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Abstract

Beyond estimating parameters of interest from data, one of the key goals of statisti-
cal inference is to properly quantify uncertainty in these estimates. In Bayesian
inference, this uncertainty is provided by the posterior distribution, the computation
of which typically involves an intractable high-dimensional integral. Among avail-
able approximation methods, sampling-based approaches come with strong theo-
retical guarantees but scale poorly to large problems, while variational approaches
scale well but offer few theoretical guarantees. In particular, variational methods are
known to produce overconfident estimates of posterior uncertainty and are typically
non-identifiable, with many latent variable configurations generating equivalent
predictions. Here, we address these challenges by showing how diffusion-based
models (DBMs), which have recently produced state-of-the-art performance in
generative modeling tasks, can be repurposed for performing calibrated, identifiable
Bayesian inference. By exploiting a previously established connection between the
stochastic and probability flow ordinary differential equations (pfODEs) underlying
DBMs, we derive a class of models, inflationary flows, that uniquely and determin-
istically map high-dimensional data to a lower-dimensional Gaussian distribution
via ODE integration. This map is both invertible and neighborhood-preserving,
with controllable numerical error, with the result that uncertainties in the data are
correctly propagated to the latent space. We demonstrate how such maps can be
learned via standard DBM training using a novel noise schedule and are effective
at both preserving and reducing intrinsic data dimensionality. The result is a class
of highly expressive generative models, uniquely defined on a low-dimensional
latent space, that afford principled Bayesian inference.

1 Introduction

In many fields of science, the aim of statistical inference is not only to estimate model parameters
of interest from data but to quantify the uncertainty in these estimates. In Bayesian inference, for
data x generated from latent parameters z via a model p(x|z), this information is encapsulated in
the posterior distribution p(z|x), computation of which requires evaluation of the often intractable
normalizing integral p(x) = [p(x,z) dz. Where accurate uncertainty estimation is required, the
gold standard remains sampling-based Markov Chain Monte Carlo (MCMC) methods, which are
guaranteed (asymptotically) to produce exact samples from the posterior distribution [[1]. However,
MCMC methods can be computationally costly and do not readily scale either to large or high-
dimensional data sets.
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Alternatively, methods based on variational inference (VI) attempt to approximate posterior distri-
butions by optimization, minimizing some measure of divergence between the true posterior and a
parameterized set of distributions ¢4 (z|x) [2]]. For example, methods like the variational autoencoder
(VAE) [3l /4] minimize the Kullback-Leibler (KL) divergence between true and approximate posteri-
ors, producing bidirectional mappings between data and latent spaces. In vanilla VAEs, posterior
uncertainty estimates are typically overconfident due to minimization of the reverse (mode-seeking)
KL divergence [5,16]. While some lines of work have sought to mitigate this posterior mismatch prob-
lem by utilizing different divergences[7/H10, VAE:s still tend to produce blurry data reconstructions
and non-unique latent spaces without additional assumptions [11H13|].

By contrast, normalizing flow (NF) models [[14}[15] work by applying a series of bijective transforma-
tions to a simple base distribution (usually uniform or Gaussian) to deterministically convert samples
to a desired target distribution. While NFs have been successfully used for posterior approximation
[L6-20] and produce higher-quality samples, the requirement that the Jacobian of each transforma-
tion be simple to compute often requires a high number of transformations and, traditionally, these
transformations do not alter the the dimensionality of their inputs, resulting in latent spaces with
thousands of dimensions. More recent lines of work on injective flow models 21-25| address this
limitation by allowing practitioners to use flows to learn lower dimensional manifolds from data,
but most compression-capable flow models still fail to reach high generative performance on key
benchmark image datasets (cf. [23]).

More recently, diffusion-based models (DBMs) [26H33]] have been shown to achieve state-of-the-art
results in several generative tasks, including image, sound, and text-to-image generation. These
models work by stipulating a fixed forward noising process (e.g., a forward stochastic differential
equation (SDE)), wherein Gaussian noise is incrementally added to samples of the target data
distribution until all information in the original data is degraded. To generate samples from the target
distribution, one then needs to simulate the reverse de-noising process (reverse SDE [34]) which
requires knowledge of the score of the intermediate “noised” transitional densities. Estimation of this
score function across multiple noise levels is the key component of DBM model training, typically
using a de-noising score matching objective [35} 128, [30]]. Yet, despite their excellent performance
as generative models, DBMs, unlike VAEs or flows, do not readily lend themselves to inference.
In particular, because DBMs use a diffusion process to transform the data distribution, they fail to
preserve local structure in the data (Figure [I)), and uncertainty under this mapping is high at its
endpoint because of continuous noise injection and resultant mixing. Moreover, because the final
distribution—Gaussian white noise of the same dimension—must have higher entropy than the
original data, there is no data compression.

Finally, emerging work on flow matching models [36H42] has achieved impressive generative perfor-
mance on several benchmark image datasets. Such models utilize simple conditional distribution
families to learn a vector field capable of transporting points between two pre-specified densities.
These are closely related to the probability flow ODE (pfODE) view of DBMs, and, in fact, have been
shown to be equivalent to such models for specific choices of “interpolant” functions and conditional
distributions. Despite their exceptional generative performance and deterministic nature, existing
flow matching approaches do not allow for compression and, therefore, do not allow practitioners to
infer a lower dimensional latent space from data.

Thus, despite tremendous improvements in sample quality, modern generative models do not lend
themselves to one of the key modeling goals in scientific applications: calibrated Bayesian inference.
Note that while many works focus on predictive calibration, how well the inferred marginal p(x)
matches real data [43147]], our focus here is on posterior calibration, how well ¢(z|x) matches the
true posterior p(z|x). We address this challenge by demonstrating how a novel DBM variant that we
call inflationary flows can, in fact, produce calibrated Bayesian inference in this sense.

Specifically, our contributions are: First, focusing on the case of unconditional generative models,
we show how a previously established link between the SDE defining diffusion models and the
probability flow ODE (pfODE) that gives rise to the same Fokker-Planck equation [30] can be used
to define a unique, deterministic map between the original data and an asymptotically Gaussian
distribution. This map is bidirectional, preserves local neighborhoods, and has controllable numerical
error, making it suitable for rigorous uncertainty quantification. Second, we define two classes of
flows that correspond to novel noise injection schedules in the forward SDE of the diffusion model.
The first of these preserves a measure of dimensionality, the participation ratio (PR) [48]], based on
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Figure 1: SDE-ODE Duality of diffusion-based models. The forward (noising) SDE defining the
DBM (left) gives rise to a sequence of marginal probability densities whose temporal evolution is
described by a Fokker-Planck equation (FPE, middle). But this correspondence is not unique: the
probability flow ODE (pfODE, right) gives rise to the same FPE. That is, while both the SDE and the
pfODE possess the same marginals, the former is noisy and mixing while the latter is deterministic
and neighborhood-preserving. Both models require knowledge of the score function Vy log p;(x),
which can learned by training either model.

second-order data statistics, preventing an effective increase in data dimensionality with added noise,
while the second flow reduces PR, providing data compression. We demonstrate experimentally
that inflationary flows indeed preserve local neighborhood structure, allowing for sampling-based
uncertainty estimation, and that these models continue to provide high-quality generation under
compression, even from latent spaces reduced to as little as 0.03% of the nominal data dimensionality.
As aresult, inflationary flows offer excellent generative performance while affording data compression
and accurate uncertainty estimation for scientific applications.

2 Three views of diffusion-based models

As with standard DBMs, we assume a data distribution po(X) = pgata(X) at time ¢ = 0, transformed
via a forward noising process defined by the stochastic differential equation [e.g., 26} 28]:

dx = f(x,t)dt + G(x,t) - dW, e
with most DBMs assuming linear drift (f = f(¢)x) and isotropic noise (G = o(t)1) that mono-

tonically increases over time [49]. As a result, for | Ta(T)dt > Odatas PT(X) becomes essentially
indistinguishable from an isotropic Gaussian (Figure [I}, left). DBMs work by learning an approxima-
tion to the reverse SDE [34, 28430, |50],

dx = {f(x,t) = V- [G(x,1)G(x,1) "] — G(x,t)G(x,t) " Vi log p;(x)}dt + G(x,t) - AW, (2)

where W is time-reversed Brownian motion. In practice, this requires approximating the score
function V log p+(x) by incrementally adding noise according to the schedule o (t) of the forward
process and then requiring that denoising by (2) match the original sample. The fully trained
model then generates samples from the target distribution by starting with x7 ~ N(0,02(T)1) and
integrating (2)) in reversed time.

As previously shown, this diffusive process gives rise to a series of marginal distributions p;(x)
satisfying a Fokker-Planck equation (Figure [T} middle) [30| 49],

Oipr(x) = = > 0ilfilx, )pe(x)] + %Z&‘aj‘ > Gin(x )Gir(x, )pr(x) | 3
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where 0; = % In the “variance preserving” noise schedule of [30], (3) has as its stationary solution
an isotropic Gaussian distribution. This “distributional” perspective views the forward process as
a means of transforming the data into an easy-to-sample form (as with normalizing flows) and the
reverse process as a means of data generation.

However, in addition to the SDE and FPE perspectives, Song et al. [30] also showed that (3)) is
satisfied by the marginals of a different process with no noise term, the so-called probability flow
ODE (pfODE):

dx = {f(x,t) - %v [G(x,t)G(x,t) "] — %G(x,t)G(x, )"V logpt(x)} dt. )

Unlike (), this process is deterministic, and data points evolve smoothly (Figure [T} right), resulting
in a flow that preserves local neighborhoods. Moreover, the pfODE is uniquely defined by f(x, ¢),
G(x,t), and the score function. This connection between the marginals satisfying the SDEs of
diffusion processes and deterministic flows described by an equivalent ODE has also been recently
explored in the context of flow matching models [36142]], a connection on which we elaborate in
Section

In the following sections, we show how this pfODE, constructed using a score function estimated by
training the corresponding DBM, can be used to map points from pqat.(X) to a compressed latent
space in a manner that affords accurate uncertainty quantification.

3 Inflationary flows

As argued above, the probability flow ODE offers a means of deterministically transforming an
arbitrary data distribution into a simpler form via a score function learnable through DBM training.
Here, we introduce a specialized class of pfODEs, inflationary flows, that follow from an intuitive
picture of local dynamics and asymptotically give rise to stationary Gaussian solutions of (3).

We begin by considering a sequence of marginal transformations in which points in the original data
distribution are convolved with Gaussians of increasingly larger covariance C(t):

pe(x) = po(x) * N(x; 0, C(t)). Q)

It is straightforward to show (Appendix [A.T)) that this class of time-varying densities satisfies (3)
when f = 0 and GGT = C. This can be viewed as a process of deterministically “inflating”
each point in the data set, or equivalently as smoothing the underlying data distribution on ever
coarser scales, similar to denoising approaches to DBMs [51} 152]. Eventually, if the smoothing
kernel grows much larger than X, the covariance in the original data, total covariance X (t) =
3o + C(t) — C(t), pr(x) =~ N(0,C(t)), and all information has been removed from the original
distribution. However, because it is numerically inconvenient for the variance of the asymptotic
distribution p.,(x) to grow much larger than that of the data, we follow previous work in adding
a time-dependent coordinate rescaling X(¢t) = A(¢) - x(¢) [30,49], which results in an asymptotic
solution poo (x) = N(0, AXAT) of the corresponding Fokker-Planck equation when 32 = C and
AZAT + AXAT = 0 (Appendix . Together, these assumptions give rise to the pfODE
(Appendix[A.J3):

dx 1. . B
&= a0 (—560 Velosn) + (A0 A7) % ©
where the score function is evaluated at x = A~ - . Notably, (6) is equivalent to the general pfODE
form given in [49] in the case both C(t) and A (t) are isotropic (Appendix[A.d), with C(t) playing
the role of injected noise and A (¢) the role of the scale schedule. In the following sections, we will
show how to choose both of these in ways that either preserve or reduce intrinsic data dimensionality.

3.1 Dimension-preserving flows

In standard DBMs, the final form of the distribution p7(x) approximates an isotropic Gaussian
distribution, typically with unit variance. As a result, these models increase the effective dimension-
ality of the data, which may begin as a low-dimensional manifold embedded within R?. Thus, even
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Figure 2: Dimension-preserving flows for toy datasets. Numerical simulations of dimension-
preserving flows for five sample toy datasets. Left sequences of sub-panels show results for inte-
grating the pfODE forward in time (inflation); right sub-panels show results of integrating the same
system backwards in time (generation) (Appendix @) Simulations were conducted with score
approximations obtained from neural networks trained on each respective toy dataset (Appendix

maintaining intrinsic data dimensionality requires both a definition of dimensionality and a choice
of flow that preserves this dimension. In this work, we consider a particularly simple measure of
dimensionality, the participation ratio (PR), first introduced by Gao et al. [48]:

PR(E) — tr(2)2 _ (Zz Ui2)2 (7)

w(®) 5,0l

where X is the covariance of the data with eigenvalues {c?}. PR is invariant to linear transforms
of the data, depends only on second-order statistics, is 1 when X is rank-1, and is equal to the
nominal dimensionality d when ¥ o« Lgxq4. In Appendix [CI] we report this value for several
benchmark image datasets, confirming that in all cases, PR is substantially lower than the nominal
data dimensionality.

To construct flows that preserve this measure of dimension, following @), we write total variance
as X(t) = diag(o?(t)) = C(t) + Xo, where X is the original data covariance and C(t) is our
time-dependent smoothing kernel. Moreover, we will choose C(t) to be diagonal in the eigenbasis of
3o and work in that basis, in which case 3(¢) = diag(a?(t)) and we have (Appendix :

0.2
2ok ‘71%

The simplest solution to this constraint is a proportional inflation
rescaling along each principal axis:

dPR =0 «<— (1 — PR(c?) > -de? = 0. ®)

, %(0'2) = po?, along with a

Ap; Ap;
B — 52 02— g2 (ePt 1 A _ 0j _ 205 7pt/2'
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As with other flow models based on physical processes like diffusion [26]] or electrostatics [53}154], our
use of the term inflationary flows for these choices is inspired by cosmology, where a similar process
of rapid expansion exponentially suppresses local fluctuations in background radiation density [535].
However, as a result of our coordinate rescaling, the effective covariance & = AXAT = diag(A2 )
remains constant (so dé2 = 0 trivially), and the additional conditions of Appendixare satisfied,
such that A/(0, X) is a stationary solution of the relevant rescaled Fokker-Planck equation. As Figure
2] shows, these choices result in a version of (€) that smoothly maps nonlinear manifolds to Gaussians
and can be integrated in reverse to generate samples of the original data.

3.2 Dimension-reducing flows

In the previous section, we saw that isotropic inflation preserves intrinsic data dimensionality as
measured by PR. Here, we generalize and consider anisotropic inflation at different rates along each
of the eigenvectors of 3: %(0.2) = pg ® o2. In addition, we denote g, = max(g), so that the
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Figure 3: Dimension-reducing flows for toy datasets. Numerical simulations of dimension-reducing
flows for the same five datasets as in Figure[2] For 2D datasets, we showcase reduction from two
to one dimension, while 3D datasets are reduced to two dimensions. Colors and layouts are the
same as in Figure [2] with scores again estimated using neural networks trained on each example.
Additional results showcasing (1) similar flows further compressing two-dimensional manifolds
embedded in D = 3 space, and (2) effects of adopting different scaling schemes for target data are

given in Appendices[C.2.2and [C.2.3] respectively.

fastest inflation rate is pg.. Then, if we take g; = g. for i € {i1,12,...ix} and g; < g. for the other
dimensions,

. K
PR(E(t)) _ (Zz U(Q)ie(g’l g*)pt)Q (Zk:l U(%ik)g (10)
T Y (03el9m99pt)2 oo ZK Lok,
(3 (2 1= 2

which is the dimension that would be achieved by simply truncating the original covariance matrix
in a manner set by our choice of g. Here, unlike in (@), we do not aim for rescaling to compensate
for expansion along each dimension, since that would undo the effect of differential inflation rates.
Instead, we choose a single global rescaling factor «(t) o< Ag exp(—pg.t/2), leading to a Gaussian
asymptotic solution with the original data covariance in dimensions ¢ € {iy,i2,...1x }.

Two additional features of this class of flows are worth noting: First, the final scale ratio of preserved
to shrunken dimensions for finite integration times 7" is governed by the quantity e?(9=—9:)T in
(10). For good compression, we want this number to be very large, but as we show in Appendix
A.4] this corresponds to a maximum injected noise of order e?(9==9)7/2 in the equivalent DBM.
That is, the compression one can achieve with inflationary flows is constrained by the range of
noise levels over which the score function can be accurately estimated, and this is quite limited in
typical models. Second, despite the appearance given by (I0), the corresponding flow is not simply a
linear projection to the top K principal components: though higher PCs are selectively removed by
dimension-reducing flows via exponential shrinkage, individual particles are repelled by local density
as captured by the score function (6)), and this term couples different dimensions even when C and A
are diagonal. Thus, the final positions of particles in the retained dimensions depend on their initial
positions in the full space, producing a nonlinear map (Figure [3).

4 Score function approximation from DBMs

Having chosen inflation and rescaling schedules, the last component needed for the pfODE () is the
score function s(x,t) = Vy log p;(x). Our strategy will be to exploit the correspondence described
above between diffusion models (T)) and pfODEs (@) that give rise to the same marginals (3). That is,
we will learn an approximation to s(x, t) by fitting the DBM corresponding to our desired pfODE,
since both make use of the same score function.

Briefly, in line with previous work on DBMs [49], we train neural networks to estimate a de-noised
version, D(x, C(t)), of a noise-corrupted data sample x given noise level C(t) (cf. Appendix[A.4]
for the correspondence between C(t) and noise). That is, we model Dy(x, C(t)) using a neural
network and train it by minimizing a standard Lo de-noising error:

Ey~daaEn~nr0,cin Py + n; C(t)) — |13 (11)

De-noised outputs can then be used to compute the desired score term using Vy log p(x, C(t)) =
C71(t) - (D(x; C(t)) — x) [30,[49]. Moreover, as in [49], we also adopt a series of preconditioning
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Figure 4: Calibration experiments. To assess error in our posterior model estimates, we used
Hamiltonian Monte Carlo (HMC) to perform inference in one of our toy datasets (2D circles).
Drawing samples from a 3-component Gaussian Mixture Model (GMM) prior, we integrated the
generative process backward in time to obtain corresponding data space samples (A, components
shown in orange, blue, and purple). We then used HMC to obtain posterior samples from the posterior
distribution over the weights of the GMM components. (B, C) Kernel density estimates from the joint
posterior samples over the mixture distribution weights in the dimension-preserving and dimension-
reducing cases. Dashed vertical and horizontal lines indicate posterior means for each component.
Reference ground-truth weights were w = [0.5,0.25, 0.25].

factors aimed at making training with the above L, loss and our noising scheme more amenable to
gradient descent techniques (Appendix [B.1)).

5 Calibrated uncertainty estimates from inflationary flows

Several previous lines of work [43H47]] have focused on assessing how well model-predicted marginals
p(x) match real data (i.e., the predictive calibration case). Though we do compare our models’
predictive calibration performance against existing injective flow models (Table [3), here we are
primarily focused on quantifying error in unconditional posterior inference. That is, we are interested
in quantifying the mismatch between inferred posteriors ¢(z|x) and true posteriors p(z|x), especially
in contexts where the true generative model is unknown and must be learned from data. This is by far
the most common scenario in modern generative models like VAEs, flows, and GANS.

As with other implicit models, our inflationary flows provide a deterministic link between complex
data and simplified distributions with tractable sampling properties. This mapping requires integrating
the pfODE () for a given choice of C(t) and A(t) and an estimate of the score function of the
original data. As a result, sampling-based estimates of uncertainty are trivial to compute: given a prior
m(x) over the data (e.g., a Gaussian ball centered on a particular example X), this can be transformed
into an uncertainty on the dimension-reduced space by sampling {x;} ~ m(x) and integrating (6)
forward to generate samples from [p(xr|xo)m(x0) dxo. As with MCMC, these samples can be used
to construct either estimates of the posterior or credible intervals. Moreover, because the pfODE is
unique given C, A, and the score, the model is identifiable when conditioned on these choices.

The only potential source of error, apart from Monte Carlo error, in the above procedure arises
from the fact that the score function used in (6) is only an estimate of the true score. To assess
whether integrating noisy estimates of the score could produce errant posterior samples, we conducted
the experiment showcased in Figure A (Appendix [B.6). Briefly, we constructed a Gaussian
Mixture Model (GMM) prior with three pre-specified components (Appendix [B.6) from which we
drew samples of z, integrating backwards in time using our trained pfODE networks to construct
corresponding observed data points x. We then utilized Hamiltonian Monte Carlo (HMC) |1}, 156458/ to
obtain posterior samples for the GMM component weights. As shown in Figure @B, C, the resulting
posterior correctly covers the original ground-truth values, suggesting that numerical errors in score
estimates, at least in this simplified scenario, do not appreciably accumulate. This is likely because,
empirically, score estimates do not appear to be strongly auto-correlated in time (Appendix [C.3),
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suggesting that §(x, t) is well approximated as a scaled colored noise process and the corresponding
pfODE as an SDE. In such a case, standard theorems for SDE integration show that while errors
due to noise do accumulate, these can be mitigated by a careful choice of integrator and ultimately
controlled by reducing step size [59} 60]]. In addition, we verified this empirically in both low-
dimensional examples (Figure 4 Appendices [C.2.1) and with round-trip integration of the
pfODE in high-dimensional datasets (Tables[I} 2| Appendix [B.5.1).

6 Experiments

For the PR-Reducing flows, the final scale ratio between preserved vs. shrunken dimensions for finite
integration times is dependent on the quantity e”(9-~9:)T  Therefore, for fixed end integration time
T and rate p, this scaling is dictated by g, — g;, which we call the “inflation gap” (IG), Appendix
As this inflation gap increases, compressed dimensions are shrunken to a greater extent, and
the denoising networks are required to amortize score estimation over wider noise scales, a harder
learning problem. Therefore, for our proposed model, compression should be understood both in
terms of the number of dimensions being preserved and the size of this inflation gap.

To assess how these two factors affect model performance, we performed two sets of experiments
on two benchmark image datasets (CIFAR-10 [61] and AFHQv2 [62]; Appendix [B.4.2} code:
[63]]; project website: [64]). In the first set of experiments, we fixed 7', p, and the inflation gap
(IG = 1.02) while varying only the number of preserved dimensions d between d = 1 (compression
to ~ 0.03%) and d = 3072 (no compression) for both datasets. For the second set of experiments,
we worked with the AFHQv?2 dataset and fixed T, p, and d = 2, while varying the inflation gap
(IG = 1.10,1.25,1.35,1.50). In Tables E] and [Z] we showcase Frechet Inception Distance (FID)
scores [65] (mean £2¢0 over 3 independently generated sets of images, each with 50,000 samples)
and round-trip integration mean squared errors (mean MSE +20 over 3 randomly sampled sets of
images, each with 10,000 samples) for each (d, IG) combination explored (Appendices [B.5.1} [B.5.2}
[B.5.4). Figures[5| [6] and [7|showcase 24 randomly generated images (top rows) along with round-trip
integration results for 8 randomly sampled images (bottom rows), across select (d, IG) combinations.

Finally, we also compared our inflationary flows (IFs) model generative performance on CIFAR-10
against three existing injective flow model baselines (Appendix — M-Flows [21]], Rectangular
Flows (RFs) [22], and Canonical Manifold Flows (CMF) [23]] — for different numbers of preserved
dimensions (d = 30,40, 62). Table 3] showcases best FID scores (out of 3 independently gener-
ated sets of images, each with 10,000 samples) for each such experiment. For these comparison
experiments, we fixed IG=1.02 when training our networks for the different d values.

As a general trend, increasing the number of preserved dimensions at a constant inflation gap led
to improvements in generative quality (lower FID scores) and reduced MSE (Table [T). However,
some schedules we assessed are not entirely consistent with this trend. We hypothesize this is at least
partially due to variance arising from different network initializations for each schedule (Appendix
B.5.3)., as well as differences between the two datasets explored here. As expected, increasing
inflation gap while maintaining the number of preserved dimensions leads to worsened generative
performance (higher FID scores, Table[2). Finally, in terms of predictive calibration, our model
provides substantial gains when compared to existing injective flow model baselines (Table[3).

Table 1: FID and round-trip MSE (mean £20) at 1.02 Inflation Gap (IG)

AFHQv2 CIFAR-10

Dimensions FID MSE Dimensions FID MSE
1 12.654+0.07 1.474+0.07 1 20.76+£0.09 1.07+0.10
2 11.954+0.06 1.55+0.21 2 21.294+0.04 0.81+0.11
30 13.64+£0.02 3.79+0.13 30 23.36£0.14 2.214+0.08
62 14.05+0.18 5.32+0.18 62 23.30+0.19 2274+0.24
307 15.644+0.10 3.33£0.13 307 28.07+0.13 0.71£0.02
615 14.634+0.07 2.424+0.18 615 24.4940.27 0.294+0.03
1536 13.36 £0.12 0.14+0.03 1536 1744 +0.16 0.16 +0.06
3041 13.97+0.13 0.28+0.06 3041 16.60£0.05 0.30+0.02
3072 1190 £0.08 0.38 £0.04 3072 17.01+£0.10 0.224+0.03
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Figure 5: Generation and round-trip experiments for AFHQv2 at IG=1.02 and varying number
of preserved dimensions. Top row: Generated samples for select flow schedules (PR-Preserving
(PRP), PR-Reducing to 2D (= 0.07%), 30D(=~ 1%), and 307D(~ 10%), at 1.02 IG. Bottom row:
Results for round-trip experiments under same schedules. Leftmost columns are original samples,
middle columns are samples mapped to Gaussian latent spaces, and rightmost columns are recovered
samples.

Table 2: FID and round-trip MSE (mean +20) for AFHQV2 at varying Inflation Gaps (IG)

Dimensions IG FID MSE
2 1.02 11.95+0.06 1.55+0.21
2 1.10 13.98+0.13 1.35+0.08
2 1.25 1784 +0.15 1.65+0.09
2 1.35 34.68+0.37 1.19+0.18
2 1.50 107.64+0.43 0.11 £0.02

7 Discussion

Here, we have proposed a new type of implicit probabilistic model based on the probability flow ODE
(pfODE) in which it is possible to perform calibrated, identifiable Bayesian inference on a reduced-
dimension latent space via sampling and integration. To do so, we have leveraged a correspondence
between pfODEs and diffusion-based models by means of their associated Fokker-Planck equations,
and we have demonstrated that such models continue to produce high-quality generated samples
even when latent spaces are as little as 0.03% of the nominal data dimension. More importantly, the
uniqueness and controllable error of the generative process make these models an attractive approach
in cases where accurate uncertainty estimates are required.

Limitations: One limitation of our model is its reliance on the participation ratio (7) as a measure
of dimensionality. Because PR relies only on second-order statistics and our proposals (9) are
formulated in the data eigenbasis, our method tends to favor the top principal components of the
data when reducing dimension. However, as noted above, this is not simply a truncation to the
lowest principal components, since dimensions still mix via coupling to the score function in (6).
Nonetheless, solutions to the condition (8] that preserve (or reduce) more complex dimensionality
measures might lead to even stronger compressions for curved manifolds (Appendix [C.2.2), and
more sophisticated choices for noise and rescaling schedules in (6) might lead to compressions that
do not simply remove information along fixed axes, more similar to [66]. That is, we believe much
more interesting classes of flows are possible. A second limitation is that mentioned in Section [3.2]
and in our experiments: our schedule requires training DBMs over much larger ranges of noise than
are typically used, and this results in noticeable tradeoffs in compression performance as the inflation
gap and number of preserved dimensions are varied.



Table 3: FID score comparison with injective flows for CIFAR-10

Dimensions Preserved IFs IG=1.02) M-Flow RFs CMFs

30 233 5412 5440 532.6
40 24.3 5357 4813 444.6
62 23.2 2809  280.8 2879

Related work: This work draws on several related lines of research, including work on using DBMs
as likelihood estimation machines [50} 167, 31], relations with normalizing flows and hierarchical
VAE:s (67, 133]168]], injective flow models [21-25]], and generative flow networks [69]. By contrast,
our focus is on the use of DBMs to learn score functions estimates for implicit probabilistic models,
with the ultimate goal of performing accurate posterior inference. In this way, it is also closely
related to work on denoising models [S1} 152} 166, [70] that cast that process in terms of statistical
inference and to models that use DBMs for de-blurring and in-painting [71}72]. However, this work
is distinct from several models that use reversal of deterministic transforms to train generative models
[73H76]]. Whereas those models work by removing information from each sample x, our proposal
relies critically on adjusting the local density of samples with respect to one another, moving the
marginal distribution toward a Gaussian.

Our work is also similar to methods that use DBMs to construct samplers for unnormalized distribu-
tions [[77H81]. Whereas we begin with samples from the target distribution and aim to learn latent
representations, those studies start with a pre-specified form for the target distribution and aim to
generate samples. Other groups have also leveraged sequential Monte Carlo (SMC) techniques to
construct new types of denoising diffusion samplers for, e.g., conditional generation [82H84]]. While
our goals are distinct, we believe that the highly simplified Gaussian distribution of our latent spaces
may potentially render joint and conditional generation more tractable in future models. Finally,
while many prior studies have considered compressed representations for diffusion models [85H88]],
typically in an encoder-decoder framework, the focus there has been on generative quality, not
inference. Along these lines, the most closely related to our work here is [89], which considered
diffusion along linear subspaces as a means of improving sample quality in DBMs, though there
again, the focus was on improving generation and computational efficiency, not statistical inference.

Yet another line of work closely related to ours is the emerging literature on flow matching [36138},190]]
models, which utilize a simple, time-differentiable, “interpolant” function to specify conditional
families of distributions that continuously map between specified initial and final densities. That is,
the interpolant functions define flows that map samples from a base distribution pg(x) to samples
from a target distribution p; (x). Typically, these approaches rely on a simple quadratic objective that
attempts to match the conditional flow field, which can be computed in closed form without needing
to integrate the corresponding ODE. As shown in Appendix the pfODEs obtained using our
proposed scaling and noising schedules are equivalent to the ODEs obtained by using the “Gaussian
paths formulation” from [36] when the latter are generalized to full covariance matrices. As a result,
our models are amenable to training using flow-matching techniques, suggesting that faster training
and inference schemes may be possible through leveraging connections between flow matching and
optimal transport [40} 42,41, |38]]

Broader impacts: Works like this one that focus on improving generative models risk contributing
to an increasingly dangerous set of tools capable of creating misleading, exploitative, or plagiarized
content. While this work does not seek to improve the quality of data generation, it does propose a
set of models that feature more informative latent representations of data, which could potentially be
leveraged to those ends. However, this latent data organization may also help to mitigate certain types
of content generation by selectively removing, prohibiting, or flagging regions of the compressed
space corresponding to harmful or dangerous content. We believe this is a promising line of research
that, if developed further, might help address privacy and security concerns raised by generative
models.
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A Appendix: Additional Details on Model and Preliminaries

A.1 Derivation of the inflationary Fokker-Planck Equation

We start with derivatives of the smoothing kernel x(x,t) = N (x; u, C(t)):

Opk(x,t) = —%tr(C 1C) + 2tr (C Yx—p)(x — /,L)TC_IC)} K(x,t) (12)
Vi =-CYx—p)k (13)
005 = [[CTH(x = w)i[CTH(x — w)]; — (C71)3;] & (14)

and combine this with (3)) to calculate terms in (3):
Op = po(x) * k(X t) (15)
— po {—;tr(CIC) + %tr (76— mx - H)Tclc)} p
(16)
- Zai[fip] = —po* Y _[(0:fi)k — fi(CTH(x — p))ir] (17)

Z 0;0; [Z szngp] 5Po * Z [8iaj [zk: Giijk‘| K (18)
ij
— 20 [Z GirGik
3
+ Z GG
%

Assuming f = 0 and 0;G;(x,t) = 0 then gives the condition

(CHx — )i

_ 1 1 To-1¢) —
Str(C™ C)+2tr(C Yx — p)(x—p)' C c)_
1
—5 tr(C™ 1GGT)+2tr (CHx—p)(x—p)'CTGGT) 19
which is satisfied when GG T (x,t) = C(¢t).

A.2 Stationary solutions of the inflationary Fokker-Planck Equation

Starting from the unscaled Fokker-Planck Equation corresponding to the process of Appendix[A.7]

Dipr(x ZCu )it (%), (20)

we introduce new coordinates X = A (t) - x, t=t, leading to the change of derivatives

0F; » Ot

O = 5 0i + ﬁét 1)

= ;[ Aij(t)x;]0; + O, (22)

= [(0,A)A™'%];0; + O, (23)

Cij0;0; = Cijg?jggékél (24)
= i3 Awi AL 00y (25)

= (ACA )9, (26)
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and the Fokker-Planck Equation
S 1, . e
[[(0:A) AT, + ] po(%) = 5 (ACAT)dD5(R), @)

where p;(X) = p:(x) is simply written in rescaled coordinates. However, this is not a properly
normalized probability distribution in the rescaled coordinates, so we define ¢(%,t) = J~1(#)p;(X),
which in turn satisfies

A A = P <. -
[[(@A)A '%i0i + 0, + 9 log J} q(x,1) = i(ACAT)klakalCI(xa t). (28)
Now consider the time-dependent Gaussian density
. 1 1, 14
q(x,t) = exp (2(x —Ap)"(AZAT) (x - Au)) (29)

(2m)% || AT A
with rescaling factor J(#) = |A T A(t)|. We then calculate the pieces of as follows:
Vg=—(ASAT) (X — Ap)q
0:0jq = [(AZAT) (% - Ap)], [([AZAT) (% - Ap)] ¢ - [(AZAT) Mg
dilog J = O, log |AAT| = tr(d;log AAT) = tr ((AAT)—l [(étA)AT + A(étAT)D
drq = —%tr((AEAT)_Iét(AEAT))q
+ap O AT(AZAT) TN (% - Ap)
- %tr (% — Ap)(x — AMT&(AEAT)*]
— Oylog J
HAZAT) = —(AZAT) 19, (AZAT)(AZAT)?!
= —(ASA) Y BA)A™Y - (B:A)AHT(AZAT) T
—AT T A
With these results, the left and right sides of @) become
X" -0 log AT -V +d, + lg=—x'[(;,A)A Y T(AZAT) 1 (x — Ap)q
S (ASAT) 1 G,(ASAT))g
+u"AT(AZAT) N (x — Ap)g
st (8- Aw)(x - Ap)TBASAT) ) g
—d; log |AAT\q

- *gtr (@(AEAT)(AEAT)A)
q

(ACAT)klékélq = —tf(ACAT(AEAT)il)q

+ 30 (AZAT) (& - Aw)(x - Ap) " [A(AZAT)(ASAT) )

Ftr ((5{ —Ap) (AZAT) HACAT)AZAT) (k- Au)) q

and ¢(X, ) is a solution when
1 . 1~
5ACAT(AEAT)—1 = 5at(AzzAT)(AzAT)—l
= ACAT =§,(AxAT). (30)
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Thus, for ¢ to be a solution in the absence of rescaling (A = 1) requires > =C, and combining this
with (30) gives the additional constraint

ASAT + AZAT —o. (31)

Finally, note that, under the assumed form of p;(x) given in (3], when C(¢) increases without bound,
q(%,t) — N(0, ACAT (t)) asymptotically (under rescaling), and this distribution is stationary when

3(t) = AXAT — ACA' is time-independent and a solution to (3T).

A.3 Derivation of the inflationary pfODE

Here, we derive the form of the pfODE (6) in rescaled coordinates. Starting from the unscaled
inflationary process (Appendix with f = 0 and GG " (x,t) = C(¢), substituting into (@) gives
the pfODE

dx 1.
i —§C(t) -V log py(x) (32)

Asin Appendix we again consider the rescaling transformation X = A (t) - x, ¢ = t. To simplify
the derivation, we start by parameterizing the particle trajectory using a worldline time 7 such that
dt = d7 while A remains a function of ¢t. With this convention, the pfODE becomes

dr Ox; dr ot dr Gy
o dxj 8(AX)1
Y dr ot Gy
dx; _
= Ay %: (OpAyy) Aj A = (35
di dX -1 ~
o= AE + [(0:A)ATY] - x (36)
1. -
T (_20 " Vx logpt(X>) +[(0A)ATH] % (37

Two important things to note about this form: First, the score function V log p;(x) is calculated in
the unscaled coordinates. In practice, this is the form we use when integrating the pfODE, though
the transformation to the scaled coordinates is straightforward. Second, the rescaling has induced a
second force due to the change of measure factor, and this force points inward toward the origin when
A is a contraction. This overall attraction thus balances the repulsion from areas of high local density
due to the negative score function, with the result that the asymptotic distribution is stabilized.

More formally, recalling the comments at the conclusion of Appendix when C(t) grows without
bound in (§), p:(x), the unscaled density, is asymptotically Gaussian with covariance C(t), and its

rescaled form ¢(X, t) is a stationary solution of the corresponding rescaled Fokker-Planck Equation.
In this case, we also have

dx 1. . .

& L (ZAGC 1 A).x=0, (38)
dr t—oo \ 2

where we have made use of (31)) with ¥ — C. That is, when the rescaling and flow are chosen such

that the (rescaled) diffusion PDE has a stationary Gaussian solution, points on the (rescaled) flow

ODE eventually stop moving.

A.4 Equivalence of inflationary flows and standard pfODEs

Here, we show that our pfODE in (6) is equivalent to the form proposed by [49] for isotropic C(t)
and A (t). We begin by taking equation (6) and rewriting it such that our score term is computed with
respect to the rescaled variable X:

dx 1. -

ditf —A- (—20-AT sz(AT1x, t)) + [(0,A)ATY] - %, (39)
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where we have made use of the transformation properties of the score function under the rescaling.

If we then choose C(t) = c2(¢)1 and A(t) = «(t)1 (i.e., isotropic noising and scaling schedules),
this becomes 4 )
X X alt

— = —a(t)%¢(t)e(t) Vi 1 — it )+ —4x,

T = (0P Vatowp (Tit) + S

where we have dropped tildes on x and ¢. This is exactly the same as the form given in Equation 4 of
[49] if we substitute ae(t) — s(¢), c(t) — o(t).

(40)

A.5 Equivalence of inflationary flows and flow matching

Here, we show the equivalence of our proposed un-scaled (32)) and scaled pfODEs to the un-
scaled and scaled ODEs obtained using the “Gaussian paths” flow matching formulation from [36]].
Here, we will use the convention of the flow-matching literature in which ¢ = 0 corresponds to the
easily sampled distribution (e.g., Gaussian), while ¢ = 1 corresponds to the target (data) distribution.
In this setup, the flow x; = 1, (X) is likewise specified by an ODE:

d

g ¥t (x0) = ve(¥,(x0)x1), (41)

where again, x; is a point in the data distribution and xg ~ N(0, 1). In [36], the authors show that
choosing

71(X1) .
= — 42
vi(x[x;) Ut(xl)(x e (x1)) + fu (1) (42)
with “dots” denoting time derivatives leads to a flow
Py(x0) = o (x1)X0 + py(x1), (43)

that is, a conditionally linear transformation of the Gaussian sample xq.

For our purposes, we can re-derive ({#2)) for the general case where o;(x1 ) is no longer a scalar but
a matrix-valued function of x; and time. That is, we rewrite (@3) (equation 11 in [36]) with a full
covariance matrix X;(x1):

1
Xt = P, (%0) = X7 (x1) - X0 + py(x1). (44)
Similarly, we can write
.1 —1 ;
vi(x[xa) = 37 (x1) %, * (x1) - (x = g (x)) + o (x2), (45)
from which it is straightforward to show that {@T)) is again satisfied.

This can be related to our pfODE @) as follows: First, recall that, under the inflationary assumption
(3] plus rescaling, our time-dependent conditional marginals are

p(xix1) = N(A; - x1, A, CLAY) ), (46)

which is equivalent to (@) with g, (x;1) = A; - x1, 3¢(x1) = A;C;A/ . Note that, here again, we
have reversed our time conventions from the main paper to follow the flow-matching literature: ¢ = 0
is our inflated Gaussian and ¢ = 1 is the data distribution. From these results, along with the constraint
(31) required for inflationary flows to produce a stationary Gaussian solution asymptotically, we then
have, substituting into (45):

Simt o siminl - %z’:tzgl @7)

= %AtCtAtT =1 (48)

= X = vi(xe|xy) = %AtCtA:Et_l (% — Ay x1) + A, -x, (49)
= —%AtCtAtT - Vi, log p(xi[x1) + A A7! - xy, (50)

which is the pfODE (@) written in the rescaled form (39). Thus, our inflationary flows are equivalent
to a Gaussian paths flow matching approach for a particular choice of (matrix-valued) noise schedule
and mean.
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A.6 Derivation of dimension-preserving criterion

Here, for simplicity of notation, denote the participation ratio (7)) by R(3X) and let 3 = diag(~y) in
its eigenbasis, so that

(Xi7)”
R(v) = o (51)
) 25
and the change in PR under a change in covariance is given by
dR(v) % i Z - Zi)” e TN pd, (52)
(=08)
e (s
1-R -d~y. (53)
Z 7 ) Sl 7

Requiring that PR be preserved (dR = 0) then gives (8).

Now, we would like to consider conditions under which PR is not preserved (i.e., does not hold).
Assume we are given (t) (along with initial conditions «(0)) and define

i) ()
R(t) = TS e (54)
so that
24 .
(1 —R(t) Zz %) Sy = (55)

by definition. Then we can rewrite (8] as

S g (RS ) e RO

=0 (Rly) = R(0) 5108 3~ )

= ~(Rly) ~ R(1)) < (log TH(C?)) (56)

In the cases we consider, flows are expansive (d(log Tr(C?)) > 0), with the result that (56)) drives
R(~) toward R(t). Thus, in cases where R (¢) has an asymptotic value, the R(-) should approach
this value as well. In particular, for our dimension-reducing flows, we have v = pg © -, giving

(> i)(p Zj 957;) (Zf; Y0i)?

: (57)
PLROE T

R(t) =

where ¢ = 1... K are the dimensions with g; = g, and v;(0) = ~og. That is, the asymptotic
value of R(t) (and thus the asymptotic value of PR) is that of the covariance in which only the
eigendimensions with g, = g, have been retained, as in @])
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B Appendix: Additional Details on Model Training and Experiments

B.1 Derivation of Training preconditioning Terms

Following an extensive set of experiments, the authors of [49] propose a set of preconditioning factors
for improving the efficiency of denoiser training (TT)) that forms the core of score estimation. More
specifically, they parameterize the denoiser network Dy(x; o) as

Dy(x,0) = cship(0)x + Cout (0)Fo(cin(0)X; Cnoise (7)), (58)

where Iy is the actual neural network being trained and ¢;y,, Cout, Cskip, and Cpoise are preconditioning
factors. Using this parameterization of Dy (x; o), they then re-write the original Lo de-noising loss as

1

Cout

L(Dg) =Egyn [w(o)[[Fo(cin - (¥ +1n); croise(0)) — (y — cskip(o) - (y + n))”g , 59

where w(o) is also a preconditioning factor, y is the original data sample, n is a noise sample and
x =y + n. As detailed in [49]], these "factors" stabilize DBM training by:

1. ¢;n: Scaling inputs to unit variance across all dimensions, and for all noise/perturbation
levels. This is essential for stable neural net training via gradient descent.

2. Cout: Scaling the effective network output to unit variance across dimensions.

3. cskip: Compensating for ¢, thus ensuring network errors are minimally amplified. The
authors of [49] point out that this factor allows the network to choose whether to predict the
target, its residual, or some value between the two.

4. w(o): Uniformizing the weight given to different noise levels in the total loss.

5. Cpoise: Determining how noise levels should be sampled during training so that the trained
network efficiently covers different noise levels. This is the conditioning noise input fed to
the network along with the perturbed data. This quantity is determined empirically.

In [49], the authors propose optimal forms for all of these quantities based on these plausible
first principles (cf. Table 1 and Appendix B.6 of that work). However, the forms proposed there
rely strongly on the assumption that the noise schedule is isotropic, which does not hold for our
inflationary schedules, which are diagonal but not proportional to the identity. Here, we derive
analogous expressions for our setting.

As in the text, assume we work in the eigenbasis of the initial data distribution 3¢ and let C(t) =
diag(~y(t)) be the noising schedule, such that the data covariance at time ¢ is X(t) = ¢ + C().

Assuming a noise-dependent weighting factor A(¢) analagous to y/w(c) above, we then rewrite (11)
as

L(Dg) = Etyn [|A) (Do (y +n:7(t)) — y)|?] (60)
= IEt,y.,n “|A(t) (CoutFﬁ(Cin(y + Il); cnoise) - (Y - Cskip(y + n)))HQ] (61)
= IEt,y,n “lA(t)Cout (FO(Cin(y + 1’1); Cnoise) - C(;}t(y - Cskip(y + n))) HZ} (62)

This clearly generalizes (39) by promoting all preconditioning factors either to matrices
(Cin, Cout, Cskip, A) or vectors (Cnoise). We now derive forms for each of these precondition-
ing factors.

B.1.1 C;,
The goal is to choose C;,, such that its application to the noised input y 4+ n has unit covariance:
1 = Vary ,, [Cin(y + 1) (63)
= CinVary » [(y +1n)] Cj, (64)
= Cin (3o + C(t)) Cy, (65)
= CinX(t)C; (66)
= Cp=X"3() (67)
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More explicitly, if W is the matrix whose columns are the eigenvectors of 3o, then
Cin = Wdiag (1 /\]o2 + fy(t)) W', (68)
where the square root is taken elementwise.

B.1.2 Cout9 Cskip

We begin by imposing the requirement that the target for the neural network F should have identity
covariance:

1 = Vary n [Cout ™ (¥ — Cskip(y +n))] (69)
= Coutc;rut = Vary n [y — Cokip(y + n)]
= Vary n [(]1 - Cskip)y - Cskipn]
= (1 — Cskip)Zo(1 — Cexip) " + CskipC(t)Cliip- (70)
This generalizes Equation 123 in Appendix B.6 of [49].
Again by analogy with [49], we choose Cgkip to minimize the left-hand side of (70):

0= —(]l — Cskip)zo + CskipC(t) (71)
= 20 = CskipZ}(t) (72)
=  Caip = ZoX 1 (t) = Wdiag (02/ (02 +v())) W, (73)

which corresponds to Equation 131 in Appendix B.6 of [49].
Using in then allows us to solve for Coyt:

CowtClut = (1 =TT HE(1 - ZoZ ™ HT + ZpE"1CE 71X, (74)
=30 — 2507180+ ZoE T HZe + C)2 IR, (75)
=30 - 2oX 713, (76)
= (=gt +cw) (77)
= Cour = Wdiag <\/ o5 O(t)/ (o5 + 'r(t))> wr (78)

B.13 A(t)

Our goal in choosing A(t) is to equalize the loss across different noise levels (which correspond,
via the noise schedule, to different times). Looking at the form of @]) we can see that this will be
satisfied when A(t) is chosen to cancel the outermost factor of Coyt

A(t) =Col, =35 + C71(t) = Wdiag (\/ oo 2+ 7—1@)) w' (79)

B.1.4 Re-writing loss with optimal preconditioning factors

Using these results, we now rewrite (62)) using the preconditioning factors derived above:

L(Dg) = Etyn [HA(t>Cout (FG(Cin(y + n); Cnoise) — C;}t(y - Cskip(y + n))) ||2]

1

= Eeyn |[Fo(B73(0) - (v +0): enoise) = (85 +C7H0) " - (v = BoD7H(0)- (v +m) |

In practice, we precompute W and 0'(2) via SVD and compute all relevant precoditioners in eigenspace
using the forms given above. For cyeise, We follow the same noise conditionining scheme used
in the DDPM model [27], sampling ¢ uniformly from some interval ¢ ~ U[tmin, tmaz] and then
setting c¢ppise = (M — 1)t, for some scalar hyperparameter M. We choose M = 1000, in agreement
with [49, 27]]. After this, as indicated above, our noise is sampled via n ~ AN(0,C(t)) with
C(t) = Wdiag(~(t))W'.
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B.2 Construction of g and its impact on compression and generative performance of
PR-Reducing pfODEs

As highlighted in main text, for constant end integration time 7" and p, the final scale ratio between
preserved and compressed dimensions is dictated by the quantity g. — g;, which we called the inflation
gap (IG). Higher inflation gaps (IGs) lead to more stringent exponential shrinkage towards zero in
compressed dimensions (Tables |6} [T1) and worse off generative performance (Table[2).

In PR-Reducing experiments, we set p = 1 and constructed g by making all elements of g correspond-
ing to preserved dimensions equal to 2 (i.e., gpreserved = gmaa = 2) and all elements corresponding
to compressed dimensions equal to gecompressed = Gmin = preserved — 1G (Tables@@). Of note,
for PR-Preserving experiments, all elements of g are set to 1 (i.e., g = 1, IG = 0) and we chose
p = 2, such that all dimensions are inflated to the same extent and we match exponential constant
used for preserved dimensions in PR-Reducing experiments.

B.3 Details of pfODE integration

B.3.1 pfODE in terms of network outputs

Here we rewrite the pfODE () in terms of the network outputs D(x, diag((t))), learned during
training and queried in our experiments. As described in Appendix and in line with previous
DBM training approaches, we opt to use time directly as our network conditioning input. That is, our
networks are parameterized as D(x, t). Then, using the fact that the score can be written in terms of
the network as [30), 149]

Vilogp(x, C(t)) = CH(t) - (D(x,1) — x), (80)
we rewrite (6 as
A X 1, g 1 -
i _§AC [CHD(x,t) —x)] + [(0,A)A7] - x (81)
= —%AC [C'DA %) -A %)+ [(0:A)AT] % (82)
L a0 o (p(E ) X, a0
~320035° (2 (35) ~am) * 4 0 &

where in the last line we have expressed A (¢) and CC~ 1 in their respective eigenspace (diagonal)
representations, where the divisions are to be understood element-wise. For PR-Reducing schedules,
this expression simplifies even further, since our scaling schedule becomes isotropic - i.e., A(t) =
a(t)l.

B.3.2 Solvers and Discretization Schedules

To integrate (83)), we utilize either Euler’s method for toy datasets and Heun’s method (see Algorithm
1) for high-dimensional image datasets. The latter has been shown to provide better tradeoffs between
number of neural function evaluations (NFEs) and image quality as assessed through FID scores in
larger data sets [49].

In toy data examples, we chose a simple, linearly spaced (step size h = 10~2) discretization scheme,
integrating from ¢ = 0 to ¢ = %,,,,, when inflating and reversing these endpoints when generating
data from the latent space. For higher-dimensional image datasets (CIFAR-10, AFHQv2), we instead
discretized using t; = ﬁ(tmm — €5) + €5 when inflating, where ¢, is again the maximum time
at which networks were trained to denoise and ¢, = 102, similar to the standard discretization
scheme for VP-ODEs [49, 30] (though we do not necessarily enforce ¢,,,,, = 1). When generating
from latent space, this discretization is preserved but integration is performed in reverse.

B.4 Training Details
B.4.1 Toy DataSets

Toy models were trained using a smaller convolutional UNet architecture (7oyConvUNet) and our
proposed preconditioning factors (Appendix [B.T)). For all toy datasets, we trained networks both
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Algorithm 1 Eigen-Basis pfODE Simulation using Heun’s 2% order method
1: procedure HEUNSAMPLER(Dg(x, 1), ¥(t), a(t), W', ¢ ticfo,....N})

2: if running "generation" then > Generate initial sample at ¢
3: %o ~ N(0,diag(a(tp) © v(t0))) > Sample from Gaussian latent space
4: else > i.e., if running “inflation”
5: X0 ~ Pdata(X) > Sample from target distribution
6: %o = a(t))(WT - xq) > Transform to eigenbasis, scale
7: end if

8: foric {0,1,...., N — 1} do: > Solve equation (83) N times
. di = —za(t) 0 35 0 (D (3851) - 5t)
10: + ZE?; O X > Evaluate % at t;
11: Xit1  X; + (tiy1 — ti)&i, X4 = % > Take Euler step from ¢; to ¢;11
d o) © Hig o (D (sh i) — aey)

13: —&—2813 O Xjt1 > Evaluate % att;q
14 Xiy1 < X+ (tig1 — ti) (%&i + %&;) > Apply trapezoidal rule at ¢,
15: return Xpn > Return Sample

16: end procedure

by using original images as inputs (i.e., “image space basis”) or by first transforming images to
their PCA representation (i.e., “eigenbasis”). Networks trained using either base choice were able to
produce qualitatively good generated samples, across all datasets. For all cases, we used a learning
rate of 10~°, batch size of 8192, and exponential moving average half-life of 50 x 10*. For PR-
Reducing schedules, we set p = 1 and constructed g as described in Appendix [B.2](Table lb The
only exceptions were networks used on mesh and HMC toy experiments (Appendices|[C.2.1} [B.6),
where we used instead gpreserved = 1.15 across all preserved dimensions (circles, S- curve) and
Geompressed = 0.85 (circles), or geompressea = 0.70 (S-curve) - Table 27 and 6t rows. This
yields a softer effective compression (i.e., smaller IGs) and is needed to avoid numerical instability in
these experiments.

As explamed in Appendix E to construct our c,,;se preconditioning factor, we sampled ¢ ~

tinins tmaz ) With £, = 107 7 across all simulations and tm(m equal to the values shown in
Table El In the same table, we also show training duration (in 106 images (Mimgs), as in [49]),
along with both the total number of dimensions (in the original data) and the number of dimensions
preserved (in latent space) for each dataset and schedule combination. In Table[6] we showcase
latent space (i.e., end of “inflation””) compressed dimension variances achieved for the different toy
PR-Reducing experiments as a function of inflation gap (IG). As expected, higher IGs lead to more
stringent shrinkage of compressed dimensions in latent space.

B.4.2 CIFAR-10 and AFHQv2 Datasets

For our image datasets (i.e., CIFAR-10 and AFHQv2), we utilized similar training hyperparameters
to the ones proposed by [49] for the CIFAR-10 dataset, across all schedules explored (Table [7).
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Table 4: Toy Data Training Hyperparameters

Dataset Schedule Total Dimensions Dimensions Kept t,,.x (s) Duration (Mimg)

Circles PRP 2 2 7.01 6975
Circles PRR 2 1 11.01 8601
Sine PRP 2 2 7.01 12288
Sine PRR 2 1 11.01 12288
Moons PRP 2 2 8.01 6400
Moons PRR 2 1 11.01 8704
S Curve PRP 3 3 9.01 6144
S Curve PRR 3 2 15. 01 5160
Swirl PRP 3 3 11.01 8704
Swirl PRR 3 2 15.01 12042

Table 5: g; Values for Preserved vs. Compressed Dimensions for Toy Experiments.

Dataset Schedule Dimensions Kept IG  gpreserved  Jeompressed

Circles PRR 1 2.0 2.0 0.0
Circles PRR 1 0.3 1.15 0.85
Sine PRR 1 2.0 2.0 0.0
Moons PRR 1 2.0 2.0 0.0
S Curve PRR 2 3.0 2.0 -1

S Curve PRR 2 0.45 1.15 0.70
Swirl PRR 2 3.0 2.0 -1

Shown in Tables 8} [9]are our specific choices for the exponential inflation constant (p) and training
duration (in 10° images - Mimgs) for the two main sets of experiments performed on image datasets,
namely (1) experiments with constant inflation gap (IG=1.02) and varying the number of preserved
dimensions d on both datasets (Table [§), and (2) experiments with fixed d (d = 2) and varying
inflation gaps for the AFHQV?2 dataset (Table[9). Here, training duration was determined for each
schedule based on when computed Frechet Inception Distance (FID) scores [65]] stopped improving.
We also showcase in Table [I0] the specific values used for elements of g corresponding to preserved
vs. compressed dimensions at different inflation gaps.

All networks were trained on the same DDPM++ architecture, as implemented in [49]] and using
our proposed preconditioning scheme and factors in the standard (e.g., image space) basis. No
gradient clipping or mixed-precision training were used, and all networks were trained to perform
unconditional generation. We run training in the image space basis (as opposed to in eigenbasis)
because this option proved to be more stable in practice for non-toy datasets. Additionally, we
estimate the eigendecomposition of the target datasets before training begins using 50K samples for
CIFAR-10 and 15K samples for AFHQv2. Based on our experiments, any sample size above total
number of dimensions works well for estimating the desired eigenbasis.

Table 6: Toy Experiments Compressed Dimension Variance by Inflation Gap (IG)

Dataset Schedule Dimensions Kept IG  Compressed Dimension Variance

Circles PRR 1 2.0 4x1077
Circles PRR 1 0.3 1x 1072
Sine PRR 1 2.0 4x1077
Moons PRR 1 2.0 4 x 1077
S Curve PRR 2 3.0 2 x 10712
S Curve PRR 2 0.45 2.5 x 1073
Swirl PRR 2 3.0 2 x 10712
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Table 7: CIFAR-10 & AFHQv2 Common Training Hyperparameters (Across All Schedules)

Hyperparameter Name Hyperparameter Value

Channel multiplier 128
Channels per resolution 2-2-2
Dataset x-flips No
Augment Probability 12%
Dropout Probability 13%
Learning rate 10~
LR Ramp-Up (Mimg) 10
EMA Half-Life (Mimg) 0.5
Batch-Size 512

Table 8: Training Duration (in Mimgs) and Exponential Inflation Constant (p) for Dimension
Reducing Experiments Using 1.02 Inflation Gap (IG) and Dimension Preserving Experiments (IG =
0.0)

Dataset Total Dimensions Dimensions Kept IG  Training Duration p
CIFAR-10 3072 1 1.02 300 1
AFHQV2 3072 1 1.02 250 1
CIFAR-10 3072 2 1.02 300 1
AFHQV2 3072 2 1.02 250 1
CIFAR-10 3072 30 1.02 300 1
AFHQV2 3072 30 1.02 450 1
CIFAR-10 3072 40 1.02 300 1
CIFAR-10 3072 62 1.02 250 1
AFHQV2 3072 62 1.02 450 1
CIFAR-10 3072 307 1.02 300 1
AFHQV2 3072 307 1.02 300 1
CIFAR-10 3072 615 1.02 450 1
AFHQV2 3072 615 1.02 450 1
CIFAR-10 3072 1536 1.02 300 1
AFHQV2 3072 1536 1.02 250 1
CIFAR-10 3072 3041 1.02 300 1
AFHQV2 3072 3041 1.02 200 1
CIFAR-10 3072 3072 0.00 275 2
AFHQV2 3072 3072 0.00 275 2

Times utilized to construct conditioning noise inputs to networks (Cy0;se (t)) were uniformly sampled
(t ~ U(tmin, tmaz))s With £, = 1077 and t,,4, = 15.01, across all experiments. For the AFHQv2
dataset, we chose to adopt a 32x32 resolution (instead of 64x64 as in [49]]) due to constraints on
training time and GPU availability. Therefore, for our experiments, both datasets have a total of 3072
(i.e., 3x32x32) dimensions.

Finally, training was performed in a distributed fashion using either 8 or 4 GPUs per each experiment
(NVIDIA GeForce GTX TITAN X, RTX 2080) in a compute cluster setting. Generation (FID) and
round-trip (MSE) experiments were performed on single GPU (NVIDIA RTX 3090, 4090, A5000,
A6000). We report training duration in Mimgs and note that time needed to achieve 200Mimgs is
approximately 2 days on 8GPUs (4 days on 4 GPUs) using hyperparameters shown in Tables [7} [8} [0]
This is in agreement with previous train times reported in [49] using an 8 GPU distributed training
set up.
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Table 9: Training Duration (in Mimgs) and Exponential Inflation Constant (p) for AFHQv2 Experi-
ments Using Variable Inflation Gaps (IGs)

Total Dimensions Dimensions Kept IG  Training Duration p

3072 2 1.10 200 1
3072 2 1.25 250 1
3072 2 1.35 250 1
3072 2 1.50 200 1

Table 10: g; Values for Preserved vs. Compressed Dimensions at Different Inflation Gaps (IGs)

Inflation Gap (IG) Ypreserved Jcompressed

1.02 2.0 0.98
1.10 2.0 0.90
1.25 2.0 0.75
1.35 2.0 0.65
1.50 2.0 0.50

B.5 Details of Roundtrip MSE and FID calculation Experiments

B.5.1 Roundtrip Experiments

For image datasets (CIFAR-10 and AFHQv2), we simulated full round-trips: integrating the pfODEs
() forward in time to map original images into latent space and then backwards in time to reconstruct
original samples. We run these round-trips for a set of 10K randomly sampled images, three times per
each schedule investigated and compute pixel mean squared error between original and reconstructed
images, averaged across the 10K samples. Values reported in Tables[T} 2] represent mean +2 standard
deviations of pixel MSE between these three different random seeds per each condition. For pfODE
integration, we used the discretization schedule and Heun solver detailed above (Appendix[B.3.2),
with ¢4 = 15.01, €, = 1072, and N = 118 for all conditions.

B.5.2 FID Experiments

For image datasets, we also computed Frechet Inception Distance (FID) scores [65] across 3 inde-
pendent sets of SOK random samples, per each schedule investigated. Values reported in Tables
[T} 2] represent mean +2 standard deviations across these 3 sets of random samples per each condi-
tion. Here again, we used the discretization scheme and solver described in Appendix [B.3.2| with
tmaz = 15.01, €, = 1072, and N = 256 across all conditions. We chose N = 256 here (instead of
118) because this provided some reasonable trade-off between improving FID scores and reducing
total compute time.

To obtain our latent space random samples x(7') at time to = 7T (i.e, at the start of generation)
we sample from a diagonal multivariate normal with either (1) all diagonal elements being 1 (for
PR-Preserving schedule) or (2) all elements corresponding to preserved dimensions being 1 and all
elements corresponding to compressed dimensions being equal to the same small value for a given
inflation gap (see Table [TT)).

Table 11: Latent Space Compressed Dimensions Variance per Inflation Gap (IG), Both Datasets

Inflation Gap (IG) Latent Space Compressed Dimensions Variance

1.02 2.15 x 1077
1.10 6.00 x 1078
1.25 6.80 x 1079
1.35 1.50 x 10~°
1.50 1.76 x 10710
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For our CIFAR-10 comparison experiments against existing injective flow models, we used the same
implementations for M-Flow [21]], Rectangular Flows [22], and Canonical Manifold Flows [23] as in
[23]. When training the comparison injective flows, we used the same hyper-parameters proposed
in Appendix G.1 of [23] for the CIFAR-10 dataset. The only difference here is that we trained
models with latent dimensions equal to d = [30, 40, 62]. Finally, comparison FID scores reported
in Table [3|represent best score out of 3 independently generated sets, each with 10K samples. For
our comparison models, inflation gap was fixed to IG = 1.02 while d was varied between 30, 40,
and 62 and we utilized the same training hyper-parameters reported in Tables[7}[8] FID scores were
computed using the same discretization, solver, and general set up described above.

B.5.3 FID and Roundtrip Integration Experiments with Additional Initialization Seeds

In the FID and roundtrip pfODE integration experiments in Tables|T} 2] we showcased variation arising
from using different seeds when constructing initial generation or roundtrip samples. Another relevant
source of variability in FID and MSE scores reported arises from different parameter initializations
when training our denoiser networks. To assess this source of variability, we trained networks using
three additional initialization seeds for our worse performing schedule at constant inflation gap
(IG = 1.02, PR-Reducing to 307 dimensions), for both datasets (AFHQv2, CIFAR-10). For each
such initialization seed, we conducted similar FID and roundtrip integration MSE experiments as

detailed in Sections

Tables showcase results for these experiments on each individual seed tested (top 4 rows) and
aggregated across all seeds (bottom row). For top 4 rows, values reported represent mean 20 of
scores computed across three different sets of generation/roundtrip seeds (as in Tables [T} [2). For
bottom rows, values reported represent mean 20 of scores computed across all initialization and
generation/roundtrip seeds (i.e., these represent mean 20 over all aggregated experiments conducted
for the given schedule and dataset).

Table 12: AFHQv2, FID and Roundtrip Experiments with Additional Initialization Seeds

Seed FID MSE

1 16.41 £0.10 3.24 +0.16
2 15.63+0.17 3.204+0.15
3 16.53 £0.11  3.06 £ 0.21
4 15.64 +0.10 3.334+0.13

all (aggregated) 16.05+0.85 3.21 £0.26

Table 13: CIFAR-10, FID and Roundtrip Experiments with Additional Initialization Seeds

Seed FID MSE

1 26.32 +0.07 1.04 +0.09
2 27.43£0.15 0.97 +0.08
3 27.80+0.19 0.84 +0.04
4 28.07£0.13 0.71 £0.02

all (aggregated) 27.41+1.34 0.89£0.26

B.5.4 Additional Figures for FID and Round-Trip MSE Experiments on Image Benchmark
Datasets.

Below we showcase additional examples of generated images and results of roundtrip pfODE integra-
tion for different schedules explored in our experiments. More specifically, Figure[6]showcases results
of FID and roundtrip integration experiments on CIFAR-10 at constant inflation gap (IG = 1.02) and
varying number of preserved dimensions. Figure[7showcases results of FID and roundtrip integration
experiments done on the AFHQv?2 dataset, with varying inflation gaps IG = [1.10, 1.25,1.35, 1.50)
and constant number of preserved dimesions (d = 2).
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Figure 6: Generation and Round-Trip Experiments for CIFAR-10 at IG=1.02 and varying
number of preserved dimensions. Layout and setup same as for Figure[5|- see Appendices[B.5.2}

[B.5.1] for details.
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Figure 7: Generation and Round-Trip Experiments for AFHQv2 dataset with dimension
reduction to 2D (PRR to 2D) at different inflation gaps (IGs). Top row: Generated samples
for each inflation gap (IG) flow schedule (1.10, 1.25, 1.35, and 1.50), all with d = 2. Bottom
row: Results of round-trip experiments for same schedules. Leftmost columns are original samples,
middle columns are samples mapped to Gaussian latent spaces, and rightmost columns are recovered
samples.
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B.6 Details of Toy HMC Experiments

As highlighted in Section [5| we utilized Hamiltonian Monte Carlo (HMC) [1} 56H58] to assess
if errors in our network score estimates could result in mis-calibrated posterior distributions. In
these experiments, we worked with the toy 2D circles dataset (using both PR-Preserving and PR-
Reducing schedules) and began by constructing our observed data samples X,ps as follows: First,
we sampled a set of latent variables z from a 3-component Gaussian Mixture Model (GMM) p(z) =
Z?:o wiN (p;, ;) with known means (), diagonal covariances (X), and weights (w) (Table .
Second, we integrated the sampled z points backwards in time (“generation’) using our proposed
pfODEs with score estimates taken from trained networks to obtain “noise-free” observed data
samples x,). Finally, we added a small amount of isotropic Gaussian noise to these samples
(n ~ N(0,0?), 0% = 1072), to obtain our final observed data, Xops.

Table 14: Ground-Truth Means, Covariance Diagonals, and Weights for Gaussian Mixture Model
(GMM) Components Used in Toy HMC Experiments

GMM Component Schedule Mean Covariance Diagonal Weight
otr PR-Preserving  [0.0, 0.0] [5.625 x 1071,5.625 x 10~!]  0.50
oth PR-Reducing  [0.0,0.0] [5.625 x 1071, 5.625 x 1073] 0.50
15t PR-Preserving  [—5 x 1072,0.0] [1072,1.0] 0.25
15t PR-Reducing  [-5 x 1072,0.0] [1072,107?] 0.25
2nd PR-Preserving [5 x 1072,0.0]  [1.0,1072] 0.25
2nd PR-Reducing  [5 x 1072,0.0] [1.0,107] 0.25

We then used these observations, Xops, along with the HMC implementation provided in the
hamiltorch library [56], to jointly sample from the posterior over ({z;}, w), assuming {p;, 3; }
known.

For both PR-Preserving and PR-Reducing experiments, we generated 2000 samples (Xops). For
sampling, we used L = 15 steps per sampling trajectory, discarding the first 500 samples as “burn-in.”
Step sizes were 102 for PR-Preserving and 10~2 for PR-Reducing schedules. Because sampling
required integration over the full generative trajectory and was slow to mix, requiring roughly 40
minutes per sample, we initialized our w and z; estimates to ground truth values. In other experiments,
we verified that other initializations quickly converged to these values, but this procedure avoided
numerical instabilities associated with integration of the generative pfODE during the burn-in phase.
Finally, to reduce sample autocorrelation, we thinned the resulting chains by a factor of 5.

As mentioned above, this procedure required multiple neural function evaluations (NFEs) for pfODE
integration per HMC integration step, producing very long sampling times. For instance, using
the single-GPU setup of hamiltorch required ~ 2 weeks to pass burn-in for our PR-preserving
schedule and ~ 4 weeks for our PR-preserving schedule. As a result, sample numbers were somewhat
small (N = 1872, PR-preserving; N = 1635, PR-reducing), and thinned traceplots still exhibited
some considerable correlation (Figure[8), underscoring the impracticality of using sampling-based
inference in these models.

C Appendix: Additional Experiments and Supplemental Information

C.1 Spectra and PR-Dimensionality for a few common image datasets

Shown in Table[15]are participation ratio (PR) values for some benchmark image datasets. Figure 9]
showcases spectra (zoomed in to first 25PCs) for same image benchmarks.

C.2 Additional Toy Experiments
C.2.1 Toy Alpha-Shape/Mesh Coverage Experiments
To assess numerical error incurred when integrating our proposed pfODEs, we performed additional

coverage experiments using 3D meshes and 2D alpha-shapes [91,,192] in select toy datasets (i.e., 2D
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Figure 8: Traceplots (post-thinning) for 3 random chains for PR-Preserving and PR-Reducing
schedules. A: Traceplots for 3 random PR-Preserving chains, after thinning by a factor of 5. “X
axis” represents sample number and “Y axis” represents value of zeroth dimension of sample (Wg).B:
Same set up, only for 3 random PR-Reducing chains. Note that there is still some considerable
correlation in the samples, even after thinning. Additionally, mixing is not particularly good.

Table 15: Participation ratio (PR) for some commonly used image datasets.

Dataset PR

MNIST 30.69
Fashion MNIST  7.90
SVHN 2.90
CIFAR-10 9.24

circles and 3D S-curve), Figure Here, we began by sampling 20K test points from a Gaussian
latent space with appropriate diagonal covariance. For PR-Preserving schedules, this is simply a
standard multivariate normal with either 2 or 3 dimensions. For PR-Reducing experiments, this
diagonal covariance matrix contains 1’s for dimensions being preserved and a smaller value (102
for Circles, 2.5 x 1073 for S-curve) for dimensions being compressed.

Next, we sampled uniformly from the surfaces of balls centered at zero and with linearly spaced
Mahalanobis radii ranging from 0.5 to 3.5 (200 pts per ball). We then fit either a 2D alpha-shape
(2D Circles) or a mesh (3D SCurve) to each one of these sets of points. These points thus represent
“boundaries” that we use to assess coverage prior to and after integrating our pfODEs. We define
the initial coverage of the boundary to be the set of points (out of the original 20K test points) that
lie inside the boundary. We then integrate the pfODE backward in time (the “generation” direction)
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Figure 9: Zoomed-in spectra for some standard image datasets. Log of explained variance versus
number of principal components (PCs) for 4 common image datasets (MNIST, Fashion MNIST,
CIFAR-10, and SVHN). We plot only the first 25 PCs across all datasets to facilitate comparison.
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Figure 10: Mesh/Alpha-Shape Calibration experiments. For select toy datasets, we numerically
assessed coverage during the inflation and generation procedures using (3D) meshes and (2D) alpha-
shapes. (A) We constructed fixed coverage sets by sampling data points at fixed Mahalanobis radii
from the centers of each distribution and creating alpha shapes (2D) or meshes (3D). (B—C) We then
quantified the change in coverage fraction for each of these sets at the end of either “inflation” or
“generation” procedures. Lines represent means and shaded regions £2 standard deviations across
three sets of random seeds. (D) Illustration of the effect of flows on set geometry. While both types
of flows distort the shapes of initial sets, they do preserve local neighborhoods, even when one
dimension is compressed by five orders of magnitude.

for each sample and boundary point. At the end of integration, we again calculate the mesh or 2D
alpha-shape and assess the number of samples inside, yielding our final coverage numbers.
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Figure 11: Additional PR-Preserving experiments for 2D data embedded in 3D space. Here we
integrate our PR-Preserving pfODEs forwards in time (i.e., inflation) for 2 different toy datasets,
constructed by embedding the 2D Circles data in 3 dimensional space as either a flat (top rows) or
a curved (bottom rows) manifold. We present results for such simulations both without any added
noise (1% and 3" rows) and with some small added noise (0.2 and 0.5 ¢ for flat and curved cases,
respectively - 2" and 4" rows).

Similarly, we take our samples and boundary points at the end of generation, simulate our pfODEs
forwards (i.e., the “inflation” direction), and once again, use 2D alpha-shapes and meshes to assess
coverages at the end of this round-trip procedure. If our numerical integration were perfect, points
initially inside these sets should remain inside at the end of integration; failure to do so indicates
mis-calibration of the set’s coverage. As shown in Figure[I0]B-C), we are able to preserve coverage
up to some small, controllable amount of error for both schedules and datasets using this process.

C.2.2 Toy Experiments on Datasets with Lower Intrinsic Dimensionality

The pfODEs proposed here allow one to infer latent representations of data that either preserve or
reduce intrinsic dimensionaltiy as measured by the participation ratio. In this context, it is important
to characterize our PR-Preserving pfODEs’ behavior in cases where data are embedded in a higher-
dimensional space but are truly lower-dimensional (e.g., 2D data embedded in 3D space). In such
cases, one would expect inflationary pfODEs to map data into a low-rank Gaussian that preserves the
true intrinsic PR-dimensionality of the original data.

To confirm this intuition, we constructed 3D-embedded (2D) circles datasets using two different
approaches: (1) by applying an orthonormal matrix M to the original data points, embedding
them into 3D as a tilted plane (Figure[TT} top 2 rows) or (2) constructing a third coordinate using
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Figure 12: Toy 3D — 2D dimension-reducing experiments with alternative scalings. Shown
here are simulations of our 3D — 2D PR-Reducing pfODEs for 3D toy datasets (S-curve, Swirl)
scaled either to unit variance across all 3 dimensions (first and third rows) or scaling the thickness
dimension to 0.5, while leaving other dimensions scaled to 1 (second and fourth rows). Note that
scaling all dimensions to 1 leads to some loss in original shape content when running generation (first
and third rows, rightmost column). This is not the case when we make total variance contribution
of the “thickness” dimension smaller (i.e., under the alternative scaling; second and fourth rows,
rightmost column).

z = sign(y)y?, which creates a curved (chair-like) shape in 3D (Figure |11} bottom 2 rows). We then
simulated our PR-Preserving pfODE for both embedding procedures and considering both the case in
which no noise was added to the data or, alternatively, where some Gaussian noise is added to the
initial distribution, giving it a small thickness. We used zero-mean Gaussian noise with o of 0.2 and
0.5 for embedding types (1) and (2), respectively.

As shown in Figure[IT] when no noise is added, our PR-Preserving pfODEs Gaussianize the original
data points along the manifold plane (rows 1 and 3, rightmost columns). Alternatively, when noise is
added and the manifold plane has some “thickness” the inflationary flows map original data into a
lower-rank Gaussian (rows 3 and 4, rightmost columns). In both cases, the original PR is preserved
(up to some small numerical error), as expected.

C.2.3 3D Toy PR-Reducing Experiments with Different Dimension Scaling

For our 3D toy data PR-Reducing experiments, we tested how changing the relative scaling of
different dimensions in the original datasets qualitatively changes generative performance.
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Figure 13: Autocorrelation of denoiser network residuals. Scaled autocorrelations of denoising
network residuals e€(x(t)) for two sample toy networks (left, 2D circles PR-Preserving (green) and
PR-Reducing to 1 dimension (pink)) and for networks trained on CIFAR-10 (right) for both PR-
Preserving (green) and select PR-Reducing schedules (62D, = 2%, (pink); 307D, = 10%, (violet);
615D, ~ 20%, (blue), all at IG=1.02). Toy data exhibit minimial autocorrelation along integration
trajectories, while the CIFAR score estimates have some autocorrelation along one third to one half
of the integration trajectory.

For the first experiment, we scaled all dimensions to variance 1 (Figure@ first and third rows). In
this case, all dimensions contribute equally to total variance in the data. In contrast, for the second
experiment (Figure[I2} second and fourth rows), we scaled the thickness dimension to variance 0.5
and all others to 1. In this case, the non-thickness dimensions together account for most of the total
variance.

We then trained neural networks on 3D S-curve and Swirl data constructed using these two different
scaling choices and used these networks to simulate our PR-Reducing pfODEs (reduction from
3D — 2D) both forwards (Figure [12]left panels) and backwards (Figure [12]right panels) in time.
Of note, the first scaling choice leads to generated samples that seem to loose some of the original
shape content of the target dataset (first and third rows, rightmost columns). In contrast, scaling
choice 2 is able to almost perfectly recover the original shapes (second and fourth rows, rightmost
columns). This is because scaling the thickness dimension to 0.5 reduces the percent of total variance
explained along that axis, and our PR reduction preferentially compresses in that direction, preserving
most information orthogonal to it. By contrast, the first scaling choice spreads variance equally across
all dimensions and, therefore, shape and thickness content of target distribution are more evenly
mixed among different eigendimensions. As a result, compressing the last dimension in this case
inevitably leads to loss of both shape and thickness content, as observed here.

C.3 Autocorrelation of Network Residuals

In Section [5|above, we considered the possibility that numerical errors in approximating the score
function might result in errors in pfODE integration and thus miscalibration of our proposed inference
procedure. There, we argued that if these score estimation errors can be modeled as white noise, inte-
gration using sufficiently small integration step sizes will maintain accuracy, as dictated by theorems
on numerical integration of SDEs [59]. Here, we investigate the validity of this approximation for
our trained score functions.

As detailed in Appendices[B.T]and[B.3.1] we did not directly estimate scores but trained networks
to estimate a denoiser § = Dy(x, C(t)), where y are samples from the data and x =y + n are
the noised samples with n ~ A(0, C(¢)). In this case, one can then compute scores for the noised
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distributions using:

Vi logp(x,C(t)) = C71(t) - (Dg(x, C(t)) — x) (84)
In practice, however, this de-noised estimate contains some error € = § —y, which is the true residual
error in our network estimates. Therefore, we rewrite our score expression as:

Vilogp(x,C(t)) = CH(t) - (§ —x) + ) (85)

where (§ — x) can be understood as the magnitude of the correction made by the denoiser at x [S1].
Note that € = 0 for the ideal denoiser (based on the true score function), but nonzero € will result in
errors in our pfODE integration.

As argued above, these errors can be mitigated if they are uncorrelated across the data set, but this
need not be true. To assess this in practice, we extracted estimation errors €(x) across a large number
of data samples (10K for 2D circles toys, SOK for CIFAR-10) and for networks trained on both
PR-Preserving and select PR-Reducing schedules (PR-Reducing to 1D for circles at IG=2.0, and to
62D, 307D, and 615D for CIFAR-10, all at IG=1.02) and then computed cross-correlations for these
errors along integration trajectories x(¢):

R(t1,t2) = Ex[(e(x(t1)) — &) (e(x(t2)) = &) "] (86)

where € is the mean residual across the entire data set. In practice, we use scaled correlations in which
an entry R;; is normalized by o;0; the (zero-lag) variance of the residuals along the corresponding
dimensions.

Results of these calculations are plotted in Figure [I3] for the mean across diagonal elements of R.
As the left panel of Figure[I3|shows, residuals display negligible autocorrelation for networks trained
to denoise toy data sets, while for CIFAR-10 (right panel), there is some cross-correlation at small
time lags. This is likely due to the increased complexity of the denoising problem posed by a larger
data set of natural images, in addition to the limited approximation capacity of the trained network.
As aresult, points nearby in data space make correlated denoising errors. Nevertheless, this small
amount of autocorrelation does not seem to impact the accuracy of our round-trip experiments nor
our ability to produce good-quality generated samples (Figures 5} [6; Table [T).

C.4 Dataset Pre-Processing

Toy datasets were obtained from scikit-learn [93] and were de-meaned and standardized to
unit variance prior to training models and running simulations. The only exceptions to this are the
alternative 3D toy datasets detailed in Appendix [C.2.3] where the third dimension was scaled to
slightly smaller variance.

For CIFAR-10 and AFHQv?2 datasets, we apply the same preprocessing steps and use the same
augmentation settings as those proposed for CIFAR-10 in [49] (cf. Appendix F.2), with the only
change that we downsample the original AFHQv2 data to 32 x 32 instead of 64 x 64.

C.5 Licenses
Datasets:

¢ CIFAR-10 [61]: MIT license
¢ AFHQV2 [62]: Creative Commons BY-NC-SA 4.0 license
* Toys [93]: BSD License
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a new set of pfODEs (Inflationary Flows) that allows practi-
tioners to deterministically map data into a (potentially) lower-dimensional, unique, and
neighborhood-preserving latent space, while also controlling for numerical error. Addition-
ally, we perform multiple experiments using our proposed model in both toy and benchmark
image datasets to support our claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: As highlighted in Section[7} one of the main limitations of the proposed method
lies in our choice of Participation Ratio (PR) as our dimensionality measure. This measure
favors top principal components of the data when doing compression. Utilizing different
(more complex) dimensionality metrics and noise and scaling schedules might yield pfODEs
with more interesting compressive behavior and properties. We also note the need to train
DBMs over much larger noise ranges than at present as a key limitation.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide most important set of assumptions and equations needed to
understand the work (in main text) and provide full assumptions, proofs, and theoretical

detail in Appendices[A]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed information about all of our experiments (including
additional experiments, not included in main text) in Appendices[B] [C] Additionally, we
provide entire code needed to reproduce results of paper in this repository [63]. All datasets
utilized are publicly available and we provide details on how to download and pre-process
these data in our repository and in the appendices.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide entire code needed to reproduce results of paper in this repository
[63]. All datasets utilized are publicly available and we provide details on how to download
and pre-process these data in our repository and in the appendices.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide in Appedix [B]details on model hyperparameter choices, training,
pfODE discretization and integration, as well as how these were used to perform experiments
showcased in paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all quantitative experiments (Alpha-Shape/Mesh Experiments, FID and
MSE Experiments), we report mean +2 standard deviations of results run across at least 3
sets of independent random seeds/samples to provide readers with an estimate of uncertainty
in our experiments. Additionally, we explain in detail how such means and standard
deviations are computed in Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appedix [B|we provide training time utilized for each model/schedule and
dataset in millions of images (Mimgs) and also provide an estimate of what these values
mean (in terms of clock time) using our computing resources. We also specify hardware
(GPU cards) used to run these experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and believe that the research
conducted in this paper conforms to it (in every respect), to the best of our knowledge.
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Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include discussion of potential societal impacts of the work presented
herein as part of section[7]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Although we proposed a new class of generative models, work presented
here does not constitute a high risk for misuse (we do not release our pre-trained image
generation models). We do not use scraped datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite and provide licenses for all assets (datasets, code, models) utilized in
this paper. We respect all such license agreements.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The main asset introduced in this paper is our code for training the proposed
models and running the experiments presented herein. We provide this code under this
repository [63] and also provide detailed documentation (under same repository link) on
how to utilize this code to reproduce results shown.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Paper does NOT involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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paperswithcode.com/datasets

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Paper does NOT involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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