
A modified EACOP implementation for
Real-Parameter Single Objective Optimization

Problems
Andrea Tangherloni

Department of Computing Sciences
Bocconi Institute for Data Science and Analytics

Bocconi University, Milan, Italy
andrea.tangherloni@unibocconi.it

Vasco Coelho
Department of Informatics, Systems and Communication

University of Milano-Bicocca, Milan, Italy
v.coelho@campus.unimib.it

Francesca M. Buffa
Department of Computing Sciences
Bocconi University, Milan, Italy

Bocconi Institute for Data Science and Analytics
francesca.buffa@unibocconi.it

Paolo Cazzaniga
Department of Human and Social Sciences

University of Bergamo, Bergamo, Italy
paolo.cazzaniga@unibg.it

Abstract—Evolutionary algorithms are effective techniques for
optimizing non-linear and complex high-dimensional problems.
However, most of them require a precise fine-tuning of their
functioning settings to achieve satisfactory results. In this work,
we propose a modified version of an evolutionary approach
called the Evolutionary Algorithm for COmplex-process oPti-
mization (EACOP), designed to have a limited number of hyper-
parameters. The base version of EACOP (bEACOP) combines
different strategies, including the scatter search methodology,
local searches, and a novel combination method based on path
relinking to balance the exploration and exploitation phases.
Our improved version (iEACOP) intensifies the exploration
phase to escape from suboptimal search space areas where,
on the contrary, bEACOP gets stuck. Our results show that
iEACOP outperforms bEACOP on 27 out of 29 CEC 2017 test
suite benchmark functions, exhibiting comparable performance
against the three best algorithms of the CEC 2017 competition
on single-objective bound-constrained real-parameter numerical
optimization. The source code of bEACOP and iEACOP will be
made publicly available on GitHub upon acceptance.

Index Terms—Global Optimization, Evolutionary Algorithms,
Local Search, CEC 2017 competition, Real-parameter single
objective optimization

I. INTRODUCTION

Optimization is a fundamental task in Computer Science
with applications ranging from building engineering design [1]
to biochemical models calibration [2] and network devel-
opment [3]. In many real-case scenarios, derivative-based
algorithms face limitations due to the absence of analytical
information or specific characteristics of the fitness landscape,
such as noise, multi-modality, non-convexity, non-separability,
and non-differentiability, which can lead to convergence to a
local optimum. Various meta-heuristics within the families of
derivative-free optimization algorithms have been introduced
to address these challenges. These meta-heuristics draw in-

spiration from nature’s strategies for solving problems that
involve the minimization or maximization of a function. Two
notable families include Swarm Intelligence (SI) [4], which
emulates the collective behavior of social organisms, and
Evolutionary Computation (EC) [5], inspired by Darwinian
evolution theories.

In SI, individuals within the swarm are simple independent
agents that engage in interactions governed by fundamental
cooperation and/or competition rules. The resulting emergent
behavior of the swarm offers an effective solution for navi-
gating the search space of candidate solutions. Meta-heuristics
such as Particle Swarm Optimization (PSO) [6], Artificial Bee
Colony (ABC) [7], and Ant Colony Optimization [8] belong
to the SI family. In the context of EC, the most promising
individuals in a population, representing potential solutions to
the optimization problem, undergo evolution through genetic
operators that simulate natural selection. This iterative process
facilitates the exploration of the search space over successive
generations. Meta-heuristics such as Genetic Algorithms [9],
Genetic Programming [10], and Evolution Strategies [11]
belong to this family.

In this paper, we start with an evolutionary algorithm
developed explicitly for the parameter estimation problem
[12], and we present a modified implementation that allows for
improving the overall optimization performance. This meta-
heuristic, called Evolutionary Algorithm for COmplex-process
oPtimization (EACOP) [13], [14], while incorporating some
elements of scatter search, introduced a set of changes to
the classic scatter search design to make the algorithm more
robust and efficient. The goal is to obtain a better balance
between diversification and intensification, which is crucial for
global optimization algorithms, all while using fewer tuning
parameters. The initial population is generated by sampling

20
24

 IE
EE

 C
on

gr
es

s o
n

Ev
ol

ut
io

na
ry

 C
om

pu
ta

tio
n

(C
EC

) |
 9

79
-8

-3
50

3-
08

36
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CE
C6

09
01

.2
02

4.
10

61
19

20

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on February 03,2025 at 19:26:10 UTC from IEEE Xplore. Restrictions apply.

solutions using the Latin hypercube, an empirically proven
effective strategy, especially for large-scale optimization prob-
lems. Anyhow, as required by the competition rules, we used
a uniform initialization strategy here. In what follows, we will
refer to the base version of EACOP as bEACOP and to our
improved version as iEACOP.

II. RELATED WORKS

EACOP was presented in [13] to address the optimization of
complex-process models. The algorithm follows the standard
scatter search design by generating an initial set of candi-
date solutions that is 10 times larger than the problem size.
Specifically, the Latin hypercube uniform sampling is used
to generate these solutions. All solutions are then evaluated,
and the Pop/2 best ones in terms of fitness function (with
Pop being the population size) are selected as members
of the initial population. The remaining Pop/2 solutions
are randomly selected from the other solutions. This simple
strategy avoids the computational efforts otherwise required
to calculate relative distances among solutions and select the
most diverse.

The iterative process consists of applying a combination
method to each pair of solutions. In particular, such a combi-
nation method defines hyper-rectangles around the solutions,
which increases the number of search directions and enhances
diversification, not only regarding search directions but also
regarding search distance. Since the areas containing high-
quality solutions should be explored more deeply than other
areas, the relative quality of every pair of solutions (regarding
their position in the sorted population) is used as a measure
of bias to create hyper-rectangles. So, individuals with poor
(good) fitness values will generate new solutions close to (far
from) individuals with good (poor) fitness values with higher
probability. Using a wide hyper-rectangle, it is unlikely to
have combinations among individuals previously combined,
avoiding the necessity of implementing memory structures.
The fact that the size of the hyper-rectangles increases if
the new solutions improve the old ones during consecutive
iterations induces a diversification strategy, exploring regions
where different minima can be found.

The population is updated throughout the generation follow-
ing a (1+1) strategy applied to every individual, similar to that
used in other evolutionary algorithms [15]. To be more precise,
each individual is combined with the rest of the individuals
in the population, performing Pop − 1 combinations and
creating Pop− 1 offspring. If the best individual outperforms
its parent (i.e., the individual that was being combined), the
former replaces the latter in the population. With this updating
strategy, a solution can only enter the population by replacing
its parent, enhancing the search intensification. Moreover,
every solution follows a self-tuned annealing scheme, allowing
significant steps at the beginning of the search while moving
more locally towards the end due to the proximity of the
individuals in the final stages.

bEACOP also uses a local search method to accelerate
convergence speed. Specifically, dynamic hill climbing is

implemented as it is characterized by a reduced computation
time (with respect to other strategies), even if it does not ensure
local convergence.

III. METHODS

In this paper, following the work presented in [13], [16],
[17], we propose a modified implementation of the bEACOP
algorithm (named iEACOP) to improve its exploration capa-
bilities. In particular, iEACOP limits the number of pointless
local search calls, which often use large portions of the fitness
evaluation budget. Our implementation is described in the
following seven pseudocode listings. It is worth mentioning
that we highlighted the modified parts with respect to the
original pseudocode in blue.

The first listing (Algorithm 1) reports iEACOP’s main
procedure. The algorithm begins by initializing N individuals
(line 2), where N can be either selected by the user or
calculated using the heuristic shown in Algorithm 2 (line 1).
In particular, M = 10D individuals are uniformly generated
within the search space (Algorithm 2, lines 15-16). Then,
this initial population is sorted by quality (i.e., the lower the
fitness value of an individual x, the lower the position/index
of x in the population, Algorithm 2, line 18). The first N/2
individuals of the M sorted individuals are selected, while
the remaining N/2 individuals are randomly selected with
replacement among the other M − N/2 sorted individuals
(Algorithm 2, lines 19-25). Finally, the best individual of the
population (i.e., the one with the lowest index) is assigned to
xbest, a placeholder for the best individual found so far during
the optimization (Algorithm 2, line 27).

After that, iEACOP repeats the procedure reported in lines
4-30 of Algorithm 1 until a termination criterion is met (e.g.,
the maximum number of iterations or fitness evaluation is
reached). First, it checks the individuals composing the current
population to evaluate if there are individuals that are too
similar to each other (Algorithm 1, line 5). In particular, for
each pair of individuals xi and xj , it calculates the relative
difference between xi and xj for each dimension d, with d =
1, . . . , D. If the maximum distance is lower than a user-defined
threshold ϵ, an individual x is randomly generated within the
search space and replaces xj in the population (Algorithm 3,
lines 6-9). Second, it creates an offspring population starting
from the current population (Algorithm 1, line 6), as shown
in Algorithm 4. For each pair of individuals xi and xj , a new
individual x is randomly generated within the hyper-rectangle
defined by the two parents (Algorithm 4, lines 6-19). Third,
iEACOP updates the current population by taking advantage
of the generated offspring (Algorithm 1, line 7). To do so,
it exploits possible promising directions using the go-beyond
strategy (Algorithm 5, lines 1-22). For each individual xi in the
population, all its offspring are sorted by quality (Algorithm 5,
line 26); if the best of them outperforms its parent xi (i.e., it
has a lower fitness value, line 29), a new non-convex solution
in the direction defined by the child and its parent is randomly
created (this is the core of go-beyond strategy, lines 7-17).
The child becomes the new parent, and the newly generated

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on February 03,2025 at 19:26:10 UTC from IEEE Xplore. Restrictions apply.

solution becomes the new child. If the improvement continues,
we are probably in a promising area; thus, we apply this
strategy again by doubling the area where we can randomly
create new solutions. The go-beyond strategy ends when the
fitness of the newly generated solution is greater than that of
its parent. On the contrary, if an individual xi in the population
does not produce any new solution outperforming its fitness
value for nchange consecutive iterations, we consider xi stuck
into a local optimum. Thus, xi is replaced by another solution
randomly generated within the search space (Algorithm 5,
lines 33-43). Then, the updated population is sorted by quality
(Algorithm 5, line 45). If x1 (i.e., the best individual of
the population) is better than xbest, we assign x1 to xbest

(Algorithm 5, lines 46-47).
Finally, iEACOP applies the local search routine (Algorithm

1, lines 8-27). In bEACOP, the local search is performed
around xbest if it has changed during the last generation.
Otherwise, it applies another strategy where the first local
search is still applied to xbest, while the following ones to
an offspring solution, which is selected based on a balancing
strategy that takes into account their quality (i.e., fitness value)
and diversity (i.e., the distance between the offspring and
the old solutions found by the local search routines). All
the details are reported in Algorithm 6 (lines 6-24). If the
calculated local solution is better than xbest, this solution
is assigned to xbest. We improved the original local search
routine by introducing the following modifications. If xbest

has changed during the last generation, iEACOP applies a
local search around it, followed by a local search around an
offspring solution (selected as described before). Otherwise,
similar to the standard version, it performs the first local
search to xbest, while the following ones to selected offspring
solutions. However, iEACOP does not execute local searches
in all the generations to increase its exploration capabilities
compared to bEACOP. Indeed, the local searches around the
offspring solutions are performed only every a certain number
of generations (i.e., n2 = 10) when allowed, as our version
deactivates the local search routine as follows. If a local search
is applied and does not find a solution better than xbest, the
local search routine is deactivated for a certain number of
iterations (between nchanges and 2 · nchanges), based on the
identification of novel xbest solutions through the generations
(see Algorithm 1, lines 25-28; Algorithm 5, lines 46-55). In
addition, since the selected local optimizer might strongly
affect the results of the local search calls, iEACOP switches
between “Powell” [18] and “L-BFGS-B” [19], [20]. Thanks
to this switching approach, iEACOP exploits the peculiarities
of both local optimization algorithms, allowing it to perform
better local searches and deal with possible ill-conditioned
problems. In particular, if applying the local search using
”Powell” (”L-BFGS-B”) to a selected solution (either xbest

or an offspring) does not allow for finding a solution better
than xbest, we repeat the local search on the same initial
solution using ”L-BFGS-B” (”Powell”) (Algorithm 7, lines 28-
53). Finally, contrary to bEACOP, iEACOP replaces the worst
individual of the population with xbest when it is identified

by a local search routine (Algorithm 7, lines 16).

IV. RESULTS

Our novel implementation of EACOP (i.e., iEACOP) was
tested and evaluated using the benchmark functions from the
CEC 2017 competition on single-objective bound-constrained
real-parameter numerical optimization. The function suite,
listed in Table I, encompasses a variety of optimization
challenges, including shifted, rotated, not-separable, highly ill-
conditioned, and complex problems [21].

TABLE I
CEC 2017 BENCHMARK FUNCTIONS FOR THE COMPETITION ON

SINGLE-OBJECTIVE BOUND-CONSTRAINED REAL-PARAMETER
NUMERICAL OPTIMIZATION.

Typology No. Function name Optimum
Unimodal
functions

1 Shifted and rotated Bent Cigar 100
2 Shifted and rotated Zakharov 300

Simple
multimodal
functions

3 Shifted and rotated Rosenbrock 400
4 Shifted and rotated Rastrigin 500
5 Shifted and rotated Expanded Schaffer F6 600
6 Shifted and rotated Lunacek Bi-Rastrigin 700
7 Shifted and rotated Non-Continuous Rastrigin 800
8 Shifted and rotated Levy 900
9 Shifted and rotated Schwefel 1000

Hybrid
functions

10 Zakharov; Rosenbrock; Rastrigin 1100
11 High-conditioned Elliptic; Modified Schwefel;

Bent Cigar
1200

12 Bent Cigar; Rosenbrock; Lunacek bi-Rastrigin 1300
13 High-conditioned Elliptic; Ackley; Schaffer F7;

Rastrigin
1400

14 Bent Cigar; HGBat; Rastrigin; Rosenbrock 1500
15 Expanded Schaffer F6; HGBat; Rosenbrock; Mod-

ified Schwefel
1600

16 Katsuura; Ackley; Expanded Griewank plus
Rosenbrock; Schwefel; Rastrigin

1700

17 High-conditioned Elliptic; Ackley; Rastrigin; HG-
Bat; Discus

1800

18 Bent Cigar; Rastrigin; Griewank plus Rosenbrock;
Weierstrass; Expanded Schaffer F6

1900

19 HappyCat; Katsuura; Ackley; Rastrigin; Modified
Schwefel; Schaffer F7

2000

Composition
functions

20 Rosenbrock; High-conditioned Elliptic; Rastrigin 2100
21 Rastrigin; Griewank; Modified Schwefel 2200
22 Rosenbrock; Ackley; Modified Schwefel; Rastri-

gin
2300

23 Ackley; High-conditioned Elliptic; Griewank;
Rastrigin

2400

24 Rastrigin; HappyCat; Ackley; Discus; Rosenbrock 2500
25 Expanded Schaffer F6; Modified Schwefel;

Griewank; Rosenbrock; Rastrigin
2600

26 HGBat; Rastrigin; Modified Schwefel; Bent Cigar;
High-conditioned Elliptic; Expanded Schaffer F6

2700

27 Ackley; Griewank; Discus; Rosenbrock; Happy-
Cat; Expanded Schaffer F6

2800

28 F15; F16; F17 2900
29 F15; F18; F19 3000

We ran all tests with the following configuration, as explic-
itly requested for the competition:

• problem dimensions D = 30;
• 25 independent runs for each benchmark function;
• search space boundaries [−100, 100]D;
• uniform in [−100, 100]D;
• uniform random initialization within the search space;
• maximum number of fitness evaluations MaxFEs =

10000D.
As a first set of tests, we compared the standard implementa-

tion of bEACOP with our improved version iEACOP described
in Section III. Table II reports the mean and standard deviation

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on February 03,2025 at 19:26:10 UTC from IEEE Xplore. Restrictions apply.

of the best individual obtained after the last fitness evaluation
over 25 runs with our implementation of iEACOP (left col-
umn) and bEACOP (right column). We applied a Wilcoxon
signed-rank test to evaluate whether iEACOP’s results are
statistically significantly better than bEACOP’s results. It is
worth specifying that both algorithms are initialized with
the same population to properly run the statistical test. In
particular, we applied the two-tailed test with a significance
level equal to 0.05; if we reject the null hypothesis (i.e., two
related paired samples come from the same distribution), then
we use the left-tailed test. If we can reject this null hypothesis,
then the distribution underlying iEACOP’s results is stochas-
tically less than the distribution underlying bEACOP’s results.
Otherwise, we use the right-tailed test to check if it is true that
the distribution underlying iEACOP’s results is stochastically
greater than the distribution underlying bEACOP’s results.
The + (−) sign in Table II denotes a statistically significant
difference between the two algorithms, i.e., iEACOP is better
(worse) than bEACOP. In contrast, the = sign indicates there
is no statistical difference between them. iEACOP achieves
better results in 27 out of 29 benchmark functions, while
their performance is comparable in the other 2 cases (i.e., no
statistical difference is observed).

TABLE II
STATISTICAL COMPARISON OF THE RESULTS OBTAINED BY IEACOP AND

BEACOP. THE + (−) SIGN DENOTES A STATISTICALLY SIGNIFICANT
DIFFERENCE BETWEEN THEM, WHILE THE = SIGN INDICATES THERE IS NO

STATISTICAL DIFFERENCE BETWEEN THEM.

iEACOP bEACOP
F1 2.8524e-06 (8.1708e-07) 1.1275e+03 (1.3218e+03) +
F2 1.1997e-06 (1.6844e-06) 1.3184e+00 (1.2415e+00) +
F3 1.9136e+00 (1.9917e+00) 7.6395e+00 (1.8049e+01) +
F4 2.9889e+01 (7.3086e+00) 4.7882e+01 (1.1837e+01) +
F5 1.3205e-01 (2.0505e-01) 1.6761e-01 (3.2448e-01) =
F6 5.3905e+01 (5.7495e+00) 7.1958e+01 (1.3957e+01) +
F7 2.7522e+01 (6.326e+00) 4.3235e+01 (1.0430e+01) +
F8 2.3809e+00 (9.732e+00) 3.2766e+01 (2.3683e+01) +
F9 2.6376e+03 (4.6672e+02) 2.9548e+03 (3.0156e+02) +
F10 3.1643e+01 (1.3364e+01) 4.9513e+01 (2.0493e+01) +
F11 1.4991e+03 (4.7642e+02) 2.7108e+04 (4.9077e+04) +
F12 1.5835e+02 (1.9149e+02) 5.2353e+03 (7.2041e+03) +
F13 1.0156e+02 (2.7465e+01) 3.5200e+04 (4.1366e+04) +
F14 7.8638e+01 (8.3057e+01) 1.6779e+03 (1.615e+03) +
F15 3.7520e+02 (1.4856e+02) 4.7685e+02 (1.7156e+02) +
F16 1.0751e+02 (6.7040e+01) 1.2436e+02 (7.4085e+01) +
F17 2.2804e+02 (5.6898e+01) 2.2813e+05 (2.8967e+05) +
F18 7.7244e+01 (7.2363e+01) 2.8494e+03 (4.2253e+03) +
F19 1.8376e+02 (3.1189e+01) 1.9536e+02 (4.7942e+01) =
F20 2.2399e+02 (6.8492e+00) 2.4511e+02 (1.2264e+01) +
F21 1.0000e+02 (1.5605e-08) 1.0000e+02 (8.2336e-06) +
F22 3.7734e+02 (1.1644e+01) 4.0908e+02 (1.5156e+01) +
F23 4.4162e+02 (3.8874e+00) 4.6812e+02 (1.4085e+01) +
F24 3.8563e+02 (1.6451e+00) 3.8616e+02 (1.9188e+00) +
F25 1.0564e+03 (4.7261e+02) 1.2981e+03 (6.7282e+02) +
F26 5.1217e+02 (6.7655e+00) 5.1652e+02 (7.5282e+00) +
F27 3.1855e+02 (4.3402e+01) 3.1649e+02 (3.7788e+01) +
F28 5.1931e+02 (4.8598e+01) 5.4802e+02 (5.8227e+01) +
F29 3.2233e+03 (5.4382e+02) 3.7161e+03 (1.3628e+03) +

Table III reports a complete summary of iEACOP’s results,
including the best and worst results, along with the mean,
median, and standard deviation calculated over the 25 runs.

To assess the potential and limitations of iEACOP, we com-
pared its performance against the state-of-the-art competitors
that won the competition on the benchmark suite used here:

TABLE III
SUMMARY OF THE STATISTICS OF IEACOP’S RESULTS, OBTAINED OVER
25 INDEPENDENT RUNS, ON THE BENCHMARK PROBLEMS DEFINED IN

D = 30 DIMENSIONS.

Best Worst Median Mean Std
F1 3.5671e-07 3.7804e-06 3.0678e-06 2.8524e-06 8.1708e-07
F2 8.7519e-09 8.5058e-06 9.1044e-07 1.1997e-06 1.6844e-06
F3 4.1703e-08 3.9866e+00 2.1710e-07 1.9136e+00 1.9917e+00
F4 1.5919e+01 4.5768e+01 2.8854e+01 2.9889e+01 7.3086e+00
F5 2.7321e-03 7.2217e-01 2.2872e-02 1.3205e-01 2.0505e-01
F6 4.1738e+01 6.4838e+01 5.3609e+01 5.3905e+01 5.7495e+00
F7 1.4924e+01 3.9798e+01 2.5869e+01 2.7522e+01 6.326e+00
F8 3.1196e-10 4.9905e+01 8.9528e-02 2.3809e+00 9.732e+00
F9 1.2776e+03 3.4473e+03 2.7013e+03 2.6376e+03 4.6672e+02
F10 1.3936e+01 7.3633e+01 2.9856e+01 3.1643e+01 1.3364e+01
F11 6.9446e+02 2.8175e+03 1.3759e+03 1.4991e+03 4.7642e+02
F12 3.0854e+01 9.1755e+02 1.0473e+02 1.5835e+02 1.9149e+02
F13 5.2905e+01 1.5484e+02 1.0086e+02 1.0156e+02 2.7465e+01
F14 9.0117e+00 3.8715e+02 4.6242e+01 7.8638e+01 8.3057e+01
F15 1.2646e+02 6.9753e+02 3.7599e+02 3.7520e+02 1.4856e+02
F16 4.0037e+01 2.9626e+02 7.6147e+01 1.0751e+02 6.7040e+01
F17 8.3824e+01 3.1293e+02 2.462e+02 2.2804e+02 5.6898e+01
F18 1.7277e+01 3.4921e+02 4.5065e+01 7.7244e+01 7.2363e+01
F19 1.015e+02 2.4277e+02 1.8228e+02 1.8376e+02 3.1189e+01
F20 2.1294e+02 2.4509e+02 2.2295e+02 2.2399e+02 6.8492e+00
F21 1.0000e+02 1.0000e+02 1.0000e+02 1.0000e+02 1.5605e-08
F22 3.6149e+02 4.0850e+02 3.7664e+02 3.7734e+02 1.1644e+01
F23 4.3547e+02 4.4923e+02 4.4197e+02 4.4162e+02 3.8874e+00
F24 3.8340e+02 3.8699e+02 3.8680e+02 3.8563e+02 1.6451e+00
F25 2.0000e+02 1.5058e+03 1.2802e+03 1.0564e+03 4.7261e+02
F26 4.9697e+02 5.2433e+02 5.1159e+02 5.1217e+02 6.7655e+00
F27 3.0000e+02 4.5393e+02 3.0000e+02 3.1855e+02 4.3402e+01
F28 4.5833e+02 6.6293e+02 5.1433e+02 5.1931e+02 4.8598e+01
F29 2.4085e+03 4.7911e+03 3.2130e+03 3.2233e+03 5.4382e+02

Effective Butterfly Optimizer with Covariance Matrix Adapted
Retreat Phase (EBOwithCMAR), which is a dual population-
based bio-inspired optimization technique that uses a covari-
ance matrix to generate new solutions possibly improving the
local search capability of the optimizer [22]; jSO, which is
a variant of the iL-SHADE algorithm that uses a weighted
version of the mutation strategy to improve the quality of the
solutions [23]; a variant of the L-SHADE algorithm called
LSHADE-cnEpSin, which introduces a performance adapta-
tion scheme based on an ensemble of sinusoidal approaches,
and covariance matrix learning for the crossover operator [24].
In what follows, we graphically present the obtained results
by showing the convergence plot, which considers the median
obtained in the 25 runs, and the boxplot, which encompasses
the information of the best solution achieved after the last
fitness evaluation of each run. For clarity, we use the same
color scheme in all figures; the boxplots follow the exact
ordering of the labels in the legend.

Analyzing the performance of iEACOP with respect to
that of its competitors, we observed that in some cases (i.e.,
functions 3, 24, and 27), iEACOP achieves better results, as
can be clearly observed in Figure 1 that plots the results
obtained with function F3. In other cases, the performance
of the four meta-heuristics are comparable (i.e., functions 5,
23, and 25) as reported in Figure 2, which reports the results
obtained with function F27.

A different situation is observed in several cases (i.e.,
functions 2, 8, 11, 12, 13, 14, 17, 18, and 29) where iEACOP
performs worse than the other algorithms, as shown in Figure
3 where the convergence toward the optimal solution is slower

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on February 03,2025 at 19:26:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Comparison between iEACOP, EBOwithCMAR, jSO, and LSHADE-
cnEpSin for the optimization of the F3 benchmark functions. The convergence
plot (left) is obtained by considering the median of the best individuals’ error
values found during the 25 runs. The boxplots (right) represent the distribution
of the error values of the best individuals found by each algorithm over 25
runs.

Fig. 2. Comparison between iEACOP, EBOwithCMAR, jSO, and LSHADE-
cnEpSin for the optimization of the F27 benchmark functions. The conver-
gence plot (left) is obtained by considering the median of the best individuals’
error values found during the 25 runs. The boxplots (right) represent the
distribution of the error values of the best individuals found by each algorithm
over 25 runs.

and, in general, the final best results are significantly worse.

Fig. 3. Comparison between iEACOP, EBOwithCMAR, jSO, and LSHADE-
cnEpSin for the optimization of the F13 benchmark functions. The conver-
gence plot (left) is obtained by considering the median of the best individuals’
error values found during the 25 runs. The boxplots (right) represent the
distribution of the error values of the best individuals found by each algorithm
over 25 runs.

In all other functions (the majority of the cases), the results
present an interesting pattern in which, despite iEACOP’s
struggling to compete with the other algorithms, its conver-
gence speed is way faster in the first part of the optimization

process. This behavior can be observed, for instance, in Figure
4 (left), where iEACOP converges faster at the beginning of
the optimization, achieving median error values clearly lower
than its competitors, and gets stuck in a local minimum in the
second part of the runs. The final results are eventually worse,
as summarized in the boxplot of Figure 4 (right).

Fig. 4. Comparison between iEACOP, EBOwithCMAR, jSO, and LSHADE-
cnEpSin for the optimization of the F19 benchmark functions. The conver-
gence plot (left) is obtained by considering the median of the best individuals’
error values found during the 25 runs. The boxplots (right) represent the
distribution of the error values of the best individuals found by each algorithm
over 25 runs.

It is worth mentioning that both bEACOP and iEACOP
are written in Python 3 programming language and only
rely on NumPy [25] and SciPy [26] libraries. To evaluate
the benchmark functions, we created bindings of the official
C++ code using the Python pybind11 library. The source
code of bEACOP and iEACOP is available on GitHub at the
following address: https://github.com/andrea-tango/iEACOP.
We also calculated an empirical computational complexity
of bEACOP and iEACOP, as described in the instructions
of the CEC 2024 competition. Table IV reports 3 algorithm
complexity indicators of bEACOP and iEACOP. T1 indicates
the computing time of 10000 evaluations, averaged over each
problem. T2 is the complete computing time of the algorithm
with 10000 evaluations, averaged over each problem. To
accommodate variations in computing time due to the adaptive
nature of bEACOP and iEACOP, we considered the mean T̂2

over 5 independent calculations of T2. The algorithm overhead
is reflected by T3 = (T̂2 − T1)/T1. This table indicates that
iEACOP is slightly slower than bEACOP, probably due to the
higher number of generations performed by iEACOP.

TABLE IV
ALGORITHM COMPLEXITY.

T1 T̂2 T3

bECAOP 0.138 0.673 3.876
iECAOP 0.138 0.816 4.841

All tests were executed on a workstation equipped with two
Intel® Xeon® Gold 6152 (22 cores each and clock 2.10 GHz)
and 192 GB of RAM, running Ubuntu 22.04 LTS.

V. CONCLUSIONS

In this paper, we proposed an improved version of bEACOP
[12]–[14], an evolutionary algorithm designed for the opti-

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on February 03,2025 at 19:26:10 UTC from IEEE Xplore. Restrictions apply.

mization of complex-process models. Our version (iEACOP)
improves bEACOP’s exploration capabilities by limiting the
number of pointless local search calls and avoiding wasting
large portions of the fitness evaluation budget in non-promising
areas of the search space. iEACOP showed better optimization
capabilities than bEACOP in 27 out of 29 benchmark func-
tions, highlighting the effectiveness of our modifications.

When compared to the state-of-the-art algorithms that won
the competition on the CEC 2017 test suite benchmark func-
tions, iEACOP showed comparable performance, sometimes
obtaining better results (e.g., functions 3, 24, and 27). In other
functions, despite iEACOP struggles to compete with the other
algorithms at the end of the optimization, it exhibits a better
convergence speed in the first part of the optimization process,
achieving median error values lower than its competitors,
showing that the strategies behind iEACOP are promising.
We will further investigate this behavior to develop a new
version of iEACOP that can escape local minima. We plan to
apply the local searches based on the fitness evaluation budget,
deactivating them when the algorithm struggles and is stuck
on local optima. This will force it to explore other, possibly
more promising areas of the search space. In addition, we will
implement alternative strategies for generating new individuals
encompassing hyper-spheres instead of hyper-rectangles.

These results clearly indicate that although bEACOP was
originally designed to solve optimization problems in Systems
Biology, our modifications make iEACOP a suitable algorithm
for any real-valued problem. As a possible practical appli-
cation of iEACOP, we will apply it to solve the Parameter
Estimation of complex biochemical networks, which are often
characterized by oscillatory behaviors that make it difficult to
find good model parameters [27].

ACKNOWLEDGMENT

We acknowledge the CINECA award under the ISCRA
initiative, for the availability of high-performance computing
resources and support.

REFERENCES

[1] K. Deb, Optimization for engineering design: Algorithms and examples.
PHI Learning Pvt. Ltd., 2012.

[2] M. S. Nobile, A. Tangherloni, L. Rundo, S. Spolaor, D. Besozzi,
G. Mauri, and P. Cazzaniga, “Computational intelligence for parameter
estimation of biochemical systems,” in 2018 IEEE Congress on Evolu-
tionary Computation (CEC). IEEE, 2018, pp. 1–8.

[3] M. Elbes, S. Alzubi, T. Kanan, A. Al-Fuqaha, and B. Hawashin, “A
survey on particle swarm optimization with emphasis on engineering
and network applications,” Evolutionary Intelligence, vol. 12, no. 2, pp.
113–129, 2019.

[4] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2001.

[5] D. Simon, Evolutionary Optimization Algorithms. Wiley, 2013.
[6] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”

Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.
[7] D. Karaboga, “An idea based on honey bee swarm for numerical

optimization,” Technical report-tr06, Erciyes University, Engineering
Faculty, Computer Engineering Department, Tech. Rep., 2005.

[8] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. New York: Addison-Wesley, 1989.

[10] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[11] H. Beyer, The Theory of Evolution Strategies. Springer, Berlin,
Heidelberg, New York, 2001.

[12] D. R. Penas, P. González, J. A. Egea, R. Doallo, and J. R. Banga,
“Parameter estimation in large-scale systems biology models: a parallel
and self-adaptive cooperative strategy,” BMC bioinformatics, vol. 18, pp.
1–24, 2017.

[13] J. A. Egea, R. Martı́, and J. R. Banga, “An evolutionary method
for complex-process optimization,” Computers & Operations Research,
vol. 37, no. 2, pp. 315–324, 2010.

[14] J. A. Egea, E. Balsa-Canto, M.-S. G. Garcı́a, and J. R. Banga, “Dynamic
optimization of nonlinear processes with an enhanced scatter search
method,” Industrial & Engineering Chemistry Research, vol. 48, no. 9,
pp. 4388–4401, 2009.

[15] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, pp. 341–359, 1997.

[16] A. F. Villaverde, J. A. Egea, and J. R. Banga, “A cooperative strategy
for parameter estimation in large scale systems biology models,” BMC
systems biology, vol. 6, no. 1, pp. 1–17, 2012.

[17] J. A. Egea, D. Henriques, T. Cokelaer, A. F. Villaverde, A. MacNamara,
D.-P. Danciu, J. R. Banga, and J. Saez-Rodriguez, “Meigo: an open-
source software suite based on metaheuristics for global optimization
in systems biology and bioinformatics,” BMC bioinformatics, vol. 15,
no. 1, pp. 1–9, 2014.

[18] M. J. D. Powell, “An efficient method for finding the minimum of
a function of several variables without calculating derivatives,” The
Computer Journal, vol. 7, no. 2, p. 155, 1964.

[19] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algo-
rithm for bound constrained optimization,” SIAM Journal on Scientific
Computing, vol. 16, no. 5, pp. 1190–1208, 1995.

[20] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-
b: Fortran subroutines for large-scale bound-constrained optimization,”
ACM Trans. Math. Softw., vol. 23, p. 550–560, 1997.

[21] R. Cheng, M. Li, Y. Tian, X. Zhang, S. Yang, Y. Jin, and X. Yao,
“Benchmark functions for cec’2017 competition on evolutionary many-
objective optimization,” in Proc. IEEE Congr. Evol. Comput, 2017, pp.
1–20.

[22] A. Kumar, R. K. Misra, and D. Singh, “Improving the local search ca-
pability of effective butterfly optimizer using covariance matrix adapted
retreat phase,” in 2017 IEEE congress on evolutionary computation
(CEC). IEEE, 2017, pp. 1835–1842.

[23] J. Brest, M. S. Maučec, and B. Bošković, “Single objective real-
parameter optimization: Algorithm jSO,” in 2017 IEEE congress on
evolutionary computation (CEC). IEEE, 2017, pp. 1311–1318.

[24] N. H. Awad, M. Z. Ali, and P. N. Suganthan, “Ensemble sinusoidal
differential covariance matrix adaptation with euclidean neighborhood
for solving cec2017 benchmark problems,” in 2017 IEEE congress on
evolutionary computation (CEC). IEEE, 2017, pp. 372–379.

[25] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[26] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[27] A. Tangherloni, S. Spolaor, P. Cazzaniga, D. Besozzi, L. Rundo,
G. Mauri, and M. S. Nobile, “Biochemical parameter estimation vs.
benchmark functions: A comparative study of optimization performance
and representation design,” Applied Soft Computing, vol. 81, p. 105494,
2019.

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on February 03,2025 at 19:26:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Main procedure
solutions: data structure containing the candidate solutions at each
generation.
offspring: data structure containing the offspring solutions at each
generation.
solutionslocal: data structure containing the solutions generated by the
local search procedures over the generations.
xbest: the best solution found so far.
nchange = 20, ϵ = 10−3, n1 = 1, n2 = 10, balance = 0.5,
opt = Powell

1: procedure EACOP
2: INITIALISE(N,D)
3: it← 0
4: repeat
5: CHECK DIVERSITY()
6: COMBINATION METHOD()
7: UPDATE POPULATION()
8: if applylocal then
9: if lastBlocal

= 0 then
10: LOCAL SEARCH1()
11: if |solutionslocal| > 1 then
12: LOCAL SEARCH2()
13: end if
14: else
15: if |solutionslocal| = 0 then
16: if nLeval

≥ n1 then
17: LOCAL SEARCH1()
18: end if
19: else if nLeval

≥ n2 & it mod n2 = 0 then
20: LOCAL SEARCH2()
21: end if
22: end if
23: nLeval

← 0
24: end if
25: if lastRlocal

≥ nchange then
26: applylocal ← True
27: lastRlocal

← 0
28: end if
29: it← it+ 1
30: until stopping criterion is met.
31: end procedure

Algorithm 2 Initialisation routine
1: function HEURISTIC(D)
2: N ← 1 +

√
1 + 4D

3: N ← ⌈N
2
⌉

4: if N mod 2 = 0 then
5: return N
6: else
7: return N + 1
8: end if
9: end function

10:
11: function INITIALISE(N,D)
12: if N = 0 then
13: N ← HEURISTIC(D)
14: end if
15: M ← 10D
16: solutionsinitial ← RANDOM SAMPLING(M)
17: EVALUATE(solutionsinitial)
18: SORT(solutionsinitial)

▷ {x1,x2, . . . ,xM} so that f(xi) ≤ f(xj)
▷ where i, j ∈ 1, 2, . . . ,M with i < j

19: for i← 1, N
2

do
20: solutions[i]← solutionsinitial[i]
21: end for
22: for i← N

2
+ 1, N do

23: rnd← RANDOM INTEGER(N
2

+ 1,M)
24: solutions[i]← solutionsinitial[rnd]
25: end for
26: SORT(solutions)
27: xbest ← solutions[1]
28: neval ← neval +M
29: nLeval

← nLeval
+M

30: end function

Algorithm 3 Identification of similar individuals
function CHECK DIVERSITY()

2: for i← 1, N − 1 do
xi ← solutions[i]

4: for j ← i+ 1, N do
xj ← solutions[j]

6: if MAX(|xi−xj

xj
|) ≤ ϵ then

x←RANDOM SAMPLING(1)
8: EVALUATE(x)

solutions[j]← x
10: neval ← neval + 1

nLeval
← nLeval

+ 1
12: end if

end for
14: end for

end function

Algorithm 4 Generation of the offspring population
1: function COMBINATION METHOD()
2: for i← 1, N do
3: xi ← solutions[i]
4: for j ← 1, N do
5: xj ← solutions[j]
6: if i ̸= j then
7: α← −1
8: if i < j then
9: α← 1

10: end if
11: β ← |j−i|−1

N−2
; δ ← xj−xi

2
12: c1 ← xi − δ(1 + αβ); c2 ← xi + δ(1− αβ)
13: r← RANDOM(D); x← c1 + (c2 − c1) • r

▷ where • represents the Hadamard Product
14: EVALUATE(x)
15: offspring[i][j]← x
16: end if
17: end for
18: neval ← neval +N − 1
19: nLeval

← nLeval
+N − 1

20: end for
21: end function

Algorithm 5 Update of the current population
1: function GO BEYOND(i)
2: xpr ← solutions[i]
3: xch ← offspring[i][1]
4: improvement← 1
5: λ← 1
6: while f(xch) < f(xpr) do
7: c1 ← xch −

(xpr−xch)

λ
8: c2 ← xch

9: x← RANDOM UNIFORM(c1, c2)
10: EVALUATE(x)
11: xpr ← xch; xch ← x
12: improvement← improvement+ 1
13: if improvement = 2 then
14: λ← λ

2
15: improvement← 0
16: end if
17: neval ← neval + 1
18: nLeval

← nLeval
+ 1

19: end while
20: return xpr

21: end function

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on February 03,2025 at 19:26:10 UTC from IEEE Xplore. Restrictions apply.

22: function UPDATE POPULATION()
23: for i← 1, N do
24: SORT(offspring[i])
25: xi ← solutions[i]
26: xo ← offspring[i][1]
27: if f(xo) < f(xi) then
28: x← GO BEYOND(i)
29: solutions[i]← x
30: nstuck[i]← 0
31: else
32: nstuck[i]← nstuck[i] + 1
33: if nstuck[i] > nchange then
34: x←RANDOM SAMPLING(1)
35: EVALUATE(x)
36: solutions[i]← x
37: neval ← neval + 1
38: nLeval

← nLeval
+ 1

39: nstuck[i]← 0
40: end if
41: end if
42: end for
43: SORT(solutions)
44: if f(solutions[1]) < f(xbest) then
45: xbest ← solutions[1]
46: lastBlocal

← 0
47: lastRlocal

← 0
48: if it ≥ 2 · nchange then
49: applylocal ← True
50: end if
51: else
52: lastRlocal

← lastRlocal
+ 1

53: end if
54: end function

Algorithm 6 Local search main routines
1: function LOCAL SEARCH1()
2: z← LOCAL SEARCH(xbest, opt)
3: LOCAL EVALUATE(z, xbest)
4: end function
5:
6: function LOCAL SEARCH2()
7: y← FLATTEN(offspring)
8: yq ← SORT(y)

▷ yq = {yq,1,yq,2, . . . ,yq,M} so that
▷ f(yq,i) ≤ f(yq,j) if i < j

9: yd ← ∅
10: for i← 1, LENGTH(y) do
11: d← ∅
12: for j ← 1, LENGTH(solutionslocal) do
13: d = d∪EUCL(y[i], solutionslocal[j])
14: end for
15: yd ← yd∪ MIN(d)
16: end for
17: yd ← SORT(yd)

▷ yd = {yd,1,yd,2, . . . ,yd,M} so that
▷ di ≥ dj if i < j

18: for k ← 1, LENGTH(y) do
19: score[k] = (1− balance) · i+ balance · j

▷ where i is the index of yk in yq and
▷ j is the index of yk in yd

20: end for
21: ymin = MIN(score)
22: z← LOCAL SEARCH(ymin, opt)
23: LOCAL EVALUATE(z, ymin)
24: end function

Algorithm 7 Local search subroutines
1: function LOCAL SEARCH(z, opt)
2: if opt = “Powell” then
3: zlocal ← POWELL(z)
4: else
5: zlocal ← L-BFGS-B(z)
6: end if
7: neval ← neval + nlocal

8: return zlocal
9: end function

10:
11: function LOCAL CHECK(z)
12: if f(z) < f(xbest) then
13: lastRlocal

← 0
14: lastBlocal

← 0
15: applylocal ← True
16: solutions[−1]← z
17: SORT(solutions)
18: xbest ← solutions[1]
19: return True
20: else
21: lastRlocal

← lastRlocal
+ 1

22: lastBlocal
← lastBlocal

+ 1
23: applylocal ← False
24: return False
25: end if
26: end function
27:
28: function LOCAL EVALUATE(z, z1)
29: if LOCAL CHECK(z) = False then
30: optold ← opt
31: if opt = “Powell” then
32: opt← “L-BFGS-B”
33: else
34: opt← “Powell”
35: end if
36: znew ← LOCAL SEARCH(z1, opt)
37: LOCAL CHECK(znew)
38: if f(znew) < f(z) then
39: if znew /∈ solutionslocal then
40: solutionslocal ← solutionslocal ∪ znew

41: end if
42: else
43: opt← optold
44: if z /∈ solutionslocal then
45: solutionslocal ← solutionslocal ∪ z
46: end if
47: end if
48: else
49: if z /∈ solutionslocal then
50: solutionslocal ← solutionslocal ∪ z
51: end if
52: end if
53: end function

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on February 03,2025 at 19:26:10 UTC from IEEE Xplore. Restrictions apply.

