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ABSTRACT

Optimization problems find widespread use in both single-objective and multi-
objective scenarios. In practical applications, users aspire for solutions that con-
verge to the region of interest (ROI) along the Pareto front (PF). While the conven-
tional approach involves approximating a fitness function or an objective function
to reflect user preferences, this paper explores an alternative avenue. Specifically,
we aim to discover a method that sidesteps the need for calculating the fitness
function, relying solely on human feedback. Our proposed approach entails con-
ducting a direct preference learning facilitated by an active dueling bandit algo-
rithm. The experimental phase is structured into three sessions. Firstly, we accsess
the performance of our active dueling bandit algorithm. Secondly, we implement
our proposed method within the context of Multi-objective Evolutionary Algo-
rithms (MOEAs). Finally, we deploy our method in a practical problem, specifi-
cally in protein structure prediction (PSP). This research presents a novel interac-
tive preference-based MOEA framework that not only addresses the limitations of
traditional techniques but also unveils new possibilities for optimization problems.

1 INTRODUCTION

In optimization problems, algorithms typically converge to the Pareto front (PF), yet users aim for
convergence in their specific region of interest (ROI). To bridge this gap, constructing a fitness func-
tion to capture user preferences is common, involving considerations of multiple metrics, especially
in multi-objective optimization problems (MOPs) (Miettinen & Mäkelä, 2000; Li et al., 2019; Deb
& Kumar, 2007; Branke et al., 2015; Tomczyk & Kadziński, 2019; Deb et al., 2010; Chugh et al.,
2015; Chen et al., 2021; Kadziński et al., 2020). However, a significant challenge arises when the
ROI lacks a fitness function or the fitness function is hard to express. The fitness-based approach
struggles without a baseline to learn and evaluate preference accuracy. To address this, given the
inevitability of human input in the ROI, our approach explores the possibility of focusing on global
optima through user preferences.

This paper centers on direct preference-based evolutionary multi-objective optimization
(PBEMO), where reliance on human feedback is crucial for cost-effective and accurate exploration
in the absence of a fitness function. Existing solutions, like the dueling bandit approach (Yan et al.,
2022; Bengs et al., 2021; Sui et al., 2018) and reinforcement learning (RL) (Myers et al., 2023;
Rafailov et al., 2023), offer insights but fall short in addressing the challenges of expensive sampling
and consultation. Striking a balance between accuracy and consultation frequency is vital, given that
excessive queries may yield inaccurate feedback. The dueling bandit method, leveraging pairwise
comparisons for optimal arm identification, emerges as a simple and effective approach. This pa-
per explores a dueling bandit algorithm adept at managing sampling costs to tackle challenges in
PBEMO preference learning .

The current state of PBEMO faces three main challenges. Firstly, traditional preference learning
(PL) in PBEMO algorithms relies on an indirect approach, using a fitness function to capture user
preferences, which proves less effective in fitness-free scenarios (Section 3.3). Secondly, the prac-
ticality of sampling and consultation introduces a substantial expense. While studies acknowledge
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Figure 1: A deception of difference between traditional PBEMO and our proposed human-dominated
PBEMO architecture

that repetitive queries may yield inaccurate feedback (Hejna & Sadigh, 2023), quantifying optimal
query times remains unaddressed. Lastly, existing fitness-based PBEMO algorithms lack a strict
mathematical regret bound.

To overcome these challenges, we introduced RUCB-AL, an active preference learning algorithm
based on dueling bandits acting as a decision maker (DM) in PBEMO structure. Our baseline algo-
rithm is the well-known RUCB (Zoghi et al., 2014a). The integration of RUCB with active learn-
ing (Settles, 2009; Ren et al., 2021) aims to control the budget of query times while ensuring ac-
curate preference prediction. Simultaneously, we proposed an efficient mechanism to decide when
to start or stop consultation and optimally select incumbent solutions for DM. The architecture
of direct PBEMO consists of three main components, Fig. 1: Optimization Module, employing
MOEAs like dominance-based EA (e.g., NSGA-II (Deb et al., 2002a)), decomposition-based EA
(e.g., MOEA/D (Zhang & Li, 2007)), and indicator-based EA (e.g., R2-IBEA (Zitzler et al., 2004));
Consultation Module, tailored for ”active pairwise comparison” by balancing random search and
greedy search; Preference Elicitation Module, which reprocesses the virtual fitness (Section 2.4)
function by accumulating past recommendations.

In the empirical study, we begin by validating the active learning capability of our proposed method
through a comparative analysis with other pairwise preferential module. Subsequently, we apply our
proposed method on MOP test suites (i.e., ZDT (Deb et al., 2002b), DTLZ (Zitzler et al., 2000),
WFG (Huband et al., 2006)), and assess its performance against peer algorithms. Finally, we extend
our algorithm to address a real-world problem, specifically protein structure prediction (PSP) (Zhang
et al., 2023).

In summary, we have these three main contributions:

• We introduced a direct PBEMO framework that directly learns the global optima from
human feedback, applicable not only to single-objective problems (SOPs) but also to MOPs
by integerating it with three categorical MOEAs.

• We incorporated active learning in dueling bandit, enabling the quantification of the budget
for sampling and consultation. Our active dueling bandit has a regret bound of O(K).

• Beyond validation on basic benchmark problems, we demonstrate the practical applicabil-
ity of our proposed method by implementing it on a practical problem, PSP. The application
showcases the versatility of effectiveness of our approach in addressing practical problems.

The related work is available in Appendix A.1.
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2 PROPOSED METHOD

2.1 PROBLEM STATEMENT

The MOP (Deb, 2001) considered in this paper is defined as follows:

min
subject to x∈Ω

F(x) = (f1(x), f2(x), . . . , fm(x))
⊤
. (1)

where a solution x represents a vector of n dimension variables: x = (x1, x2, . . . , xn)
T and F(x)

denotes an m-dimensional objective vector where each objective function can be either minimized
or maximized. For the purpose of this paper, we focus on the minimization problem.

The feasible region Ω resides within the decision space Rn, while the mapping collection F : Ω →
Rm corresponds to the objective space Rm. When considering two randomly chosen solutions, x1
and x2, from Ω, we say that x1 dominates x2 if fi(x1) ≤ fi(x2) holds for all i ∈ {1, 2, . . . ,m}. A
solution x ∈ Ω is deemed Pareto-optimal if there is no x′ ∈ Ω that dominates x. The collection of
all Pareto-optimal solutions forms the Pareto-optimal set (PS).

In addition to the decision variable space, the objective functions define a multidimensional space
known as the objective space, denoted as Z. For each solution x in the decision variable space, a
corresponding point F(x) = z = (z1, z2, . . . , zm)T exists in the objective space. The objective
space associated with the PS is referred to as PF.

2.2 OPTIMIZATION MODULE

The evolutionary multi-objective (EMO) algorithm is one of the most commonly used and efficient
methods for solving MOPs. EMO algorithms drive the feasible solutions to the PF of test problems.
Up-to-date EAs can be classified into three types: domination-based EA (e.g., NSGA-II (Deb et al.,
2002a)), decomposition-based EA (e.g., MOEA/D (Zhang & Li, 2007)) and indicator-based EA
(e.g., IBEA (Zitzler et al., 2004)). NSGA-II, MOEA/D, and IBEA are our baseline EMO algorithms.

However, providing a set of solutions as close to the Pareto front as possible may not always meet
user expectation. In this paper, we focus on PBEMO algorithms which provide the user with a
specific solution or a cluster of soltuions close to ROI. With the help of consultation module (Sec-
tion 2.3), these EAs can reach the interested region.

In each geneartion, we will gather a population of solutions. However, it’s not sensibel to feed
the consultation module with the whole population. Because solutions share different uncertainty.
Not every one is promising to be global optima. We select 10 incumbent solutions from the whole
population using a virtual fitness function Vs, equation (9). We map the incumbent solution to arms
in dueling bandit by calculating the pairwise winning probability pij = σ(Vs(zi) − Vs(zj)) while
in the first round pij = 1/2. In this paper, the logistic probability modle σ(x) = 1/(1 + exp(−x))
is utilized, which is the common choice in related researches.

2.3 CONSULTATION MODULE

Given that humans find it easier to compare two objects and identify which is better (Li et al.,
2020b), our proposed method leverages pairwise preference learning in the consultation module.
Specifically, it employs direct fitness-free preference learning through the use of dueling bandits.

2.3.1 BASIC DEFINITION

Our proposed method of consultation module is built upon RUCB (Zoghi et al., 2014a). To our
knowledge, our method is the first to integrate dueling bandit with active learning. We consider a
dueling bandit with K(K ≥ 2) arms, denoted by A = {1, 2, . . . ,K}. In each round t > 0, a
pair of arms (ai, aj) is chosen for a noisy comparison by users. The comparison result is 1 if ai is
preferred over aj , and the result is 0 vice versa. We assume the user preference is consistent and
stationary over time. The distribution of comparison outcomes is characterized by the preference
matrix P = [pij ]K×K , where pij (Section 2.2) denotes the probability of arm i preferred over arm
j, pij = P{ai ≻ aj}, i, j = 1, 2, . . . ,K. Also pij + pji = 1, and pii =

1
2 . Arm i is said to beat j if
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Algorithm 1 RUCB-AL (Relative Upper Confidence Bound in Active Learning)

Input: κ, T ∈ {1, 2, . . .} ∪ {∞}, oracle O, budget M .
1: W = [wij ]← 0K×K //2D array of wins: wij is the number of times ai beat aj .
2: num query = 0.
3: while num query ≤M do
4: for t = 1, . . . , T do
5: pmin = 1

Ktκ .
6: Calculate P̂ according to equation (4), where p̂ii ← 1

2 for each i = 1, . . . ,K.
7: Calculate U according to equation (5).

// All operations are element-wise; x
0
:= 0.5 for any x.

8: C ← {ac|∀j : ucj >
1
2}.

9: if C = ∅ then
10: Pick c from {1, 2, . . . ,K} according to the distribution of p(ac):

p(ac) = pmin + (1−Kpmin)

∑K
j=1 L(p̂cj)∑K

i=1

∑K
j=1 L(p̂ij)

(3)

11: else
12: Pick c from C according to equation (3).
13: end if
14: d← argmaxj ucj , with ties broken randomly.

Moreover, if there is a tie, d is not allowed to be equal to c.
15: if ac was compared to ad queried previously then
16: Reuse its previously used query result.
17: else
18: Query oracle O for the comparison result arm ac over ad.
19: num query ← num query + 1
20: end if
21: Increment wcd or wdc depending on which arm wins.
22: end for
23: end while
Output: An arm ac that beats the most arms, i.e., c with the highest Copeland score ζc.

pij >
1
2 . In this paper, P̂ = [p̂ij ]K×K (equation (4)) denotes the predicted preference matrix, where

p̂ij denotes the predicted preference probability.

In the traditional RUCB, the algorithm assumes the existence of Condorcet winner (Urvoy et al.,
2013), an arm that has a probability of winning against all other arms greater than 1

2 . However, this
requirement may not always be satisfied in practice. So we give the following definition:

Definition 1. In this paper, we assume that there exists Copeland winner (Urvoy et al., 2013). An
arm i is said to be Copeland winner when:

a∗ = argmax
i∈A

∑
j ̸=i,j∈A

I{pij >
1

2
} (2)

where I{pij > 1
2} is the indicator function, a∗ denotes the optimal arm among all the K solutions.

The Copeland score is defined as
∑

j ̸=i,j∈A I{pij > 1
2}, and the normalized Copeland score is ζi =

1
K−1

∑
j ̸=i,j∈A I{pij > 1

2}. Let ζ∗ be the highest normalized Copeland score, ζ∗ = maxi∈A ζi =

ζa∗ . The cumulative regret up to round T is defined RT =
∑T

t=1 rt = ζ∗T − 1
2

∑T
t=1[ζit + ζjt] ,

where ζit denotes the normalized Copeland score of querying arm i at round t.

2.3.2 LEARNING PREFERENCE WITH ACTIVE DUELING BANDIT

As the name suggests (Algorithm 1), our algorithm is a dueling-bandit-inspired active learning al-
gorithm. Active learning has two core compositions (Settles, 2009; Ren et al., 2021): scenario and
query strategy. Among the three scenarios (query synthesis, streamed-based selective sampling, and
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pool-based), our research problem is most suitable for the pool-based active learning scenario since
we have sufficient computation resources and select the next querying object based on the distribu-
tion of the entire collection. From the perspective of query strategy, active learning can be classified
into uncertainty sampling, query-by-committee, and expected model change. Uncertainty sampling
is most appropriate for our proposed method because we aim to provide a certainty level for recom-
mendations, calculated in the uncertainty sampling.

In the case we have 5 arms (Fig. 2), after each round, we obtain a 5 × 5 predicted winning proba-
bility using equation (4). Subsequently, we calculate a utility matrix, denoting the weighted loss of
each arm based on equation (5). The first candidate arm c is selected if its row has the maximum
cumulative loss. The second candidate arm d is selected if, in the row corresponding to c, arm d
contributes the most to the cumulative loss. The essence of our proposed method lies in selecting the
least certain solutions from the perspective of weighted loss function. After several iterations, our
method gradually converges to an accurate prediction of the winning probability.

Our proposed method has several input parameters. κ is a parameter controlling the trade-off be-
tween random search and greedy search. If κ = 0, then the sampling probability uij = 1

K for
each arm, meaning we randomly choose the two comparison arms. The closer κ is to 0, the more
our algorithm explores. T is the maximum iterative round. B denotes the total budget, indicating
the maximum number of times the dueling bandit algorithm is allowed to ask for comparison re-
sults from Oracle O. Also, we assume that if the same question has been asked to O, the result of
consultation can be reused without consuming B.

Each round, we maintain two matrices. P̂ = [p̂ij ]K×K is the predicted winning probability matrix:

P̂ =
w

w +w⊤ (4)

where w = [wij ]K×K stores the comparison results, wij denotes the total number of times arm i
beats j. The denominator denotes the matrix storing the total comparison times between each pair
of arms.

Also, our algorithm maintains a utility matrix, U = [uij ]K×K , which is used to measure the predic-
tion accuracy for each arm. U is defined as follows:

U = pmin + (1−Kpmin)
L(p̂ij)∑

ai,aj∈A L(p̂ij)
(5)

where pmin = 1/(Ktκ) is the trade-off minimum probability controlled by κ (line 5 Algorithm 1).
It’s worth noticing that the loss function we use here is the mean square error (MSE):

LMSE(P̂) =
1

K

K∑
i=1

K∑
j=1

(p̂ij − pij)
2 (6)

There are many other popular loss functions, such as logistic loss, squared loss and exponential
loss (Ganti & Gray, 2012), which is most suitable for classification problems because they use
traditional one-hot vecotr to indicate class.

Our proposed method has regret satisfying the following proposition.

Proposition 1. For any t ∈ [T ], if RUCB-AL runs with γ = 1
tκ = K, then the expected regret

of Algorithm 1 satisfies (proof in Appendix A.2):

E[RT ] ≤
K2 −K − 4

K − 1
T + logK

2.4 PREFERENCE ELICITATION MODULE

There are two critical metrics for every algorithm structure. The first, denoted as c1, representing the
first constraint, determining Z the first consultation should occur:

c1 : current generation ≥ δ1 (7)
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Figure 2: A deception of how RUCB-AL choose comparison pairs (K = 5)

where δ1 = b × G is the threshold for the first constraint, b is the budget parameter for the first
consultation, and G denotes the maximum number of generations. In the experiment session, we
assume when the evaluated generation reaches the pre-designed budget (e.g., b = 0.4), the first
consultation can take place.

The second constraint, c2, calculates the information gain DKL of two adjacent recommendations:

c2 : DKL(Vs−1, Vs) ≥ δ2 (8)

where DKL(Vs−1, Vs) =
∑

zi∈Z Vs−1(zi)
log(Vs−1(zi))
log(Vs(zi))

, and Vs is the virtual utility function denot-
ing the predicted preference distribution of the current population at consultation session s, defined
as follows:

Vs =

{
N (z∗0, σ), s = 0

vs(z
∗
s) + λVs−1, otherwise

(9)

where λ is the discount rate, z∗s is the recommended solution in consultation session s. Vs is only an
assumption of the preference distribution which only cares about the gloval optima. c2 calculates the
difference between two distributions. When the recommendation of consultation module becomes
stable, the predicted preference distribution will be almost the same, and thus DKL will have a small
value (set δ2 = e−3). When DKL reaches the small threshold value δ2, it is assumed that there is no
need for further consultation. The structural PBEMO algorithms are listed below (the step-by-step
process is available in Appendix A.3. ):

Algorithm 2 Single-ojbective PBEMO

Input: max number of round T , N number of pairwise comparisons.
1: Uniformly sample N pairwise comparisons as our dataset D = {[zi, z′i], yi}Ni=1, where yi = 1

denotes zi ≻ z′i.
2: run RUCB-AL with input T and D.

Output: The global optima z∗.

Algorithm 3 Dominance-Based PBEMO

Input: G max number of generation, N population number, s consultation session.
1: s← 0
2: while current generation < G do
3: if c1 is true and c2 is true then
4: Update Vs and select 10 incumbent solutions zi, i = {1, 2, . . . , 10} from current population

according to Vs.
5: Feed zi to RUCB-AL, and record recommendation z∗s .
6: Run NSGA-II by assigning fitness value with virtual fitness function.
7: s← s+ 1.
8: else
9: Run NSGA-II.

10: end if
11: end while
Output: Population zi, i ∈ {1, 2, . . . , N}.
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Algorithm 4 Decomposition-Based PBEMO

Input: G max number of generation, N population number, s consultation session, W = {wi}Ni=1
uniformly distributed weight vecotrs, µ number of best weight vecotor, η step size.

1: s← 0
2: while current generation < G do
3: if c1 is true and c2 is true then
4: Update Vs and select 10 incumbent solutions zi, i = {1, 2, . . . , 10} from current population

according to Vs.
5: Feed zi to RUCB-AL, and record recommendation z∗s .
6: Run NSGA-II by assigning fitness value with virtual fitness function.
7: Select µ best points and store their corresponding weight vectors WV = {wi}µi=1.
8: Move the remainning reference points towards wV i

as follows and collect new wegiht
vectors W ′:

wj = wj + η × (wV i

− wj), (i = 1, 2, . . . , µ)

9: W ←W ′

10: Run MOEA/D with new W .
11: s← s+ 1.
12: else
13: Run MOEA/D.
14: end if
15: end while
Output: Population zi, i ∈ {1, 2, . . . , N}.

Algorithm 5 Indicator-Based PBEMO

Input: G max number of generation, N population number, s consultation session, W = {wi}Ni=1
uniformly distributed weight vecotrs, µ number of best weight vecotor.

1: s← 0
2: while current generation < G do
3: if c1 is true and c2 is true then
4: Run the same as Algorithm 4 line 3-8.
5: Recalculate R2 indicator (equation (33)).
6: Run R2-IBEA with new W .
7: s← s+ 1.
8: else
9: Run R2-IBEA.

10: end if
11: end while
Output: Population zi, i ∈ {1, 2, . . . , N}.

3 EMPIRICAL STUDY

3.1 RESEARCH QUESTIONS

In this paper, we mainly focus on the following 3 research questions (RQs):

• RQ1: What is the effect of different budget on active dueling bandit?

• RQ2: What is the performance of our proposed method on traditional test problem suite
comparing to peer algorithms?

• RQ3: Whether our proposed method still works well on the practical problem?

The performance metrics are listed in Appendix A.4.

3.2 EFFECTS OF BUDGET ON ACTIVE DUELING BANDIT
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We evaluate the active learning ability of our pro-
posed method in two sessions, on a toy problem and
9 black-box optimization problems (BBOPs).

Toy Problems We set the number of arms K = 10
with the optimal arm as a∗ = 1, and the perfor-
mance metric equation (6) guides our assessment.
Real-world consultation results are expensive, so
we limit the number of different queries to B =
{20, 30, 40} (Fig. 3 (a)) and compare it with the
baseline algorithm, RUCB (Fig. 3 (b)). In Fig. 3 (a),
a sharp increase occurs when the number of round
is less than 10 due to the small number of compar-
isons. The loss stabilizes after a certain round due
to the budget limitation. A larger budget allows for
more rounds to be utilized.

BBOPs We select Sphere, Booth, Ackley, Three-
Hump Camel, Easom and Styblinski-Tang, Hartmann, Alpine1, and a 4-dimensional real over 100
sushi items (Sushi) (Kamishima, 2003). Peer algorithms are 3 traditional dueling bandit algorithms
and 3 Bayesian optimization methods (i.e, qTS (Siivola et al., 2021), qEUBO (Astudillo et al., 2023),
and random PBO). At each round the search space is 100 scatter points randomly and uniformly dis-
tributed in the feasible region. We set B = 150 for RUCB-AL and run repetitively 20 times. In our
context, user preference is to find the global minimum value of the objective function zr = −Inf .
Experiments result in Fig. 5, Fig. 8.

Response to RQ1: This subsection presents the results of an empirical study assessing the active
learning ability of RUCB-AL under toy problems with 10 arms and budgets of B = {20, 30, 40},
as well as synthetic problems with 100 arms and a budget of 150. The findings indicate that
our proposed method converges faster than the baseline algorithm with limited consultation. Fur-
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thermore, with 10 arms, our method consistently outperforms RUCB when B ≥ 30. In synthetic
problems, RUCB-AL surpasses other peer algorithms except in cases where the objective function
exhibits steep ridges.

3.3 PERFORMANCE OF OUR PROPOSED METHOD ON TEST PROBLEM SUITE

In the session, we implement the three different categorical PBEMO algorithms on ZDT (m = 2),
DTLZ (m = {3, 5, 8, 10}) and WFG (m = 3) benchmark problems, specifically ZDT1∼ZDT4,
ZDT6, DTZL1∼DTLZ4, WFG1, WFG3, WFG5, and WFG7 which exhibit various PF shapes. Ad-
ditionally we choose six peer algorithms (i.e., I-MOEAD-PLVF (Li et al., 2019), I-NSGA2/LTR,
I-MOEA/D/LTR, I-R2-IBEA/LTR (Li et al., 2023), IEMO/D (Tomczyk & Kadziński, 2019), I-
MOEA/D-PPL (Huang & Li, 2023)). The number of decision variables and evaluation times are
set as recommended, and runs 20 times repetitively. Our proposed method is limited to querying
the consultation module for at most 10 times. In each consultation session, a maximum of 10 solu-
tions are sampled. With the findings from RQ1, we set B = 40. The specific parameter settings and
population results of our proposed method are detailed in Appendix A.6.

Response to RQ2: Our proposed method achieves the minimum mean in 8 instances (Ta-
ble 1), ranking second overall. However, from the perspective of the Wilcoxon signed-rank
test (Wilcoxon, 1992), our method consistently outperforms the other algorithms most of the time.
When applied to MOP test suites, our method demonstrates more stable and accurate performance
with a limited query budget.

3.4 PERFORMANCE OF OUR PROPOSED METHOD ON PRACTICAL PROBLEM: PSP

(a) (b)

Bound dDFIRE Rosetta RWplus
-6

-4

-2

0

2

Objectives

V
a
lu
e
(◊

10
00
)

1K36(m = 4)

Population Native Energy

Bound dDFIRE Rosetta RWplus
-6

-4

-2

0

2

Objectives

V
a
lu
e
(◊

10
00
)

1K36(m = 4)

Population Native Energy

Figure 6: Running MOEA/D-RUCB-AL on
PSP problems, for example protein 1K36, (a)
the red color is the native protein structure
and the blue color is our predicted protein
structure, (b) the objective value of our pre-
dicted protein and the native protein

In this section, five different structural proteins are
selected (1K36, 1ZDD, 2M7T, 3P7K and 3V1A) to
construct PSP problem as a multi-objective prob-
lem (Zhang et al., 2023). Four energy functions (i.e.,
Bound, dDFIRE, Rosetta, RWplus) serves as ob-
jective functions. Each protein structure is tested
three times. Following the results of RQ2, we choose
MOEA/D-RUCB-AL as our method. For simplicity,
I-MOEA/D-PLVF, I-NSGA2/LTR and IEMO/D are
selected as peer algorithms, as they are often favor-
able in RQ2.

Fig. 6 (a) displays the molecular structure of native
protein 1K36 alongside our predicted structure, red
part denoting the native protein structure while blue
for the predicted structure. Fig. 6 (b) illustrates the
corresponding population arrangement of the pre-
dicted protein. The complete PSP experiments are
available in Appendix A.7.

Response to RQ3: Our proposed method demonstrates applicability to more sophisticated real-
world problems and exhibits superior performance. As highlighted in RQ1, our method excels in
real-world scenarios, potentially attributed to its utilization of direct PBEMO.

4 CONCLUSION

This paper introduces a direct PEBMO structure incorporating RUCB-AL, an active dueling bandit
algorithm. The structure is versatile, addressing both SOPs and MOPs. Empirical studies demon-
strate the active learning prowess of RUCB-AL. In benchmark problems, it outperforms peer algo-
rithms with a more stable and accurate performance. Additionally, its application to a real-world
problem, PSP, highlights its efficacy in complex scenarios compared to fitness-based preference
learning algorithms.
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Tanguy Urvoy, Fabrice Clerot, Raphael Féraud, and Sami Naamane. Generic exploration and k-
armed voting bandits. In ICML’13: Proc. of the 30th International Conference on Machine Learn-
ing, pp. 91–99. PMLR, 2013.

Frank Wilcoxon. Individual comparisons by ranking methods. Springer, 1992.

Huasen Wu and Xin Liu. Double thompson sampling for dueling bandits. Adv. neural inf. process.
syst, 29, 2016.

Xinyi Yan, Chengxi Luo, Charles LA Clarke, Nick Craswell, Ellen M Voorhees, and Pablo Castells.
Human preferences as dueling bandits. In SIGIR ’22: Proc. of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 567–577, 2022.

12



Under review as a conference paper at ICLR 2024

Yisong Yue and Thorsten Joachims. Beat the mean bandit. In ICML’11: Proc. of the 28th interna-
tional conference on machine learning, pp. 241–248. Citeseer, 2011.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
problem. J. Comput, 78(5):1538–1556, 2012.

Jifan Zhang, Lalit Jain, and Kevin Jamieson. Learning to actively learn: A robust approach. 2020.
URL http://arxiv.org/abs/2010.15382.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposi-
tion. IEEE Trans. Evol. Comput., 11(6):712–731, 2007. doi: 10.1109/TEVC.2007.892759.

Zhiming Zhang, Shangce Gao, Zhenyu Lei, Runqun Xiong, and Jiujun Cheng. Pareto dominance
archive and coordinated selection strategy-based many-objective optimizer for protein structure
prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023.

Luisa M. Zintgraf, Diederik M. Roijers, Sjoerd Linders, Catholijn M. Jonker, and Ann Nowé. Or-
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A APPENDIX

A.1 RELATED WORK

A.1.1 PREFERENCE LEARNING

Preference learning can be divided into three categories: priori, posteriori and interactive based on
the timing of consultation. Interactive preference elicitation (Li et al., 2020b) presents a valuable
opportunity for the DM to gradually comprehend the underlying black-box system and consequently
refine user preference information.

Preference learning has received significant attention in research. The process of preference learn-
ing can be categorized into two types: fitness-function based or fitness-function free. The first type,
which is widely explored (Jacquet-Lagreze & Siskos, 1982; Fürnkranz & Hüllermeier, 2003; Chu
& Ghahramani, 2005; Houlsby et al., 2011; 2012; Zintgraf et al., 2018), involves approximating
a value function that represents user preference using mathematical tools such as Gaussian pro-
cess (GP), neural network (NN) and others. Fitness-based method can be traced back to 1982.
Jacquet-Lagreze & Siskos (1982) introduced the UTA (UTilités Additives) method for deducing
value functions based on a provided ranking of reference set. In 2003, Fürnkranz & Hüllermeier
(2003) employed pairwise preference to predict a ranking, representing a total order, for poten-
tial labels associated with new training examples. In 2005, Chu & Ghahramani (2005) utilized GP
for pairwise preference learning (PGP) within a Bayesian framework. In 2007, Cao et al. (2007)
proposed ListNet, a NN-based learning-to-rank method. In 2011, Houlsby et al. (2011) used GP
classification integrated with information theory to select the best solution with maximum entropy.
In 2012, Houlsby et al. (2012) extended their work to handle multi-user scenarios by introducing
weight vector for each user and combining multiple preference latent functions. A study conducted
in 2018 (Zintgraf et al., 2018) compared four prominent preference elicitation modules and found
that ranking queries outperformed the pairwise and clustering approaches in terms of utility models
ad human preference. However, recent studies have explored an alternative method of preference
learning that do not involve approximating value functions. This approach is inspired by Yan et al.
(2022) in 2022 who proposed a novel method for conducting pairwise preference judgments using
double Thompson sampling (DTS) approach (Wu & Liu, 2016). Similar idea have also emerged in
the realm of RL preference learning (Myers et al., 2023).

A.1.2 PREFERENCE-BASED ACTIVE LEARNING

Preference-based active learning has been considered in the study by (Myers et al., 2023) and has
been utilized in various fields such as classification tasks (Chen et al., 2013; 2017) and ranking ag-
gregation (Chen et al., 2013). However none of these approaches address our specific problem of
adaptively requesting pairwise comparisons between solutions in an online setting for PL. (Myers
et al., 2023) also considers preference-based active learning (Settles, 2009; Ren et al., 2021; Ku-
mar & Gupta, 2020). Outside RL, preference-based active learning has been used for classification
tasks (Chen et al., 2013; 2017) and ranking aggregation (Chen et al., 2013). None of these ap-
proaches have tackled our problem of adaptively asking for pairwise comparisons between solutions
at deployment to conduct preference learning in an online setting.

As mentioned earlier (Yan et al., 2022), the dueling bandit algorithm shows promise as a solution that
does not involve the direct calculation of the value function. However, there is currently no dueling
bandit algorithm designed specifically for active learning (Settles, 2009; Ren et al., 2021; Kumar
& Gupta, 2020). The state-of-art active bandit algorithms have predominantly been developed for
multi-armed bandit (MAB) problems (Baram et al., 2004; Antos et al., 2008; Carpentier et al., 2011;
Ganti & Gray, 2012; 2013; Glimsdal & Granmo, 2019; Zhang et al., 2020). Baram et al. (2004)
considered each arm as an active learner and proposed a method that used EXP3 and EXP4 to
recommend the appropriate active algorithm for different scenarios. Antos et al. (2008) introduced
GAFS-MAX, which selected under-sampled points or arms with maximum loss, and redefined the
regret equation based on the loss function in active learning. Carpentier et al. (2011), using the same
regret definition as Antos et al. (2008), constructed the upper confidence bound (UCB) function
in two forms with the Chernoff-Heoffding and Bernstein allocation strategies respectively. Inspired
by previous work (Ganti & Gray, 2012), Ganti & Gray (2013) proposed LCB-AL which aimed to
minimize the uncertainty level measured by lower confidence bound (LCB).
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A.1.3 DUELING BANDIT

To address the problem of adaptively collecting pairwise comparisons between solutions in an online
setting for preference learning, we propose an active dueling bandit algorithm. This algorithm not
only actively selects solutions to be queried but also performs preference learning using pairwise
comparisons, similar to the dueling bandit framework.

The dueling bandits problem involves a sequential decision-making process where a learner selects
two out of K “arms” in each round and receives real-valued feedback. As described in Bengs et al.
(2021), dueling bandits can be grouped into 3 categories: MAB-related, merge sort/quick sort, and
tournament/challenge. In this paper, our focus is on traditional dueling bandits, specifically those that
fall within the MAB-related categorized. Among the traditional dueling bandit algorithms, there are
four distinct methods for making pairwise comparisons. The first method is known as explore then
commit (ETC), which is utilized by algorithms such as interleaved filtering (IF) (Yue et al., 2012),
beat the mean (BTM) (Yue & Joachims, 2011) and SAVAGE (Urvoy et al., 2013). ETC methods
kick out solutions that are unlikely to win, but this approach may lead to lower predictive proba-
bility accuracy. The second method involves using the upper confidence bound (UCB), for example
relative upper confidence bound (RUCB) (Zoghi et al., 2014a), MergeRUCB (Zoghi et al., 2015),
and relative confidence sampling (RCS) (Zoghi et al., 2014b). MergeRUCB, an extension of RUCB,
is particularly designed for scenarios with a large number of arms. RCS combines UCB and Beta
posterior distribution to recommend one arm for each duel in each iteration step. The third method
employs Thompson sampling, as demonstrated by double Thompson sampling (DTS) (Wu & Liu,
2016) and MergeDTS (Li et al., 2020a). Similar to MergeRUCB, MergeDTS is designed for dealing
with a substantial number of arms. It is worth nothing that UCB methods assume the existence of a
Condorcet winner, whereas Thompson sampling methods assume a Copeland winner, representing
a fundamental distinction between these two types. The fourth method involves using the minimum
empirical divergence, as introduced by relative minimum empirical divergence (RMED) (Komiyama
et al., 2015) and deterministic minimum empirical divergence (DMED) (Honda & Takemura, 2010).
RMED and DMED employee KL divergence as a metric to evaluate candidate arms. Overall, these
four methods represent different approaches to pairwise comparison in traditional dueling bandit
algorithms. In this paper, our proposed method is inspired by RUCB. We build upon the assumption
of the existence of a Copeland winner, strengthening the reliability of our proposed method. Addi-
tionally, similar to RUCB, our method incorporates the confidence level into the decision-making
process. This feature allows us to provide a recommendation confidence.

A.2 PROOF OF LEMMAS

Proposition 1. For any t ∈ [T ], if RUCB-AL runs with γ = 1
tκ = K, then the expected regret

of Algorithm 1 satisfies:

E[RT ] ≤
K2 −K − 4

K − 1
T + logK (10)

The proof of the expected regret builds upon the following lemmas. We first bound magnitude of the
estimates pac , using the fact that 0 ≤ p̃ac ≤ 1 where p̃ac(i) =

∑
i L(p̄ci)∑

i

∑
j L(p̄ij)

.

Lemma 1. For all t ∈ [T ] and i, j ∈ [K]it holds that γ
K ≤ pac

≤ 1− γ + γ
K , given γ = 1

tκ .

Proof for Lemma 1. According to the definition of pac , we have pac = γ
K + (1− γ)p̃ac . So:

0 ≤ p̃ac
=

(pac − γ
K )

1− γ
≤ 1 (11)

Let Ht−1 := (xi1, xj1, q1, . . . ) denotes the history up to time t. We compute the expected instanta-
neous regret at time t as a function of the Copeland scores at time t.

Lemma 2. For all t ∈ [T ] it holds that E[Ei∼p(ac)[ζit|Ht−1]] = E[p⊤ac
ζt].

Proof for Lemma 2.

E[Ei∼p(ac)[ζit|Ht−1]] = E[
K∑
i=1

pac
(i)ζt(i)] = E[p⊤ac

ζt] (12)
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Then we bound the magnitude of the estimates ζt(i).

Lemma 3. For all t ∈ [T ] it holds that E[ζt] ≤ 2
K−1E[p̄ij ].

Proof for Lemma 3. We have the quality of indicator function E[IA] =
∫
X
IA(x)dP =

∫
A
dP =

P (A), so the left part can be processed:

E[ζt] =
1

K − 1
E[I{p̄ij > 1/2}] (13)

=
1

K − 1
(1× P (p̄ij > 1/2) + 0× P (p̄ij < 1/2)) (14)

=
1

K − 1
P (p̄ij > 1/2) (15)

Given Markov inequality, P (X ≥ a) ≤ E[X]
a , we can further process the inequality:

1

K − 1
P (p̄ij > 1/2) ≤ 1

K − 1

E[p̄ij ]
1/2

(16)

=
2

K − 1
E[p̄ij ] (17)

Finally, we bound the second moment of our estimates.

Lemma 4. For all t ∈ [T ] it holds that E[
∑K

i=1 pac
(i)ζ2t (i)] ≤

4(1−γ+ γ
K )

(K−1)2

Proof for Lemma 4.

E[
K∑
i=1

pac
(i)ζ2t (i)] = E[

K∑
i=1

pac
(i)E[

1

K − 1
E[I{p̄ij > 1/2}]]2] (18)

=
1

(K − 1)2
E[

K∑
i=1

pac
(i)E[I{p̄ij > 1/2}]E[I{p̄ij > 1/2}]] (19)

≤ 1

(K − 1)2
E[

K∑
i=1

pac
(i)

K∑
j=1

(2p̄ij)
2] (20)

=
4

(K − 1)2
E[

K∑
i=1

K∑
j=1

pac
(i)p̄2ij ] (21)

≤
4(1− γ + γ

K )

(K − 1)2
(22)

The first and second equation is the expansion of formulation according to definition. The third line
is processed using Markov inequality. After neatening the formulation in line 4, we further scale the
equality by Lemma 1 and p̄2ij ≤ 1.

Proof overview. We upper bound RT , and recall that RT :=
∑T

t=1 rt = ζ∗T − 1
2

∑T
t=1 ζit + ζjt.

Note that EHT
[ζt(i) + ζt(j)] = EHt−1 [Ei∼p(ac)[ζit|Ht−1]], since xi and xj are i.i.d. Further note

that we can write:

E[RT ] =

T∑
t=1

rt = ζ∗T − 1

2

T∑
t=1

[ζit + ζjt]

= max
k∈[K]

[

T∑
t=1

ζt(k)−
1

2

T∑
t=1

[ζit + ζjt]]

(23)

where the last equality holds since we assume the pij are chosen obliviously ans so a∗ does not
depend on the learning algorithm. Thus we can rewrite:

E[RT ] = max
k∈[K]

[

T∑
t=1

ζt(k)−
T∑

t=1

EHt−1 [Ei∼p(ac)[ζit|Ht−1]]] (24)
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From the regret guarantee of standard Multiplicative Weights algorithm (Arora et al., 2012) over the
completely observed fixed sequence of reward vectors ζ1, ζ2, . . . , ζT we have for any k ∈ [K]:

T∑
t=1

ζt(k)−
T∑

t=1

[p̃⊤ac
ζt] ≤ logK +

T∑
t=1

K∑
k=1

p̃ac
ζ2ti (25)

Note that p̃ac
=

(pac− γ
K )

1−γ . Let a∗ = argmaxk∈[K]

∑T
t=1 ζt(k). Taking expectation on both sides of

the above inequality for k = a∗, we get:

(1− γ)

T∑
t=1

ζt(k)−
T∑

t=1

[p⊤ac
ζt] ≤ logK +

T∑
t=1

K∑
k=1

pacζ
2
ti (26)

which by applying Lemma 2, Lemma 3 and Lemma 4 and the fact that ζt(a∗) ≤ 1, γ = K, we have:

E[RT ] ≤ γT − 4Tγ

K(K − 1)
+

4T

(K − 1)2
+ logK

≤ γT + (1− γ)
4T

(K − 1)2
+ logK

≤ K2 −K − 4

K − 1
T + logK

(27)

A.3 THE STEP OF FOUR DIFFERENT ALGORITHM ARCHITECTURE

A.3.1 DOMINANCE-BASED EMO ALGORITHM

This section will discuss how the learned preference information can be used in dominance-based
EMO algorithms, e.g., NSGA-II (Deb et al., 2002b). Based on Deb & Sundar (2006), solutions from
the best non-domination levels are chosen front-wise as before and a modified crowding distance
operator is used to choose a subset of solutions from the last front which cannot be entirely chosen
to maintain the population size of the next population, the following steps are performed:

Step 1: Before the first consultation session, the NSGA-II runs as usual without considering the
preference information.

Step 2: If it is time to consult for the first time (e.g., when we have evaluated the population for 40%
of the total generation), then randomly selected 10 points fed into the consultation module
and the best point W ∗ recommended by RUCB-AL will be recorded and used to initialize
the predicted preference distribution for the current population L0 = l0(z) = N (W ∗, σ).

Step 3: If the recommendation is not stable (e.g., the KL divergence between two adjacent predicted
distributions is bigger than the threshold δ2), then points are sampled according to Ut−1 and
the best point W ∗ recommended by RUCB-AL is recorded and used to update the predicted
distribution for the current population lt(z) = N (W ∗, σ), Lt = lt + λLt−1, where t is the
consultation count.

Step 4: Between two interactions, the crowding distance of each solution will be evaluated by the
predicted preference distribution learned from the last consultation session.

A.3.2 DECOMPOSITION-BASED EMO ALGORITHM

Following Li et al. (2019), the decomposition-based EMO EMO algorithm (e.g., MOEA/D (Zhang &
Li, 2007)) is designed to use a set of evenly distributed weight vectors W = wiN

i=1 to approximate
the whole PF. The recommendation point learned from the consultation module is to adjust the
distribution of weight vectors. The following four-step process is to achieve this purpose.

Step 1: Before the first consultation session, the EMO algorithm runs as usual without considering
any preference information.
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Step 2: If time to consult for the first time (e.g., when we have evaluated the population for 40% of
the total generation), then randomly selected 10 points are fed into the consultation module
and the best point W ∗ recommended by RUCB-AL will be recorded and used to initialize
the predicted preference distribution for the current population L0 = l0(z) = N (W ∗, σ).
Select µ points closest to the reference point {WLi}µi=1.

Step 3: If the recommendation is not stable (e.g., the KL divergence between two adjacent predicted
distributions is bigger than the threshold δ2), then points are sampled according to Lt−1 and
the best point W ∗ recommended by RUCB-AL is recorded and used to update the predicted
distribution for the current population ut(z) = N (W ∗, σ), Lt = lt+λLt−1, where t is the
consultation count. Select µ points closest to the reference point {WLi}µi=1.

Step 4: Move the remaining reference points towards wUi

as follows:

wj = wj + η × (wLi

− wj), (i = 1, 2, . . . , µ) (28)

Output the adjusted weight vectors as the new W ′.

A.3.3 INDICATOR-BASED EMO ALGORITHM

The R2 indicator was proposed to evaluate the relative quality of two sets of individuals (Hansen
& Jaszkiewicz, 1994) from the standard weighted Tchebycheff function with a particular reference
point zr as follows:

R2(Z,W, zr) =

m∑
i=1

(p(w)× min
zi∈Z
{ max
1≤j≤m

wi|zj − zrj |}) (29)

W denotes a set of weight vectors. p denotes a probability distribution on W . When the weight
vectors are chosen uniformly distributed in the objective space, the R2 indicator is denoted as:

R2(Z,W, zr) =
1

|W |
∑
w∈W

(min
zi∈Z
{ max
1≤j≤m

wi|zj − zrj |}) (30)

where zr is the ideal point.

R2-IBEA (Phan & Suzuki, 2013) performs parent selection and environmental selection with a bi-
nary R2 indicator:

IR2(x, y) = R2({x},W, z∗)−R2({x ∪ y},W, zr) (31)

IR2 is designed to determine a superior-inferior relationship between given two individuals (x and
y) with two R2 values. If x ≻ y, IR2(x, y) ≥ 0. In this case, we can get the property of weak
monotonicity:

IR2(x, y) ≤ IR2(y, x) if x ≻ y

IR2(x, y) ≥ IR2(y, x) if y ≻ x
(32)

In this section, we will use the recommended point W ∗ from the consultation module to adjust the
distribution of weight vectors in equation (33). The method of adjusting the distribution of weight
vectors is the same as decomposition-based EMO algorithm. W ′ is the adjusted weight vectors. The
adjusted R2 indicator is denoted as:

R2′(Z,W, z∗) =
1

|W |
∑

w∈W ′

(min
zi∈Z
{ max
1≤j≤m

wi|zj − z∗j |}) (33)

In this case, the interactive indicator-based EMO algorithm via progressively learned preference
runs as following steps:

Step 1: Before the first consultation session, the R2-IBEA algorithm runs as usual without consid-
ering any preference information.
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Figure 7: RUCB-AL running on six different single objective functions: (a) Sphere function, (b)
Booth function, (c) Ackley, (d) Three-hump camel function, (e) Easom function, and (f) Styblinski-
Tang function.

Step 2: If time to consult for the first time (e.g., when we have evaluated the population for 40% of
the total generation), then randomly selected 10 points are fed into the consultation module
and the best point W ∗ recommended by RUCB-AL will be recorded and used to initialize
the predicted utility distribution for the current population L0 = l0(z) = N (W ∗, σ). Select
µ points closest to the reference point {WLi}µi=1.

Step 3: If the recommendation is not stable (e.g., the KL divergence between two adjacent predicted
distributions is bigger than the threshold δ2), then points are sampled according to L and
the best point W ∗ recommended by RUCB-AL is recorded and used to update the predicted
distribution for the current population lt(z) = N (W ∗, σ), Lt = lt + λLt−1, where t is the
current generation number. Select µ points closest to the reference point {WLi}µi=1.

Step 4: Adjust the distribution of weight vectors as the same as decomposition-based EMO algo-
rithms, and recalculate the R2 indicator of every individual in populations.

A.4 PERFORMANCE METRICS

For preference learning in SOPs, performance metric is the regret or the loss to optimal solution.
Here, regret is distinct from dueling bandit regret and is defined as follows:

Loss = zr − z∗ (34)

where zr denotes the optimal objective value and z∗ is the recommended objective value corre-
sponding to W ∗.

Similarly, for MOPs, the performance metric is defined as:

Loss = min
z∈Q

dist(z, zr) (35)

where dist(z, zr) is the Euclidean distance between zr and a solution z ∈ Q in the objective space.

A.5 EXPERIMENT ON SOP

The other three 2-dimensional BBOPs are listed in Fig. 7. The rest 6 BBOP problem comparison
result are listed Fig. 8.

A.6 EXPERIMENT ON TEST PROBLEM SUITE

A.6.1 PARAMETER SETTING

This section lists several parameters that we need to set in advance, including the parameters in
MOEA/D, the number of populations presented to DM and other parameters we need when com-
bining DM with EAs:

• The probability and distribution of index for SBX: pc = 1.0 and ηc = 20;
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Figure 8: Comparing RUCB-AL with peer algorithms (e.g., DTS, IF, RUCB, PBO-qEUBO, PBO-
qTS, PBO-random)

• The mutation probability and distribution of index for polynomial mutation operator: pm =
1
m and ηm = 20;

• The maximum assessment number N is set as N = 25000 for ZDT test suite while N =
30000 for DTLZ test suite;

• The population size is set as pop num = 100 for ZDT test suite and pop num = 120 for
DTLZ test suite;

• The number of incumbent candidate presented to DM for consultation: µ = 10;

• For fitness-function based PL algorithms, there exists the number of consecutive consulta-
tion session τ to be set. For all fitness-function based PL algorithms, we set: τ = 25;

• The step size of reference point update η for MOEA/D series algorithms are set to: η = 0.3.

A.6.2 STATISTICAL TEST

To offer a statistical interpretation of the significance of comparison results, we conduct each exper-
iment 20 times. To analyze the data, we employ the Wilcoxon signed-rank test (Wilcoxon, 1992) in
our empirical study.

The Wilcoxon signed-rank test, a non-parametric statistical test, is utilized to assess the signifi-
cance of our findings. The test is advantageous as it makes minimal assumptions about the data’s
underlying distribution. It has been widely recommended in empirical studies within the EA com-
munity (Derrac et al., 2011). In our experiment, we have set the significance level to p = 0.05.

A.6.3 POPULATION RESULTS

In this section, we show the results of our proposed method running on ZDT, DTLZ, and WFG test
suites. For simplicity, we only show MOEAD-RUCB-AL for it outperform the other two algorithm.

The population results of MOEA/D-RUCB-AL running on ZDT1∼ZDT4, and ZDT6 are shown
in Fig. 9. The population results running on DTLZ1∼DTLZ4 (m = {3, 5, 8, 10}) are shown
in Fig. 10 Fig. 11 Fig. 12 Fig. 13 respectively. The results running on WFG (m = 3) are shwon
in Fig. 14.
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Table 1: THE MEAN(STD) VALUE OF OUR PROPOSED METHOD AND PEER ALGORITHMS
RUNNING ON BENCHMARK PROBLEMS

Test Porblem RUCB-AL PLVF LTR IEMO/D PPLNSGA2 MOEA/D R2-IBEA NSGA2 MOEA/D R2-IBEA
ZDT1 m = 2 7.76E-2(4.62E-2) 3.91E-2(1.02E-4) 1.11E-2(1.83E-1) 4.99E-2(2.51E-2)† 4.04E-2(1.13-2)† 3.26E-1(8.56E-2)† 1.09E-1(1.02E-1)† 4.30E-2(8.02E-3)† 8.55E-2(3.50E-2)†
ZDT2 m = 2 1.45E-1(7.94R-3) 2.09E-1(7.11E-2) 2.42E-1(6.47E-2) 3.62E-1(1.57E-1)† 1.46E-1(3.53E-4) 8.96E-1(1.61E-2)† 2.83E-1(6.81E-7)† 2.20E-1(1.71E-1)† 2.82E-1(3.37E-2)†
ZDT3 m = 2 1.23E-1(7.48E-2) 1.78E-1(2.11E-2) 1.77E-1(3.08E-1) 3.72E-1(1.87E-1)† 7.01E-2(5.17E-4) 1.15(7.82E-2)† 1.91E-1(1.38E-1)† 1.24E-1(2.61E-2)† 1.17(1.08E-1)†
ZDT4 m = 2 8.01E-2(4.66E-2) 8.04E-2(4.6E-2) 1.43E-1(8.65E-2) 7.52E-2(4.72E-2) 4.34E-2(3.48E-2) 2.49E-1(1.10E-1)† 9.45E-2(7.93E-2) 7.28E-2(3.07E-2)† 1.28E-1(7.68E-2)
ZDT6 m = 2 6.41E-2(3.97E-2) 5.49E-2(4.61E-3) 7.66E-2(4.59E-2) 1.16E-1(8.19E-2)† 3.85E-2(3.63E-3)‡ 6.30E-1(1.24E-2)† 2.21E-1(1.04E-1)† 5.44E-2(3.43E-3) 2.32E-1(1.70E-2)†
WFG1 m = 3 2.33(3.71E-2) 1.11(2.08E-1) 2.39(1.68E-2) 2.01(6.55E-2)† 1.28(2.28E-16)† 1.95(2.48E-2)† 1.61(4.56E-16)† 2.63(3.09E-1)† 2.01(6.55E-2)†
WFG3 m = 3 7.10E-1(7.77E-2) 6.45E-1(1.65E-2) 2.25(1.24) 8.91E-1(2.53E-1)† 1.11(1.31E-1)† 6.45E-1(2.26E-2) 1.01(3.10E-2)† 7.48E-1(1.27E-2)† 8.91E-1(2.53E-1)†
WFG5 m = 3 3.49(1.92) 3.01(6.42E-1) 3.52(1.43) 2.68(4.62E-1)† 1.94(5.19E-3)‡ 1.67(8.25E-4)‡ 2.01(8.24E-2)† 2.6(9.48E-2)† 1.75(1.52E-2)†
WFG7 m = 3 1.29(4.70E-2) 3.24(3.89E-1) 1.84(1.31) 2.63(5.28E-1)† 1.34(4.23E-2) 1.30(2.93E-3) 1.52(3.32E-2)† 1.49(6.99E-2)† 2.63(5.28E-1)†

DTLZ1

m = 3 2.79E-1(8.54E-2) 1.72E-1(1.72E-3) 2.95E-1(6.85E-2) 1.63E-1(3.48E-2) 1.94E-1(6.91E-2) 1.44E-1(2.79E-2) 1.79E-1(1.16E-2) 1.59E-1(1.69E-2)† 3.25E-1(1.26E-1)†
m = 5 3.07(2.34) 3.67E-1(7.36E-2) 4.02E-1(8.65E-2) 2.96E-1(1.25E-1)† 3.57E-1(1.16E-1) 2.00E-1(8.84E-2)† 3.25E-1(2.78E-2)† 1.96E-1(1.07E-1)‡ 2.87E-1(1.27E-1)†
m = 8 1.51(1.17) 5.68E-1(5.15E-2) 5.57E-1(1.45E-2) 3.07E-1(1.88E-1)‡ 4.75E-1(2.79E-1) 2.85E-1(2.07E-1)‡ 5.10E-1(1.04E-2)‡ 2.54E-1(2.36E-1)‡ 3.92E-1(1.83E-1)‡
m = 10 5.02(3.70) 3.36E-1(5.12E-2) 4.68E-1(5.91E-2) 2.20E-1(8.15E-2)‡ 5.63E-1(4.76E-1)† 1.67E-1(6.63E-2)‡ 2.94E-1(2.17E-2)‡ 1.52E-1(7.28E-2)‡ 2.31E-1(1.09E-1)‡

DTLZ2

m = 3 3.40E-1(1.90E-1) 1.82E-1(2.31E-2) 2.25E-1(7.34E-2) 2.43E-1(5.18E-2)† 1.86E-1(1.35E-2) 2.07E-1(1.06E-2)† 2.25E-1(7.34E-2)† 1.85E-1(9.75E-3)† 5.72E-1(1.55E-1)†
m = 5 5.91E-1(1.05E-1) 4.66E-1(5.19E-2) 1.21(1.25E-1) 5.21E-1(1.47E-1) 5.39E-1(1.67E-1) 5.09E-1(1.67E-1)† 4.95E-1(9.11E-2) 3.64E-1(1.28E-2)‡ 6.34E-1(8.20E-2)†
m = 8 1.33(1.35) 8.06E-1(1.02E-1) 1.30(3.27E-1) 6.97E-1(1.92E-1) 9.04E-1(2.18E-1) 6.21E-1(1.48E-1)† 7.46E-1(8.19E-2)† 4.13E-1(1.63E-1)‡ 1.01(2.49E-1)†
m = 10 1.22(1.07E-1) 6.51E-1(2.02E-1) 6.46E-1(1.20E-1) 6.43E-1(1.78E-1) 8.57E-1(1.44E-1)† 4.76E-1(1.03E-1)† 4.66E-1(1.32E-1)† 3.39E-1(1.69E-1)‡ 8.81E-2(6.96E-2)†

DTLZ3

m = 3 4.48(1.41) 1.93(1.42) 5.49(2.25) 1.55(9.25E-1) 6.16(3.71)† 2.76(2.46) 3.42(1.17)† 1.59(1.80) 3.24(1.85)†
m = 5 6.18(5.04) 4.88E-1(6.60E-2) 1.14(5.36E-2) 8.43E-1(3.80E-1)† 1.71E+1(9.60)† 1.05(5.90E-1)† 5.66E-1(1.97E-1) 3.73E-1(5.92E-2)‡ 9.24E-1(1.78)†
m = 8 4.29E+1(1.57E+1) 9.67E-1(1.85E-1) 8.87E-1(3.62E-1) 8.56E-1(1.82E-1) 3.04E+1(1.46E+1)† 6.48E-1(1.91E-1)† 9.13E-1(1.25E-1) 5.48E-1(2.29E-1)‡ 1.13(2.75)†
m = 10 5.81E+1(2.07E+1) 7.26E-1(1.55E-1) 8.25E-1(1.82E-1) 6.54E-1(1.69E-1) 2.86E+1(1.31E+1)† 4.31E-1(1.13E-1)‡ 5.11E-1(1.04E-1)‡ 2.95E-1(1.27E-1)‡ 8.87E-1(1.04E-1)†

DTLZ4

m = 3 2.59E-1(8.15E-2) 1.84E-1(1.25E-2) 2.50E-1(2.91E-1) 5.73E-1(3.58E-1)† 6.83E-1(3.75E-1)† 6.11E-1(3.13E-1)† 6.34E-1(2.50E-1)† 6.00E-1(3.16E-1)† 7.72E-1(2.47E-1)†
m = 5 6.71E-1(1.49E-1) 5.07E-1(9.73E-2) 9.33E-1(2.65E-1) 6.08E-1(1.42E-1)† 1.02(1.61E-1)† 6.99E-1(1.98E-1)† 5.80E-1(1.34E-1) 5.99E-1(1.84E-1)† 6.37E-1(7.99E-2)†
m = 8 7.13E-1(1.46E-1) 8.79E-1(6.04E-2) 9.64E-1(2.87E-1) 7.88E-1(2.26E-1) 1.01(1.15E-1)† 8.90E-1(2.10E-1)† 8.33E-1(1.12E-1)† 7.18E-1(2.38E-1) 1.12(2.61)†
m = 10 1.14(1.58E-1) 6.87E-1(1.11E-1) 4.23E-1(1.64E-1) 7.03E-1(1.61E-1) 1.27(1.31E-2)† 7.48E-1(1.02E-1)† 5.21E-1(1.04E-1)‡ 5.75E-1(1.90E-1)† 9.15E-1(6.14E-2)†

† denotes our proposed method significantly outperforms other peer algorithms according to the
Wilcoxon’s rank sum test at a 0.05 significance level;
‡ denotes the corresponding peer algorithm outperforms our proposed algorithm.

Table 2: THE DIFFERENCE BETWEEN NATIVE AND PREDICTED PROTEIN IN ENERGY

ID Type Bound dDFIRE Rosetta RWplus

1K36 Native 431.51 -52.84 293.70 -5059.39
Predicted 431.75 -41.66 402.33 -3990.52

1ZDD Native 297.18 -74.02 -27.73 -4604.18
Predicted 328.84 -63.03 63.03 -3986.78

2M7T Native 269.76 -39.51 -10.82 -3313.84
Predicted 276.12 -22.98 210.47 -2111.19

3P7K Native 379.04 -104.15 -11.29 -6140.81
Predicted 413.47 -91.21 184.17 -3399.93

A.7 EXPERIMENT ON PSP

In this section we listed the results implementing our proposed method, namely MOEA/D-RUCB-
AL on PSP problems. We implement RMSD as the performance metric for PSP problems:

RMSD =

√∑m
i=1 d

2
i

m
(36)

where d is the distance between each pair of atoms. The performance comparison results are in Ta-
ble 2.

The red part in predicted protein structures( Fig. 15) represents the native protein and blue represent
our predicted protein structure. The population results are shown in Fig. 16. The RMSD comparison
results are shown in Table 3. As we can see our proposed method have better convergence and
acuuracy than synthetic problems. This may be caused by two reasons:

• The first one is the PSP problem is only conducted on 4-dimensional objective spaces. In
RQ2 our proposed method performs better in low dimensional problems.

• The second reason is the formulation of PSP problems. In this paper, we adopt utilizing
4 energy function to represent, which are empirically proved to be more accurate than in
1-dimensional objective function(Zhang et al., 2023).
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Table 3: THE MEAN (STD) OF RMSD COMPARING OUR PROPOSED METHOD WITH PEER
ALGORITHMS ON PSP PROBLEMS

ID MOEA/D-RUCB-AL I-MOEA/D-PLVF I-NSGA2-LTR IEMO/D
1K36 583.29(117.08) 682.23(182.63)† 597.19(284.91) 610.62(402.31)†
1ZDD 446.88(542.33) 623.14(394.14)† 450.23(582.19) 488.28(518.42)†
2M7T 350.51(8.95) 671.45(372.01)† 721.73(502.31)† 823.46(1023.54)†
3P7K 719.90(1202.92) 663.29(802.99)‡ 692.31(823.13)‡ 818.93(923.87)
3V1A 687.07(497.33) 887.68(391.74)† 791.13(304.72)† 823.28(528.87)†

† denotes our proposed method significantly outperforms other peer algorithms according to the
Wilcoxon’s rank sum test at a 0.05 significance level;
‡ denotes the corresponding peer algorithm outperforms our proposed algorithm.
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Figure 9: The population distribution of our proposed method (e.g., MOEA/D-RUCB-AL) running
on ZDT test suite (m = 2)
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Figure 10: The population distribution of our proposed method (e.g., MOEA/D-RUCB-AL) running
on DTLZ test suite (m = 3)
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Figure 11: The population distribution of our proposed method (e.g., MOEA/D-RUCB-AL) running
on DTLZ test suite (m = 5)
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Figure 12: The population distribution of our proposed method (e.g., MOEA/D-RUCB-AL) running
on DTLZ test suite (m = 8) com
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Figure 13: The population distribution of our proposed method (e.g., MOEA/D-RUCB-AL) running
on DTLZ test suite (m = 10)

0
1

2
0 1 2 3

0

1

2

3

4

5

z1
z2

z 3

WFG1(m = 3)

Pareto Front
Population
zr

0
1

2
0 1 2 3

0

1

2

3

4

5

6

z1
z2

z 3

WFG3(m = 3)

Pareto Front
Population
zr

0
1

2
0 1 2 3

0

1

2

3

4

5

6

z1
z2

z 3

WFG5(m = 3)

Pareto Front
Population
zr

0
1

2
0 1 2 3

0

1

2

3

4

5

6

z1
z2

z 3

WFG7(m = 3)

Pareto Front
Population
zr

(a) (b) (c) (d)

Figure 14: The population distribution of our proposed method (e.g., MOEA/D-RUCB-AL) running
on WFG test suite (m = 3)
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Figure 15: The protein structure of our proposed method (e.g., MOEA/D-RUCB-AL) running on
PSP problems (m = 4)
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Figure 16: The population distribution of our proposed method (e.g., MOEA/D-RUCB-AL) running
on PSP problems (m = 4)
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