64.99
w/o value graph 64.12
w/o dialogue graph 64.12
dialogue graph in updated slot only 66.01
w/o value graph 65.05
value graph in updated slot only 65.83
w/o dialogue graph 62.86

Table 3: Ablation study of graph node connections. we
conducted two comparative experiments: all slot con-
nection and updated slot only. In the former experiment,
each dialogue turn node was connected to all slot nodes,
while in the latter, it was connected only to the updated
slot nodes.

Model MultiWOZ 2.2
Baseline Retriever 54.05
Our Model (HS2DG-DST) 66.01

Table 4: Performance comparison with a baseline re-
triever model.

the previous dialogue state, the JGA decreased by
2.51%p due to the inability to refer to previously
predicted values and address co-referential slots.
Additionally, eliminating the state update predictor
resulted in a 2.65%p decrease, along with the ab-
sence of updated slot information for constructing
the dialogue graph and increased memory usage.
Removing the dual dynamic graph component, es-
sential for managing co-referential information, led
to a significant decrease of 4.49%p in JGA. This
finding highlights the critical role of the dual dy-
namic graph in providing semantic information.
Each graph component is responsible for selecting
relevant dialogue turns or possible values associ-
ated with the target slot. Without these information,
the model lacks the necessary context to make pre-
cise predictions.

4.4.2 Effect of Graph Node Connections

To evaluate the effectiveness of our proposed graph
structure in capturing semantic relationships be-
tween each node, we conducted experiments for
the impact of different node connections in the
dual dynamic graph. Table 3 demonstrated the
superior performance of the all slot connection
graph compared to the baseline models, achieving
a 64.99% of JGA. This result proves the effective-
ness of including dialogue turn nodes in the graph.
Furthermore, in the update slot only condition, the

dialogue graph achieved the highest performance
at 66.01%, while the value graph achieved 65.83%.
Connecting only the updated slot nodes led to more
precise graph structures for capturing semantic con-
nections between dialogue turns. Moreover, we
conducted an ablation study on the separate graph
components, specifically the dialogue graph and
the value graph. The results showed that even with-
out the value graph, the dialogue graph in the up-
date slot only condition performed better than the
all slot connection condition. Additionally, the
JGA of the separate value graph in the update slot
only condition decreased by 2.97%p. These find-
ings consistently demonstrates the superiority of
the dialogue graph over the value graph. The di-
algoue graph, which selects the dialog turns, is
relatively more informative than the value graph,
so it performs better in our experiments.

4.4.3 Effect of Dialogue Graph

To empirically validate the effectiveness of our se-
mantic graph structure, we conducted an exper-
iment comparing it to a baseline retriever. We
adopted dense passage retrieval (DPR) (Karpukhin
et al., 2020), a renowned retrieval system in the
open-domain dialogue systems, as a point of com-
parison. The dialogue graph can be seen as a re-
trieval system that benefits from the graph structure
to capture relevant dialogue turn indexes. By lever-
aging the graph as a form of meta-information, our
graph model enhances retrieval performance.

We developed a baseline retriever model based
on DPR, using ALBERT (Lan et al., 2019) as an
encoder and extracting the output embedding from
the [C'LS] token. The similarity between the cur-
rent and previous turns was calculated by taking
the dot product of their embeddings, and the most
similar turn was chosen as the relevant one. Sim-
ilar to the dialogue graph, the baseline retriever
selected the most pertinent dialogue turn d"¢, and
the remaining process of dialogue state tracking
was the same in both experiments. However, this
baseline model did not understand the connections
between dialogue turns, focusing only on individ-
ual turn embeddings. As shown in Table 4, the
baseline retriever achieved a JGA of only 54.05%.
This performance was significantly lower, with a
degradation of 11.96%p, compared to our proposed
model that incorporates more enhanced semantic
information between turns. This highlights the sub-
stantial improvement achieved by our approach to
selecting relevant information.
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Figure 4: Accuracy per slot name compared to DSS-
DST in the test set of MultiwOZ 2.2.

4.5 Analysis
4.5.1 Slot Type Classification

To assess the effectiveness of hierarchical slot selec-
tor for fine-grained value predictions, we conducted
experiments on each slot accuracy compared to
DSS-DST. As shown in Figure 4, our model con-
sistently outperformed DSS-DST in terms of slot
accuracy. Our model achieved over 95.4% accuracy
for all slots, while DSS-DST occasionally fell be-
low 94% accuracy. This demonstrates the stability
of our approach in accurately predicting each slot.
In Table 1, DSS-DST demonstrated weak perfor-
mance in span-joint metrics. This suggests a lack
of consideration for slot classification in DSS-DST.
In contrast, our model hierarchically classifies slots,
resulting in the best overall performance with sta-
bility and consistency across both metrics. These
findings highlight the effectiveness of an elaborate
approach in achieving better and more consistent
results.

4.5.2 Effect of Dialogue Information

In Table 2, when we exclude all the information
provided by the two graphs (w/o dual dynamic
graph), the performance is 61.52%, which is sim-
ilar to the 61.13% of DiCoS-DST. This indicates
that the information selected by the graphs directly
contributes to performance improvement. In Table
3, when the model use only the dialogue graph (w/o
value graph), the performance is 65.05%. This indi-
cates that the dialogue graph alone, which includes
dialogue information, achieved a performance of
65%. Furthermore, in order to assess how effec-
tively the proposed graph provides dialogue infor-
mation, we conducted experiments comparing it
to DPR in Section 4.4.3 and the performance is
54.05%. This indicates that if a weak retrieval
model provides incorrect dialogue turns, it can
have a detrimental impact on performance. In con-
clusion, the experimental results presented above

. MultiwOZ 2.2
Domain
DSS-DST DiCoS-DST Our Model
Attraction 79.88 78.79 80.14
Hotel 62.47 58.02 71.75
Restaurant 75.79 75.14 81.63
Taxi 54.84 56.33 42.71
Train 76.25 77.26 79.87

Table 5: Domain specific accuracy of our model and
other baselines on the test data of MultiwOZ 2.2.

demonstrate the performance benefits of utilizing
dialogue turn information.

4.5.3 Domain-Specific Accuracy

Table 5 presents the domain-specific results, the ac-
curacy measured on subsets of the predicted state
specific to each domain. Our model achieved best
performance in four domains, with notable im-
provements in the hotel and restaurant domains,
which have many span slots. However, the per-
formance in the faxi domain was comparatively
lower than the other domains. Because we extract
the span labels from Dial;, the performance of
predicting span slots relies heavily on selecting
relevant dialogue turns using the dialogue graph.
The superior performance of our model in the hotel
and restaurant domains demonstrated the model’s
effectiveness in selecting relevant dialogue turns.
However, in the MultiWOZ datasets,the taxi do-
main frequently emerges in the last turn of a con-
versation. The larger number of dialogue turns
presents challenges in accurately determining its
relevance. This may explain the relatively lower
performance in the faxi domain. The statistical
analysis of the graphs can be found in Appendix
A.2 Graph Analysis.

5 Conclusion

In this paper, we proposed a novel hierarchical
slot selection framework via a dual dynamic graph
for multi-domain dialogue state tracking. Our ap-
proach involves fine-grained value prediction by
classifying slots into multiple types and incorporat-
ing complementary knowledge for target slots. The
proposed graphs effectively manage semantic infor-
mation through a semantic-aware graph structure
that determines relevant information for target slots.
Against the state-of-the-art DST methods, experi-
mental results on two variant multi-domain datasets
demonstrate the effectiveness of hierarchical slot
selection and dual dynamic graph.



Limitations

This paper proposes HS2DG-DST, a framework
that utilizes an elaborate slot classification and op-
timized information retrieval for value prediction.
However, it currently relies solely on extracting
span labels from dialogue turns, without incorporat-
ing previously predicted values obtained from the
previous dialogue state. This approach faces chal-
lenges as the number of dialogue turns increases,
complicating the selection of relevant dialogues.
To mitigate this limitation, there is a need to de-
velop a concise form of dialogue graph. Utilizing
a more efficiently summarized form of the graph
could offer a solution to this issue.

Ethics Statement

Improving the DST module in dialogue systems
can enhance their ability to understand user require-
ments and increase user satisfaction. Our proposed
framework has the potential to enhance DST per-
formance in industrial and commercial dialogue
systems. Additionally, the concepts and techniques
employed in our frameworks, such as hierarchi-
cal slot selection and dual dynamic graph, can be
applied to other natural language processing and
machine learning applications, leading to perfor-
mance improvements in various tasks.
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A Appendix

Type Sub Type

Slot Name

pricerange

hotel-pricerange, restaurant-pricerange

area
Cate Slot

attraction-area, hotel-area,
restaurant-area

number

hotel-bookpeople, hotel-bookstay,
hotel-stars, restaurant-bookpeople,
train-bookpeople

day

hotel-bookday, train-day,
restaurant-bookday

boolean

hotel-internet, hotel-parking

station

train-departure, train-destination

type

hotel-type, attraction-type

name
Span Slot

attraction-name, hotel-name,
restaurant-name, restaurant-food

location

taxi-departure, taxi-destination

time

restaurant-booktime, taxi-arriveby,

taxi-leaveat, train-arriveby, train-leaveat

Table 6: Type of Slots.

Sub Type

Slot Name

pricerange

cheap, expensive, moderate

area

centre, east, north, south, west

number

0,1,2,3,4,5,6,7,8,9,10, 15

monday, tuesday, wednesday,

day thursday, friday, saturday, sunday

boolean yes, no

birmingham new street, bishops stortford,
broxbourne, cambridge, ely,

kings lynn, leicester, london kings cross,
london liverpool street, norwich,
peterborough, stansted airport, stevenage

station

hotel type guesthouse, hotel

architecture, boat, cinema, college,
concerthall, entertainment, museum,
multiple sports, nightclub, park,
swimmingpool, theatre

attraction type

Table 7: Possible Value Sets.

A.1 Classification of Slots

In Table 6, we present the classification of all
tracked slots, which can be further categorized into
subtypes based on their meanings. For example,
slots like bookpeople and stars, which have numer-
ical values, are classified as a subtypes "number".
Table 7 provides the possible value sets for each
categorical slots. Although train station or attrac-
tion type may be more suitable for span slots, they
were classified as categorical slots in this study.
This decision was made because the MultiwOZ
datasets only mention a limited set of values for
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Graph Analysis Train Valid Test
total # of example 7900 1000 999
total # of value graph 7300 914 916
total # of dialogue graph 7614 981 978
avg # of dialogue turn node 563 737 7.37
max # of dialogue turn node 20 17 18
avg # of updated slot node 6.02 6.3l 6.18
max # of updated slot node 14 13 13

Table 8: Statistical analysis of graph in the training,
validation, and test data of MultiwOZ 2.2.

these slots, and it is reasonable to predefine the
possible value sets.

A.2 Graph Analysis

In our analysis of the graph model in Table 8, we
find that among all dialogue examples, the major-
ity have dialogue graphs generated, while slightly
fewer examples have value graphs generated. This
suggests that most examples have both types of
graphs, although there are instances where only
one type is presented. On average, there are ap-
proximately 5 dialogue turn nodes in the training
datasets and 6 updated slot nodes in the dialogue
graphs. It is worth noting that the maximum num-
ber of nodes in the dialogue graph is limited to a
maximum of 34.

A.3 Implementation Details

We utilize a pre-trained ALBERT-base-uncased
model (Lan et al., 2019) with a hidden size 768 as
our encoder. The AdamW optimizer (Loshchilov
and Hutter, 2018) is employed with a warmup pro-
portion of 0.01 and an L2 weight decay of 0.01.
The peak learning rate for the state update predic-
tor is set to the same value as Guo et al. (2021). The
dual dynamic graph and state generator are trained
jointly, with initial learning rates of 1e-3 and 2e-5
for the two major components. Word dropout is ap-
plied by randomly replacing input tokens with the
special [UN K] token (Bowman et al., 2016) with
a probability of 0.1 (Srivastava et al., 2014). The
maximum sequence length for all inputs is fixed
at 512. During training, the ground truth updated
slots are used instead of predicted ones for the dual
dynamic graph and state generator. The training
process consists of 5 epochs.

The graph attention networks are trained with
768 hidden dimensions, the same as the encoder.
All GAT's layers have output dimensions equal to
the input dimensions. The number of layers is 4,



the number of heads per layer is 4, and the number
of hops is 2.

Furthermore, MultiwOZ 2.1 has no annotated
span labels for slots. To address this, we preprocess
the MultiWOZ datasets by converting value labels
to span labels. We identify the occurrence of a
value label in the dialogue and use it as the span
start and end labels.

We trained the entire model using a single RTX
3090 GPU. The average time required for train-
ing 1 epoch is approximately 2 to 3 hours, with
variations possible depending on different develop-
ment environments. The source code is available
for reference on the official GitHub repository at
https://github.com/HS2DG-DST.

A.4 Experiment Details

Due to disparate experimental conditions and the
constraints of reproducing experiments, particu-
larly when the reusability of the source code was
limited. Consequently, it was unfeasible to re-
conduct all baseline experiments. Meanwhile, as
noted in Table 1, the two most recent models (DSS-
DST and DiCoS-DST) were re-experimented in
the same experimental setting as ours. We found
that the obtained outcomes closely align with the
performance reported in those respective papers.
Thus we’ve added the results from the baselines
(TRADE, DSTQA, DS-DST, SOM-DST, TripPy,
DST-as-Prompting) to the Table, as we believe they
are comparable, albeit not reimplemented.
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