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Abstract

Biomedical entity linking is an essential task
in biomedical text processing, which aims to
map entity mentions in biomedical text to stan-
dard terms in a given knowledge base. How-
ever, this task is challenging due to the rar-
ity of many biomedical entities in real-world
scenarios, which leads to a lack of annotated
data for them. Limited by understanding these
unseen entities, traditional biomedical entity
linking models suffer from multiple types of
linking errors. In this paper, we propose a novel
latent feature generation framework BioFEG
to address these challenges. Specifically, our
BioFEG leverages domain knowledge to train
a generative adversarial network, which gener-
ates latent semantic features of corresponding
mentions for unseen entities. Utilizing these
features, we fine-tune our entity encoder to cap-
ture fine-grained coherence information of un-
seen entities and better understand them. This
allows models to make linking decisions more
accurately, particularly for ambiguous men-
tions involving rare entities. Extensive experi-
ments on the two benchmark datasets demon-
strate the superiority of our proposed method.

1 Introduction

Biomedical entity linking assigns biomedical en-
tity mentions in texts to corresponding canonical
concepts in a knowledge base, is a key task in the
biomedical NLP area. This task plays a vital role in
bridging unstructured text and structured biomedi-
cal knowledge bases, making it an essential compo-
nent in several downstream medical-related applica-
tions, including knowledge discovery and medical
diagnosis (Joseph et al., 2016), high-throughput
phenotyping (Yu et al., 2015), literature searching
(Zheng et al., 2015) and biomedical question an-
swering (Lamurias and Couto, 2019).

Although many previous biomedical entity link-
ing methods (Leaman and Lu, 2016; Phan et al.,
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(a) Examples of three types of linking errors for biomedical
entity linking. The entities in blue are unseen entities and in
yellow are seen entities.
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(b) Overview of our proposed BioFEG.

Figure 1: The motivation illustration of our proposed
BioFEG. Linking errors may occur if unseen entities
are not sufficiently understood. Our BioFEG generates
latent semantic features of corresponding mentions for
unseen entities to fine-tune entity encoders to capture
fine-grained coherence signals of unseen entities.

2019; Sung et al., 2020; Liu et al., 2021; Yuan et al.,
2022) have achieved high performance in the past
few years, they often overlook entities that never
appear at training, commonly known as unseen enti-
ties. In the biomedical field, there are many unseen
entities lacking training data due to the presence of
rare diseases that occur infrequently in literature.
This restricts our knowledge and comprehension of
unseen entities and hinders the overall performance
of biomedical entity linking.

Due to the limited understanding of unseen en-
tities, there are three types of linking errors for



biomedical entity linking, as illustrated in Figure
1a. The first type involves linking mentions of un-
seen entities to wrong seen entities, as in the top
case where the mention “detoxification” may be
linked to the wrong entity “Liver detoxification”.
The second type is linking mentions of seen entities
to wrong unseen entities, like in the middle case
where the mention “Sagittal” is confused with un-
seen entities “Sagittal sinus” and “Sagittal stratum”.
The most challenging type is the third type, which
occurs when linking mentions of unseen entities to
wrong unseen entities. As in the bottom case, the
mention “right knee” can not be correctly linked
without sufficiently understanding both “Lateral
part of right knee” and “Structure of right knee”.

Some previous works (Angell et al., 2021; Agar-
wal et al., 2022) have realized the challenge of
unseen entities. They cluster mentions by utilizing
mention-mention coreference relationships to bet-
ter disambiguate mentions. However, considering
the rarity of unseen entities, most clusters of them
only contain few mentions. This makes it difficult
to utilize mention-mention relationships of unseen
entities. Thus, these methods are good at managing
the second type of linking error linking mentions
of seen entities to wrong unseen entities but still
seem troubling to deal with the first and third type
of linking errors.

To address these problems, we propose a
novel latent FEature Generation framework for
Biomedical entity linking in this paper, BioFEG in
short. Our BioFEG is an iterative framework and
each iteration contains three steps, which is shown
in Figure 1b. In the first step, we train a biomedical
entity linking retriever using the training set consist-
ing of the training pairs of seen entities. To better
address the second type of linking error, we utilize
hard negative sampling there, which is simple but
effective. In the second step, we leverage domain
knowledge of seen entities to train a generative ad-
versarial network (GAN) (Goodfellow et al., 2014)
to learn to generate corresponding mention latent
semantic features. In the third step, we fine-tune
the entity encoder of our retriever by utilizing the
generated latent features of unseen entities. This
captures fine-grained coherence signals of unseen
entities to simultaneously handle all three types of
linking errors.

The main contributions of this paper are summa-
rized as follows:

• For the first time, we focus on generating

pseudo data in the latent feature space for un-
seen entities to simultaneously deal with all
three types of linking errors caused by insuffi-
ciently understanding of unseen entities.

• We propose a novel BioFEG framework,
which leverages domain knowledge to gen-
erate semantically meaningful latent features
for unseen entities without any labeled data
and fine-tunes the entity encoder with these
features to achieve higher accuracy.

• We compare our BioFEG with state-of-the-art
biomedical entity linking approaches on two
benchmark datasets: MedMentions (Mohan
and Li, 2019) and BC5CDR (Li et al., 2016).
Experimental results demonstrate the superi-
ority of our proposed framework.

2 Related Work

2.1 Biomedical Entity Linking
Biomedical entity linking is also named as biomedi-
cal entity normalization or biomedical entity disam-
biguation. Diverse approaches have been proposed
to explore this task in the last few years. While tra-
ditional biomedical entity linking studies (Hanisch
et al., 2005; Kang et al., 2013; Cho et al., 2017)
incorporate heuristic rules to normalize entities,
recent state-of-the-art approaches of biomedical en-
tity linking (Phan et al., 2019; Sung et al., 2020;
Liu et al., 2021; Lai et al., 2021; Yuan et al., 2022;
Zhang et al., 2022) encode mentions and entities
into a common space and link mentions to the near-
est entity. However, all these works ignore entities
that never appear at training.

Some previous works (Angell et al., 2021; Varma
et al., 2021; Agarwal et al., 2022) have focused on
generalizing to unseen entities to improve the per-
formance of biomedical entity linking. Angell et al.
(2021) and Agarwal et al. (2022) utilize mention-
mention coreference relationships to cluster men-
tions to provide another way to jointly make linking
predictions. However, considering the rarity of un-
seen entities in the biomedical domain, most of
them only have one or two mentions to group to-
gether. Thus, these methods fail to deal with the
first and third types of linking errors by utilizing
mention-mention relationships. Varma et al. (2021)
introduces additional structural knowledge from
WikiData into unseen entities to understand them
better. However, the accuracy of mapping entities
in biomedical knowledge bases to WikiData is only
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Figure 2: The overall architecture of our BioFEG framework, which contains two phases: retrieve and rerank. In
our retrieve phase, it performs three steps iteratively.

80.2%. Wrong structural knowledge will have a
greater negative impact.

Therefore, in this paper, we try to find another
way, that is generating corresponding mention la-
tent semantic features of unseen entities to fine-
tune the entity encoder of our biomedical entity
linking retriever to deal with all three types of link-
ing errors simultaneously without introducing any
cross-domain error information.

2.2 Zero-Shot Entity Linking

Zero-shot entity linking (Logeswaran et al., 2019)
is the task that mentions need to be linked to unseen
entities of new domains. Considering that we also
focus on unseen entities in this paper, we briefly
discuss this task there. State-of-the-art zero-shot
entity linking approaches (Wu et al., 2020; Yao
et al., 2020; Tang et al., 2021; Sui et al., 2022)
employ a retrieve-rerank pipeline to improve the
performance. Some biomedical entity linking meth-
ods (Angell et al., 2021; Varma et al., 2021; Agar-
wal et al., 2022) and our proposed BioFEG also
follow this pipeline. However, zero-shot entity
linking is a more challenging task, since all test
samples are from unseen entities of new domains.
In our biomedical entity linking setting, consider-
ing that the test set and training set are both from
the biomedical domain and only a part of test sam-
ples are from unseen entities, there is rich domain
knowledge that can be leveraged.

3 Methodology

3.1 Task Definition

Our biomedical entity linking task takes as input
a biomedical text containing multiple mentions
whose positions are known. Additionally, we have

a knowledge base of entities, where each entity is
identified by a Concept Unique ID (CUI). Each
mention with context mi is associated with its own
CUI u. We denote the union of all entities in the
knowledge base as E = ej

|E|
j=1 where ej is a single

entity and there are |E| entities in the knowledge
base. Our objective is to predict the gold CUI u∗,
i.e., the target entity CUI corresponding to the men-
tion mi as follows:

u∗ = CUI(ArgMaxej∈E P (ej |mi; θ)) (1)

where CUI(·) returns the CUI of the entity ej and
θ is the trainable parameters of models.

3.2 Overall Framework

Figure 2 shows the overall architecture of our
BioFEG. Following previous works (Angell et al.,
2021; Varma et al., 2021; Agarwal et al., 2022),
our framework contains two phases: retrieve and
rerank. Retrieve phase is to generate candidate sets
for each mention from all entities of knowledge
base and rerank phase is to predict the gold CUI.
During the retrieve phase, it performs three steps
iteratively. In the first step, we train our biomedi-
cal entity linking retriever by utilizing the training
set. In the second step, we train a GAN model to
learn to generate latent semantic features for corre-
sponding mentions. In the third step, we utilize the
generated latent features of unseen entities to fine-
tune the entity encoder of our retriever to capture
fine-grained coherence signals of unseen entities.

3.3 Step 1: Retriever Training

Following Varma et al. (2021), we utilize the bi-
encoder architecture proposed by Wu et al. (2020)
as our biomedical entity linking retriever. This



architecture contains two encoders: entity encoder
and mention encoder to learn the representations of
candidate entities in knowledge bases and mentions
with context respectively.

The inputs of each entity and mention are respec-
tively constructed as:

[CLS] en [SEP], [CLS] me [SEP] (2)

where en = title [ENT] des, and me =
ctxtl [Ms] mention [Me] ctxtr. The title, des,
mention, ctxtl, ctxtr are the word-piece tokens of
the entity title, entity description, mention, context
before and after the mention respectively. [ENT]
is a special token to separate the entity title and its
description, [Ms] and [Me] are special tokens to
tag the mention.

Both our entity encoder and mention encoder
are individual BERT encoders (θBERT1 , θBERT2).
We feed the entity and mention inputs into them
to obtain vector representations ye and ym, which
are the last layers of the output of the [CLS] to-
ken. The score s(mi, ej) of each mention mi and
entity ej is calculated as the inner product between
corresponding representations:

s(mi, ej) = ymi · yej (3)

For the negative sampling, in the first iteration,
our retriever is trained on in-batch negatives, which
is a commonly used random negative sampling
method. Within a batch, all other entities except the
corresponding entity are treated as negative sam-
ples of the mention. In the following iterations, we
utilize hard negative sampling to train our retriever,
which chooses negative samples according to the
score s(mi, ej). The entities with higher scores ex-
cept the corresponding entity are negative samples
of the mention. This is a simple but effective way
to handle the linking errors of linking mentions of
seen entities to wrong unseen entities.

During the training stage, the objective of our
biomedical entity linking retriever is to maximize
the score of the corresponding entity of the mention
with respect to negative sampling entities. Thus, for
each mention-entity pair (mi, ei), the loss function
is calculated as follows:

LRetr = −s(mi, ei)+log
N∑
j=1

exp(s(mi, ej)) (4)

where ei is the corresponding entity of the mention
mi, N is the number of all sampling entities of
the mention, which contains the gold entity and
negative sampling entities.

3.4 Step 2: GAN Training
For unseen entities, the entity encoder of our re-
triever is never trained with corresponding mention-
entity pairs due to the lack of such data. We pro-
pose to utilize GAN (Goodfellow et al., 2014) to
generate pseudo data in the latent feature space for
unseen entities to fine-tune the entity encoder to
enhance the understanding of unseen entities.

Specifically, we utilize WGAN-GP (Gulrajani
et al., 2017) to generate corresponding mention la-
tent features based on the domain knowledge of
each entity. The more domain knowledge we lever-
age, the more accurate the generated features will
be. However, for a fair comparison, we only lever-
age the entity description as our domain knowl-
edge. We utilize another BERT encoder (θBERT3)
to obtain the domain knowledge representation yd,
which also is the output of the last hidden layer
corresponding to the position of [CLS] token.

The generator combines the domain knowledge
representation yd and a random Gaussian noise vec-
tor z as the input while generating fake mention
latent features ỹm. We take mention representa-
tions in the biomedical entity linking retriever ym
as our real mention latent features. The discrimina-
tor combines the domain knowledge representation
yd and a latent feature vector −→y m (can be a fake
or real latent feature) as the input while return-
ing a real-valued score D(−→y m, yd) to decide how
realistic the −→y m is. The discriminator is trained
to distinguish the real feature and the generated
feature, while the generator is trained to fool the
discriminator. Following Gulrajani et al. (2017),
the loss of our GAN model is computed as follows:

LG =E−→x∼P(−→y m,yd)
[D(−→x )]− Ex̃∼P(ỹm,yd) [D(x̃)]+

λ · Ex̂∼P(ŷm,yd) [(||∇x̂D(x̂)||2 − 1)2] (5)

where −→x ∼ P(−→y m,yd) is the joint distribution of
latent features −→y m and domain knowledge repre-
sentations yd, x̃ ∼ P(ỹm,yd) is the joint distribution
of fake latent features ỹm and yd, x̂ ∼ P(ŷm,yd) is
the joint distribution of latent features ŷm and yd
while ŷm = ϵ−→y m + (1 − ϵ)ỹm with ϵ ∼ U(0, 1),
and λ is a gradient penalty coefficient. During the
training stage, we only use the training set con-
sisting of the training pairs of seen entities and
minimax the loss min

G
max
D

LG.

3.5 Step 3: Retriever Fine-Tuning
After training the GAN model, we use its generator
to generate corresponding mention latent seman-



tic features for unseen entities. Then we fine-tune
the entity encoder (θBERT1) of our biomedical en-
tity linking retriever with these generated latent
features. The process of obtaining entity repre-
sentations ye is the same as step 1. We utilize
Eq. 3 to calculate the matching score s(mi, ej) be-
tween each generated mention latent feature ỹmi

and obtained entity representation yej . And we
also choose negative samples in the hard way. For
each pair (ỹmi , ei) of generated mention latent fea-
tures and their corresponding unseen entities, we
fine-tune the entity encoder by optimizing the loss
function of Eq. 4.

3.6 Reranking Phase
Through the retrieve phase, we generate a candi-
date entity set for each mention. The goal of our
reranking phase is to predict the corresponding en-
tity from the candidate set and obtain the predicted
CUI for each mention. Following previous works
(Angell et al., 2021; Varma et al., 2021; Agarwal
et al., 2022), we utilize the cross-encoder architec-
ture to rerank entities. We utilize Eq. 2 to obtain
the inputs of each entity and mention with context.
The input of our reranking phase is the concatena-
tion of these two inputs after removing the [CLS]
token of the entity input.

We feed the input into another BERT encoder
(θBERT4) to obtain the mention-candidate repre-
sentation ym,e, which is also the vector in the last
hidden layer corresponding to the position of the
[CLS] token. For a mention mi and one of its can-
didate entity ek, we put the representation ymi,ek

to a feed-forward neural network FFNN and obtain
the matching score sk between mi and ek by using
a SoftMax function:

ŝk = FFNN(ymi,ek), sk =
exp(ŝk)∑K
j=1 exp(ŝj)

(6)

where K is the number of candidate entities of the
mention mi. We utilize the cross-entropy as our
loss function, which is computed as follows:

LRerank = −lk log sk − (1− lk) log(1− sk) (7)

where lk ∈ {0, 1}, lk equals to 1 while the candi-
date entity ek is the corresponding gold entity of
the mention mi, otherwise it equals to the value 0.
Finally, we can obtain the predicted gold CUI by
calculating as follows:

u∗ = CUI(ArgMaxeKk=1
sk) (8)

where CUI(·) returns the CUI of the entity ek.

Num. of Split MedMentions BC5CDR

Mentions
Train 120K 18K
Dev 40K 934
Test 40K 10K

Unique Entities
Train 19K 2K
Dev 9K 281
Test 8K 1K

Unseen Entities Dev 42.3% 19.9%
Test 42.5% 35.2%

Table 1: Overall statistics of the MedMentions and
BC5CDR dataset.

4 Experiments

4.1 Datasets

Following previous works (Angell et al., 2021;
Varma et al., 2021), we evaluate our proposed
framework BioFEG under two public biomedical
entity linking datasets: MedMentions (Mohan and
Li, 2019) and BC5CDR (Li et al., 2016). Table 1
shows the overall statistics of these two datasets.

MedMentions is the largest biomedical entity
linking dataset, which contains 4392 abstracts from
PubMed. The dataset is labeled to link to the
2017AA full-version of UMLS. Following previ-
ous works (Angell et al., 2021; Varma et al., 2021;
Agarwal et al., 2022), we use the ST21PV subset of
MedMentions dataset. There are a large number of
entities that are unseen entities (never seen during
the training stage) in the development and test set,
over 42% of entities.

BC5CDR contains 1500 PubMed abstracts di-
vided into training (500), development (500) and
test (500) subsets. The mentions are linked to
MESH knowledge base, which is much smaller
than UMLS. In this dataset, 19.9% and 35.2%
unique entities in development and test set never
appear in the training set.

4.2 Implementation Details

In our experiments, following (Angell et al., 2021;
Varma et al., 2021; Agarwal et al., 2022), all the
BERT encoders we used are the BERT-base version.
The maximum sequence length of words for men-
tion with context, entity, and domain knowledge
are all set to 128. Any string over the maximum
length is truncated. We optimize all loss functions
using AdamW (Loshchilov and Hutter, 2017). The
evaluation metric is the accuracy. All scores are
averaged 5 runs using different seeds.

For the retrieval phase, the total iteration number
is 3. The learning rate is 1e-5 for training, and it
is set to 1e-7 and 1e-9 for BC5CDR and MedMet-



Models MedMentions BC5CDR
Overall Seen Unseen Overall Seen Unseen

N-GRAM TF-IDF 50.9 50.9 51.0 86.9 89.2 74.6
BIOSYN (Sung et al., 2020) 72.5 76.5 58.7 87.8 89.0 81.1
SAPBERT (Liu et al., 2021) 69.8 72.9 58.9 85.2 85.8 82.0
INDEPENDENT (Logeswaran et al., 2019) 72.8 75.9 61.9 90.5 94.0 73.6
CLUSTERING-BASED (Angell et al., 2021) 74.1 77.3 62.9 91.3 94.9 73.8
DATA-INTEGRATION (Varma et al., 2021) 74.8 79.7 57.8 91.9 94.5 77.5
ARBORESCENCE (Agarwal et al., 2022) 75.73 79.97 60.99 – – –

BioFEG (Ours) 76.68 79.91 65.42 93.39 95.57 81.19

Table 2: Experimental results on the MedMentions dataset and BC5CDR dataset. Seen and Unseen represent the
sets of mentions whose corresponding entities are seen and unseen during training, respectively. We report the
results of baselines according to (Angell et al., 2021; Varma et al., 2021; Agarwal et al., 2022). All scores of our
BioFEG are averaged 5 runs using different random seeds. In the results, the highest values are in bold.

nions respectively during the fine-tuning stage. The
number of negative samples is 64. For the GAN,
we use a single-layer fully-connected network with
hidden size of 768 for both the generator and dis-
criminator. The gradient penalty coefficient λ in
Eq. 5 is set to 10. We train the discriminator 5
iterations in each generator training iteration. We
train the GAN model 80 epochs with a learning
rate of 5e-5. For the reranking phase, we choose
the top 64 candidate entities as the candidate set
for each mention. We train the reranker 5 epochs
with a learning rate of 2e-5. Our experimental code
is available here 1.

4.3 Baselines

For the quantitative evaluation of our proposed
BioFEG, we utilize the following state-of-the-art
biomedical entity linking methods for compari-
son. The n-gram tf-idf model is a traditional tf-idf
based information retrieval approach. BIOSYN
(Sung et al., 2020) utilizes the synonym marginal-
ization technique to learn biomedical entity rep-
resentations. SAPBERT (Liu et al., 2021) is
a self-alignment pre-training approach to repre-
sent biomedical entities. INDEPENDENT (Lo-
geswaran et al., 2019) uses the cross-encoder archi-
tecture to make linking decisions. CLUSTERING-
BASED (Angell et al., 2021) is the first work to con-
sider the problem of unseen entities in biomedical
entity linking. It utilizes mention-mention corefer-
ence relationships to provide another way to jointly
make linking predictions. DATA-INTEGRATION
(Varma et al., 2021) introduces additional struc-
tural knowledge from WikiData into biomedical
entities to enhance entity representations. AR-
BORESCENCE (Agarwal et al., 2022) builds min-

1https://github.com/suixuhui/BioFEG

imum spanning arborescences over mentions and
entities across documents to further improve the
CLUSTERING-BASED approach.

4.4 Overall Performance

Table 2 shows the experimental results of our
BioFEG and other baselines on the MedMentions
and BC5CDR datasets. We can observe that our
BioFEG outperforms all other methods on both the
two datasets and achieves new state-of-the-art per-
formance, which demonstrates the effectiveness of
our BioFEG. The overall accuracy improvement on
Medmentions and BC5CDR are 0.95% and 1.49%,
respectively. We can also find that methods consid-
ering the unseen entity problem (INDEPENDENT,
CLUSTERING-BASED, DATA-INTEGRATION,
ARBORESCENCE, and our proposed BioFEG)
perform better than other methods. This is consis-
tent with our belief that the lack of understanding
of unseen entities hinders the overall performance
of biomedical entity linking.

In terms of the results of MedMentions, our
BioFEG achieves similar performance with AR-
BORESCENCE on the seen set, but notably outper-
forms it on the unseen set. This demonstrates the
superiority of our BioFEG, which generates latent
semantic features of corresponding mentions for
unseen entities to fine-tune the entity encoder to
capture fine-grained coherence signals of unseen
entities. Regarding the results of BC5CDR, our
BioFEG achieves better results than all other base-
lines except for SAPBERT on both the seen and
unseen sets. SAPBERT introduces training pairs
from the UMLS knowledge base and uses metric
learning to train language model. This may result
in some unseen entities having been trained in these
training pairs. Though SAPBERT performs well

https://github.com/suixuhui/BioFEG


Models MedMentions BC5CDR
Overall Seen Unseen Overall Seen Unseen

BioFEG 76.68 79.91 65.42 93.39 95.57 81.19
w/o generated latent features 74.87 79.18 59.85 92.93 95.39 79.23
w/o hard negative sampling 74.89 78.83 61.16 93.02 95.29 80.33
w/o reranking phase 74.08 78.73 57.89 92.45 95.53 75.31

Table 3: Ablation study of our proposed BioFEG. We mainly evaluate the effect of three components: the fine-tuning
with generated latent features, the hard negative sampling and the reranking phase.
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Figure 3: Retrieval results on Medmentions. The evalu-
ation metric is recall, which measures whether the gold
entity is in the top K candidates for each mention. The
results of baselines come from (Agarwal et al., 2022),
and the recall is micro average recall over all mentions.

on the unseen set, it appears challenging to learn
good representations of seen entities. Overall, these
results confirm the effectiveness of our proposed
BioFEG in performing biomedical entity linking in
the presence of unseen entities.

5 Analysis

5.1 Ablation Studies
To gain a better understanding of our proposed
BioFEG, we conduct a series of ablation studies, as
presented in Table 3. We can find that our BioFEG
w/o generated latent features and BioFEG w/o hard
negative sampling both result in a decrease in over-
all accuracy, confirming the effectiveness of these
two key components. The performance of BioFEG
w/o generated latent features drops more on the
unseen set, while the performance of BioFEG w/o
hard negative sampling drops more on the seen
set. Fine-tuning with our generated latent features
helps our entity encoder understand unseen entities
better. Our hard negative sampling finds the most
informative training samples for efficient training.
It avoids easy training samples dominating the gra-
dients to harm the learning process, which provides
more fine-grained coherence information for seen
entities. We also observe that our BioFEG signifi-

Models Type 1 Type 2 Type 3 Total

Retrieve-Rerank 1691 1203 1084 3978
ARBORESCENCE 1717 916 1070 3703
BioFEG (Ours) 1332 1089 1029 3450

Table 4: The number of three types of linking errors on
the MedMentions test set. Type 1: linking mentions of
unseen entities to wrong seen entities, Type 2: linking
mentions of seen entities to wrong unseen entities, and
Type 3: linking mentions of unseen entities to wrong
unseen entities.

cantly outperforms BioFEG w/o reranking phase,
emphasizing the necessity of the reranking phase
after retrieving entities. The deep cross-attention
between mentions and candidate entities produces
more consistent gains.

5.2 Retrieval Performance

We report the retrieval results on MedMentions in
Figure 3. We can find that our proposed BioFEG
consistently outperforms all baseline approaches
for all K values, which demonstrates the effective-
ness of our proposed BioFEG in the biomedical
entity linking retrieval phase. For recall@1, or di-
rectly linking at the retrieval phase, our BioFEG
improves over ARBORESCENCE 1.77%. As the
number of candidates increases, there is a tendency
for all models to saturate. Despite this, we still
find that our proposed BioFEG outperforms the
ARBORESCENCE for 1.45% at recall@64.

5.3 Handling Three Types of Linking Errors

As noted in our stated contributions, our BioFEG
possesses the ability to tackle three types of link-
ing errors caused by insufficiently understanding
of unseen entities. Thus, we conducted an analysis
to compare the number of the three types of link-
ing errors among BioFEG and two baselines. The
ARBORESCENCE represents the current state-of-
the-art, while the Retrieve-Rerank serves as the
base model for both ARBORESCENCE and our
BioFEG, utilizing a bi-encoder in the retrieval



Error Type Mention Predicted Annotated Statistics

HO (High Overlap) creatinine creatinine chromium 0.6%
AS (Ambiguous Substring) bicarbonate sodium bicarbonate bicarbonates 7.7%
RS (Redundant String) inorganic arsenic arsenic arsenicals 10.5%
AB (Abbreviation) amp adenosine monophosphate ampicillin 7.5%
LO (Low Overlap) anotia anodontia congenital microtia 59.5%
OT (Others) brain damage brain diseases brain injuries 14.2%

Table 5: Examples and statistics of each error type on the BC5CDR test set.

phase and a cross-encoder in the reranking phase.
The results are shown in Table 4.

For the type 2 linking errors, ARBORESCENCE
performs better than Retrieve-Rerank and our pro-
posed BioFEG, which demonstrates the superior-
ity of utilizing mention-mention coreference rela-
tionships to cluster mentions to provide another
way to jointly make linking decisions. However, it
performs worse and slightly better than Retrieve-
Rerank on type 1 and type 3 linking errors, respec-
tively. This is consistent with our claim that the
methods based on mention-mention coreference re-
lationships are good at handling the type 2 linking
error but still seem troubling to deal with type 1
and type 3 linking errors.

We observe that our BioFEG significantly out-
performs Retrieve-Rerank on handling all the three
types of linking errors, especially on type 1 linking
error. Our BioFEG utilizes the generated latent
semantic features of unseen entities to fine-tune the
entity encoder to capture fine-grained coherence
signal of unseen entities. This is significant for
biomedical entity linking models to understand un-
seen entities better and simultaneously handle the
three types of linking errors.

5.4 Error Analysis

To better understand the behavior of our proposed
BioFEG, we perform error analysis on the test set,
with a focus on the BC5CDR dataset due to the
high number of error samples in MedMentions. We
manually examined all error cases and categorize
them into six error types: HO (High Overlap), AS
(Ambiguous Substring), RS (Redundant String),
AB (Abbreviation), LO (Low Overlap), and OT
(Others). The examples and statistics of each error
type are shown in Table 5.

HO is an error where the mention string is iden-
tical to the predicted entity but the predicted entity
is not the annotated entity. This error type may be
caused by annotation errors or occur when the same
mention is interpreted in different ways depending

on the context. AS is the error case whose mention
string is a substring of the predicted entity, while
RS is the case whose predicted entity is a substring
of the mention string. AB is a case that the mention
string is a form of abbreviation, which may need
additional tools to replace them with the expanded
form. LO denotes an error case where the mention
string is very different from the surface of its gold
entity. OT represents an error that does not fall into
any of the above types.

In Table 5, we can observe that most errors be-
long to LO. This is the most challenging error type,
since it requires more external knowledge and more
complex reasoning to overcome the huge differ-
ence between the surface of mention string and
gold entity. The available information may not be
sufficient to make right linking decisions. There
are also many errors are AS and RS, the mentions
of them are often highly ambiguous and could refer
to many different entities. We can also find 14.2%
errors belong to OT, most of which are caused by
the gold entity being too semantically similar to
other entities, such as “brain injuries” and “brain
diseases”. In general, considering the limitations of
annotation and available knowledge, our BioFEG
has almost reached the upper bound performance
of the biomedical entity linking task.

6 Conclusion

In this paper, we focus on rare entities in biomed-
ical entity linking. To address the challenge of
lacking training data and insufficiently understand-
ing of unseen entities, we propose BioFEG, a novel
framework to generate pseudo data in the latent fea-
ture space for unseen entities to fine-tune the entity
encoder of our retriever. This captures more fine-
grained coherence signals of unseen entities, allow-
ing for simultaneously handling all the three types
of linking errors caused by insufficiently under-
standing of unseen entities. Experimental results
on two public biomedical entity linking datasets
demonstrate the effectiveness of utilizing generated



latent semantic features and our proposed BioFEG
achieves state-of-the-art performance.

Limitations

Although our BioFEG has demonstrated its effec-
tiveness in the biomedical entity linking task, there
are still some limitations to be addressed in the fu-
ture. The primary limitation is to generate seman-
tically more meaningful corresponding mention
latent features for unseen entities. We argue that
the more domain knowledge we leverage, the more
accurate the generated features will be. However,
for a fair comparison with baselines, we only lever-
age the entity description as our domain knowledge.
We will investigate to utilize more domain knowl-
edge to generate more accurate latent features in
the future work.
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