
ConVis: Contrastive Decoding with Hallucination Visualization for
Mitigating Hallucinations in Multimodal Large Language Models

Yeji Park†, Deokyeong Lee†, Junsuk Choe∗, Buru Chang∗

Sogang University
{yjparkm, plmft, jschoe, buru}@sogang.ac.kr

Abstract

Hallucinations in Multimodal Large Language Models
(MLLMs) where generated responses fail to accurately reflect
the given image pose a significant challenge to their reliabil-
ity. To address this, we introduce ConVis, a novel training-
free contrastive decoding method. ConVis leverages a text-
to-image (T2I) generation model to semantically reconstruct
the given image from hallucinated captions. By comparing
the contrasting probability distributions produced by the orig-
inal and reconstructed images, ConVis enables MLLMs to
capture visual contrastive signals that penalize hallucination
generation. Notably, this method operates purely within the
decoding process, eliminating the need for additional data
or model updates. Our extensive experiments on five popu-
lar benchmarks demonstrate that ConVis effectively reduces
hallucinations across various MLLMs, highlighting its poten-
tial to enhance model reliability. Source code is available at
https://github.com/yejipark-m/ConVis

Introduction
Multimodal Large Language Models (MLLMs) (Dai et al.
2023; Liu et al. 2024b) are advanced language models ca-
pable of understanding both images and text, such as im-
age captioning and visual question answering (VQA). While
MLLMs have achieved significant success that utilize both
visual and textual information, the issue of hallucination,
where the models generate responses that do not align
with the given image, has greatly undermined their reliabil-
ity (Liu et al. 2023a; Sun et al. 2024). This problem poses
a significant obstacle to adopting MLLMs in critical fields
where reliability is crucial. For instance, in medical applica-
tions, it could lead to incorrect diagnoses (Liu et al. 2023b),
while in MLLM-based autonomous systems, it might result
in erroneous interpretations (Shao et al. 2024).

Recent research has been actively conducted to address
this. WoodPecker (Yin et al. 2023) and LURE (Zhou et al.
2024) reduce hallucinations by post-processing the gen-
erated responses. Datasets such as LRV-Instruction (Liu
et al. 2023a) and RLHF-V (Yu et al. 2024) have been pro-
posed to mitigate hallucinations through instruction tuning
of MLLMs. However, these studies often rely on external
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Figure 1: The text-to-image model visualizes hallucinations (e.g.,
‘book’) in the semantically reconstructed images based on the
hallucinated caption, exhibiting differences (e.g., missing ‘clock’)
from the original image.

APIs like GPT-3.5, require costly human feedback collec-
tion, and necessitate additional training of MLLMs.

In contrast, this paper focuses on decoding strategies
that reduce hallucinations by intervening solely in the de-
coding process, without the need for additional data or
model training. The following studies fall into this category:
OPERA (Huang et al. 2024) imposes penalties on token gen-
eration that does not reference visual tokens. VCD (Leng
et al. 2024) creates contrasting distributions using distorted
images to reduce the model’s reliance on statistical biases
and priors that lead to hallucinations. HALC (Chen et al.
2024) corrects hallucinations by leveraging cues provided
by visual information from various fields of view.

In this study, we propose a contrastive decoding method
called ConVis (Contrastive Decoding with Hallucination
Visualization), which can be applied to any existing
MLLM without additional training. Inspired by the previ-
ous work (Kim et al. 2024), ConVis leverages text-to-image
(T2I) generation models, specifically Hyper-SDXL (Ren
et al. 2024), to capture visual contrast signals. The process
begins with the MLLM generating a caption for the input im-
age, after which the T2I model reconstructs an image based
on this caption. As shown in Figure 1, if the generated cap-
tion contains hallucinations (e.g., a book’), there will be vi-
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Figure 2: The original and reconstructed image generate the con-
trastive logit distribution for the hallucinated tokens (e.g., ‘book’).
The reconstructed image tends to amplify the logits of tokens cor-
responding to the visualized hallucination.

sual discrepancies between the original and reconstructed
images (e.g., a missing clock’). ConVis then uses the origi-
nal and reconstructed images to compare the probability dis-
tributions (Figure 2), capturing visual contrast signals that
highlight hallucinations. Based on these signals, ConVis pe-
nalizes the generation of hallucinations during the decoding
process, reducing the hallucinations.

To validate the effectiveness of ConVis, we conducted ex-
periments across five benchmarks: CHAIR (Rohrbach et al.
2018), HallusionBench (Guan et al. 2024), POPE (Li et al.
2023c), MME (Fu et al. 2023) and LLaVA-Bench (Liu
et al. 2024b). The results consistently demonstrated that
our decoding method reduces hallucinations while maintain-
ing overall response generation performance across various
MLLMs, including LLaVA-1.5 (Liu et al. 2024a), MiniGPT-
4 (Zhu et al. 2024), and mPLUG-Owl2 (Ye et al. 2024).

Our contributions can be summarized as follows: (1) Pro-
pose ConVis, a novel contrastive decoding method that vi-
sualizes hallucinations using a T2I model. To the best of our
knowledge, this is the first time a T2I model has been em-
ployed to mitigate hallucinations through a decoding strat-
egy. (2) Conduct extensive experiments to validate the effec-
tiveness of ConVis in reducing hallucinations. (3) Provide
insights into how T2I models can serve as a valuable source
of visual contrastive signals in decoding methods aimed at
mitigating hallucinations.

Related Work
Multimodal Large Language Models
The emergence of LLMs has revolutionized the paradigm
of Natural Language Processing (NLP). The significant suc-
cess of LLMs in the NLP field has led to research on lever-
aging LLMs in the visual domain. Consequently, MLLMs
that can simultaneously handle visual and textual data have
recently been proposed. Specifically, to process visual in-
formation, LLaVA (Liu et al. 2024b) uses a CLIP vision
encoder (Radford et al. 2021) and a linear layer to project
images into the LLM’s input embedding space. MiniGPT-
4 (Zhu et al. 2024) employs a Q-Former (Li et al. 2023a)
and a linear layer to project images into the LLM’s input

embedding space. Additionally, mPLUG-Owl2 (Lai et al.
2024) introduces a modality-adaptive module that preserves
modality-specific features, allowing the model to excel in
both multimodal and NLP tasks.

However, despite these efforts, misalignment between
modalities can still occur for various reasons, leading to gen-
erated responses that do not correspond to the visual infor-
mation. This phenomenon, known as hallucination, under-
mines the reliability of MLLMs and poses a significant chal-
lenge to their application in real-world scenarios.

Hallucination Mitigation
To address the hallucination problem in MLLMs, several
studies have been proposed recently. Lure (Zhou et al. 2024)
and Woodpecker (Yin et al. 2023) employ post-processing
methods to revise generated responses, either by training a
revisor or using GPT-3.5-turbo (Brown et al. 2020). Fine-
tuning approaches (Liu et al. 2023a; Yu et al. 2024) mit-
igate hallucinations through instruction tuning with addi-
tional data, but they require significant data collection and
training resources. Given the large number of parameters in
MLLMs, this is computationally inefficient.

Therefore, methods for improving the decoding process
have recently received great attention due to the advan-
tage that they do not require additional training. Specifi-
cally, OPERA (Huang et al. 2024) explores aggregation pat-
terns that cause hallucinations. OPERA utilizes this insight
to suppress the generation of tokens that exhibit these pat-
terns. VCD (Leng et al. 2024) leverages the characteristic
that the model tends to prioritize prior knowledge over vi-
sual information when responding to distorted images. As
a result, the responses to the distorted image and the orig-
inal image show significant differences in hallucinated to-
kens, and VCD contrasts these to mitigate the hallucinations.
HALC (Chen et al. 2024) observes that when images with
varying fields of view are input into the MLLM, the proba-
bility changes for ground truth tokens are much greater than
for hallucinated tokens. This observation helps identify vi-
sual context candidates that clearly depict objects, and by
contrasting these candidates, HALC reduces hallucinations.

Unlike existing techniques, we propose a new decoding
method that utilizes a T2I model. Specifically, our approach
visualizes hallucinations in the initially generated caption
using a T2I model, then contrasts the responses generated
from the reconstructed image with those from the original
image. Through this process, we contrast distributions of the
hallucinated tokens and effectively mitigate hallucinations.

Methodology
Preliminaries
Response Generation. The MLLM generates a response y
corresponding to a given input image v and instruction text
x. The input image is projected into visual tokens through
an image encoder, and these tokens, along with the tokens
corresponding to the instruction text, are fed into the LLM.
The response is generated through autoregressive decoding
according to the following equation:

yt ∼ pθ(·|v, x, y<t) ∝ exp
(
fθ(·|v, x, y<t)

)
, (1)
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Figure 3: The original and generated image produce the contrastive distribution for the hallucinated tokens (e.g., ‘book’). The generated image
tends to amplify the logits of tokens corresponding to the visualized hallucination.

where θ denotes the parameters of the MLLM, yt represents
the t-th token of response, and y<t is the sequence of to-
kens generated up to time t. fθ denotes the logit distribution
generated by the MLLM. Hallucination refers to the phe-
nomenon where the output y generated by the MLLM does
not correspond to the input image v. This study focuses on
mitigating hallucinations while maintaining the overall per-
formance of the MLLM as a language model.
Text-to-Image Generation. The core component of Con-
Vis is the T2I model that generates images based on a given
query. The goal of the T2I model is to create an image that
accurately depicts the query. Among the recently proposed
T2I models, we utilize Hyper-SDXL (Ren et al. 2024), an
enhanced version of Stable Diffusion (Ho, Jain, and Abbeel
2020), which has demonstrated excellent T2I performance.
The diffusion-based Hyper-SDXL model begins with a pure
noise and progressively reconstructs it through an iterative
reverse diffusion process which ultimately results in the gen-
erated image v′0.

Hallucination Visualization
We hypothesize that the T2I model can help mitigate hal-
lucinations by providing visual contrast signals during the
decoding process. If the T2I model receives a caption gener-
ated by the MLLM that contains hallucinations, it will faith-
fully visualize those hallucinations in the generated image.
We refer to this process as hallucination visualization.

To implement this, ConVis first generates an initial cap-
tion c for the original image v using a simple instruction text
that directs the MLLM to describe the image. This process is
illustrated in Figure 2. The T2I model then takes the caption
c as a query and generates an image v′ based on it. If the
caption contains hallucinations, these will be faithfully vi-
sualized in the generated image v′. Conversely, if the initial
caption is accurate and free of hallucinations, the generated
image will be semantically similar to the original image.
Diversity of Generated Images. Given that the current T2I
model may not generate images that fully align with the cap-
tions, we address this limitation by increasing the diversity
of the generated images using the following approaches: (1)
We first generate a diverse set of n captions using Nucleus
Decoding (Holtzman et al. 2020) instead of Greedy Decod-

ing. (2) Then, the T2I model uses these n captions to gen-
erate n corresponding images. This approach increases cov-
erage of the various potential hallucinations that the MLLM
might generate by diversifying the captions. Additionally, by
using multiple images instead of a single one, we enhance
the robustness of our method against the T2I model’s po-
tential misalignment between the caption and the generated
image due to its imperfect performance.

We have found these approaches to be effective, with de-
tailed results available in the experiment section.

Contrastive Decoding

Hallucinations in captions cause visual differences between
the original image v and the generated image v′. We mitigate
these hallucinations by capturing the visual contrast signals
from these differences. To achieve this, during the decod-
ing process, we utilize both the original image v and the n
generated images to produce the logit distribution for each
image. The final contrastive logit distribution f̂θ is derived
by averaging the contrastive logit distributions between the
original image and each generated image as follows:

f̂θ =
1

n

n∑
i=1

(
(1 + α)fθ(·|v, x, y<t)− αfθ(·|v′i, x, y<t)

)
,

(2)
where α is a hyperparameter that controls the strength of
the difference between the logit distributions from the origi-
nal and generated images. The contrastive logit distribution
f̂θ is used to generate the response y. For tokens associated
with hallucinations, the contrastive logit distribution is sig-
nificantly amplified compared to other tokens, allowing us
to penalize these tokens and reduce the hallucinations.

Note that, Equation 2 is similar to the contrastive de-
coding methods used in VCD (Leng et al. 2024) and
HALC (Chen et al. 2024). However, our method is distin-
guished from existing approaches by directly capturing vi-
sual contrastive signals from the hallucinations visualized
by the T2I generative model.



Method LLaVA-1.5 mPLUG-Owl2 MiniGPT-4

CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓

Greedy Search 22.4 ± 1.11 7.4 ± 0.27 22.2 ± 1.10 7.3 ± 0.24 34.0 ± 1.11 13.8 ± 0.85
Nucleus Sampling 26.0 ± 1.93 9.5 ± 0.76 25.2 ± 1.59 9.3 ± 0.34 30.1 ± 1.45 14.2 ± 0.90

Beam Search 19.5 ± 1.42 6.4 ± 0.09 18.3 ± 0.42 6.0 ± 0.34 31.1 ± 1.03 12.4 ± 0.59

VCD 23.7 ± 1.90 8.2 ± 0.80 25.7 ± 1.30 9.0 ± 0.28 31.6 ± 1.83 13.8 ± 0.83
OPERA 18.5 ± 0.90 6.6 ± 0.23 18.2 ± 0.40 6.2 ± 0.18 30.6 ± 1.06 12.5 ± 0.91
HALC 23.7 ± 2.66 9.1 ± 0.41 24.3 ± 1.22 9.4 ± 0.19 24.2 ± 1.91 10.8 ± 0.53

Ours 18.4 ± 0.53 6.4 ± 0.37 17.6 ± 3.54 6.0 ± 0.89 23.5 ± 0.31 10.0 ± 0.69

Table 1: Evaluation results on the CHAIR benchmark using the MSCOCO dataset (val2014 split). We conduct experiments with three different
sets of 500 images, each selected by random seeds. The reported value is the mean of the results from the three different seeds, with the ±
symbol representing the standard deviation.

Experiments
Benchmarks. To evaluate the performance of our method,
we conduct experiments on three benchmarks to evaluate the
mitigation of hallucinations and two general-purpose bench-
marks to assess the general performance of the MLLM:

• Hallucination: CHAIR (Rohrbach et al. 2018), Hallu-
sionBench (Guan et al. 2024), and Polling-based Object
Probing Evaluation (POPE) (Li et al. 2023c)

• General-purpose: MLLM Evaluation (MME) (Fu et al.
2023) and LLaVA-Bench (Liu et al. 2024b)

Detailed information on these benchmarks can be found in
the Appendix.
Backbones. To evaluate our method, we utilize three well-
known MLLMs with publicly available checkpoint weights:
LLaVA-1.5 (Liu et al. 2024a), mPLUG-Owl2 (Ye et al.
2024), and MiniGPT-4 (Zhu et al. 2024).
Compared Methods. Our method is designed to replace ex-
isting decoding methods used in the LLM component, and
therefore, we compare it against baselines such as Greedy
Search, Nucleus Sampling (Holtzman et al. 2020), and Beam
Search (beam=5). We also evaluate our method’s effective-
ness against other decoding methods in hallucination miti-
gation, including OPERA (Huang et al. 2024), VCD (Leng
et al. 2024), and HALC (Chen et al. 2024). We use the same
hyperparameters borrowed from the original papers of the
compared methods to ensure a fair comparison.
Implementation Details. We utilize the Hyper-SDXL (Ren
et al. 2024) T2I model for image generation. Specifically,
in all experiments, unless otherwise noted, we use the Step
1 generation results of Hyper-SDXL model. The maximum
length of text queries that the T2I model could accept is 77
tokens, which is too short to process the captions generated
by MLLM. To address this, we leverage Compel (Stewart
2023), which allows for processing more than 77 tokens. We
set the maximum token count for the caption generation to
256 and use Nucleus sampling with a temperature of 0.7 and
a top-p of 0.9 to generate the images. The query used in this
process is “Please describe this image in detail.” We set the
number of generated images, n, to 4, producing four images
based on distinct captions generated using different random
seeds. For contrastive decoding, we follow (Li et al. 2023b)

using adaptive plausibility constraint to contrast only mean-
ingful tokens. The plausibility constraint hyperparameter λ
is set to 0.1. We also set α, which controls the degree of con-
trastive emphasis, to 1 for captioning-based metrics such as
CHAIR and LLaVA-Bench, and to 0.1 for VQA metrics, in-
cluding POPE, HallusionBench, and MME. To generate re-
sponses, we use a greedy decoding approach for all methods.
For CHAIR, we sample three different sets of images using
different random seeds and assess the performance using the
mean and standard deviation of these results.

Experimental Results
Results on CHAIR. We report our evaluation results on
the CHAIR (Rohrbach et al. 2018) benchmark in Table 1.
Our assessment includes basic decoding strategies—Greedy
search, Nucleus sampling, and Beam search—along with
three state-of-the-art approaches—VCD (Leng et al. 2024),
OPERA (Huang et al. 2024), and HALC (Chen et al.
2024). Our method achieves the best performance on the
CHAIRS metric across all three backbone models (LLaVA-
1.5, mPLUG-Owl2, and MiniGPT-4). Remarkably, it sig-
nificantly improves the CHAIRS score compared to both
the basic decoding strategies and the state-of-the-art meth-
ods, highlighting its superior ability to mitigate hallucina-
tions. In terms of the CHAIRI metric, our method consis-
tently ranks either first or second across all backbone mod-
els. These results demonstrate that our method both excels
in reducing the total number of hallucinations throughout
entire sentences and minimizes the number of hallucinated
objects across all evaluated image sets.
Results on HallusionBench. In Table 2, we present the
evaluation results for the visual dependent category of the
HallusionBench (Guan et al. 2024) benchmark. Hallusion-
Bench is evaluated with the assistance of GPT-4V, which
incurs significant costs; therefore, we conduct experiments
using only the LLaVA-1.5 (Liu et al. 2024a) backbone. Our
method demonstrates superior performance in Figure Accu-
racy (fAcc), outperforming all baseline decoding strategies
(Greedy Search, Nucleus Sampling, Beam Search) as well as
state-of-the-art techniques (VCD, OPERA, HALC). This in-
dicates that our model effectively interprets the visual details
of images when responding to visually dependent questions,



Method Figure Acc (fAcc) All Acc (aAcc)

Greedy Search 22.2 50.1
Nucleus Sampling 17.8 46.2

Beam Search 19.1 48.4

VCD 21.7 47.5
OPERA 20.9 49.9
HALC 21.7 50.6

Ours 23.5 50.8

Table 2: Evaluation results on HallusionBench. We report Figure
Acc and All Acc using LLaVA-1.5.

Method LLaVA-1.5 mPLUG-Owl2 MiniGPT-4 Average

VCD 82.8 81.6 59.8 74.7
OPERA 83.0 83.3 66.1 77.4
HALC 50.6 83.4 69.7 67.9

Ours 83.0 83.0 69.9 78.6

Table 3: Evaluation results on the POPE benchmark using the
MSCOCO dataset (val2014 split).

indicating its ability to mitigate hallucinations by providing
responses that closely align with the given visual content.
Furthermore, our method achieves the highest performance
on the All Accuracy (aAcc) metric, which measures over-
all accuracy across all questions within the visual dependent
category, demonstrating its effectiveness in handling a wide
range of visually dependent queries.
Results on POPE. Table 3 reports the evaluation re-
sults on the POPE (Li et al. 2023c) benchmark using the
MSCOCO (Lin et al. 2014) dataset (val2014 split). We
present the average F1-scores across the three POPE ques-
tion splits—Random, Popular, and Adversarial—for three
different backbone models. Detailed performances on each
POPE question split are in the Appendix.

Our method achieve a new SOTA performance on
MiniGPT-4, and demonstrate performance comparable to
existing techniques on LLaVA-1.5 and mPLUG-Owl2. In
terms of average performance across all backbones, our
method outperforms previous techniques. This indicates
that our approach consistently delivers strong performance
across various backbones.

While we achieves overall strong performance on this
benchmark, the performance improvements across differ-
ent backbone models are relatively modest. This might be
because the POPE question split does not fully align with
the types of hallucinations that T2I models generate. POPE
questions, which ask, “Is this [object] in this image?” sample
objects randomly, popularly, or adversarially. Meanwhile,
our method visualizes hallucinations in captions generated
by prompts like “Please describe this image in detail.” As
a result, T2I model may visualize the objects unrelated to
the actual POPE questions which limits our method’s effec-
tiveness. This limitation will be explored further through a
qualitative analysis of POPE samples later in this section.
Results on MME. In Table 4, we present the evaluation re-

Method Category Total
Perception Cognition

Greedy Search 1472.5 303.9 1776.4
Nucleus Sampling 1203.4 311.1 1514.5

Beam Search 1478.0 287.5 1765.5

VCD 1326.7 374.6 1701.3
OPERA 1456.9 306.4 1763.3
HALC 887.7 269.6 1157.3

Ours 1487.6 306.1 1793.7

Table 4: Evaluation results on the MME using LLaVA-1.5.

Method Complex Conv Detail All

Greedy Search 82.0 47.3 64.1 67.0
Nucleus Sampling 76.2 41.2 52.6 59.9

Beam Search 83.9 58.7 58.8 70.0

VCD 79.9 53.5 56.3 66.2
OPERA 78.7 53.0 58.3 66.0
HALC 55.8 31.1 50.4 47.1

Ours 84.2 63.5 64.8 73.3

Table 5: Evaluation results on LLaVA-Bench using LLaVA-1.5.

sults on the MME benchmark using the LLaVA-1.5 back-
bone. Due to space limitations, we focus on the performance
in the two main categories of the MME benchmark: Percep-
tion and Cognition. Scores for the subcategories are pro-
vided in the Appendix. Our method outperforms all oth-
ers in the Perception category, demonstrating its effective-
ness in accurately interpreting and processing visual infor-
mation across various tasks. This strong performance indi-
cates that our model is particularly well-suited for visual
tasks, making it highly effective for applications that require
precise visual understanding. In the Cognition category, our
method demonstrates competitive performance, comparable
to OPERA and superior to HALC, further underscoring the
versatility and robustness of our approach. While VCD ex-
cels in cognitive tasks, our method achieves stronger overall
performance when both the Perception and Cognition cate-
gories are considered together. This suggests that our model
provides a more comprehensive and effective solution across
diverse tasks. Its balanced and reliable performance in both
visual and cognitive challenges makes it an adaptable solu-
tion for a wide range of applications.

Results on LLaVA-Bench. Table 5 shows the experimen-
tal results on the LLaVA-Bench, which verify whether the
language model capabilities are preserved. For this evalua-
tion, we uses the LLaVA-1.5 backbone. Our method outper-
forms existing techniques across all categories: complex rea-
soning, conversation, and detailed description. These results
demonstrate that our method effectively mitigates hallucina-
tions while also enhancing the performance of the MLLM.



T2I Model CLIPScore ↑ LLaVA-1.5 mPLUG-Owl2 MiniGPT-4

CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓

Hyper-SD1.5 30.87 20.2 6.6 19.4 6.4 28.2 11.8
SDXL-Turbo 32.33 18.8 6.6 20.2 6.68 25.2 9.9
Hyper-SDXL 32.85 17 5.6 17 5.3 24.4 10.0

Table 6: Our performance when differentiating the T2I models for visualizing hallucinations. We generate captions with nucleus sampling
and set max new token for 64 and generate the image with those captions. Inference step for diffusion set to be all 1.

Captioning by LLaVA-1.5 mPLUG-Owl2 MiniGPT-4

CHAIRS ↓

Greedy Search 19.4 19.4 27.2
Nucleus Sampling 18.8 15.2 24.4

CHAIRI ↓

Greedy Search 6.6 6.4 11.6
Nucleus Sampling 6.7 5.1 10.3

Table 7: Comparison of performance using a single image (n = 1)
generated by two different decoding strategies, Greedy search and
Nucleus sampling.
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Figure 4: Effect of the number of images with different captions.

Analysis and Discussion
Diversity of Generated Captions and Images. Although
T2I models have made significant advancements, they still
struggle to generate images that perfectly align with the
given captions (Ruiz et al. 2023). To address these limita-
tions, we increase the coverage of hallucination visualiza-
tion by generating diverse images. Specifically, we use Nu-
cleus sampling, which is known for producing more varied
responses than Greedy search, to generate multiple captions.
These captions are then utilized to generate images.

To evaluate the effectiveness of this strategy, we analyze
how caption diversity impacts hallucination reduction. First,
we compare the CHAIR scores of the final responses when
using Greedy search and Nucleus sampling during the im-
age generation stage. In this experiment, we limit the num-
ber of generated images to one and compare which decod-
ing strategy performs better. As shown in Table 7, Nucleus
sampling outperforms Greedy search, demonstrating its po-
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Figure 5: KL divergence between output distributions across each
decoding step when the MLLM is provided with the images and
caption from Figure 6 (a). The KL divergence is significantly ele-
vated for the hallucinated token “car”.

tential to generate more diverse captions. Furthermore, in
Figure 4, we investigate how the number of generated im-
ages from different captions using Nucleus sampling affects
CHAIR scores. We observe that the number of images n in-
creases, both CHAIRS and CHAIRI scores improve, con-
firming that using multiple reconstructed images, rather than
a single image, is more effective for improving performance.
These findings validate our design choice of utilizing Nu-
cleus sampling and multiple captions for image generation.
Impacts of Image Generation Quality. To investigate the
impact of generated image quality on hallucination mitiga-
tion, we evaluate the performance of our method using vari-
ous text-to-image (T2I) models. Table 6 presents the gener-
ation quality (CLIPScore) of the T2I models alongside their
corresponding CHAIR scores. We compare three T2I mod-
els: Hyper-SD1.5 (Ren et al. 2024), SDXL-Turbo (Sauer
et al. 2023), and Hyper-SDXL (Ren et al. 2024), with the
inference step fixed at 1.

The results indicate a clear trend: as the CLIPScore im-
proves, so does the CHAIR score. Notably, SDXL-Turbo
consistently outperforms Hyper-SD1.5 across all backbones,
except for mPLUG-Owl2. Moreover, Hyper-SDXL signifi-
cantly outperforms Hyper-SD1.5 in all cases. These findings
suggest that using higher-quality T2I models, which are bet-
ter aligned with the original captions, can more effectively
mitigate hallucination issues. Consequently, we believe that
as more advanced T2I models are developed, the perfor-
mance of our method will continue to improve.
Qualitative Analysis. Figure 5 shows the KL divergence be-
tween output distributions at each decoding step when the



Caption used for image generation

The image captures a dog skillfully jumping over a car in a 
parking lot. The dog is in mid-air, showcasing its agility and 
athleticism. The car is positioned in the middle of the scene, 
with the dog jumping over it.

Ours Decoding 

The image captures a black and white dog skillfully jumping 
over a pool in an outdoor swimming pool competition. The 
dog is in mid-air, showcasing its agility and athleticism. There 
are several people watching the dog’s performance from 
various positions around the pool. Some ⋯

Original Image Generated Image

(a)

Caption used for image generation

The image features a group of people gathered around a 
fruit stand at a market, particularly focusing on oranges. The 
stand is filled with a variety of oranges, with some placed on 
a table and others spread out across the scene. ⋯

Question
There a bed in the image? Please answer yes or no.

Greedy Decoding
No, there is no bed in the image.

Ours Decoding
No, there is no bed in the image.

Original Image Generated Image

(b)

Figure 6: Qualitative samples using LLaVA-1.5 for backbone model. (a) shows an example that T2I model faithfully generate the images that
depicts the hallucination in the caption. (e.g., jumping over a car) (b) is an example of our limitation in VQA tasks, which there can be a
misalignment between visualized hallucination and actual main subject of question.

images and caption from Figure 6 (a) are provided to the
MLLM. We observe that the KL divergence is high for the
hallucinated token car, while non-hallucinated tokens ex-
hibit lower KL divergence. This indicates that the gener-
ated image can produce visual contrastive signals for hal-
lucinated tokens when compared to the original image. This
supports our argument that the differences between the orig-
inal and generated images are primarily influenced by the
hallucinated tokens.

To more clearly demonstrate how our method mitigates
multimodal hallucinations, we present an example in Fig-
ure 6 (a), illustrating the process from the initial hallucinated
caption to the generated image, followed by the contrastive
decoding result. Specifically, for an image of a dog jumping
into a pool, the MLLM incorrectly describes the scene as “a
dog jumping over a car in a parking lot.” Using this caption,
the T2I model generates a reconstructed image that faith-
fully visualized the hallucinated content. By contrasting the
distributions of the reconstructed and original images during
decoding, our method effectively reduces hallucinations.

Limitations. One of the key limitations of our approach is
its strong dependence on T2I generation models. This re-
liance may hinder effectiveness in tasks like VQA, where
the generated captions can sometimes contain hallucinations
that deviate significantly from the specific question. This
limitation is particularly evident in our experiments with the

POPE benchmark, where the performance gain is not as sig-
nificant as expected. Regarding questions about the presence
of specific objects, if the object in question is not related
to the hallucinations generated by the caption, visualizing
with a T2I model may not sufficiently reflect the informa-
tion needed for the VQA task. In Figure 6 (b), a question
about the presence of a bed in an original image where peo-
ple are looking at fruits might not be well served by the re-
constructed image. This indicates the effectiveness of our
method may decrease for certain type of questions.

Currently, our technique employs a fixed prompt for
image captioning. However, we believe that adapting the
prompt to respond more specifically to the given question
could mitigate this issue. We plan to explore this adaptive
approach in future work.

Conclusion
In this paper, we presented ConVis, a novel contrastive
decoding method designed to mitigate hallucinations in
MLLMs. By utilizing a T2I generation model, our approach
effectively visualizes hallucinations and contrasts probabil-
ity distributions between the original and reconstructed im-
ages. This process allows for the penalization of hallucinated
content during the decoding phase, all without the need for
additional data or model retraining.

Our extensive experiments across five benchmarks,



including CHAIR, HallusionBench, and LLaVA-Bench,
demonstrated that ConVis consistently reduces hallucina-
tions while preserving the core language model capabilities
of MLLMs. The method achieves competitive or superior
performance compared to existing techniques in various cat-
egories, validating its effectiveness in enhancing the reliabil-
ity of MLLM outputs.
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Appendix
Benchmarks
In this appendix, we provide additional details into the
benchmarks referenced in the main paper. To evaluate hal-
lucinations, we employ the following five benchmarks:

CHAIR (Rohrbach et al. 2018) evaluates how well the
generated captions align with the content of the given image.
CHAIR consists of two versions: CHAIR S, which mea-
sures the inaccuracies at the sentence level, and CHAIR I,
which evaluates at the object level within the sentence by
comparing the number of false objects to the total number
of objects. For evaluation, we use the val2014 split of the
MSCOCO (Lin et al. 2014) dataset, which includes annota-
tions for 80 object categories. We randomly select 500 im-
ages from the entire dataset and used the prompt “Please
describe this image in detail.” for the MLLM.

HallusionBench (Guan et al. 2024) is a hallucination
evaluation benchmark designed to assess whether a model
ignores visual context and relies solely on language pri-
ors (Language Hallucination) or exhibits the opposite phe-
nomenon (Visual Illusion). The questions in Hallusion-
Bench are divided into two main categories, one of which
is the Visual Dependent (VD) category. In this category,
pairs of similar but different images are presented, and the
same question is asked for each pair. The questions are pre-
sented in a VQA format with binary ground truth (GT) an-
swers. Accuracy is calculated using GPT-4V by determining
whether the model’s responses are similar to, different from,
or difficult to compare with the answers generated by GPT-
4V. Since this paper focuses on preventing MLLMs from
generating hallucinated information based on a given image,
we specifically conduct experiments on the Visual Depen-
dent category.

Polling based Object Probing Evaluation (POPE) (Li
et al. 2023c) is a VQA-based metric proposed to assess hal-
lucinations in MLLMs. This metric evaluates the MLLM’s
response to the prompt “Is [object] is in this image?” To em-
phasize that this is a binary VQA task, we appended the
prompt with “Please answer yes or no.” To select objects
referenced in the question prompt, we followed three differ-
ent sampling options: random, popular, and adversarial. We
evaluated performance across all sampling options.

MLLM Evaluation (MME) (Fu et al. 2023) evaluates the
capabilities of MLLMs, dividing the evaluation into two ma-
jor categories: perception and cognition. The perception cat-
egory includes fine-grained tasks such as existence, count,
location, rough color, poster, celebrity, scene, landmark, art-
work identification, and OCR. The cognition category in-
cludes tasks like commonsense reasoning, numerical calcu-
lations, text translation, and code reasoning. All questions in
this benchmark are structured to be answered with a simple
yes or no.

Using the LLaVA-Bench (Liu et al. 2024b), we further
demonstrated how well our proposed method maintains the
language model performance. This benchmark involves pos-
ing various situational questions, such as dialogue, detailed
descriptions, and complex reasoning, to randomly selected
images from the MSCOCO val2014 dataset. A total of 60

Benchmark Max New Tokens

CHAIR 64
HallusionBench 64

POPE 16
MME 128

LLaVA-Bench 512

Table A1: Maximum number of generated tokens utilized in the
response generation for each benchmark experiment.

questions are used to assess whether the model faithfully fol-
lows the instructions. The generated answers are evaluated
by comparing them to the responses of a text-only GPT-4
model.

Additional Implementation Details and
Experimental Results
We present further implementation details and experimental
results that were omitted from the main paper due to space
limitations. Table A1 outlines the maximum lengths set for
response generation. Additionally, Table A2 provides the
complete evaluation results on the POPE benchmark using
the MSCOCO dataset, including analyses of Random, Pop-
ular, and Adversarial scenarios across three MLLM back-
bones. Finally, Table A3 offers a full comparison of category
performance for the MME benchmark in LLaVA-1.5.



Method LLaVA-1.5 mPLUG-Owl2 MiniGPT-4 Average
Random Popular Adversarial Random Popular Adversarial Random Popular Adversarial

Greedy 84.6 83.4 81.3 85.8 83.5 80.3 74.1 68.2 67.1 78.7
Sample (Nucleus) 78.7 77.0 76.2 82.5 79.5 76.9 60.5 61.6 57.3 72.24

Beam (n=5) 85.0 83.7 81.5 85.5 83.5 80.7 71.0 67.6 64.6 78.12

VCD 85.3 82.9 80.1 84.7 81.8 78.4 61.5 59.3 58.7 74.74
OPERA 84.4 83.4 81.2 85.8 83.5 80.5 69.3 65.7 63.2 77.44
HALC 50.8 50.6 50.4 86.0 83.6 80.5 74.3 68.1 66.8 67.90

Ours 84.7 83.2 81.1 85.6 83.1 80.2 74.3 68.3 67.1 78.62

Table A2: Full report of evaluation on the POPE benchmark using the MSCOCO dataset (val2014 split).

Method Existence Count Position Color Posters Celebrity Scene Landmark Artwork OCR Common Numerical Text Trans Code Reas

Greedy 195.0 133.3 133.3 155.0 138.0 128.5 153.5 153.2 125.0 132.5 121.4 37.5 82.5 62.5
Sample (Nucleus) 180.0 136.6 116.6 138.3 122.7 131.4 146.2 145.2 109.2 100.0 122.1 85.0 92.5 75.0

Beam (n=5) 195.0 153.3 133.3 155.0 135.7 126.7 152.7 152.5 122.5 130.0 116.4 40.0 87.5 62.5

VCD 195.0 163.3 138.3 155.0 138.0 128.5 152.7 154.0 123.0 130.0 115.0 45.0 65.0 62.5
OPERA 165.0 101.6 98.3 153.3 116.6 107.9 135.2 125.7 109.5 90.0 108.5 67.5 67.5 67.5
HALC 110.0 78.3 90.0 100.0 60.2 69.4 109.5 98.5 101.7 70.0 92.1 50.0 77.5 50.0

Ours 195.0 158.3 133.3 155.0 143.2 139.7 153.8 155.3 121.5 132.5 118.6 45.0 87.5 55

Table A3: Evaluation results on the MME benchmark using LLaVA-1.5 for MLLM backbone, conducted across 10 subcategories focused on
perception and 4 subcategories focused on cognition.


