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ABSTRACT

How can we predict future interaction trajectories of human hands in a scene
given high-level colloquial task specifications in the form of natural language?
In this paper, we extend the classic hand trajectory prediction task to two tasks
involving explicit or implicit language queries. Our proposed tasks require exten-
sive understanding of human daily activities and reasoning abilities about what
is happening next in the scene given cues from the current scene. We also de-
velop new benchmarks to evaluate the proposed two tasks, Vanilla Hand Predic-
tion (VHP) and Reasoning-Based Hand Prediction (RBHP). We enable solving
these tasks by integrating high-level world knowledge and reasoning capabilities
of Vision-Language Models (VLMs) with the auto-regressive nature of low-level
ego-centric hand trajectories. Our model, HandsOnVLM is a novel VLM that can
generate textual responses and produce future hand trajectories through natural-
language conversations. Our experiments show that HandsOnVLM outperforms
existing task-specific methods and other VLM baselines on proposed tasks, and
demonstrates its ability to effectively utilize world knowledge for reasoning about
low-level human hand trajectories based on the provided context.

1 INTRODUCTION

Ah, I need something to 
help open this slippery 
jar more easily…

To open the slippery lid you can use 
the cloth nearby. Here is a plauisble 
trajectory your right hand can take 
overlaid on the scene: <HAND> 
<HAND> .........<HAND>.

HandsOnVLM Assistant

Figure 1: HandsOnVLM forecasts low-level actions in the form of hand trajectories in the user’s
egocentric view of a scene when queried with a question via natural language.

Humans interact with the everyday world and express themselves with informal and oftentimes
vague language descriptions. Consider the example in Fig. 1 - when we try to open the jar, we might
think, “Ah, I need something to help open this slippery jar more easily.” We are uncertain about
what we want exactly as well as about how to come up with a solution. To build a computational
system for addressing this need, we would require a good understanding of what tools we have lying
around (visual scene understanding), general apriori experience of opening jars (reasoning ability
and world knowledge priors), and the ability to actually execute the necessary actions for opening the
jar (low-level trajectory). In this paper, we develop two language-conditioned tasks for tackling this
problem, propose benchmarks for evaluating progress on these tasks, and build a vision-language
model (VLM) for predicting low-level hand trajectories in a user’s egocentric view of a scene given
colloquial language queries.

Towards a similar goal, some prior works have focused on identifying human intentions based on
egocentric human videos of daily activities (high-level intentions of the form “cutting pepper”,
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“washing plates”) (Krishna et al., 2017; Grauman et al., 2022; Kahatapitiya et al., 2024), while
others have focused on predicting low-level actions such as hand trajectories given human action
clips (Liu et al., 2022; Zhang et al., 2024b) without conditioning the predictions on detailed lan-
guage descriptions of the task to be performed. Both these scenarios are a bit restrictive since for
most everyday tasks (e.g. in Fig. 1) we need a combination of high-level reasoning of what to do in
a scene and low-level understanding of how to interact with the relevant objects in the scene.

By drawing on the recent successes of VLMs for high-level reasoning (Liu et al., 2024; Lai et al.,
2024; Cheng et al., 2024) and advancements in hand reconstructions from generic web videos (Shan
et al., 2020b; Rong et al., 2020; Pavlakos et al., 2024), we develop a system for future hand trajectory
prediction given conversation-style language instructions. Current best multimodal VLMs are good
at predicting semantic actions in the form of what is happening at a certain point in a video (Maaz
et al. (2023); Huang et al. (2024)), interpreting what objects are in a scene (Achiam et al., 2023) and
natively support free-form language conversations for conditioning. However, they are not good at
directly predicting low-level actions (in the future) of the form of hand-object trajectories. At the
same time, recovering low-level interactions in videos, like hand meshes (Pavlakos et al., 2024),
object meshes (Fan et al., 2024), and regions of interactions (Shan et al., 2020b; Goyal et al., 2022)
has independently become very reliable in recent years. Our key insight is to fine-tune a pre-trained
VLM with auto-regressive trajectory predictions of human hand positions, given a few seconds of
video and a language description of the task.

Our approach HandsOnVLM casts hand trajectory prediction as an auto-regressive next token predic-
tion conditioned on fused video and language tokens. We develop HandsOnVLM as an interactive
chat assistant that we can query with informal instructions of the form, “Where should my hand
move if I want to open the refrigerator?” and a video (or an image) of a scene, and obtain outputs
of the form, “To open the refrigerator, the predicted hand trajectory is <HAND> ,.... <HAND> ”
The HandsOnVLM model first converts the RGB video context to visual tokens and fuses them with
the language tokens through slow-fast pooling (Huang et al., 2024) for capturing temporal informa-
tion from the context video at a fine resolution. We extend the vocabulary to add a new <HAND> to-
ken, and output a sequence of text and and hand tokens. We finally have a trajectory decoder to
convert the hand tokens to a sequence of 2D positions of the left and right hands over the prediction
horizon.

In summary, our paper has the following contributions:

• We develop HandsOnVLM, a novel VLM that can generate textual responses and produce
future hand trajectories through conversations by expanding the original vocabulary with
hand tokens and having iterative position encodings for auto-regressive predictions during
inference.

• We extend existing traditional hand prediction tasks to two new tasks, Vanilla Hand Pre-
diction (VHP) and Reasoning-based Hand Prediction (RBHP), to predict hand trajectories
from ego-centric human videos conditioned on language queries of different forms.

• We develop benchmarks for evaluating progress on the VHP and RBHP tasks which we
will open-source to the community, in addition to our trained models on the benchmarks.

Our results on diverse real-world datasets of human videos and zero-shot evaluations on completely
unseen datasets demonstrate strong generalization and reasoning capabilities of HandsOnVLM for
hand trajectory prediction given colloquial language instructions. Furthermore, the model outper-
forms most baselines on the Reasoning-based Hand Prediction (RBHP) task, showcasing its capa-
bility to reason and leverage world knowledge of VLMs.

2 RELATED WORK

We discuss prior works on human motion reconstruction and forecasting, developments in multi-
modal large language models and action understanding from human videos.
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2.1 HUMAN MOTION RECONSTRUCTION AND FORECASTING

Several prior works have attempted to recover hand meshes and full body meshes from human
videos Rong et al. (2020); Pavlakos et al. (2024). Going beyond reconstruction, other works have
also investigated forecasting motions of humans in the future. Early works used RNNs Bütepage
et al. (2017; 2018); Honda et al. (2020) for anticipating future human poses, and recent approaches
include Transformer architectures for more diverse and plausible future predictions Ding et al.
(2023). More directly related to our work, some approaches predict egocentric hand-trajectories
in the form of 2D waypoints (Liu et al., 2020), and others also predict object affordances jointly
with hand trajectories (Liu et al., 2022). Some predict hand trajectories in a 3D space conditioned
on a few RGB observations from an egocentric view Bao et al. (2023). Architectures for such ego-
centric predictions have ranged from transformers (Liu et al., 2022; Bao et al., 2023) to diffusion
models Ma et al. (2024b;a) trained specifically for this prediction task. Our work extends this line of
low-level egocentric trajectory prediction by enabling reasoning capabilities through augmentation
and joint training with a pre-trained VLM.

2.2 MULTIMODAL LARGE LANGUAGE MODELS

Our work is enabled by developments in multimodal Large Language Models that augment vi-
sion and language reasoning in a unified model. Such models like LLaVA (Liu et al., 2024) and
Video-ChatGPT (Maaz et al., 2023) have enabled large-scale video understanding and localization
of temporal events (semantic actions) in videos (Huang et al., 2024). Adjacently, other works have
sought to make the inputs to the VLMs more flexible and informal through automatic segmentations
of language instructions (Lai et al., 2024; Yang et al., 2023) and visual grounding allowing flexibil-
ity to process both image and region inputs (Rasheed et al., 2024). Recent works have extended the
capabilities of VLMs to diverse domains including robotic navigation (Zhang et al., 2024a), robotic
manipulation (Kim et al., 2024; Brohan et al., 2023), spatial reasoning Cheng et al. (2024), and
reasoning about 3D human poses from images and text Feng et al. (2024). While these approaches
are orthogonal to our task of egocentric hand trajectory prediction, they serve as evidence of the
potential of VLMs for downstream applications.

2.3 ACTION RECOGNITION AND PREDICTION FROM VIDEOS

Understanding actions in the form of what is happening in a video segment has a long history in
computer vision (Sigurdsson et al., 2017; Liu et al., 2021; Kovashka & Grauman, 2010; Feichten-
hofer et al., 2019). Several benchmarks and datasets containing human videos and action labels for
tasks have also been proposed for related problems (Grauman et al., 2022; Caba Heilbron et al.,
2015; Goyal et al., 2017). Our work leverages such datasets and goes beyond recognition of actions
in videos to prediction of low-level actions in the future by first reasoning about future high-level
actions through a VLM. As such our work can have potential applications in robotics for learning
motion from web videos for manipulation by complementing prior works in this space (Bharadhwaj
et al., 2024a; Bahl et al., 2023; Bharadhwaj et al., 2024b; Nair et al., 2022).

3 APPROACH

HandsOnVLM is a video-based VLM with the capability of predicting future hand trajectories given
a video context and language instructions. There are three key components of HandsOnVLM’s
architecture: (1) SlowFast tokens to capture temporal information at fine temporal resolution, (2)
hand representation using an augmented vocabulary of <HAND> token, and (3) iterative position
encodings to enable auto-regressive trajectory training and inference. In training stage, we fine-tune
a pre-trained VLM by combining next-token prediction loss and trajectory loss.

3.1 ARCHITECTURE

We show an overview of the HandsOnVLM model architecture in Fig. 2. The key components of
the architecture include a visual backbone Fenc, a vision-to-language projection layer f , a Large
Language Model(LLM) F and a trajectory decoder Fdec.
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Sure! the predicted hand 
trajectory is <HAND> 
<HAND> <HAND> 
<HAND>. 

<images>Where should my 
hand move to if I want to 
gently mix the contents of 
the cooking vessel?

Large Language 
Model

Visual Backbone Trajectory Decoder…

Figure 2: Overview of the HandsOnVLM architecture, where and denote trainable and frozen
modules separately. HandsOnVLM casts hand trajectory prediction as an auto-regressive next to-
ken prediction conditioned on fused video and language tokens. The architecture augments a pre-
trained VLM with an additional hand token in the vocabulary. We use and to represent text
and <HAND> tokens respectively.

SlowFast Token Compression. HandsOnVLM takes a sequence of T frames Xv and a language
instruction Xq as input. To obtain a capable video-conditioned VLM we need to be able to interpret
temporal information at a fine resolution. Following Huang et al. (2024), given Xv , we embed them
into T ×M visual tokens using a visual backbone, where M is the number of tokens in each frame.
Then we apply slow-fast pooling to get T + M visual tokens. In the fast path, we average all the
tokens within each frame to get T tokens overall. We also uniformly select s frames among all T
frames and perform s× s spatial average pooling to get M slow frames in total. These slow tokens
will help preserve spatial information during the encoding process.

Hand as Embedding. After embedding and aligning T + M visual tokens to the language space
by passing through a vision-to-language projector f(·), we feed them into a Large Language Model
backbone and get the textual response Yt, where Yt = F(Xq, f(Fenc(Xv))). To represent hand in
the language space, we extend the existing vocabulary with a new <HAND> token.

The textual output Yt contains a sequence of <HAND> tokens when HandsOnVLM predicts the
hand trajectory. Let N be the number of predicted <HAND> tokens and H1:N be the hidden em-
beddings of <HAND> tokens in the last layer of F . We finally input them into the hand trajectory
decoder Fdec to obtain decoded hand positions in terms of pixel coordinates for the prediction hori-
zon {hT+i}N1 = Fdec(H1:N ).

Iterative Position Encoding. To adapt our proposed method for causal next-token prediction where
subsequent predictions only have access to the previous predictions, we need to address a key chal-
lenge: a typical embedding layer would encode each <HAND> token identically, resulting in in-
dividual hand tokens being indistinguishable from one another. To overcome this limitation, we
incorporate positional encoding for <HAND> tokens during the embedding process.

During the inference stage, when <HAND> is predicted as the next token, we decode it immedi-
ately. This decoded position is then encoded into corresponding embedding for following prediction
rounds. In this way, we ensure that each subsequent prediction is conditioned on all previously
predicted hand positions, maintaining temporal consistency and spatial awareness throughout the
inference process and mitigating compounding errors.

3.2 TRAINING OBJECTIVES

The model is trained end-to-end using a text generation loss Lhand and a hand trajectory prediction
loss Lhand. The overall objective L is the weighted sum of both losses, determined by λtxt and λhand:

L = λtxtLtxt + λhandLhand (1)

Specifically, Ltxt is the auto-regressive cross-entropy loss for text generation, and Lhand is the hand
prediction loss, which encourages the model to generate high-quality hand trajectories as well. Fol-
lowing Liu et al. (2022), we employ a reconstruction loss over future timesteps and a KL-Divergence
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Regularization loss as Lhand:

Lhand =

N∑
t=1

Lrecon

(
hT+t, ĥT+t

)
+ Lkl (µh, σh) . (2)

We employ CVAE (Sohn et al., 2015) as the hand trajectory decoder in this work (although the
method is not tied to it). Thus, Lrecon is the MSE loss over valid hand positions, and µh, σh here
are the mean and the standard deviation that regularizes the latent z-space to be close to the normal
distribution.

4 REASONING AND PREDICTING HAND TRAJECTORIES

In this section, we introduce two tasks: the Vanilla Hand Prediction (VHP) task, which extends
the classic hand motion prediction (Liu et al., 2022), and the proposed Reasoning-based Hand Pre-
diction (RBHP) task. Finally, we describe a two-step annotation-generating pipeline to build the
corresponding RBHP dataset.

4.1 VANILLA HAND PREDICTION TASK

In this task, explicit action narration is required to predict the next hand motion. Here explicit means
the action narration directly specifies the action and the target object without ambiguity, such as “cut
the paper” or “open the microwave”. We choose Epic-Kitchen (Damen et al., 2018; 2022), H2O
(Kwon et al., 2021) and FPHA (Garcia-Hernando et al., 2018) as datasets for this task. To reformat
these datasets for visual question answering, we structure them in a question-answer format using
the following template:

“USER:<images>,can you give me the future hand trajectory for {explicit action narra-
tion}?ASSISTANT: Sure, it is<HAND><HAND><HAND><HAND>.”,

where <images>represents a placeholder of visual tokens of the input frames. Note that the action
is optional because we can also generate general templates without specifying the action, and in this
case the task reduces to that in prior works Liu et al. (2022); Bao et al. (2023); Ma et al. (2024b).

4.2 REASONING-BASED HAND PREDICTION TASK

In addition to the Vanilla Hand Prediction Task, we introduce the Reasoning-based Hand Prediction
(RBHP) task. Instead of utilizing explicit instructions to directly predict the hand motion, here the
system is required to reason about it with implicit instructions. We define implicit instructions as
colloquial language instructions that provide sufficient information for inferring the intended human
hand action through reasoning, without explicitly naming the target object or action.

To construct a dataset for this task, we implement a two-step annotation-generating pipeline (Fig.
3) powered by GPT-4 (Achiam et al., 2023). This pipeline extracts implicit instructions from the
Epic-Kitchens-100 dataset (Damen et al., 2022). Prompt templates for these two steps are provided
in the Appendix A.4.

Action-aware Image Description. To get the implicit instructions, the first step is to generate a
detailed description of the scene including all the objects in the foreground. We prompt GPT-4 with
the ground truth action to capture action-related information, such as the physical properties of the
target object or the spatial relationship with other objects.

Implicit Action Generation. Using the action-aware description of the scene, we are able to gen-
erate the implicit instructions using GPT-4 in a text template as follows:

”USER:<images>,can you give me the future hand trajectory for {action implicit descrip-
tion}?ASSISTANT: Sure, it is<HAND><HAND><HAND><HAND>.”.

Through the annotation-generating pipeline, we generate a total of 7.5k question-answering pairs,
among which 3.5k samples are held out for evaluation.
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Action: Get the dough

<images> What is the recommended hand 
movement for  accessing the mixture in the 
white container?

To accessing the mixture in the white container, the recommended 
hand trajectory is: <HAND><HAND><HAND><HAND>.

In the image, there is a countertop with various kitchen items. A hite mixing bowl containing dough is positioned on 
the left, while a black baking tray sits in the center. The person's hand, covered in dough, is reaching towards the 
tray, suggesting they are about to transfer the dough. To the right, there is a frying pan with some cooked meat, and 
a blender is visible in the background. The overall scene depicts a busy kitchen environment, focused on food 
preparation.

GPT-4 Action-aware Image Description 

Classic Hand Trajectory Dataset

Implicit Action Generation Visual Question-Answering Conversion

Figure 3: Illustration of the annotation pipeline for the RBHP task. By using GPT-4 on human video
datasets we extract implicit language instructions for visual question-answering. The red and blue
lines respectively show trajectories for the right and left hands.

5 EXPERIMENT

We perform experiments for both the proposed tasks in order to answer the following research
questions:

• How plausible are the hand trajectories produced by HandsOnVLM?

• Does HandsOnVLM exhibit reasoning abilities for implicit language queries?

• Does HandsOnVLM generalize zero-shot to unseen scenes from new datasets?

5.1 EXPERIMENT DETAILS

Architecture. Following LITA’s architecture, We use CLIP-L-14 (Radford et al., 2021) as the vi-
sual encoder and Vicuna (Chiang et al., 2023) as the LLM module. We adapt the vision-language
projector from LLaVA (Liu et al., 2024) and have a CVAE (Sohn et al., 2015) as trajectory decoder.
We use 4 frames for slow tokens and use average pool window s = 2. With 1 fast token per frame,
this leads to a total of 100 + 256 = 356 tokens per video.

Datasets. For VHP and RBHP datasets, we sample 10 frames and predict the hand position in
next 4 frames at 4 FPS. More details of dataset preparation can be found in Appendix A.1. In ad-
dition to our proposed datasets, HandsOnVLM† are also trained on a few additional datasets for
five different tasks, namely ActivityNet-Captions (Krishna et al., 2017)and YouCook2 (Zhou et al.,
2018) for dense video captioning and event localization, NExT-QA (Xiao et al., 2021) for video
question answering, LLaVA-150K (Liu et al., 2024) for image instruction tuning, ActivityNet-
RTL (Huang et al., 2024) for reasoning temporal localization. We co-train with these additional
tasks to help with visual understanding and reasoning, and this is enabled by the flexible modeling
of HandsOnVLM that allows training on generic QA datasets.

Implementation Details. For HandsOnVLM and other VLM-based baselines, in each epoch we
select 24K samples from the Epic-Kitchens-100 VHP dataset. For HandsOnVLM†, in each epoch
we randomly select 6K samples in Epic-Kitchens-100 VHP dataset, 6K in RBHP dataset and another
12K that are uniformly distributed among all other 5 tasks. We use a batch size of 128, a learning
rate of 2e-5 and train for 40 epochs. The total wall-clock time for training is around 36 hours for
the 7B models while using 4 H100 GPUs. The LLM and vision-language projector is initialized
with the LLaVA-1.5 pre-trained weights. During training, we freeze the visual backbone and fully
fine-tune other modules.
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On Validation Split Zero-shot
EK55 EK100 H2O FPGA

Approach BBox Input ADE ↓ FDE ↓ WDE ↓ ADE ↓ FDE ↓ WDE ↓ ADE ↓ FDE ↓ WDE ↓ ADE ↓ FDE ↓ WDE ↓
KF ✓ 0.281 0.436 0.178 0.265 0.433 0.168 - - - - - -

OCT ✓ 0.183 0.353 0.119 0.159 0.337 0.103 - - - - - -
OCT-global 0.173 0.337 0.112 0.156 0.331 0.100 - - - - - -
OCT-LLaVA 0.121 0.250 0.072 0.163 0.313 0.103 0.051 0.321 0.031 0.066 0.375 0.041
LLaVA-Traj 0.149 0.208 0.100 0.199 0.270 0.132 0.044 0.346 0.030 0.071 0.427 0.044

LLaVA-Pixel2Seq 0.117 0.214 0.076 0.190 0.306 0.124 0.048 0.390 0.032 0.081 0.388 0.049
HandsOnVLM 0.090 0.257 0.062 0.133 0.314 0.090 0.043 0.315 0.028 0.054 0.381 0.034

Table 1: Comparison of VHP task with different baselines. We reported the performance on the
validation split of Epic-Kitchen dataset. For the RBHP baselines, we also evaluate them on two
unseen datasets, H2O and FPHA.

5.2 METRICS AND BASELINES

Following previous works (Liu et al., 2022; Ma et al., 2024b)we use Average Displacement Error
(ADE), Final Displacement Error (FDE) and Weighted Displacement Error (WDE) as metrics to
evaluate VHP and RBHP tasks.

Vanilla Hand Prediction. For the VHP task, we choose Kalman Filter(KF) and Object-centric
Transformer(OCT) (Liu et al., 2022) as the baselines. Since OCT still requires the bounding box
feature of the hand and object as input, to get a fairer comparison with other end-to-end methods,
we implement a version without the requirement of the bounding box, which we call OCT-global.

Reasoning-based Hand Prediction. To evaluate HandsOnVLM’s performance on the RBHP task,
we perform baseline comparisons with several VLM-based methods. We describe these basleines
below:

• OCT-LLaVA. LLaVA(Liu et al., 2024) is a powerful VLM pre-trained on various vision tasks.
To unlock the reasoning ability of the original OCT, we replace the transformer encoder with
the pre-trained LLaVA model. This modified architecture is then trained to directly regress
hand trajectories without next token prediction loss.

• LLaVA-Traj. Note that the hand trajectories are a sequence of pixel positions, we can rep-
resent them in text directly. In this case, we can directly fine-tune the LLaVA without any
modification.

• LLaVA-Pixel2Seq. An alternative approach to representing hand positions involves quantizing
the image into discrete spatial bins (Chen et al., 2021), each corresponding to a unique token.
We can extend the existing vocabulary with those discrete tokens.

5.3 COMPARISONS WITH BASELINES

We evaluate HandsOnVLM on both the VHP task and the proposed RBHP task and report the
results and comparisons with baselines in Table 1 and Table 2 respectively. All models ex-
cept HandsOnVLM† are trained on VHP datasets. HandsOnVLM† is trained on all available datasets
(Data Combo 5 in Table 3).

RBHP
Approach ADE ↓ FDE ↓ WDE ↓

OCT-LLaVA 0.160 0.311 0.101
LLaVA-Traj 0.217 0.294 0.141

LLaVA-Pixel2Seq 0.211 0.325 0.137
HandsOnVLM 0.140 0.311 0.094
HandsOnVLM† 0.133 0.302 0.089

Table 2: Comparison of HandsOnVLM on the
RBHP task with different baselines. †means fine-
tuned on the RBHP dataset.

VHP Task. We evaluate all the baselines
on the VHP datasets as described in sec-
tion 5.1. Here, the FPHA and H2O datasets
serve as unseen datasets to test zero-shot gen-
eralization capabilities. Among all the VHP
datasets, HandsOnVLM outperforms both the
task-specific methods as well as the VLM-
based methods, which demonstrates its strong
ability to produce plausible trajectories corre-
sponding to how a real human hand would
move given explicit instructions. However,
we observe that the Final Displacement Error
(FDE) is not as competitive as LLaVA-Traj and
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LLaVA-Pixel2Seq. This discrepancy may be attributed to the misalignment of iterative position
encoding between the training and inference stages. Specifically, during training, we consistently
encode using ground truth data, whereas during inference, we must encode based on the previous
frame’s prediction, leading to accumulated errors. We also find that HandsOnVLM can generalize to
completely unseen scenes (for example scenes from H2O and FPGA datasets), which demonstrates
it can effectively leverage the world knowledge of the pre-trained VLM.

RBHP Task. For evaluations on the RBHP task shown in Table 2, HandsOnVLM achieves state-
of-the-art performance in ADE and WDE metrics, and comparable performance in the FDE metric.
This suggests that HandsOnVLM is able to reason based on implicit cues of the scene and be applied
to complicated scenarios involving everyday natural language conversations.

5.4 ABLATION STUDY

In this section, we conduct a broad study of the different components of our model. All experiments
in this section are evaluated on the RBHP task.

Effects of Different Sources of Dataset. In Table 3, we show the contribution of each type of
dataset to the performance of HandsOnVLM. LITA dataset denotes the different datasets for 5
additional tasks (Huang et al., 2024) described in Section 5.1 ranging from dense video captioning
to reasoning about temporal localization. While increasing the scale of the VHP dataset (first two
rows) can bring some improvement, we find that fine-tuning with the reasoning dataset (last two
rows) can significantly boost the performance, even when fine-tuning with tasks that are not directly
related to hand trajectory prediction. This demonstrates that HandsOnVLM can leverage world
knowledge learned by other tasks to reason about predicting plausible hand trajectories.

EpicKitchen
Data Combos 55 100 LITA data RBHP data ADE↓ FDE↓ WDE↓

1 ✓ 0.142 0.312 0.094
2 ✓ ✓ 0.140 0.312 0.094
3 ✓ ✓ ✓ 0.138 0.311 0.094
4 ✓ ✓ ✓ ✓ 0.133 0.302 0.089

Table 3: Analysis of the impact of training data on the performance of HandsOnVLM. We can see
that performance increases with additional data of VHP (first two rows), even with datasets of other
tasks (third row), but the highest gains come from the proposed RBHP dataset (last rows).

Num of Generations ADE↓ FDE↓ WDE↓
1 0.133 0.303 0.089
4 0.130 0.300 0.087
8 0.128 0.299 0.087

16 0.128 0.299 0.086

Table 4: Analysis of test-time computations
for HandsOnVLM in the form of stochastic decod-
ing with self-consistency (Wang et al., 2023) We
observe that the performance increases from top
to bottom indicating that the benefits of scaling
test-time compute observed in LLMs also transfer
to our setting.

Test-time Computation. Recent works (Snell
et al., 2024; OpenAI, 2024) have shown that
using more test-time computation is a criti-
cal step for LLMs to improve their perfor-
mance, especially on reasoning tasks. Mo-
tivated by these, we also investigate if
such properties can enhance the performance
of HandsOnVLM predictions. We report the
performance using different numbers of gener-
ations during the stochastic decoding with self-
consistency(Wang et al. (2023)) in Table 4. The
main idea is to sample a diverse set of reason-
ing paths instead of just one and then select
the most consistent output through marginaliza-
tion. To obtain the self-consistency result in our context, we generate multiple answers for each
inquiry and then average the predicted hand trajectory. We find that increasing the test-time com-
putation in this form can robustly improve the performance of HandsOnVLMas seen by the lower
metrics from top to bottom in 4 .
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Where should my hand
move to if I want to remove 
debris from a round, 
metallic object in the sink?

Input GT LLaVA-Pixel2Seq

Can you provide the hand
trajectory for blending the
diced vegetables in the pan?

Prompt

Where should my hand move
to if I want to gently mix
the contents of the 
cooking vessel?

Can you provide the hand
trajectory for closing
the bottle of milk?

Can you provide the hand
trajectory for taking out
espresso?

HandsOnVLM

Figure 4: Qualitative results for different samples from the validation split of our RBHP dataset (top
in blue) and zero-shot evaluations on completely unseen datasets FPHA and H2O (bottom in pink).
The left-hand trajectory is visualized in blue and the right-hand trajectory is in red. The arrows
denote the direction of each trajectory. GT trajectories are provided for reference.

5.5 QUALITATIVE RESULTS

In Fig. 4 we show qualitative results for HandsOnVLM and the strongest baseline LLaVA-Pixel2Seq.
The section above the horizontal line shows visualization from the validation split of RHBP datasets,
while the section below the line shows zero-shot results on scenes from completely unseen datasets.

In the second row, we observe that HandsOnVLM generates a trajectory where the left hand stably
holds the pan while the right hand performs the blending action. In contrast, LLaVA-Pixel2Seq fails
to correctly depict holding the pan. The third row results demonstrates HandsOnVLM’s ability to
reason about multi-modal solutions for the same task. While the ground truth shows the right hand
moving the pot, HandsOnVLM chooses to use the left hand to execute the same action, illustrating
its multi-modal reasoning ability capability.

6 CONCLUSION

Summary. In this work, we propose HandsOnVLM, a novel video-based VLM to predict hand
motion from ego-centric videos. We also proposed two tasks, Vanilla Hand Prediction(VHP) task
and Reasoning-based Hand Prediction(RBHP) task to benchmark the hand motion prediction as
well as the reasoning ability. We demonstrate its effectiveness through extensive quantitative and
qualitative results. We believe this research represents a promising initial step towards integrating
egocentric hand-object video understanding with the powerful capabilities of VLMs.

Limitations. While we enabled hand-trajectory prediction from colloquial language instructions,
the quality of our predictions are bottle-necked by the limitations of ground-truth hand location
extraction from videos, the models for which often fail when the hand is occluded or moving too
fast. In addition, the 2D locations of hand we predict are not rich enough for directly being adapted
for downstream applications like robotics and augmented reality.
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Future Work. An interesting direction of future work would be to predict trajectories of full hand
meshes in the future including orientation and articulation and also include depth in the predictions.
Another exciting direction would be to adapt our model for long-horizon predictions for activities
like “making coffee” which would consist of several steps and require reasoning over an extended
period. Since video clips on the web have significant camera motion over time, a viable strategy for
this could be chaining the model sequentially for different sub-tasks.

REPRODUCIBILITY STATEMENT

We will provide the source code and the generated dataset including instructions on how to setup
training and evaluation of the models. We have thoroughly reviewed our implementation and vali-
dated its effectiveness through extensive experiments.

ETHICS STATEMENT

Our paper focused on learning hand trajectories from human videos and language descriptions.
There are many potential societal consequences of our work including deployments in AR/VR sys-
tems and augmenting user experience for everyday activities by forecasting low-level actions in their
egocentric frame of reference.
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A APPENDIX

Here we provide additional details of the model implementation, dataset curation, and more qualita-
tive results.

A.1 DATASET DETAILS

Ground Truth Generation. We use Epic-Kitchens-55, Epic-Kitchens-100, H2O and FHPA datasets
for experiments. Following the dataset generation pipeline in (Liu et al., 2022), we run Hand Object
Detector (Shan et al., 2020a) on all the frames and calculate the homography matrix between future
frames and last observation frame with SURF (Bay, 2006) descriptor. Finally, we project the future
hand position into the last observation frame and filter out the successful trajectories.

Statistics. Table 5 shows the statistics of all datasets used in our tasks. Note that H2O and FPHA
are only used for zero-shot evaluation so there are no training samples.

Task Dataset Training Samples Validation Samples

VHP

Epic-Kitchen-55 8523 1894
Epic-Kitchen-100 24148 3513

H2O - 503
FPHA - 501

RBHP Epic-Kitchen-100 4018 3513

Table 5: Data Statistics of VHP and RBHP task.

A.2 OTHER ABLATION STUDIES

Scaling Model Improves the Prediction. To evaluate the scaling ability of our model, we use
LLaVA-V1.5-7B and LLaVA-V1.5-13B as the LLM backbone of our model. We refer them
as HandsOnVLM-7B and HandsOnVLM-13B. We show the performance of both models in Fig.
5.

Zero-shot Chain-of-thought. We also conduct an ablation study on the zero-shot chain-of-thought
(Wei et al., 2022; Kojima et al., 2022) prompting, as shown in Fig. 6. We add “Let’s think step by
step” in the front of the answer generated in the inference stage. Contrary to our expectations, this
approach yielded poorer results. This unexpected outcome may be attributed to the limited diversity
of our datasets.

Approach ADE↓ FDE↓
HandsOnVLM-7B 0.133 0.302
HandsOnVLM-13B 0.127 0.293

Figure 5: Ablation study on the LLM backbone
size. We evaluate them on the RBHP task.

Reasoning Method ADE↓ FDE↓
Direct Answer 0.133 0.302

Chain-of-Thought 0.159 0.351

Figure 6: Comparison of direct answer and
chain-of-thought reasoning methods.

A.3 MORE VISUALIZATIONS

Failure Cases. We show some failure cases in Fig. 7. We observe failures when (1) there are
someone’s hands in the video, (2) the hands are occluded by objects, and (3) the target object in the
instruction is not found in the frame.

More Qualitative Results. We provide more visualizations in Fig. 8.

A.4 PROMPT FOR VHP AND RBHP DATASET GENERATION

We provide the GPT4 prompts for the RBHP dataset generation pipeline mentioned in Section 4.2
in Table 6 and Table 7.
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Figure 7: Failure cases of the model: (left) multiple hands in the video, (middle) occlusions, and
(right) the target trash can is out of view.

GPT4 Prompt for Action-aware Image Description
You are a system generating descriptions for ego-centric human images. Human is doing household
activities.

Provided with an image and a action narration of what is happening next, such as “use the scissor”,
you will describe the main item that you see in the image, giving details but staying concise.

You can describe unambiguously what the item is, its color or relative position if clearly identifiable.
You should also give out a overall description of the scene, the environment where the action is
taking place.

Table 6: GPT4 prompt for action-aware image description.

GPT4 Prompt for Implicit Action Generation
You are tasked with creating specific, indirect questions and instructions that human could use to
identify and interact with objects based on their names or detailed descriptions provided by users.

You will be given an action phrase which the human is going to do next, such as “use the scissor”.

Based on the descriptions, you must formulate responses that precisely hint at the action phrase
without naming it directly. The aim is to enable the agent to deduce the correct action through these
indirect cues, enhancing its ability to understand and execute tasks involving the object.

Please format your generated response as a hand trajectory question, some templates are provided
below for reference:
“Where should my hand move to if I want to {implicit description}”
“Can you provide the hand trajectory for {implicit description}?”
“What is the recommended hand movement for {implicit description}?”

Table 7: GPT4 prompt for implicit action generation.

Question Templates to Build VHP Datasets.
“Can you provide the hand trajectory?”
“What is the recommended hand movement?”
“What is the future hand trajectory in this video?”
“What is the predicted hand trajectory given current observations?”
“Where should my hand move to if I want to {explicit action}?”
“Can you provide the hand trajectory for {explicit action}?”
“What is the recommended hand movement for {explicit action}?”

Table 8: Question Templates to build VHP datasets.

Answer Templates to build VHP and RBHP datasets.
“Sure! Here is the hand trajectory {hand token sequence}.”
“Based on the video, the hand trajectory is as follows: {hand token sequence}.”
“The predicted hand trajectory is as follows: {hand token sequence}.”
“Certainly! The hand trajectory for {action instruction} is as follows: {hand token sequence}.”
“To {action instruction}, the recommended hand trajectory is: {hand token sequence}.”

Table 9: Answer Templates to build VHP and RBHP datasets.
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What is the recommended
hand movement for 
transferring a bottle and its 
lid into their respective 
containers?

Input GT LLaVA-Pixel2Seq

Where should my hand move
to if I want to transfer a 
delicious pizza from its
parchment paper to a
decorative dish?

Prompt

Where should my hand move
to if I want to place a long,
cylindrical baking tool 
into the wooden drawer?

HandsOnVLM

Where should my hand move
to if I want to transfer the
diced pieces of eggplant 
from the cutting board to
the cooking vessel?
Where should my hand move
to if I want to transfer a 
delicious pizza from its
parchment paper to a
decorative dish?

Where should my hand move
to if I want to add a savory
filling to the round pieces
of dough?

What is the recommended
hand movement for taking
out espresso?

What is the recommended
hand movement for
opening milk box?

Where should my hand move
to if I want to clean glasses?

What is the recommended
hand movement for
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Figure 8: More Qualitative results for different samples from the validation split of our RBHP dataset
(top in blue) and zero-shot evaluations on completely unseen datasets FPHA and H2O (bottom in
pink). GT trajectories are provided for reference.
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