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ABSTRACT

With the widespread deployment of AI models in applications that impact human
lives, research on model trustworthiness has become increasingly important, as
a result of which model effectiveness alone (measured, e.g., with accuracy, F1,
etc.) should not be the only criteria to evaluate predictive models; additionally the
trustworthiness of these models should also be factored in. It has been argued that
the features deemed important by a black-box model should be aligned with the
human perception of the data, which in turn, should contribute to increasing the
trustworthiness of a model. Existing research in XAI evaluates such alignments
with user studies - the limitations being that these studies are subjective, difficult
to reproduce, and consumes a large amount of time to conduct. We propose an
evaluation framework, which provides a quantitative measure for trustworthiness
of a black-box model, and hence, we are able to provide a fair comparison between
a number of different black-box models. Our framework is applicable to both text
and images, and our experiment results show that a model with a higher accuracy
does not necessarily exhibit better trustworthiness.

1 INTRODUCTION

Owing to the success and promising results achieved for data-driven (deep) approaches for super-
vised learning, there has been a growing interest in the AI community to apply such models in
domains such as healthcare (Asgarian et al., 2018; Spann et al., 2020; Yasodhara et al., 2020), crim-
inal justice (Rudin, 2019) and finance (Dixon et al., 2020). As ML models become embedded into
critical aspects of decision making, their successful adoption depends heavily on how well different
stakeholders (e.g. user or developer of ML models) can understand and trust their predictions. As
a result, there has been a recent surge in making ML models worthy of human trust (Wiens et al.,
2019), and researchers have proposed a variety of methods to explain ML models to stakeholders
(Bhatt et al., 2020), with examples such as DARPA’s Explainable AI (XAI) initiative (Gunning et al.,
2019) and the ‘human-interpretable machine learning’ community (Abdul et al., 2018).

Although standard evaluation metrics exist to evaluate the performance of a predictive model, there
is no consistent evaluation strategy for XAI. Consequently, a common evaluation strategy is to show
individual, potentially cherry-picked, examples that look reasonable (Murdoch et al., 2019) and pass
the first test of having ‘face-validity’ (Doshi-Velez & Kim, 2018). Moreover, evaluating the ability
of an explanation to convince a human is different from evaluating its correctness, e.g., while Petsiuk
et al. (2018) believe that keeping humans out of the loop for evaluation makes it more fair and true
to the classifier’s own view on the problem rather than representing a human’s view, Gilpin et al.
(2018) explain that a non-intuitive explanation could indicate either an error in the reasoning of the
predictive model, or an error in the explanation producing method.

Visual inspection on the plausibility of explanations, such as anecdotal evidence, cannot make the
distinction as to whether a non-intuitive explanation is the outcome of an error in the reasoning of
the predictive model, or that it is an error that could be attributed to an explanation generating model
itself. Zhang et al. (2019) identify such visual inspections as one of the main shortcomings when
evaluating XAI and state that checking whether an explanation “looks reasonable” only evaluates
the accuracy of the black box model and is not evaluating the faithfulness of the explanation. These
commentaries relate to the inherent coupling of evaluating the black box model’s predictive accuracy
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with explanation quality. As pointed out by Robnik-Sikonja & Bohanec (2018), the correctness of
an explanation and the accuracy of the predictive model may be orthogonal.

Although the correctness of the explanation is independent of the correctness of the prediction,
visual inspection cannot distinguish between the two. Validating explanations with users can un-
intentionally combine the evaluation of explanation correctness with evaluating the correctness of
the predictive model. Synthetic datasets are useful for evaluating explanations for black box models
Oramas et al. (2019). By designing a dataset in a controlled manner, it should be possible to argue,
with a relatively high confidence, that a predictive model should reason in a particular way; a set
of ‘gold’ explanations can thus be created in a controlled manner using a data generation process.
Subsequently, the agreement of the generated explanations with these true explanations can be mea-
sured. For example, Oramas et al. (2019) generate an artificial image dataset of flowers, where the
color is the discriminative feature between classes.

Our work compares multiple underlying predictive models in terms of trustworthiness, rather
than the XAI methods themselves. Evaluating whether the features deemed to be important by
a predictive model conform with those by a human is an intrinsically human-centric task that ide-
ally requires human studies. However, performing such studies multiple times during the model
development phase is not feasible. To this end, the major contributions of our work are as follows.

Our Contributions. First, we generate a synthetic dataset and its associated ground-truth expla-
nations for a multi-objective image classification task. We also manually create the ground-truth
explanations for two image classification datasets, namely the MNIST ‘3 vs. 8’ classification and
the Plant-Village (Mohanty et al., 2016) disease classification tasks, and for our text experiments we
make use of a dataset of legal documents with existing ground-truth explanation units (Malik et al.,
2021) (dataset and code will be released).

Second, we propose a general framework to quantify the trustworthiness of a black-box model. Our
approach is agnostic to both the explanation methodology and the data modality. In our experiments,
we compare the performance of predictive models both in terms of effectiveness and trustworthi-
ness on synthetic and real-world datasets using data from two different modalities - image and text.

2 RELATED WORK

Several works have used synthetic datasets for evaluating XAI algorithms. Liu et al. (2021) released
the XAI-BENCH - a suite of synthetic datasets along with a library for benchmarking feature attri-
bution algorithms. The authors argue that their synthetic datasets offer a wide variety of parameters
which can be configured to simulate real-world data and have the potential to identify subtle fail-
ures, such as the deterioration of performance on datasets with high feature correlation. They give
examples of how real datasets can be converted to similar synthetic datasets, thereby allowing XAI
methods to be benchmarked on realistic synthetic datasets.

Oramas et al. (2019) introduce an8Flower, a dataset specifically designed for objective quantitative
evaluation of methods for visual explanation. They generate two synthetic datasets, ‘an8Flower-
single-6c’ and ‘an8Flower-double-12c’, with 6 and 12 classes respectively. In the former, a fixed
single part of the object is allowed to change color. This color defines the classes of interest. In
the latter, a combination of color and the part on which it is located defines the discriminative
feature. After defining these features, they generate masks that overlap with the discriminative
regions. Then, they threshold the heatmaps at given values and measure the pixel-level intersection
over union (IoU) of a model explanation (produced by the method to be evaluated) with respect to
these masks. We argue that the importance of each pixel as outputted by the XAI model is different,
and that this information is not captured by a simple technique, such as the pixel-level IoU of a
model’s explanations relative to the ground-truth explanation masks. In our work, we propose two
new metrics for evaluating predictive models in terms of their trustworthiness.

Some argue in favor of automated metrics where no user involvement is needed, e.g., in the context
of usability evaluation in the Human Computer Interaction (HCI) community, Greenberg & Buxton
(2008) argue that there is a risk of executing user studies in an early design phase, since this can
quash creative ideas or promote poor ideas. Miller et al. (2017) therefore argues that proxy studies
are especially valid in early development. Qi et al. (2021) indicate that “evaluating explanations
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Figure 1: A schematic description of the idea leveraged by the proposed trustworthiness metric on a sample
image of a ‘3 vs. 8’ classification task. a): Overlayed ground-truth (red) and the predicted feature weights
(blue) of explanations obtained for two different black-box models. b): A zoomed-in view of selected regions
from these two explanations showing the closest ground-truth from a pair of predicted points p1 and p2 (left),
and p3 and p4 on the right. The trustworthiness of the model on the left is higher than that of the right, because
the explanations for the former closely matches the human perceived discriminating feature (shown in red). It
can be seen that the sum of the distances between the two line segments for the figure on the right is higher than
that of the left. This results in a higher quantitative value of the metric for the image on the left.

objectively without a human study is also important because simple parameter variations can easily
generate thousands of different explanations, vastly outpacing the speed of human studies”.

User studies are not only relatively hard to run, they may be of limited value (Poursabzi-Sangdeh
et al., 2021) and may suffer from confirmation bias (Wang et al., 2019). Rosenfeld (2021) present
four objective XAI measures to quantify XAI effectiveness either on their own or in conjunction
with user studies: ‘D’, the performance difference between the agent’s model and the performance
of the logic presented as an explanation, ‘R’, the number of rules in the agent’s explanation, ‘F’, the
number of features used to construct the explanation and ‘S’, the stability of the agent’s explanation.

Amiri et al. (2020) proposed a methodology to create a synthetic dataset representing ground-truth
explanations (GTE), and used it for evaluating LIME. Our work is different in the sense that we
focus on evaluating predictive models rather than the XAI method. We, therefore, define GTE in
terms of human perception of important features, e.g. the patches on the leaves of plants that identify
a particular disease. Yang & Kim (2019) release a carefully crafted semi-natural image dataset with
ground-truth for evaluating interpretability of methods. They also propose three complementary
metrics to evaluate interpretability - a) Model Contrast Score (MCS), which measures the perfor-
mance of interpretability methods across models, b) Input Dependence Rate (IDR), which accounts
for when an interpretability method should “react” to two different inputs, and c) Input Indepen-
dence Rate (IIR), which is concerned with when an interpretability method should not “react” to
two different inputs. Our work, however, does not focus on evaluating XAI methods in terms of
identifying false positives (features that are incorrectly attributed as important) or false negatives.
We rather focus on evaluating predictive models with respect to their trustworthiness, keeping
the XAI method constant. Yang & Kim (2019) train a model in a controlled manner and establish
what regions of the input the model is and isn’t attending to. The XAI methods are then evaluated
based on whether they’re able to capture such important and non-important features in their explana-
tions of the model. In our work, however, we define GTE in terms of human perception of important
features, and then compare different predictive models in terms of the extent to which they agree to
this ground-truth for making their predictions.

3 TRUSTWORTHINESS EVALUATION OF MODELS

Constructing an objective ground-truth of trustworthiness. Existing studies have mainly used
the trustworthiness measure to compute the fitness of an XAI model itself, e.g., Chen et al. (2018)
compare the stability of feature weight distributions across samples of data instances computed
by different explanation methodologies, and report that L2X leads to the most stable results. The
novelty of our work lies in objectively evaluating the trustworthiness of black-box models. To this
end, our evaluation framework first requires a manually created ground-truth defined for a small
number of data instances, e.g., for images, this ground-truth is in the form of regions (constituted of
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Figure 2: An illustration of how we obtain the ground-truth explanations from the manual assessments pro-
vided by three different annotators for the 3-vs-8 classification task. Each annotator required to select 3 control
points (shown as red dots), based on which a region was selected as the ground-truth. The final ground-truth
annotation is an average image of the three individual ones. The red dots are magnified in the figure so that
they can be seen conveniently. The images, in order from left to right, correspond to - a) Original Image, b)
Annotator 1, c) Annotator 2, d) Annotator 3, e) Ground-truth.

(a) (b) (c) (d) (e) (f)

Figure 3: Synthetic data and corresponding ground-truth explanations for a multi-objective image classifica-
tion task. Task 1: Shape classification and Task 2: To classify if filled or not. The images, in order from left to
right, correspond to - a) Generated image where Shape=‘Ellipse’ and Filled=‘1’, b) Ground-truth for the shape
recognition task, c) Ground-truth for recognizing whether filled, d) Generated image where Shape=‘Quad’ and
Filled=‘0’, e) Ground-truth for the shape recognition task, and f) Ground-truth for recognizing whether filled.

pixels) within an image indicative of discriminative features and for texts, it is in the form of a set
of sentences.

A Distance Weighted Overlap Measure. We present our approach by referring to data units as
pixels being associated with a 2D coordinate. However, the same principle also applies for text
where each explanation unit (a word or a sentence etc.) is specified by a single dimension (namely
its offset or index in the text). Let θ : X 7→ Zk be a data-driven black-box model that classifies
an input x ∈ Rh×w (or simply ∈ Rw for text) to one of the k classes, where h and w are the 2D
coordinates of an input feature (for an image, and w is an integer offset of a word or a sentence in
text). Let us denote the objective trustworthiness ground-truth of an input x as τ(x) (this ground-
truth is either manually annotated or synthetically generated, as described later in Section 4).

The ground-truth τ(x) of an input x is a binary matrix of the same dimensions as that of x, or in
other words, τ(x) ∈ {0, 1}h×w. Let the local feature weight predictions outputted by some XAI
method be denoted by ϕx,θ. For the particular case of image classification, the weight distribution
corresponds to a pixel-level importance and hence is of the same dimension as that of x, i.e., ϕx,θ ∈
Rh×w. Similar to Ribeiro et al. (2016), we select a subset of the most important features from
the predicted feature weight distribution matrix. A convenient way of doing this is to select the
top-(100 × k) percentile weights, where k ∈ [0, 1] is a parameter (we denote this set with the
simple notation ϕk). The set ϕk thus constitutes tuples of the form (h,w, c), where c ∈ [0, 1] is the
importance of the feature at index (h,w).

The problem with a simple overlap (e.g., Jaccard-based) metric (Oramas et al., 2019) is that it cannot
take into account the relative distances between the predicted and the ground-truth features, and as
a result, may end up penalizing a predicted feature within a near vicinity of a ground-truth one.
Figure 1 illustrates the idea, where we revisit the case-study of a ‘3 vs. 8’ classifier; the human
perceived discriminating feature between a ‘3’ and an ‘8’ is the left part of the looped curve of an
‘8’, the absence of which transforms it to a ‘3’. Figure 1b shows that the model on the left results in
a more trustworthy prediction, and this is captured by the sum of the distances of a predicted (to be
an important feature) point from its nearest ground-truth point.

Precision Measure. The first metric that we propose is precision-based, where we measure the
fraction of features that are deemed important both by the predictive model and by humans. More
concretely, we start by dividing ϕk and τ(x) into windows of shape m ×m, to get ϕm

k and τ(x)m

respectively. For each predicted window, we find its closest window in the ground-truth set, and
then add up the similarities (inverse distances). We also make use of the feature importance values
to compute a weighted average to take into account the confidence of the predictions of feature
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Algorithm 1: Algorithm to compute trustworthiness metrics - TWP and TWR.
Input: Ground-truth explanations for an evaluation set Xe, i.e., {τ(x),x ∈ Xe}:
Input: A black-box model θ, and a local explanation methodology ϕ, e.g., LIME or SHAP etc.
Input: ∀(z, i, j) szi,j : The importance of pixel (i, j) of image z ∈Xe, obtained by an explanation method.
Input: k ∈ [0, 1]: The top-(k × 100) percentile of the feature weights to be used to define the predicted set of important features.
Input: m: size of window for trustworthiness metrics computation
Output: TWP, TWR
begin

TWPall ← 0; TWRall ← 0.
foreach x in Xe do

ϕx,θ ← The local explanation for the black-box model θ on x.
Sort each element (h,w, c) ∈ ϕx,θ by descending values of c, and retain the top-(k × 100) percentile; call this ϕk .
TWP← 0; TWR← 0.
Zp ← 0; Zr ← 0 // Normalization factors for TWP and TWR
ϕm
k ← Set of all m×m windows in ϕk

τ(x)m ← Set of all m×m windows in τ(x)
foreach p in ϕm

k do
if ∃(h,w, c) : (h,w, c) ∈ p ∧ c ̸= 0 then

g ← Closest window in τ(x)m to the window p

c←
∑

(h,w,c)∈p c

|p|

TWP← TWP + c · e−d(p,g)

Zp ← Zp + c

foreach g in τ(x)m do
if ∃(h′, w′) : (h′, w′) ∈ g ∧ τ(x)h′,w′ ̸= 0 then

p← Closest window in ϕm
k to the window g

c′ ←
∑

(h,w,c)∈p c

|p|

TWR← TWR + c′ · e−d(g,p)

Zr ← Zr + c′

TWP← TWP/Zp; TWR← TWR/Zr

TWPall ← TWPall + TWP
TWRall ← TWRall + TWR

return TWPall/|Xe|,TWRall/|Xe|. // Average over the evaluation set

Figure 4: Sample annotated ground-truth explanation from plant disease classification task.

importance. Formally speaking,

TWPm =

∑
p∈ϕm

k

c · e−d(p,g)

∑
p∈ϕm

k

c
,where g is the closest window in τ(x)m to the window p, (1)

where d((p, g) is the average distance between the set of points in p and those in g and c is the average
feature importance value of window p. We call this metric TWP (abbv. for TrustWorthiness
Precision) because of its similarity with the set-based definition of the precision measure. The
denominator denotes the set of most important (predicted) features, whereas the numerator denotes
a weighted correctness measure (similar to the true-positives).

Recall Measure. The second metric that we propose measures the fraction of human perceived
important features that are deemed important by the predictive model under consideraion. For mea-
suring soft recall, we start from each window in the ground-truth and find its dual (the closest win-
dow in the predicted set). The dual has the importance score c′. We then aggregate the similarities
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Dataset XAI FF CONV

Method Fidelity F1 TWP1 TWR1 TWP4 TWR4 Fidelity F1 TWP1 TWR1 TWP4 TWR4

Syn (shape) SHAP 0.97 0.9867 0.7654 0.7685 0.1303 0.1370 0.36 0.9933 0.6749 0.7586 0.1242 0.1342
LIME 0.66 0.7672 0.7603 0.1303 0.1222 0.67 0.7442 0.7297 0.1276 0.1167

Syn (filled) SHAP 0.51 1.0000 0.9418 0.8017 0.1297 0.1341 0.48 1.0000 0.9201 0.7488 0.1269 0.1344
LIME 0.34 0.9165 0.8000 0.1343 0.1207 0.36 0.9166 0.7667 0.1327 0.1180

3-vs-8 SHAP 0.93 0.9859 0.4653 0.6197 0.0786 0.1314 0.29 0.9945 0.6197 0.7261 0.0996 0.1270
LIME 0.41 0.3425 0.3803 0.0587 0.0723 0.46 0.4084 0.4528 0.0689 0.0850

Table 1: Comparison of two predictive models in terms of proposed metrics, for synthetic dataset and MNIST
3 vs 8 dataset. The best trustworthiness values obtained for each model with LIME are bold-faced, whereas the
ones obtained with SHAP are both bold-faced and underlined.

XAI AlexNet ResNet-18 ResNet-34

Method F1 Fidelity TWP1 TWR1 F1 Fidelity TWP1 TWR1 F1 Fidelity TWP1 TWR1

SHAP 0.9670 0.88 0.2237 0.8419 0.9892 0.74 0.1880 0.7678 0.9902 0.79 0.1683 0.7258
LIME 0.77 0.1156 0.6847 0.67 0.1146 0.6464 0.52 0.1120 0.6425

Table 2: Comparison of two predictive models in terms of proposed metrics, for plant disease classification
task. Similar bold-facing and underline convention as in Table 1.

(inverse distances) over each ground-truth point. More formally,

TWRm =

∑
g∈τm

x
c′ · e−d(g,p)∑
g∈τm

x
c′

,where p is the closest window in ϕm
k to the window g. (2)

Adopting a similar naming convention, we name this metric as TWR (abbv. for TrustWorthiness
Recall). Algorithm 1 summarizes the steps of computing TWP and TWR for image domains. For
our experiments, we only consider positive SHAP values. This is because negative ones imply that
those pixels are contributing negatively towards the prediction but for our ground-truth explanations,
we only annotate those regions that should contribute positively towards the prediction.

4 EXPERIMENTS

The objective of our experiments is to demonstrate that the proposed metrics provide a comple-
mentary dimension of evaluating predictive models in addition to effectiveness, e.g., accuracy,
precision, recall etc. A higher value of both TWP, TWR or their harmonic means TWF =
2TWP ·TWR/(TWP+TWR) (F-score like combination) along with a high accuracy (or F-score)
value should be indicative that a model is both trustworthy and effective.

Synthetic Dataset. We synthesize a dataset in a way such that the ‘gold’ explanations can be
created with a controlled data generation process. Specifically, we generate a dataset for multi-task
image classification wherein the discriminative attributes are - i) the shape type of the figure, and
ii) whether the shape is filled or not. In particular, the shape of the objects in our dataset belongs
to either of the three following types: a) triangle, b) ellipse and c) quadrilateral. After generating
an object of a particular shape, the object is either filled up or left unfilled. The dimension of each
generated grayscale image is 28 × 28. We formulate the problem as a multi-task classification
problem, where the task of a predictive model, given an input image, is to classify the shape-type
and predict whether the shape is filled or not. The ground-truth explanation for the shape recognition
task is the boundary of the shape itself, whereas for predicting if a shape is filled or not, the entire
interior region is considered to be the ground-truth. This is illustrated in Figure 3.

MNIST 3 vs 8 Dataset. We use a subset of MNIST hand-written digits dataset comprising images
from the two classes - 3 and 8, the task being to distinguish between them (Chen et al., 2018). The
images of 8 contain two closed loops while those of 3 contain two open loops; hence, the two arcs
on the left of the images of 8 that complete the loop are the discriminative regions for 3-vs-8. For
ground-truth explanations, we ask the annotators to pick three points on the images of 8, one at the
top, one at the middle and one at the bottom, such that when everything to the right of the piece-wise
linear curve connecting those 3 points is removed, we end up with those two discriminative arcs. The
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Model (F1) Metric GT-1 GT-2 GT-3 GT-4 GT-5 Avg

BERT+LSTM (0.7036) TWP 0.6049 0.3964 0.4525 0.4694 0.3646 0.4576
TWR 0.1709 0.1825 0.1085 0.1504 0.1893 0.1603

RoBERTa+LSTM (0.7473) TWP 0.6015 0.3155 0.5219 0.4532 0.3502 0.4485
TWR 0.1636 0.1536 0.1351 0.1458 0.1746 0.1545

Table 3: Explanation evaluation on the ILDC dataset: the explanations of the hierarchical transformer-based
models were obtained with the occlusion-based method Li et al. (2016) on the 5 different versions of the ground-
truth annotated by 5 different legal experts. ‘Avg’ denotes the average values computed over the individual
measures for each of the 5 ground-truths.

(a) (b) (c)

Figure 5: Qualitative model explanations as outputted by SHAP for the multi-task classification on the syn-
thetic dataset and the real datasets. The images, in order from left to right, correspond to - a) ‘Shape prediction’
SHAP explanation for FF (center) and CONV (right), b) ‘Fill prediction’ SHAP explanation for FF (center) and
CONV (right), and c) SHAP explanation for FF (center) and CONV (right) for the 3-vs-8 classification task.

assignment of images to annotate is done in such a way that one image is annotated by exactly 3
annotators. We use the pixel coordinates of the three points to get the two left arcs as mentioned
above. We take all three (from three different annotators) such left arcs and compute the average of
them to obtain our final ground-truth explanations, as shown in Figure 2.

It is worth mentioning that defining the ground-truth for instances of some classes is more convenient
than defining it for other classes in the same task. For instance, it is easier to define the ground-truth
for the class ‘8’ (in terms of the presence of a certain region within an image) rather than defining
it for the class ‘3’ because in that case, it is not the presence but the absence that needs to be
considered, which is not so convenient. A total of 70 images of hand-written 8 were annotated.

Plant-Village Dataset. PlantVillage (Mohanty et al., 2016) is a plant disease classification dataset
of 54,309 images across 14 plant species and 38 classes (26-12, disease-healthy). The original task
is to predict the plant type along with the disease (each combination indicating one class). In such a
case, the predictive model should be making use of information both from the patches in the leaves
(indicative of disease) along with the discriminative features of the leaves themselves (indicative
of the plant type). However, this also means that the explanations should then cater to both the
combination of the leaf and the disease types, and as a result they may be more subjective.

To simplify the task, we grouped together the individual classes by the disease types to create ‘super-
classes’, e.g., ‘potato early blight’ and ‘tomato early blight’ gets merged into a single class - ‘early
blight’. Application of this grouping operation along with the removal of classes corresponding to
healthy leaves yielded 16 classes in total. This contributed to simplifying the process of manually
annotating the ground-truth explanations, because the simplified prediction task should then focus
only on the patterns of the leaf patches to identify the correct disease. A sample annotated ground-
truth explanation is shown in Figure 4. In total, we annotated 10 images from each class.

Indian Legal Documents Corpus (ILDC). The final dataset that we use for our experiments is
the ILDC (Malik et al., 2021) corpus, which is a collection of case proceedings from the Supreme
Court of India (SCI). Given a document as an input, the prediction task is to identify the decision of

7



Under review as a conference paper at ICLR 2023

(a) (b)

Figure 6: Visualizing sample images from two different ranges of the trustworthiness (TWF) scores on a)
AlexNet (F1 = 0.9670) and b) ResNet-34 (F1 = 0.9902). The TWF scores increase as one goes from the top-
row to the bottom-row. The row shows a sample image from the set of images where TWF ∈ [0.5, 0.75),
whereas the second row shows a sample where TWF ≥ 0.75.

Dataset FF CONV

TWP TWR TWP TWR

Syn (Shape) 0.5070 0.7057 0.5609 0.6589

Syn (Filled) 0.5814 0.6741 0.6473 0.6611

3-vs-8 0.2990 0.6143 0.3624 0.5624

Table 4: Ablation study which treats feature importance uniformly, i.e., when c and c′ are set to 1 in Equations
1 and 2, respectively). For these results, the XAI method employed was SHAP.

the judiciary bench (acting as the ground-truth). In addition to the ground-truth decision, a separate
set of 56 documents (ILDCexpert) from the test set documents are annotated by 5 different legal
experts. Each annotation constitutes a set of sentences that a human or an AI model should focus on
to arrive at the decision.

Models and Parameter Settings. The objective in our experiments is to compare the predictive
models in terms of their trustworthiness. We do not intend to evaluate the effectiveness of the XAI
methods themselves. Therefore, fair comparisons are only to be made between predictive models
where the explanations are also obtained with the same XAI methodology, e.g., comparing the TWP
or TWR values computed with different explanation methodologies is not fair. In particular, for our
experiments we employ two different explanation methodologies - namely SHAP and LIME.

As instances of the black-box model for synthetic dataset and MNIST ‘3 vs 8’ dataset, we employ
two different methodologies, namely i) a feed-forward network with one hidden layer (hereafter, re-
ferred to as FF model), and ii) 2D convolution layers in addition to the feed-forward ones (hereafter,
referred to as CONV model). More specifically, the FF model has one hidden layer of 8 neurons
and the CONV model has 2 convolution layers of kernel size 3, the first one having the number of
output channels of 3 and the second one 5. The convolution layers are followed by a fully-connected
layer with 8 neurons and finally an output layer specific to the task (sigmoid for the 3-vs-8 classi-
fier, whereas a softmax of dimension 3 and a sigmoid for the multi-class objective of shape and fill
prediction). For plant disease classification task, we employ AlexNet, ResNet-18 and ResNet-34.
We fine-tune the instances of these models pretrained from the ImageNet datset. For ILDC, we use
two hierarchical transformer models with RoBERTa and BERT as the transformer units. The [CLS]
representations of each text chunk (refer to Malik et al. (2021) for more details on the text chunking)
are then fed into BiGRU and then through a dense layer to yield a sigmoid probability. We run
our experiments on ILDCmulti dataset and use the same hyper-parameter settings as used by the
authors. As the explanation method, we use the occlusion method (Li et al., 2016)) as also used in
Malik et al. (2021). Our experiments with LIME used the number of image segments as 20 for the
synthetic and MNIST 3 vs 8 datasets, whereas this was set to 1000 for the plant disease classification
task owing to the larger image sizes.

Results. To find how faithfully the local explanation models approximate the primary models, we
randomly sample 100 instances from the test set and compute the difference of accuracy between
the original predictions and the new predictions after masking out the top 25% important features
(as ranked by by explanation method). These fidelity scores (Pope et al., 2019) are reported in
Tables 1 and 2. They show that the difference in accuracy is always ≥ 29%, thereby establishing
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the faithfulness of the XAI models - LIME and SHAP for the tasks in our experiments. Figure 5
shows the pixel-level explanations as outputted by SHAP for both FF and CONV models, for the
synthetic dataset. It can be noted that both the models attend to the interiors of the shapes for
task 2 (fill prediction). But when it comes to task 1 (shape prediction), the FF model seems to be
attending to the relevant pixels better than the CONV model. Specifically, for the fill prediction task,
a majority of the high intensity red points (high SHAP values) lie on the circumference or in close
proximity of it. However, for the shape prediction task, such points are spread out farther away from
the human-interpretable regions. Our proposed metrics are able to capture this behaviour as depicted
in Table 1. It should be noted that despite the TWP and TWR values being slightly different when
we use SHAP versus LIME, the relative rank of the models based on the performance with respect
to these metrics is still the same (compare TWP and TWR columns between the consecutive rows,
e.g., rows 1 and 2 etc.).

An important observation worth noting is that despite having higher accuracy, the CONV model fails
to attend to the human-interpretable regions within the images. Therefore, somewhat surprisingly,
the FF model’s way of reasoning is more in parity with that of a human in comparison to a 2D
convolutional network.

Figure 5 shows the pixel-level explanations as outputted by SHAP for both FF and CONV models,
for a real dataset. It can be noted that the CONV model assigns a substantially higher importance to
the two left arcs (see Figure 2) than the FF model. Therefore, in this task, the abstractions from the
data that CONV learns agrees more with that of human’s than is the case for FF. Unlike the synthetic
dataset, here the model with higher accuracy attends to the human-perceived discriminatory regions
in a better manner as compared to the lower accuracy one. This is again reflected in our proposed
metrics, as depicted in Table 1, regardless of the choice of the XAI model.

Figure 6 shows the pixel-level explanations as outputted by SHAP for AlexNet and ResNet-34 mod-
els, on the plant disease classification task. It can be observed that for predictions yielding the
highest TWF values (the bottom-most row), AlexNet shows a better agreement with the ground-
truth than ResNet-34, as can be seen from the presence of a considerable quantity of red regions
(i.e., where the model focuses most) even outside the leaf. This shows that a model with a higher
effectiveness may not necessarily be attending to a set of data units that a human would focus on.
This is also seen for the top row of Figure 6, where we see that a model with lower effectiveness
(AlexNet) despite showing the presence of attention regions outside the leaf (thus the lower TWF
scores) shows a denser distribution of focus regions inside the leaf nonetheless. In contrast, in
ResNet-34 the distribution of focus regions is not only sparse but even outside the leaf.

Table 3 shows the comparison of TWP and TWR scores for the hierarchical transformer model ex-
planations obtained using occlusion method with 5 different ground-truth annotations, for ILDC
dataset. Observations similar to the plant disease classification task can also be made for the
Court Judgement Prediction and Explanation (CJPE) task, i.e., a model with lower effectiveness
(BERT+LSTM) yields higher trustworthiness scores (TWP and TWR).

Ablation Study. We now measure the metrics TWP and TWR without using identical feature
importance, and see if this is able to produce a reversal in the relative trustworthiness estimation
across models. In other words, the ϕk set in this setup now comprises elements of the form (h,w, 1),
i.e., the importance c of each pixel is set to a uniform value of 1. The results of this ablation, using
SHAP as the fixed XAI method, is shown in Table 4. We observe that, contrary to the true metric
values of Table 1, the TWR values in Table 4 of the CONV model on the 3-vs-8 classification task
is worse than FF, which shows a reversal of the relative ordering of trustworthiness. This, in turn,
shows that taking into account the feature weights themselves as obtained from an explainer model
is indeed important.

Concluding Remarks. In this study, we proposed a general approach to quantifying the trustwor-
thiness of a predictive model and apply it on a synthetic dataset and three real datasets. We proposed
two new metrics for the quantitative evaluation of model trustworthiness, and demonstrated that the
model with a higher effectiveness may not necessarily be attending to the most human-interpretable
features, thereby hinting towards the importance of looking beyond model effectiveness measures,
such as accuracy, precision, recall etc.
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