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ABSTRACT

In this work, we explore the maximum-margin bias of quasi-homogeneous neu-
ral networks trained with gradient flow on an exponential loss and past a point
of separability. We introduce the class of quasi-homogeneous models, which is
expressive enough to describe nearly all neural networks with homogeneous ac-
tivations, even those with biases, residual connections, and normalization layers,
while structured enough to enable geometric analysis of its gradient dynamics.
Using this analysis, we generalize the existing results of maximum-margin bias
for homogeneous networks to this richer class of models. We find that gradient
flow implicitly favors a subset of the parameters, unlike in the case of a homoge-
neous model where all parameters are treated equally. We demonstrate through
simple examples how this strong favoritism toward minimizing an asymmetric
norm can degrade the robustness of quasi-homogeneous models. On the other
hand, we conjecture that this norm-minimization discards, when possible, unnec-
essary higher-rate parameters, reducing the model to a sparser parameterization.
Lastly, by applying our theorem to sufficiently expressive neural networks with
normalization layers, we reveal a universal mechanism behind the empirical phe-
nomenon of Neural Collapse.

1 INTRODUCTION

Modern neural networks trained with (stochastic) gradient descent generalize remarkably well de-
spite being trained well past the point at which they interpolate the training data and despite having
the functional capacity to memorize random labels Zhang et al. (2021). This apparent paradox has
led to the hypothesis that there must exist an implicit process biasing the network to learn a “good”
generalizing solution, when one exists, rather than one of the many more “bad” interpolating ones.
While much research has been devoted to identifying the origin of this implicit bias, much of the
theory is developed for models that are far simpler than modern neural networks. In this work, we
extend and generalize a long line of literature studying the maximum-margin bias of gradient descent
in quasi-homogeneous networks, a class of models we define that encompasses nearly all modern
feedforward neural network architectures. Quasi-homogeneous networks include feedforward net-
works with homogeneous nonlinearities, bias parameters, residual connections, pooling layers, and
normalization layers. For example, the ResNet-18 convolutional network introduced by He et al.
(2016) is quasi-homogeneous. We prove that after surpassing a certain threshold in training, gra-
dient flow on an exponential loss, such as cross-entropy, drives the network to a maximum-margin
solution under a norm constraint on the parameters. Our work is a direct generalization of the re-
sults discussed for homogeneous networks in Lyu & Li (2019). However, unlike in the homogeneous
setting, the norm constraint only involves a subset of the parameters. For example, in the case of a
ResNet-18 network, only the last layer’s weight and bias parameters are constrained. This asymmet-
ric norm can have non-trivial implications on the robustness and optimization of quasi-homogeneous
models, which we explore in sections 5 and 6.
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2 BACKGROUND AND RELATED WORK

Early works studying the maximum-margin bias of gradient descent focused on the simple, yet
insightful, setting of logistic regression Rosset et al. (2003); Soudry et al. (2018). Consider a binary
classification problem with a linearly separable1 training dataset {xi, yi} where xi ∈ Rd and yi ∈
{−1, 1}, a linear model f(x;β) = β⊺x, and the exponential loss L(β) =

∑
i e

−yif(xi;β). As shown
in Soudry et al. (2018), the loss only has a minimum in β as its norm becomes infinite. Thus,
even after the network correctly classifies the training data, gradient descent decreases the loss by
forcing the norm of β to grow in an unbounded manner, yielding a slow alignment of β in the
direction of the maximum ℓ2-margin solution, which is the configuration of β that minimizes ∥β∥
while keeping the margin mini yif(xi;β) at least 1. But what if we parameterize the regression
coefficients differently? As shown in Fig. 1, different parameterizations, while not changing the
space of learnable functions, can lead to classifiers with very different properties.
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Figure 1: Maximum-margin bias changes with
parameterization. Logistic regression, f(x) =
β⊺x, trained with gradient descent on a homo-
geneous (left) and quasi-homogeneous (right) pa-
rameterization of the regression coefficients β.
The dashed black line is the maximum ℓ2-margin
solution and the solid black line is the gradient de-
scent trained classifier after 1e5 steps. Existing
theory predicts the homogeneous model will con-
verge to the maximum ℓ2-margin solution. In this
work we will show that the quasi-homogeneous
model is driven by a different maximum-margin
problem.

Linear networks. An early line of works ex-
ploring the influence of the parameterization on
the maximum-margin bias studied the same set-
ting as logistic regression, but where the regres-
sion coefficients β are multilinear functions of
parameters θ. Ji & Telgarsky (2018) showed
that for deep linear networks, β =

∏
iWi,

the weight matrices asymptotically align to a
rank-1 matrix, while their product converges to
the maximum ℓ2-margin solution. Gunasekar
et al. (2018) showed that linear diagonal net-
works, β = w1 ⊙ · · · ⊙ wD, converge to the
maximum ℓ2/D-margin solution, demonstrat-
ing that increasing depth drives the network to
sparser solutions. They also show an analo-
gous result holds in the frequency domain for
full-width linear convolutional networks. Many
other works have advanced this line of litera-
ture, expanding to settings where the data is not
linearly separable Ji & Telgarsky (2019), gener-
alizing the analysis to other loss functions with
exponential tails Nacson et al. (2019b), con-
sidering the effect of randomness introduced
by stochastic gradient descent Nacson et al.
(2019c), and unifying these results under a ten-
sor formulation Yun et al. (2020).

Homogeneous networks. While linear networks allowed for simple and interpretable analysis of
the implicit bias in both the space of θ (parameter space) and the space of β (function space), it
is unclear how these results on linear networks relate to the behavior of highly non-linear networks
used in practice. Wei et al. (2019) and Xu et al. (2021) made progress towards analysis of non-linear
networks by considering shallow, one or two layer, networks with positive-homogeneous activations,
i.e., there exists L ∈ R+ such that f(αx) = αLf(x) for all α ∈ R+. More recently, two concurrent
works generalized this idea by expanding their analysis to all positive-homogeneous networks. Nac-
son et al. (2019a) used vanishing regularization to show that as long as the training error converges
to zero and the parameters converge in direction, then the rescaled parameters of a homogeneous
model converges to a first-order Karsh-Kuhn-Tucker (KKT) point of a maximum-margin optimiza-
tion problem. Lyu & Li (2019) defined a normalized margin and showed that once the training
loss drops below a certain threshold, a smoothed version of the normalized margin monotonically
converges, allowing them to conclude that all rescaled limit points of the normalized parameters
are first-order KKT points of the same optimization problem. A follow up work, Ji & Telgarsky
(2020), developed a theory of unbounded, nonsmooth Kurdyka-Lojasiewicz inequalities to prove a
stronger result of directional convergence of the parameters and alignment of the gradient with the
parameters along the gradient flow path. Lyu & Li (2019) and Ji & Telgarsky (2020) also explored
empirically non-homogeneous models with bias parameters and Nacson et al. (2019a) considered

1Linearly separable implies there exists a w ∈ Rd such that for all i ∈ [n], yiw⊺xi ≥ 1.
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theoretically non-homogeneous models defined as an ensemble of homogeneous models of differ-
ent orders. While these works have significantly narrowed the gap between theory and practice, all
three works have also highlighted the limitation in applying their analysis to architectures with bias
parameters, residual connections, and normalization layers, a limitation we alleviate in this work.
In a parallel literature studying low-rank biases in deep learning, Le & Jegelka (2022) analyzed
non-homogeneous models where the nonlinearities are restricted to the first few layers.

3 DEFINING THE CLASS OF QUASI-HOMOGENEOUS MODELS

Here we introduce the class of quasi-homogeneous models, which is expressive enough to describe
nearly all neural networks with positive-homogeneous activations, while structured enough to enable
geometric analysis of its gradient dynamics. Throughout this work, we will consider a binary clas-
sifier f(x; θ) : Rd → R, where θ ∈ Rm is the vector concatenating all the parameters of the model.
We assume the dynamics of θ(t) over time t are governed by gradient flow dθ

dt = −∂L
∂θ on an ex-

ponential loss L(θ) = 1
n

∑
i e

−yif(xi;θ) computed over a training dataset {(x1, y1), . . . , (xn, yn)}
of size n where xi ∈ Rd and yi ∈ {−1, 1}. In App. H we generalize our results to multi-class
classification with the cross-entropy loss.
Definition 3.1 (Λ-Quasi-Homogeneous). For a (non-zero) positive semi-definite matrix Λ ∈ Rm×m,
a model f(x; θ) is Λ-quasi-homogeneous if under the parameter transformation

ψα(θ) := eαΛθ, (1)
the output of the model scales f(x;ψα(θ)) = eαf(x; θ) for all α ∈ R and input x.

In this work, we assume Λ is diagonal2 and let λi = (Λ)ii and λmax = maxi λi be the maximum
diagonal element, which must be positive. Definition (3.1) generalizes the notion of positive homo-
geneous functions, allowing different scaling rates for different parameters to yield the same scaling
of the output. Given two parameters with different values of λ, we refer to the parameter with larger
λ as higher-rate and the other as lower-rate.

Examples. We consider some simple quasi-homogeneous networks that are not homogeneous.

Unbalanced linear diagonal network. Consider a diagonal network as described in Gunasekar et al.
(2018), but with a varying depth for different dimensions of the data. The regression coefficient βi
for input component xi is parameterized as the product of Di ∈ N parameters, yielding f(x; θ) =∑
i(
∏Di

j=1 θij)xi. When the Di are equal, the network is homogeneous, otherwise, the network is
quasi-homogeneous where the choice of λ can be D−1

i for θij .

Fully connected network with biases. One of the simplest quasi-homogeneous models is a multi-
layer, fully-connected network with bias parameters, such as the two-layer network, f(x; θ) =
w2σ

(∑
i w

1
i xi + b1

)
+ b2, where σ(·) is a Rectified Linear Unit (ReLU). Without biases this net-

work would be homogeneous, but their inclusion requires a quasi-homogeneous scaling of parame-
ters to uniformly scale the output of the model. For example, the choice of λ can be 1 for b2 and 1/2
for all other parameters.

Networks with residual connections. Similar to networks with biases, residual connections result in
a computational path that requires a quasi-homogeneous scaling of the parameters. For example, the
model f(x; θ) =

∑
j w

2
jσ
(∑

i w
1
jixi + xj

)
is quasi-homogeneous, where the choice of λ can be 1

for w2 and 0 for w1.

Networks with normalization layers. As discussed in Kunin et al. (2020), when normalization lay-
ers, such as batch normalization, are introduced into a homogeneous network, they induce scale
invariance in the parameters in the preceding layer. However, as long as the last layer is positive
homogeneous, then a network with normalization layers is quasi-homogeneous. For example, the
network f(x; θ) =

∑
i wihi(θ

′, x) + b is quasi-homogeneous, where w is the weight of the last
layer, b is the bias, θ′ is the set of parameters in earlier layers, and h(θ′, x) is the activation of the
last hidden layer after normalization. The choice of λ can be 1 for w and b and 0 for θ′.

See App. A for more examples of quasi-homogeneous models and their relationship to ensembles
of homogeneous networks of different orders, as discussed in Nacson et al. (2019a).

2When Λ is not diagonal, by reparameterizing the model θ → Oθ with a proper orthogonal matrix O, we
can diagonalize Λ.
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Geometric properties. Like homogeneous functions, quasi-homogeneous functions have certain
geometric properties of their derivatives. Analogous to Euler’s Homogeneous Function Theorem,
for a quasi-homogeneous f(x; θ), we have ⟨∇θf(x; θ),Λθ⟩ = f(x; θ), which is easily derived
by evaluating the derivative ∇αf(x;ψα(θ)) at α = 0, the identity element of the transformation.
Analogous to how the derivative of a homogeneous function of orderL is a homogeneous function of
order L−1, the derivative of a quasi-homogeneous function under the same transformation respects
the following property, ∇θf(x;ψα(θ)) = eα(I−Λ)∇θf(x; θ). See App. A for a derivation of the
geometric properties of quasi-homogeneous functions.
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Figure 2: A natural coordinate system for
quasi-homogeneous models. A useful coordi-
nate system for studying the gradient dynamics
of quasi-homogeneous models is the decomposi-
tion of parameter space into characteristic curves
(solid lines) and level sets of the Λ-seminorm
(dashed lines). For a homogeneous function (left),
this decomposition is equivalent to a polar de-
composition. For a quasi-homogeneous func-
tion (right), then the directions of the charac-
teristic curves are eventually dominated by the
highest-rate parameters and the level sets of the
Λ-seminorm are concentric ellipsoids.

Characteristic curves. Throughout this work
we consider the partition of parameter space
into the family of one-dimensional character-
istic curves mapped out by the parameter trans-
formation in Eq. 1. The vector field generating
the transformation, ∂ψα

∂α |α=0 = Λθ, is tangent
to the characteristic curve and thus we will refer
to this vector as the tangent vector. We define
the angle ω between the velocity dθ

dt and tangent
vector such that the cosine similarity between
these two vectors is β := cos(ω) =

⟨Λθ, dθdt ⟩
∥Λθ∥∥ dθ

dt ∥
.

Λ-Seminorm. The characteristic curves per-
pendicularly intersect a family of concentric el-
lipsoids defined by the Λ-seminorm, ∥θ∥2Λ :=∑
i λiθ

2
i . Together, the intersection of a given

characteristic curve with an ellipsoid of given
Λ-seminorm uniquely defines a single point in
parameter space. In the setting of homogeneous
networks, this geometric structure is equivalent
to a polar decomposition of parameter space.
We also define the Λ-normalized parameters
θ̂ = ψ−τ (θ) where τ(θ) is implicitly defined
such that ∥θ̂∥2Λ = 1. This corresponds to a
unique projection of parameter θ onto the unit
Λ-seminorm ellipsoid by moving along a characteristic curve.

As shown in Fig. 2, for a homogeneous function, the characteristics are rays and the Λ-seminorm is
proportional to the Euclidean norm ∥θ∥. For a quasi-homogeneous function, then the directions of
the characteristic curves and the Λ-seminorm are eventually dominated by the highest-rate parame-
ters. Thus, we will also find it helpful to define the Λmax-seminorm as ∥θ∥2Λmax

:=
∑
i:λi=λmax

λiθ
2
i .

4 QUASI-HOMOGENEOUS MAXIMUM-MARGIN BIAS

Having defined the class of quasi-homogeneous models and identified a natural coordinate system
to explore their gradient dynamics, we now generalize the maximum-margin bias theory developed
in Lyu & Li (2019) for homogeneous models to a general quasi-homogeneous model f(x; θ). Fol-
lowing the analysis strategy of Lyu & Li (2019), we make the following assumptions:

• A1 (Quasi-Homogeneous). There exists a non-zero diagonal positive semi-definite matrix
Λ, such that the model f(x; θ) is Λ-quasi-homogeneous.

• A2 (Regularity). For any fixed x, f(x; θ) is locally Lipschitz and admits a chain rule3.
• A3 (Exponential Loss). L(θ) = 1

n

∑
i ℓi where ℓi = e−yif(xi;θ).

• A4 (Gradient Flow). Learning dynamics are governed by dθ
dt ∈ ∂◦θL 4 for all t > 0.

• A5 (Strong Separability). There exists a time t0 such that L(θ(t0)) < n−1.

We also make the following additional assumptions not presented in Lyu & Li (2019):
3Nearly all neural networks have this property, including those with ReLU activations. For details, see

Davis et al. (2020) or Lyu & Li (2019).
4The Clarke’s subdifferential ∂◦

θL is a generalization of ∇θL for locally Lipschitz functions. For details,
see App. A
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• A6 (Normalized Convergence). limt→∞ θ̂(t) exists.
• A7 (Conditional Separability). There exists a κ > 0 such that only θ with ∥θ̂∥Λmax

≥ κ
can separate the training data.

A6 implies the convergence of the decision boundary and A7 implies that λmax parameters play
a role in the classification task. A6 is necessary for a technical reason, but we expect that this
assumption can be weakened by exploiting the argument in Ji & Telgarsky (2020). A7 is trivially
true for a homogeneous model where ∥θ̂∥Λmax = ∥θ̂∥ = 1, but not for a quasi-homogeneous model.
In section 5 we will consider what happens when we remove this assumption. We now state our
main theoretical result:
Theorem 4.1 (Quasi-Homogeneous Maximum-Margin). Under assumptions A1 to A7, there exists
an α ∈ R such that ψα(limt→∞ θ̂(t)) is a first-order KKT point5 of the optimization problem:

minimize
1

2
∥θ∥2Λmax

subject to yif(xi; θ) ≥ 1 ∀i ∈ [n]
(P)

Significance. Theorem 4.1 implies that after interpolating the training data, the learning dynamics
of the model are driven by a competition between maximizing the margin in function space and
minimizing the Λmax-seminorm in parameter space. At first glance, this might seem like a straight-
forward generalization of the result discussed in Lyu & Li (2019) for homogeneous networks, but
crucially, whenever Λ is quasi-homogeneous, which is the case for nearly all realistic networks, then
the optimization problems are different, as ∥θ∥Λmax

̸= ∥θ∥. In the quasi-homogeneous setting, the
Λmax-seminorm will only depend on a subset of the parameters, and potentially an unexpected sub-
set, such as just the last layer bias parameters for a standard fully-connected network. In section 5
and 6 we will further discuss the implications of this result.

Intuition. The heart of the argument proving Theorem 4.1 essentially relies on showing that after
all the assumptions are satisfied, then as t → ∞ the Λ-seminorm diverges ∥θ∥Λ → ∞ and the
angle ω converges ω → 0. The convergence of ω implies that the training trajectory converges to
a certain characteristic curve and the divergence of ∥θ∥Λ implies that the trajectory diverges along
this curve away from the origin. In the homogeneous setting the characteristic curves are rays,
implying that as t→ ∞ the velocity dθ

dt aligns in direction to θ. This alignment of the velocity with
θ = ∇ 1

2∥θ∥
2 is the key property allowing previous works to derive 1

2∥θ∥
2 as the objective function

of the implicit optimization problem. However, in the quasi-homogeneous setting, the directions of
the characteristic curves are eventually dominated by the λmax parameters, which is what gives rise
to the asymmetric objective function 1

2∥θ∥
2
Λmax

in our work.

Proof sketch. We defer most of the technical details of the proof of Theorem 4.1 to App. E,
but state the central lemma and the overall logical structure below. As in Lyu & Li (2019),
the key mathematical object of our analysis is a normalized margin. The margin, defined as
qmin(θ) := mini yif(xi; θ), is non-differentiable and unbounded, making it difficult to study.
Thus, we define the normalized margin, γ(θ) := qmin(θ)

∥θ∥λ
−1
max

Λ

, and the smooth normalized margin,

γ̃(θ) := log((nL)−1)

∥θ∥λ
−1
max

Λ

, which is a smooth approximation of γ. We then prove the following key

lemma lower bounding changes in the Λ-seminorm ∥θ∥Λ and the smooth normalized margin γ̃.
This lemma holds throughout training, even before separability is achieved, and we believe could be
of independent interest to understanding the learning dynamics.
Lemma 4.1 (Dynamics of ∥θ∥Λ and γ̃). Under assumptions A1, A2, A3, and A4, the dynamics of
the Λ-seminorm and smooth normalized margin are governed by the following inequalities,

1

2

d

dt
∥θ∥2Λ ≥ L log((nL)−1),

d

dt
log(γ̃) ≥ λ−1

max

d

dt
log(∥θ∥Λ) tan(ω)2, (2)

for all t > 0 for the first inequality, and for almost every t > 0 for the second inequality.

Notice that once the separability assumption is met, the lower bound on the time-derivative of ∥θ∥2Λ
is strictly positive. This allows us to conclude that the Λ-seminorm diverges and the loss converges

5This KKT condition is necessary for the optimality since every feasible point satisfies Mangasarian-
Fromovitz constraint qualification (MFCQ) condition (Lemma A.4).
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L → 0 (Lemma E.2). We then seek to prove the directional convergence of the parameters to
the tangent vector Λθ generating the characteristic curves. We first prove that γ̃ is upper bounded
using the definition of the margin and A7 (Lemma E.3). Combining this upper bound with the
monotonicity of γ̃ proved in Lemma 4.1, we can conclude by a monotone convergence argument
that γ̃ will converge. Taken together, the convergence of γ̃ and the divergence of ∥θ∥2Λ implies
the angle ω → 0 on a specific sequence of time (Lemma E.4). Finally, we use the divergence
∥θ∥Λ → ∞ and the convergence ω → 0 to prove there exists a scaling of the normalized parameters
that converges to a first-order KKT point of the optimization problem P in Theorem 4.1.

Non-uniqueness of Λ. For a quasi-homogeneous function f , the value of Λ, and the λmax parameter
set, is not necessarily unique and therefore one may think Theorem 4.1 looks inconsistent. However,
the conditional separability (A7), which is required to apply Theorem 4.1, removes this possibility.
See App. B for a discussion on how to determine the highest-rate λmax parameter set.

5 QUASI-HOMOGENEOUS MAXIMUM-MARGIN CAN DEGRADE ROBUSTNESS

�B(+ μ, r)

�B(−μ, r)

�w

�l(w)

�l(w)

�{x : ⟨w, x⟩ = 0}

Figure 3: An illustrative ex-
ample. A 2D depiction of
the binary classification task
of learning a linear classi-
fier w to separate two balls
B(±µ, r). The robustness
l(w) is measured by the min-
imum Euclidean distance be-
tween the decision boundary
and the balls.

In section 4 we showed how gradient flow on a quasi-homogeneous
model will implicitly minimize the norm of only the highest-rate
parameters. To explore the implications that this bias has on func-
tion space, we will consider a simple problem where analytic solu-
tions exist. We will analyze the binary classification task of learn-
ing a linear classifier w that separates two balls in Rd. Consider a
dataset that forms two disjoint dense balls B(±µ, r) with centers at
±µ ∈ Rd and radii r ∈ R+. The label yi of a data point xi is deter-
mined by which ball it belongs to, such that yi = 1 if xi ∈ B(µ, r)
and yi = −1 if xi ∈ B(−µ, r). We assume ∥µ∥ = 1 and that r < 1
to ensure linear separability. We measure the quality of a classifier
by its robustness, the minimum Euclidean distance between the de-
cision boundary {x ∈ Rd : ⟨w, x⟩ = 0} and the balls B(±µ, r).
See Fig. 3 for a depiction of the problem setup.

We will consider two parameterizations of a linear classifier, one
that is homogeneous fhom(x; θ) =

∑
i θixi and one that is quasi-

homogeneous fquasi-hom(x; θ) =
∑
i(
∏Di

j=1 θij)xi where Di = 1

for the first m-coordinates and Di > 1 for the last (d − m)-
coordinates. For the quasi-homogeneous model, the parameters as-
sociated with the first m-coordinates are the λmax parameters. Let
P ∈ Rd×d be the projection matrix into the subspace spanned by
the firstm-coordinates, P⊥ = I−P be the one into the last (d−m)-
coordinates, and ρµ := ∥P⊥µ∥ be the norm of µ projected into this
subspace. As long as the radius r > ρµ, then the conditional separability assumption of Theo-
rem 4.1 is satisfied6. Applying Theorem 4.1, we can conclude that for appropriate initializations7,
fhom and fquasi-hom converge to the linear classifiers defined by the following optimization problems
respectively,

min
w∈Rd

∥w∥ s.t. y(x) ⟨w, x⟩ ≥ 1 ∀x ∈ B(±µ, r), (3)

min
w∈Rd

∥Pw∥ s.t. y(x) ⟨w, x⟩ ≥ 1 ∀x ∈ B(±µ, r). (4)

Each of these two optimization problems is convex and has a unique minimizer, which we can derive
exact expressions for by considering the subspace spanned by the vectors Pµ and P⊥µ.

Lemma 5.1. If separability (r < 1) and conditional separability (r > ρµ) hold, then Eq. 3 and Eq.
4 have unique minimizers, whom and wquasi-hom respectively, which satisfy,

whom ∝ µ, wquasi-hom ∝

√
1− r−2ρ2µ
1− ρ2µ

Pµ+ r−1P⊥µ, (5)

6For all w ∈ Rd that separate the two balls B(±µ, r), ∥Pw∥ > 0.
7This problem does not have local minima, but it does have saddle points.
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such that the robustness of these optimal classifiers is

l(whom) = 1− r, l(wquasi-hom) =
√
1− r−2ρ2µ

(√
1− ρ2µ −

√
r2 − ρ2µ

)
. (6)
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Figure 4: Asymmetric maximum-
margin can collapse robustness.
Tracking the elements of a classifier
w and its robustness l(w) for a ho-
mogeneous and quasi-homogeneous
model, trained by gradient flow on the
binary classification problem in R3

for a sweep of radii r. As predicted
by Lemma 5.1, for the homogeneous
model the classifier w ∝ µ and ro-
bustness is linear in r, while for the
quasi-homogeneous model the highest-
rate parameters and the robustness
collapses when r = ρµ = 0.5. The
value of µ = [0.87, 0.43, 0.25] and
Λ = [1, 0.2, 0.1]. See App. I for
experimental details.

From these expressions it is easy to confirm that
l(wquasi-hom) ≤ l(whom) for all ρµ < r < 1. For
a fixed ρµ, the gap in robustness between the homo-
geneous and quasi-homogeneous models increases as
r ↓ ρµ. These expressions demonstrate that the quasi-
homogeneous maximum-margin bias can lead to a so-
lution with vanishing robustness in function space. To
confirm this conclusion, we train fhom and fquasi-hom with
gradient flow and keep track of the classifier w and ro-
bustness l(w) for the two models, while sweeping the ra-
dius from ρµ to 1. As shown in Fig. 4, we see a sharp
drop in the highest-rate parameters (w1) and the robust-
ness of the quasi-homogeneous model as r ↓ ρµ(= 0.5),
while for the homogeneous model, the parameters are sta-
ble and the robustness is linear8 in r, as expected from
Lemma (5.1).

So far we have restricted our analysis to the setting r >
ρµ, such that we can be certain the conditional separa-
bility assumption is met. But what happens to the per-
formance of the quasi-homogeneous model below this
threshold r ≤ ρµ? As shown in Fig. 4, it appears that
the model learns to discard the highest-rate parameters
once they are unnecessary and the maximum-margin bias
continues on the resulting sub-model. In Fig. 4, when
r ≤ 0.5, the second highest-rate parameters (w2) for the
quasi-homogeneous model begins to collapse and the ro-
bustness curve repeats another swell, eventually collaps-
ing again when r = 0.25. Based on this, we conjecture a
stronger version of Theorem 4.1 without the conditional
separability assumption. This conjecture is very similar to
an informal conjecture discussed in Nacson et al. (2019a)
for ensembles of homogeneous models.
Conjecture 5.1 (Cascading Minimization). Under as-
sumptions A1 to A6, there exists a λ̃ ∈ R+ and an α ∈ R
such that ψα(limt→∞ θ̂(t)) is a first-order KKT point of
the optimization problem:

minimize
1

2
∥θ∥2ΛIλ̃

subject to yif(xi; θ) ≥ 1 ∀i ∈ [n]

θl = 0 ∀λl > λ̃,

where Iλ̃ is a diagonal matrix whose entry (Iλ̃)ii is 1 if λi = λ̃ and 0 otherwise.

As shown in Fig. 4, we find evidence of a cascading minimization of the first and then second
highest-rate parameters as the radius drops below the respective thresholds that make these parame-
ters necessary.

6 A MECHANISM BEHIND NEURAL COLLAPSE

In this section, we move away from linear models and consider the implications the quasi-
homogeneous maximum-margin bias has in the setting of highly-expressive neural networks used

8If we consider higher-order homogeneous models, such as a deep linear network, then the resulting maxi-
mum margin bias would prefer sparse solutions, which could erode the robustness.
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in practice. We identify that for sufficiently expressive neural networks with normalization layers,
the asymmetric norm minimization drives the network to Neural Collapse, an intriguing empirical
phenomenon of the last layer parameters and features recently reported by Papyan et al. (2020).
In their paper, they demonstrate that the following four properties can be universally observed in
the learning trajectories of deep neural networks once the training error converges to zero: (1) The
last-hidden-layer feature vector converges to a single point for all the training data with the same
class label. (2) The convex hull of the convergent feature vectors forms a regular (C − 1)-simplex9

centered at the origin, where C is the number of possible class labels. (3) The last-layer weight
vector for each class label converges to the corresponding feature vector up to re-scaling. (4) For a
new input, the neural network classifies it as the class whose convergent feature vector is closest to
the feature vector of the given input.

A considerable amount of effort has been made to theoretically understand this mysterious phe-
nomenon. Han et al. (2021); Poggio & Liao (2019); Mixon et al. (2022); Rangamani & Banburski-
Fahey (2022) studied Neural Collapse in the setting of mean-squared loss and Fang et al. (2021);
Tirer & Bruna (2022); Weinan & Wojtowytsch (2022); Zhu et al. (2021); Ji et al. (2021) introduced
toy models to explain Neural Collapse in the setting of cross-entropy loss. These toy models are
optimization problems over the last-hidden-layer feature vectors and the last-layer parameters, but
not including parameters in the earlier layers. Many of these works introduced unjustified explicit
regularizations or constraints on the feature vectors in their model. A recent work, Ji et al. (2021),
showed how gradient dynamics on the space of the last-hidden-layer feature vectors and last-layer
weights, without any explicit regularization, would lead to Neural Collapse as a result of the implicit
maximum-margin bias. However, the real gradient dynamics of neural networks happen in the space
of all parameters of the model, and hence it is not clear how an implicit bias that leads the model to
Neural Collapse, can be induced by the parameter gradient dynamics.

In this section, we show that the parameter gradient dynamics of any present-day neural networks
can universally show Neural Collapse as long as they are sufficiently expressive, apply normalization
to the last hidden layer, and are trained with the cross-entropy loss. Our theoretical analysis is based
on the regularization by normalization and the quasi-homogeneous maximum-margin bias. Note
that in Papyan et al. (2020), all the neural networks showing Neural Collapse are trained with the
cross-entropy loss and have normalization.

Specifically, we consider the C-class classification model fc(x) = wTc h(x, θ
′) + bc where the last

layer weights wc ∈ Rd and bias bc for c ∈ [C] and the last-layer feature h(x, θ′) ∈ Rd. The feature
vector h(x, θ′) is obtained with layer normalization10, and therefore it satisfies

d∑
j=1

hj(xi, θ
′) = 0,

d∑
j=1

h2j (xi, θ
′) = 1 ∀i ∈ [n], (7)

where {(xi, yi)}i∈[n] is the training data. This model is quasi-homogeneous with λ = 1 for the wc
and bc, and λ = 0 for parameters in the earlier layers θ′. Thanks to this quasi-homogeneity, our
result for multi-class classification tasks (see App. H) reveals that the rescaled parameters converge
to a first-order KKT point of the following optimization problem:

min
(w,b,θ′)

∑
c∈[C]

|wc|2 + |b|2 s.t. min
i∈[n]

[
(wyi)

Th(xi, θ
′) + byi −max

c ̸=yi

[
(wc)

Th(xi, θ
′) + bc

]]
≥ 1. (8)

We further make the following assumptions on expressivity and data distribution:

• A8 (Sufficient Expressivity). For any {(x′i, h′i)}i∈[n] satisfying
∑
j(h

′
i)j = 0 and∑

j(h
′
i)

2
j = 1 ∀i ∈ [n], there exists θ′ satisfying h(x′i, θ

′) = h′i for any i ∈ [n].
• A9 (Existence of All Labels). For each class c ∈ [C], there exists at least one data point in
{(xi, yi)}i∈[n] whose label yi belongs to c.

The first assumption is to eliminate the possibility that any parameter configuration θ′ cannot realize
Neural Collapse. Under these assumptions, the global minimum satisfies Neural Collapse:

9A regular (C − 1)-simplex is the convex hull of C points where the distance between any pair is the same.
Papyan et al. (2020) refer to this simplex centered at the origin as a general simplex Equiangular Tight Frame.

10Here we use layer normalization, but similar theorems would hold for other normalization schemes, such
as batch normalization.
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Theorem 6.1 (Neural Collapse, short version). Under assumptions A8, A9, and d ≥ C, any global
optimum of Eq.8 satisfies the four properties of Neural Collapse.

�Eq.14

Figure 5: Geometric intuition. An il-
lustration of Eq. 9. The black circle rep-
resents the origin, the solid lines repre-
sent the class vectors wc, and the dot-
ted lines represent the distance Lc. In-
tuitively, minimizing the lengths of the
solid lines while maintaining a mini-
mum length of the dotted lines will re-
sult in a regular simplex centered at the
origin.

Note that we do not exclude the possibility that Eq.8 has
saddles or local minima. Therefore, depending on the ini-
tialization of the learning dynamics, it may end up with
those sub-optimal first-order KKT points, which may not
show Neural Collapse.

Essentially, the proof of Theorem 6.1 relies on first re-
laxing Eq. 8 to the optimization problem

min
(w)

∑
c

|wc|2 s.t. min
c∈[C]

Lc ≥ 1, (9)

whereLc is the minimum distance fromwc to the (C−2)-
simplex formed by the convex hull of {wc′}c′∈[C]/{c}.
With accordance to our geometric intuition, the mini-
mizer of this optimization problem is a regular (C − 1)-
simplex. See Fig. 5 for a visual depiction of this relaxed
optimization problem and App. G for the details of the
proof.

7 CONCLUSION

In this work, we extend and generalize a long line of literature studying the maximum-margin bias
of gradient descent to quasi-homogeneous networks. We show that after reaching a point of sep-
arability, the gradient flow dynamics are driven by a competition between maximizing the margin
in function space and minimizing the Λmax-seminorm in parameter space. We demonstrate, with a
simple linear example, how this strong favoritism for the highest-rate parameters can degrade the ro-
bustness of quasi-homogeneous models and conjecture that this process, when possible, will reduce
the model to a sparser parameterization. Additionally, by applying our theorem to sufficiently ex-
pressive neural networks with normalization layers, we reveal a universal mechanism behind Neural
Collapse. Here we propose some future directions for this work.

Discretization effect. In this work, we only considered gradient flow, but generalizing the theo-
retical results to (stochastic) gradient descent is an important future step. In particular, it is well
understood that the discretization effect introduced by a finite learning rate has empirically measur-
able effects for parameters that are scale-invariant, such as those before normalization layers. While
gradient flow would predict the norm of these parameters to be constant through training, gradient
descent predicts that they monotonically diverge, as demonstrated by Kunin et al. (2020). Thus,
extending our results to the setting of gradient descent could reshape Theorem 4.1.

Optimality of convergence points. We are only able to guarantee by Theorem 4.1 that the learning
dynamics will converge to a first-order KKT point of the constrained optimization problem, but not
whether this point is locally or globally optimal. Better understanding the landscape of this opti-
mization problem and determining when stronger statements can be made is a promising direction
for future work. Works such as Chizat & Bach (2020); Ji & Telgarsky (2020); Vardi et al. (2021);
Lyu et al. (2021) have made progress in this direction for simple homogeneous networks and could
provide a strategy for investigating more complex quasi-homogeneous models.

Influence of initialization. A major limitation of analyzing the maximum-margin bias of gradient
flow is that the dynamics in this terminal phase of training are slow to converge or only become
evident at extremely unpractical training loss levels. Motivated by this limitation, Woodworth et al.
(2020) and Moroshko et al. (2020) studied the gradient flow trajectories for diagonal linear networks
and showed that there is a transition from a “kernel” regime to a “rich” regime controlled by the scale
of the initialization and the final training loss level. Extending this analysis to quasi-homogeneous
networks would be a valuable future direction.

Impact on performance. An important takeaway from our work is that the maximum-margin bias
can actually degrade the performance of a quasi-homogeneous model. The benefit depends on the
parameterization of a model and its relationship to the geometry of the data. Better understanding
this interaction could be essential for diagnosing performance gaps of modern neural networks and
provide a route towards designing robust architectures.
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A MORE DETAILS ON QUASI-HOMOGENEOUS MODELS

Λ-normalization. Here we provide more details on Λ-normalization as discussed in section 3. The
Λ-normalized parameters θ̂ are given by

θ̂ =
(
e−τλ1θ1, . . . , e

−τλmθm
)

s.t. ∥θ̂∥2Λ = 1

The value of τ is implicitly defined through the constraint ∥θ̂∥2Λ = 1. Only in a select number of
cases does an explicit expression for τ exist. For example, in the homogeneous setting when Λ = I ,
τ = log(∥θ∥) and θ̂ = θ

∥θ∥ , as would be expected.

Lemma A.1. For all θ ∈ Rm such that ∥θ∥Λ > 0, the Λ-normalized parameters θ̂ are unique.

Proof. Proving uniqueness of θ̂ is equivalent to proving uniqueness of τ . For a given θ and Λ, then
τ = log(1/

√
z) where z is the positive root of the polynomial

∑
i λiθ

2
i z
λi −1 = 0. The coefficients

λiθ
2
i ≥ 0 are non-negative, and because ∥θ∥Λ > 0, we know there exists at least one positive

coefficient λiθ2i > 0. Thus, there is exactly one sign change in the coefficients of this polynomial,
which by Descartes’ rule of signs, implies the polynomial has exactly one positive root, and thus τ
is unique.

Locally Lipschitz Quasi-homogeneous models. To apply our analysis and Theorem 4.1 to many
deep neural network settings including those with non-smooth ReLU activations, we here consider
quasi-homogeneous functions with local Lipschitz property. For such functions f(θ) : Rd → R,
Clarke’s subdifferential ∂◦θ is defined as follows Clarke et al. (2008).
Definition A.1 (Clarke’s subdifferential).

∂◦θf(θ) := conv

{
lim
k→∞

∇θf (θk) : lim
k→∞

θk = θ, f is differentiable at θk

}
. (10)

Similar to Theorem B.2 in Lyu & Li (2019), we can show that ∂◦θf(θ) satisfies a scaling property
and a version of Euler’s theorem.
Lemma A.2. Let f(θ) : Rd → R be locally Lipschitz and Λ-quasi-homogeneous. ∂◦θf satisfies the
following scaling property:

∂◦θf(ψα(θ)) =
{
eα(I−Λ)h : h ∈ ∂◦θf(θ)

}
(11)

for any α > 0 and θ ∈ Rd.

Proof. For any sequence {θk}k∈N on which f is differentiable and converging to θ, {ψα(θk)}k∈N
converges to ψα(θ) and f is differentiable on this new sequence, whose derivative is given by

∇θf(ψα(θk)) = eα
∂(e−αf(θ))

∂θ

∣∣∣∣
ψα(θk)

= eα
∂f(e−αΛθ)

∂θ

∣∣∣∣
ψα(θk)

= eα(I−Λ) ∂f(e
−αΛθ)

∂e−αΛθ

∣∣∣∣
ψα(θk)

,

where the last expression is equivalent to eα(I−Λ)∇θf(θk). Conversely, for any sequence
{ψα(θk)}k∈N on which f is differentiable and converging to ψα(θ), {θk}k∈N converges to θ and
f is differentiable on it as well, with the above scaling property. Hence,{

lim
k→∞

∇θf (θk) : lim
k→∞

θk = ψα(θ), f is differentiable at θk

}
=

{
eα(I−Λ) lim

k→∞
∇θf (θk) : lim

k→∞
θk = θ, f is differentiable at θk

}
.

Thus taking the convex hulls of both sets, and by the commutativity between conv and the linear
operation eα(I−Λ), we conclude that Eq.11 holds.

By further assuming that f(θ) admits a chain rule (See Davis et al. (2020) or Lyu & Li (2019)
for its definition), we can show that f satisfies a version of Euler’s theorem, similar to the case of
homogeneous functions.
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Lemma A.3. If f(θ) : Rd → R is locally Lipschitz admitting a chain rule and Λ-quasi-
homogeneous, then it satisfies a version of Euler’s theorem, i.e., for all θ ∈ Rd,

⟨h,Λθ⟩ = f(θ) for any h ∈ ∂◦θf(θ). (12)

Proof. Since f admits a chain rule, there exists α > 0 such that f(eαΛθ) is differentiable with
respect to α and

d

dα
f(eαΛθ) =

〈
g,
deαΛθ

dα

〉
=
〈
g, eαΛΛθ

〉
,

for any g ∈ ∂◦θf(e
αΛθ). Therefore

f(θ) = e−α
d

dα
(eαf(θ)) = e−α

d

dα
f(eαΛθ) =

〈
e−α(I−Λ)g,Λθ

〉
.

By Lemma A.2, for any h ∈ ∂◦θf(θ), we can find g ∈ ∂◦θf(e
αΛθ), such that

⟨h,Λθ⟩ =
〈
e−α(I−Λ)g,Λθ

〉
= f(θ).

The properties above immediately implies that any feasible point of optimization problem (P) sat-
isfies Mangasarian-Fromovitz constraint qualification (MFCQ) condition, which implies the first-
order KKT condition is necessary for the optimality.
Lemma A.4. Any feasible point θ of optimization problem (P) satisfies Mangasarian-Fromovitz
constraint qualification (MFCQ) condition, i.e., there exists v ∈ Rd such that for all i ∈ [n] with
yif(xi, θ) = 1,

⟨v, h⟩ > 0 for any h ∈ ∂◦θ (yif(xi, θ)− 1).

Proof. Notice that for any h ∈ ∂◦θ (yif(xi, θ)− 1), there exists h′ ∈ ∂◦θf(xi, θ) such that ⟨Λθ, h⟩ =
yi⟨Λθ, h′⟩. Hence, choosing v = Λθ, by Lemma A.3,

⟨Λθ, h⟩ = yi⟨Λθ, h′⟩ = yif(xi, θ) = 1 > 0.

Ensembles of homogeneous models. In Nacson et al. (2019a), they considered the maximum-
margin bias of gradient descent for non-homogeneous models that can be expressed as finite sums
of positive-homogeneous models of different orders. In particular, for some K ∈ N, they consider
functions f(x; θ) that can be expressed as

f(x; θ) =

K∑
k=1

f (k)(x; θk), (13)

where θ = [θ1, . . . , θK ] and f (k)(x; θk) is αk-positive homogeneous such that 0 < α1 < · · · < αK .
While this class of models is not homogeneous because of the varying orders of the sub-models, it
is quasi-homogeneous. If we choose Λ such that for all parameters in θk the value of λ = α−1

k ,
then f(x; θ) is Λ-Quasi-Homogeneous. Therefore, the theoretical results discussed in this work
should align with the results discussed in Nacson et al. (2019b) for the setting of ensembles of
positive-homogeneous models. Indeed Theorem 4.1 and Conjecture 5.1 agree with analysis stated
in their work that “an ensemble on neural networks will aim to discard the shallowest network in the
ensemble”, which is the sub-model with the highest-rate parameters.

While all ensembles of positive-homogeneous models are quasi-homogeneous, not all quasi-
homogeneous models are ensembles. Here we provide a short list of quasi-homogeneous models
that cannot be written in the form of Eq. 13.

Deep fully connected network with biases. Consider again the two-layer fully connected network
with biases discussed in section 3,

f(x; θ) = w2σ

(∑
i

w1
i xi + b1

)
+ b2.
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If we arrange terms such that f (1)(x; b2) = b2 and f (2)(x;w1, b1, w2) = w2σ
(∑

i w
1
i xi + b1

)
, then

we can express f(x; θ) = f (1)(x; b2) + f (2)(x;w1, b1, w2), which is an ensemble of two positive-
homogeneous models with α1 = 1 and α2 = 2. However, notice that if we consider a third layer
with parameters w3 and b3, then this decoupling of the network is not possible unless some of the
sub-models share parameters, preventing us from expressing f(x; θ) in the form of Eq. 13. All fully
connected networks with biases, and a depth greater than two, are quasi-homogeneous models, but
not an ensemble of positive-homogeneous models.

Networks with degenerate Λ. As presented earlier, for quasi-homogeneous networks with residual
connections or normalization layers, we can choose Λ to have zero values. Thus, even if these
networks could be decoupled into a sum of sub-models that don’t share parameters, the sub-models
associated with the zero λ parameters would not be positive-homogeneous.

In summary, the results presented in this work coincide with the results presented in Nacson et al.
(2019a) for ensembles of positive-homogeneous models, but also apply to a far more general class
of non-homogeneous models.
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B THE CONSISTENCY OF THEOREM 4.1 AND THE PROPER CHOICE OF Λ

As briefly discussed in section 4, for a quasi-homogeneous function f , the value of Λ, and the λmax

parameter set, is not necessarily unique and therefore one may think Theorem 4.1 looks inconsistent.
However, the conditional separability (A7), which is required to apply Theorem 4.1, removes this
possibility. Here we provide some insightful examples and then provide a complete proof.

Examples of quasi-homogeneous models with non-unique Λ. We here clarify through examples
how our theorem can be consistent with cases where the model f(θ) is quasi-homogeneous with
multiple choice of Λ due to additional symmetry.

A linear model with two parameters. We consider the following model,
f(x; θ1, θ2) = θ1θ

2
2x.

This is quasi-homogeneous with (λ1, λ2) = (1−2ξ, ξ) for any ξ ∈ [0, 1/2]. There are three possible
sets of parameters with largest λ value:

• If ξ > 1/3, θ1 has the largest λ value.
• If ξ < 1/3, θ2 has the largest λ value.
• If ξ = 1/3, θ1 and θ2 have the same λ value.

If one naively applies the theorem to these cases, they might think that the learning process converges
to a separable solution minimizing θ21 for the first case, θ22 for the second case, and θ21 + θ22 for
the latter case, which is inconsistent. However, the first two cases do not satisfy the conditional
separability assumption. This is because we can make |θ1| or |θ2| as small as possible while fixing
the function itself. Therefore the correct choice of λ should be (λ1, λ2) = (1/3, 1/3).

Two-layer quadratic activation with biases. For the sake of simplicity, we assume that all the layer
widths are one, i.e., the model is given by four scalar parameters as follows:

f(x; θ) = θ3 (θ1x+ θ2)
2
+ θ4.

We can easily generalized our argument to wider networks. This model is quasi-homogeneous with
the following choices of λ:

(λ1, λ2, λ3, λ4) = (ξ, ξ, 1− 2ξ, 1) for any ξ ∈ [0, 1/2].

Again, there are three possibilities.

• If ξ = 0, θ3, θ4 have the largest λ value.
• If ξ ∈ (0, 1/2), θ4 has the largest λ value.
• If ξ = 1/2, θ1, θ2, θ4 have the largest λ value.

All of the cases can satisfy the conditional separability condition. For the first case, our theorem tells
that the gradient dynamics minimizes θ23 + θ24 . However, by making θ1 and θ2 large, we can make
θ3 arbitrary small without changing the output, and hence, it is equivalent to minimizing θ24 alone.
This argument also holds for the third case. Thus, for all three cases θ24 is the objective function for
the minimization.

A neural network with normalization. We consider the following model,

f(x; θ) =
∑
c∈[C]

wTc Fnorm(h(θ
′, x)) + b,

where wc ∈ Rd, b ∈ RC are the weight and bias on the last layer, θ′ is the set of parameters in the
earlier layers, and h(θ′, x) ∈ Rd is the feature vector on the last hidden layer, which we assume
is homogeneous11, i.e., eαh(θ′;x) = h(eαλ

′
θ′;x) for any α ∈ R with a certain λ′ > 0. Fnorm(·)

is a normalizer of the feature vector h(θ′;x) so that the normalized feature vector Fnorm(h(θ
′;x))

is invariant under scaling transformation of θ′, i.e., h(θ′;x) = h(eαλ
′
θ′;x) for any α ∈ R. In

this setting, possible choices of λ values are 1 for the last layer parameters and ξ for parameter θ′i
where ξ is an arbitrary non-negative number. Thus there are at least following three possible sets of
parameters with largest λ.

11Our discussion here works with quasi-homogeneity, but we assume homogeneity here for simplicity.
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• If ξ > 1, the parameters θ′ in the earlier layers have the largest λ.

• If ξ = 1, all the parameter have the same value of λ.

• If ξ < 1, the last-layer weights and biases have the largest λ.

In the first case, by the scale invariance of h(θ′;x), we can make ∥θ′∥ as small as possible while
not changing f(θ, x), which implies that it does not satisfy the conditional separability condition.
On the other hand, in the second case, it satisfies the conditional separability, since there need to
be non-zero last-layer weights or bias to correctly classify data points. By applying the theorem,
we can conclude that the learning process converges to a minimizer of

∑
c ∥wc∥2 + ∥b∥2 + ∥θ′∥2.

However, we can minimize ∥θ′∥ as much as we want, while fixing f(θ;x), and hence it is equivalent
to minimizing

∑
c ∥wc∥2 + ∥b∥2. In the third case, we can apply the theorem as well, which means

that the learning process converges to a minimizer of sum of
∑
c ∥wc∥2 + ∥b∥2.

In summary, while the choice of Λ is not necessarily unique because of intrinsic symmetries in the
parameterization of the model, the set of highest-rate parameters is well defined by the constraints
imposed by the conditional separability assumption. This makes Theorem 4.1 well defined.

A complete proof of uniqueness of the resulting optimization problem As we discussed above
going through three examples, we can identify which λwe should choose, or which λmax parameters
we should choose, solely by analyzing the model, independent of the data set. In this section,
we generalize the previous discussions on examples and prove that the resulting first-order KKT
condition derived from Theorem 4.1 is unique, even if the model itself is quasi-homogeneous with
multiple choices of scaling parameters Λ. Note that the following argument is independent of the
data and properties derived here in this section is solely the properties of the architecture of the
model itself.

In the following argument, to simplify our proof, we assume f(s; θ) is differentiable with respect to
θ, in addition to its continuity. Let S ⊂ Rd be the set of {λi}i∈[d] with which the model satisfies the
quasi-homogeneity, i.e.,

S := {λ ∈ Rd≥0 : f(x; θ) is λ-quasihomogeneous}.

Definition B.1. λ ∈ S is called proper if there exists a separable data set {(xi, yi)}i∈[n] with which
the model satisfies A7 and f(x; θ) is bounded in {θ ∈ Rd : ∥θ∥Λmax

= 1}.

Definition B.2. Let λ1, λ2 ∈ S be proper. We say they are equivalent in terms of first-order KKT
conditions, if for any data set {(xi, yi)}i∈[n], the sets of first-order KKT points for the following two
optimization problems

minimize
1

2
∥θ∥2Λk

max

subject to yif(xi; θ) ≥ 1 ∀i ∈ [n]
(14)

are equivalent with k = 1, 2.

We are going to prove the following theorem in this section.
Theorem B.1. All proper points in S are equivalent in terms of their first-order KKT conditions.

Before going to the proof of this theorem, we prove several lemmas for preparation.
Lemma B.1. S is convex.

Proof. Let λ1, λ2 ∈ S. It suffices to show that for any α ∈ [0, 1], αλ1 + (1 − α)λ2 ∈ S. By the
quasi-homogeneity of f(x; θ) with respect to λ1 and λ2, for any β ∈ R,

f(x; eβ(αλ
1+(1−α)λ2)θ) = eβ−αβf(x; eαβλ

1

θ) = eβf(x; θ).

Hence, f(x; θ) is αλ1 + (1− α)λ2-quasihomogeneous, i.e., αλ1 + (1− α)λ2 ∈ S.

Consider a non-empty line segment in S

L := {y ∈ Rd≥0 : y = ζt+ λ0 with some t ∈ R} ⊂ S, (15)
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where ζ, λ0 ∈ Rd. This set is connected since S is convex. Moreover, it has at least a single end
point, because L ∈ Rd≥0. Hence, without loss of generality, we can assume that λ0 is the end point
and t takes non-negative values. We define a set of indexes I ⊂ [d] by

I :=
{
i ∈ [d] : λ0i = 0,∃λ ∈ L, λi > 0

}
.

Furthermore, for λ ∈ S, we define Mλ by

Mλ := {i ∈ [d] : λi = max
j∈[d]

λj}.

Lemma B.2. I is non-empty, if L contains at least two different points.

Proof. Suppose I is empty. In the following, we will show that there exists t < 0 such that y(t) =
ζt + λ0 ∈ S. Since this contradicts with the fact that λ0 is an end point of L, we conclude I is
non-empty.

Since L contains at least two different points, there exists t1 > 0 such that λ1 := y(t1) ∈ L. By
quasi-homogeneity of the model with respect to λ0 and λ1, for any α, t ∈ R,

f(x; eαy(t)θ) = f(x; eα(
t
t1

(λ1−λ0)+λ0)θ) = f(x; eα
t
t1
λ1

eα
t1−t

t1
λ0

θ)

= eα
t
t1 eα

t1−t

t1 f(x; θ) = eαf(x; θ). (16)

Since we assume I is empty, for any i ∈ [d] such that ζi ̸= 0, λ0i > 0. By the continuity of y(t)
with respect to t, this means that there exists an open neighborhood of t = 0 where yi(t) > 0 for
any i ∈ [d] such that ζi ̸= 0. For the other indexes, i.e. i ∈ [d] such that ζi = 0, clearly yi(t) ≥ 0
in the open neighborhood. Therefore, in the neighborhood, yi(t) ≥ 0 for all i ∈ [d]. In particular,
there exists t < 0 such that y(t)i ≥ 0 for any i ∈ [d]. Combining this fact with Eq.16, we conclude
that there exists t < 0 such that y(t) ∈ S. By contradiction, I is non-empty.

Lemma B.3. For any proper element λ∗ ∈ L/{λ0},

Mλ∗ ∩ I ̸= ∅, (17)

and hence
max
i∈[d]

λ∗i = t∗ max
i∈I

ζi. (18)

Proof. Since λ∗ is proper, there exists a data set with which the model satisfies the conditional
separability, i.e., there exists κ > 0 such that all the parameter values {θi}i∈[d] which separate
the data satisfies ∥θ∥Λ∗

max
> κ. Let {θ∗i }i∈[d] be a parameter values separating the data. By the

continuity of the model, without loss of generality, we can assume that θ∗i ̸= 0 for any i ∈ [d].

In the following, we show Mλ∗ ∩ I ̸= ∅ by contradiction. Suppose Mλ∗ ∩ I = ∅. We derive the
contradiction by showing that there exists a parameter value θ′ which correctly separates the data,
but breaks the conditional separability condition with λ∗. This clearly contradicts with the fact that
λ∗ is proper.

We consider the following transformation

θ∗ → e−αy(0)θ∗,

with some α > 0. This transformation does not change {θ∗i }i∈I , but other parameters are scaled
down to θ∗i → e−αλ

0
i θ∗i . Then

∑
i∈[d]/I λ

∗
i (e

−αλ0
i θ∗i )

2 can be arbitrarily small by taking α → ∞.
(Notice that here we exploited the fact that if λ0i = 0, λ∗i = 0 for any i ∈ [d]/I .) On the other hand,
since λ∗i > 0 and |θ∗i | > 0 for any i ∈ I ,

∥e−αy(0)θ∗∥Λ∗ =
∑
i∈[d]

λ∗i (e
−αy(0)θ∗)2 ≥

∑
i∈I

λ∗i (e
−αy(0)θ∗)2

is lower bounded by a positive constant. (Here we exploit the fact that I is non-empty by
Lemma B.2.) Hence by further transforming the parameter

e−αy(0)θ∗ → θ′ := e−βΛ
∗
e−αy(0)θ∗,
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with a proper choice of β > 0, we can normalize the Λ∗-seminorm ∥θ′∥Λ∗ = 1 while keeping∑
i∈[d]/I λ

∗
i (θ

′
i)

2 arbitrarily small. In particular, it is smaller than κ with large enough α > 0. By
assumption, we know [d]/I ⊃ argmaxi∈[d] λ

∗
i , and hence,

∥θ′∥2Λ∗
max

≤
∑

i∈[d]/I

λ∗i (θ
′
i)

2 < κ.

By the quasi-homogeneity of the model, the model classifies the data set correctly even with this
transformed parameter θ′. However, this means that it breaks the conditional separability condition,
which contradicts with the fact that λ∗ is proper. Therefore, Mλ∗ ∩ I ̸= ∅.

Lastly maxi∈[d] λ
∗
i = t∗ maxi∈I ζi can be derived as follows:

max
i∈[d]

λ∗i = max
i∈I

λ∗i = t∗ max
i∈I

ζi.

Lemma B.4. For any proper element λ∗ ∈ L/{λ0},

Mλ∗ ∩ ([d]/I) ̸= ∅.

Proof. Suppose Mλ∗ ∩ ([d]/I) = ∅, i.e., Mλ∗ ⊂ I . Let {θ∗i }i∈[d] be a parameter values separating
the data. Notice that there exists i ∈ [d]/I such that λ0i ̸= 0 and θ∗i ̸= 0. Otherwise,

ef(x; θ∗) = f(x; ey(t
∗)θ∗) = f(x; e2y(t

∗/2)θ∗) = e2f(x; θ∗),

which is a contradiction. We denote such an index by j. We consider the following transformation

θ∗ → θ′ := e−βy(t
∗)eαy(0)θ∗,

for some α > 0. β > 0 here is chosen to satisfy ∥θ′∥Λ∗
max

= 1. By the quasi-homogeneity of the
model, the model still correctly classifies the data with this transformed parameters. By taking α
arbitrarily large, (eαy(0)θ∗)j = eαλ

0
j θ∗j becomes arbitrarily large, and thus β needs to be arbitrarily

large to renormalize the Λ∗-seminorm. Therefore for any i ∈ I , θ′i = e−βζiθ∗i can be arbitrarily
small. Therefore, we can find a large enough α such that

∥θ′∥2Λ∗
max

=
∑

i∈argminλ∗
i

λ∗i (θ
∗
i )

2 ≤
∑
i∈I

λ∗i (θ
∗
i )

2 < κ

This contradicts with the fact that λ∗ is proper. Therefore, Mλ∗ ∩ ([d]/I) ̸= ∅.

Lemma B.5. If there exists a proper λ ∈ IntS, it is unique, where IntS is the interior of S.

Proof. Suppose there exists two different proper point λ1, λ2 ∈ IntS. In the following argument,
we will show that λ1 = λ2, which is a contradiction. We consider a line including the two points λ1
and λ2. Without loss of generality it can be represented as

L := {y ∈ Rd≥0 : y = ζt+ λ0 with some t ≥ 0}, (19)

where ζ = λ2 − λ1 and λ0 is an end point of this line. Let λ∗ = y(t∗) be a proper point in the
interior of the line. λ∗ can be either λ1 or λ2. In the following, we will derive an explicit formula
which uniquely determines t∗, implying λ1 = λ2. By applying Lemma B.3, we obtain

max
i∈[d]

λ∗i = t∗ max
i∈I

ζi.

Suppose the line has the other end point t = tmax > 0. We can apply Lemma B.3 again with this
other end point, and we can derive the corresponding equality

λ∗max = (tmax − t∗)max
i∈J

ζi,

where J ⊂ [d] is given by

J := {j ∈ [d] : y(tmax)j = 0,∃λ ∈ L, λj > 0} .
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By comparing these two equality, we obtain

t∗ =
maxi∈J ζi

maxi∈J ζi +maxi∈I ζi
tmax.

This uniquely determines t∗ and hence λ1 = λ2.

Next, we consider the other case where L does not have end point other than λ0. Notice that

max
i∈I

ζi > max
i∈[d]/I

ζi. (20)

This is due to the following reason: Suppose there exists j ∈ [d]/I such that ζj ≥ maxi∈I ζi.
Since ζj > 0, j ̸∈ I implies that λ0j > 0. Hence, y(t∗)j = t∗ζj + λ0j > λ∗max, which is clearly a
contradiction.

The inequality Eq.20 means that for any j ∈ [d]/I ,

{t ≥ 0 : max
i∈I

y(t)i > y(t)j} = [t′j ,∞)

with some t′j ≥ 0. Hence

t∗ ∈ {t ≥ 0 : max
i∈I

y(t)i = max
i∈[d]

y(t)i} = ∩j∈[d]/J{t ≥ 0 : y(t)J > y(t)j} = [t′,∞),

where t′ = maxj∈[d]/I t
′
j .

In the region (t′,∞), argmaxi∈[d] y(t)i ⊂ I , and hence by Lemma B.4, t∗ ̸∈ (t′,∞). Hence t∗ = t′.
The uniqueness of t′ implies that λ1 = λ2.

The argument above shows that in any case λ1 = λ2, which contradicts with the assumption that
they are different. Therefore, the claim follows.

Lemma B.6. For any proper element λ∗ ∈ S and any λ ∈ S,

min
i∈Mλ∗

(λi − λ∗i ) ≤ 0, max
i∈Mλ∗

(λi − λ∗i ) ≥ 0.

Proof. we show this by contradiction. Suppose there exist λ, λ∗ ∈ S such that mini∈Mλ∗ (λi−λ∗i ) >
0 or maxi∈Mλ∗ (λi−λ∗i ) < 0. Let θ∗ be parameter values with which the model can separate a data
set. We consider a transformation θ → eαy(t)θ with

y(t) = t(λ∗ − λ) + λ

with some α, t ∈ R. By quasihomogeneity of the model with respect to λ and λ∗, we know that
f(x; eαy(t)θ) = eαf(x; θ). By assumption, there exists t ∈ R such that yi(t) ≤ 0 for any i ∈
Mλ∗ . This implies that {f(x; eαy(t)θ) : ∥eαy(t)θ∥Λ∗

max
≤ ∥θ∥Λ∗

max
, α, t ∈ R} is unbounded, which

contradicts with our assumption. Hence, the claim follows.

Lemma B.7. Let λ1, λ2 ∈ S be proper. If the following two conditions are met, λ1 and λ2 are
equivalent in terms of the first-order KKT condition.{

Either mini∈M
λk
(λ1i − λ2i ) = 0 or maxi∈M

λk
(λ1i − λ2i ) = 0 holds for both k = 1, 2

{i ∈Mλ1 : λ1i = λ2i } = {i ∈Mλ2 : λ1i = λ2i }

Proof. Let L = {i ∈ Mλ1 : λ1i = λ2i }(= {i ∈ Mλ2 : λ1i = λ2i }). It suffices to show that set of the
first-order KKT points of the following problem

minimize
1

2
∥θ∥2Λk

max

subject to yif(xi; θ) ≥ 1 ∀i ∈ [n]
(21)
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is equivalent to the set of the first-order KKT points of the following problem

minimize
1

2

∑
i∈L

λkmaxθ
2
i

subject to yif(xi; θ) ≥ 1 ∀i ∈ [n]

θi = 0 ∀i ∈ (Mλ1 ∪Mλ2)/L.

(22)

for any data set {(xi, yi)}i∈[n] for k = 1, 2. Since the second optimization problem is clearly a
restriction of the first optimization problem with some additional constraints, it suffices to show that
any first-order KKT point of the first problem satisfies the constraint θi = 0 for any i ∈ (Mλ1 ∪
Mλ2)/L.

To prove this statement, first we show that for k = 1, 2, and any θ ∈ Rd, a one-parameter family of
parameter values {Θ(α) := e−α(Λ

1−Λ2)θ : α ∈ R} satisfies

• d
dαf(x; Θ(α)) = 0

• If d
dα

∣∣
α=0

∥Θ(α)∥Λk
max

= 0, θi = 0 for any i ∈Mλk/L.

The first point can be easily seen by the quasi-homogeneity of the model with respect to λ1 and λ2.
Indeed, for any α ∈ R,

f(x; Θ(α)) = f(x; e−αΛ
1

eαΛ
2

θ) = e−αf(x; eαΛ
2

θ) = f(x; θ).

Regarding the second point, first notice that for any i ∈ L, Θi(α) = θi for any α ∈ Rd and hence

d

dα

∣∣∣∣
α=0

∥Θ(α)∥Λk
max

= λkmax

d

dα

∣∣∣∣
α=0

∑
i∈M

λk/L

Θ2
i (α).

If mini∈Mλ1 (λ
1
i − λ2i ) = 0, λ1i − λ2i < 0 for any i ∈ Mλk/L, and thus, unless θi = 0 for any

i ∈Mλk/L,
d

dα

∣∣∣∣
α=0

∑
i∈M

λk/L

Θ2
i (α) = −

∑
i∈M

λk/L

α(λ1i − λ2i )θ
2
i > 0

.

On the other hand, if maxi∈Mλ1 (λ
1
i − λ2i ) = 0, λ1i − λ2i > 0 for any i ∈ Mλk/L, and thus, unless

θi = 0 for any i ∈Mλk/L,
d

dα

∣∣∣∣
α=0

∑
i∈M

λk/L

Θ2
i (α) < 0.

Therefore, in either case, the second claim holds.

Let θ be a first-order KKT point of Eq.21 with a KKT multiplier µ ∈ Rn. The stationary condition
along the one-parameter family Θ(α) is

d

dα

∣∣∣∣
α=0

1

2
∥Θ(α)∥2Λk

max
+
∑
j∈[n]

µjyj
d

dα

∣∣∣∣
α=0

f(xj ; Θ(α)) = 0.

Hence by the two properties above with both k = 1, 2, we obtain θi = 0 for any i ∈ (Mλ1∪Mλ2)/L.
Therefore θ is a first-order KKT point of Eq.22.

By exploiting all of the lemmas above, we are now going to prove Theorem B.1.

proof of Theorem B.1. Suppose there exists two different proper points λ1, λ2 ∈ S. By Lemma B.5,
at least either of λ1 or λ2 is on the boundary ∂S of S. Without loss of generality, we assume that
λ1 ∈ ∂S. We consider a line segment in S

L := {y(t) ∈ Rd≥0 : y(t) = ζt+ λ1, t > 0}, (23)
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where ζ = λ2 − λ1 ∈ Rd.

We first consider the case where L has a single end point λ1. We will show that λ1 and λ2 are
equivalent in terms of the resulting optimization problem, by applying Lemma B.7. Hence we are
going to verify each condition required in the lemma.

Notice that the fact that L has a single end point implies that ζi ≥ 0 for any i ∈ [d]. Combined with
Lemma B.6, this means that

min
i∈M

λk

(λ2i − λ1i ) = 0

for k = 1, 2. Furthermore, clearly {i ∈ Mλ2 : λ1i = λ2i } = Mλ1 . This is because for any
i ∈ {i ∈Mλ2 : λ1i = λ2i } and j ∈ [d],

λ1i = λ2i ≥ λ2j ≥ λ2j − ζjt = λ1j ,

where the inequality above hold as an equality if and only if j ∈ {i ∈Mλ2 : λ1i = λ2i }.

{i ∈Mλ2 : λ1i = λ2i } = {i ∈Mλ1 : λ1i = λ2i }

immediately follows from {i ∈Mλ2 : λ1i = λ2i } =Mλ1 . Hence by applying Lemma B.7, we obtain
that λ1 and λ2 are equivalent.

Next, we consider the other case where L has two end points. Let y(tmax) denote the other end
point. Suppose λ2 is an interior point, i.e., λ2 ̸= y(tmax). By exploiting Lemma B.3, we obtain

λ1max = tmax max
i∈J

ζi > (tmax − t2)max
i∈J

ζi = λ2max, (24)

where t2 is given by y(t2) = λ2 and J ⊂ [d] is given by

J := {j ∈ [d] : y(tmax)j = 0,∃λ ∈ L, λj > 0} .

On the other hand, by applying Lemma B.6 at λ1, we know that there exists i ∈ Mλ1 such that
ζ ≥ 0. Hence λ2i ≥ λ1i = λ1max. This clearly contradicts with Eq.24. Hence, λ2 = y(tmax).

Lastly, we show that λ1 and λ2 = y(tmax) are equivalent in terms of the resulting optimization
problem by applying Lemma B.7. Hence, we are going to verify the conditions required in the
lemma. Since mini∈Mλ2 ζi ≤ 0 by Lemma B.6, there exists j ∈ Mλ2 such that ζj ≤ 0, and hence
λ2max = λ2j = λ1j + ζjtmax < λ1j ≤ λ1max. By applying Lemma B.6 at λ1, similarly we obtain
λ1max ≤ λ2max. Therefore

λ1max = λ2max.

Suppose there exists i ∈Mλ1 such that ζi > 0. Then, λ1max = λ1i = λ2i−ζitmax = λ2i < λ2max. This
is a contradiction, and hence maxi∈Mλ1 ζi ≤ 0. Combining this with Lemma B.6, maxi∈Mλ1 ζi =

0. Similarly, suppose there exists i ∈ Mλ2 such that ζi < 0. Then, λ2max = λ2i = λ1i + ζitmax <
λ1max. This is a contradiction, and hence mini∈Mλ2 ζi = 0.

Let k ∈ {i ∈ Mλ1 : λ1i = λ2i }. Then λ2k = λ1k = λ1max = λ2max. Hence k ∈ {i ∈ Mλ2 : λ1i = λ2i }.
Similarly if k ∈ {i ∈ Mλ2 : λ1i = λ2i }, λ1k = λ2k = λ2max = λ1max. Hence k ∈ {i ∈ Mλ1 : λ1i =
λ2i }. Therefore

{i ∈Mλ1 : λ1i = λ2i } = {i ∈Mλ2 : λ1i = λ2i }.
Now, all the conditions in Lemma B.7 are satisfied, and hence λ1 and λ2 are equivalent. In summary,
regardless of the finiteness of the line L, λ1 and λ2 are equivalent in terms of the first-order KKT
condition.
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C LIMITATIONS OF OUR CURRENT ASSUMPTIONS

A1. While, many modern neural network architectures are Λ-quasi-homogeneous, this class of
models cannot represent models with non-homogeneous activations such as the hyperbolic tangent
function or the sigmoid function. While these activation functions are less common in practice,
it would be interesting if there exists a direction towards generalizing our analysis to models us-
ing these functions. This could be of interest to the computational biology community as these
monotonic activations that saturate are much more biologically-plausible then non-saturating homo-
geneous activations. One route could be studying the properties of homothetic functions, which are
monotonic transformations of homogeneous functions. This class of functions has the same ordinal
properties of homogeneous functions and is used extensively in economics Simon et al. (1994).

A2 - A5. These assumptions are equivalent, up to order, to the assumptions presented in Lyu &
Li (2019) and are all quite standard in the literature studying the maximum margin bias of gradient
descent. The strongest of these assumptions is A4, which assumes the training dynamics of the
model are governed by the first-order ODE gradient flow. As discussed in section 7, an important
future step would be to generalize our results to stochastic gradient descent (SGD). It is very possible
that the hyperparameters of SGD, such as the learning rate and batch size, play an important role in
determining the forces driving the limiting dynamics.

A6. This assumption implies the convergence of the decision boundary and is equivalent to direc-
tional convergence for a homogeneous model. This assumption is necessary to show that the model’s
prediction is bounded on the normalized training trajectory (Lemma E.1) and for a technical reason
to show the alignment of dθ

dt and Λθ (Lemma E.4). While a necessary assumption, we expect that
this assumption can be weakened by exploiting the argument in Ji & Telgarsky (2020), which was
applied for homogeneous functions. This could be an important step for future work as it is possible
to construct settings where gradient flow will violate this assumption. See Appendix J of Lyu & Li
(2019) for an example of a smooth homogeneous function where the limiting dynamics of gradient
flow provably don’t converge after normalization, but move along a circle. Another, more practical
example, occurs for models where the residual block diverges. Because these parameters necessarily
have a λ value of 0, then the normalized parameter θ̂ diverge as well. The divergence of a residual
block essentially means that the skip connection of the model is effectively negligible and does not
play an important role in the classification. Thus, we believe that if the skip connections play an im-
portant role for the classification task, then residual block does not diverge, and this assumption is
satisfied. Additionally, like A7, this assumption restricts the possible proper values of Λ as discussed
in App. B.

A7. This assumption implies that λmax parameters play a role in the classification task. This is
the strongest of the assumptions we introduce in our work. This assumption is a restriction on the
interaction of the parameterization of a model and the dataset, and thus it is difficult to assert its
validity for general settings, without directly modeling the data as in section 5. That said, there are
some standard settings where we can assert that this assumption is always true. First, it is trivially
true that for a homogeneous model where ∥θ̂∥Λmax

= ∥θ̂∥ that A7 is always true. Additionally, for
all models with batch normalization on the last hidden layer, such as a ResNet-18 model, then A7
is also true, as the last layer parameters are Λmax parameters, and thus necessary for classification.
However, there are other settings where it is less clear that A7 is satisfied. For example, for a fully-
connected network with bias parameters the validity of A7 will depend on the data. This limitation
is why we introduced Conjecture 5.1, which does not involve A7, and provided empirical evidence
supporting its claim in section 5. The challenge to proving Conjecture 5.1 will be showing that a
version of Lemma 4.1 still holds once the parameter space is restricted such that the Λmax parameters
are zero. It is likely the case that an argument in this direction will require a proof by induction on
the highest-rate parameters and their importance to the classification task.
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D PROOF OF LEMMA 4.1

Throughout this section, we assume A1 to A4. To simplify notation in our proof, we define

ν :=
1

2

d

dt
∥θ∥2Λ. (25)

We make use of the following two simple statements:
Lemma D.1. The derivative of loss is given by

dL
dt

= −
∥∥∥∥dθdt

∥∥∥∥2 , (26)

for almost every t > 0. Hence, it is non-increasing for t > 0.

Proof. Since L is locally Lipschitz function admitting a chain rule, by applying Lemma 5.2 in Davis
et al. (2020) to L(θ(t)), we immediately obtain dL

dt = −
∥∥dθ
dt

∥∥2 for almost every t > 0.

Lemma D.2. For all θ ∈ Rm, ∥Λθ∥2 ≤ λmax∥θ∥2Λ.

Proof. ∥Λθ∥2 =
∑
λ2i θ

2
i ≤ λmax

∑
λiθ

2
i = λmax∥θ∥2Λ.

We will now prove the main lemmas described in section 4.

Proof of Lemma 4.1. We first prove ν ≥ L log((nL)−1). By Lemma A.3, we can express ν as

ν =

〈
dθ

dt
,Λθ

〉
= n−1

∑
a

e−yafa(θ)yafa(θ).

Using this equality the statement can be shown by the following inequality

L−1ν − log(nL)−1 =

(∑
a

e−yafa(θ)

)−1∑
a

yafa(θ)e
−yafa(θ) − log(nL)−1

= −
∑
a

pa log pa ≥ 0,

where pa :=
(∑

a e
−yafa(θ)

)−1
e−yafa(θ). We now prove d

dt log(γ̃) ≥ λ−1
max

d
dt log(∥θ∥Λ) tan(ω)

2.

d

dt
log(γ̃) =

d

dt

(
log log(nL)−1 − λ−1

max log ∥θ∥Λ
)

= (log(nL)−1)−1L−1

(
−dL
dt

)
−

⟨Λθ, dθdt ⟩
λmax∥θ∥2Λ

≥ ν−1

((
−dL
dt

)
−

⟨Λθ, dθdt ⟩
2

∥Λθ∥2

)
,

where the last inequality applied Lemma 4.1 and Lemma D.2. Since −dL
dt = ∥dθdt ∥

2 for almost every
t > 0, we can further simplify the RHS,

= ν−1

(∥∥∥∥dθdt
∥∥∥∥2 − ⟨Λθ, dθdt ⟩

2

∥Λθ∥2

)

= ν−1

∥∥∥∥(I − Λθθ⊺Λ

∥Λθ∥2

)
dθ

dt

∥∥∥∥2
=

∥v∥2

ν

∥u∥2

∥v∥2

=
ν

∥Λθ∥2
tan(ω)2,
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where the normal component v and the tangent component u are defined as,

v :=

(
Λθθ⊺Λ

∥Λθ∥2

)
dθ

dt
, u :=

(
I − Λθθ⊺Λ

∥Λθ∥2

)
dθ

dt
, (27)

and the last equality used ∥v∥2

ν = ν
∥Λθ∥2 and the definition of ω. Applying Lemma D.2 and

d
dt log(∥θ∥Λ) =

ν
∥θ∥2

Λ
gives the final result,

d

dt
log(γ̃) ≥ λ−1

max

ν

∥θ∥2Λ
tan(ω)2 = λ−1

max

d

dt
log(∥θ∥Λ) tan(ω)2.

Here is an important direct consequence of Lemma 4.1.
Corollary D.1. γ̃(t) is non-decreasing for t ≥ t0.

Proof. Notice the following inequality derived using Lemma 4.1, Lemma D.1, and A5,

d

dt
log(∥θ∥Λ) =

ν

∥θ∥2Λ
≥ L log((nL)−1)

∥θ∥2Λ
≥ 0.

It follows by Lemma 4.1 that d
dt log(γ̃) ≥ 0 and thus γ̃ is non-decreasing.
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E PROOF OF THEOREM 4.1

We first prove the following four lemmas by utilizing Lemma 4.1.

Lemma E.1 (Bounded f(x; θ) on θ̂(t)). Under assumptions A1, A2, A4, and A6, then for all i ∈ [n]

f(xi; θ) is bounded on the normalized training trajectory θ̂(t) (i.e. ∃k > 0 such that |f(xi; θ̂(t))| ≤
k for all t ≥ 0 and all i ∈ [n]).
Lemma E.2 (Divergence of L−1, qmin, ∥θ∥2Λ). Under assumptions A1 to A5, as t→ ∞ the quanti-
ties L−1, qmin, ∥θ∥2Λ → ∞.
Lemma E.3 (Upper bound on γ̃). Under assumptions A1 to A7, the normalized margin γ̃ is bounded
above by a constant.
Lemma E.4 (Alignment of dθ

dt and Λθ). Under assumptions A1 to A7, there exists a sequence of
time {tk}k∈N on which cosine similarity β(tk) → 1.

Proof of Lemma E.1. By A4 and the uniqueness of the normalization procedure (Lemma A.1) we
know the normalized training trajectory θ̂(t) is continuous. Combined with the convergence of the
normalized parameters (A6), this implies that {θ̂(t) : t ≥ 0} is bounded. Which, by the continuity
of f , further implies that for any fixed x ∈ Rd, {f(x; θ̂(t)) : t ≥ 0} is bounded. Thus, there exists a
k > 0 such that for all i ∈ [n], |f(xi; θ̂(t))| ≤ k for all t ≥ 0.

Proof of Lemma E.2. We first prove that L−1 → ∞ as t→ ∞. By Lemma D.1,

−dL
dt

=

∥∥∥∥dθdt
∥∥∥∥2 ≥

∥∥∥∥(Λθθ⊺Λ

∥Λθ∥2

)
dθ

dt

∥∥∥∥2 ≥ λ−1
max

ν2

∥θ∥2Λ
,

where the first equality holds in almost everywhere sense, and for the last inequality we use the
definition of ν and Lemma D.2. Applying Lemma 4.1, we can lower bound ν, giving the lower
bound

−dL
dt

≥ λ−1
max

L2 log((nL)−1)2

∥θ∥2Λ

= λ−1
maxL2 log((nL)−1)(2−2λmax)

(
log((nL)−1)

∥θ∥λ
−1
max

Λ

)2λmax

≥ λ−1
maxL2 log((nL)−1)(2−2λmax)γ̃(t0)

2λmax .

where the last inequality holds almost everywhere sense via Corollary D.1. Rearranging terms on
both sides of the inequality gives,

−dL
dt

L−2 log((nL)−1)−2(1−λmax) ≥ λ−1
maxγ̃(t0)

2λmax .

Integration from t0 to t, with the substitution −dL
dt L

−2 = d
dtL

−1, gives∫ L−1(t)

L−1(t0)

(log n−1z)−2(1−λmax)dz ≥ λ−1
maxγ̃(t0)

2λmax(t− t0).

The RHS diverges as t → ∞, and the LHS as a function of t is non-decreasing for z ≥ n, which
is true for all t ≥ t0 by Lemma D.1 and A5. Thus we can conclude that L−1 → ∞. This implies
qmin → ∞ as t→ ∞, because qmin is lower bounded by

log(L−1) ≤ qmin.

We now show ∥θ∥Λ → ∞ as t→ ∞. We can upper bound qmin by

qmin = eτ(θ)q̂min ≤ eτmax(∥θ∥Λ) sup
i∈[n],t≥0

|f(xi; θ̂(t))|,

where τmax(ρ) is defined as

τmax(ρ) = max{τ(θ) : ∥θ∥Λ = ρ} = λ−1
min+ log ρ,
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and λmin+ = minλi>0 λi. By Lemma E.1, supi∈[n],t≥0 |f(xi; θ̂(t))| ≤ k implying(qmin

k

)λmin+

≤ ∥θ∥Λ,

and thus ∥θ∥Λ → ∞ as t→ ∞.

Proof of Lemma E.3. We prove by construction a constant upper bound of γ̃. Notice, ∥θ∥2Λmax
≤

∥θ∥2Λ, and thus we can easily upper bound γ̃ by

γ̃ =
log((nL)−1)

∥θ∥λ
−1
max

Λ

≤ log(L−1)

∥θ∥λ
−1
max

Λmax

.

Notice that ∥θ∥λ
−1
max

Λmax
= eτ∥θ̂∥λ

−1
max

Λmax
and by A7, we know that ∥θ̂∥Λmax

≥ κ. Therefore, we can
further upper bound γ̃ as

γ̃ ≤ log(L−1)

eτκλ
−1
max

≤ e−τqmin

κλ
−1
max

where the last inequality used log(L−1) ≤ qmin. By Lemma E.1, e−τqmin ≤
supi∈[n],t≥0 |f(xi; θ̂(t))| ≤ k and therefore γ̃ is upper bounded by a constant,

γ̃ ≤ k

κλ
−1
max

.

Proof of Lemma E.4. We will inductively construct a sequence {tk}k∈N such that β(tk)−1 < k−1

for any k ∈ N. Assume that a sequence satisfies this condition for any k < l with a positive integer
l. We show that we can find tl > tl−1 such that the conditions above are met at tl as well. By
Lemma.E.3 and Corollary D.1, we can find l ∈ N such that s > tl−1 + ϵ and

log γ̃max(∞)− log γ̃max(s) < l−1.

Here ϵ > 0 is a constant to make sure that {tk}k∈N goes to infinity.

Furthermore, by the fact that ρ→ ∞, we can find s′ > s such that

log ρ(s′)− log ρ(s) = 1.

This choice of s and s′ satisfies

D :=
log γ̃max(s

′)− log γ̃max(tl)

log ρ(s′)− log ρ(s)
< l−1.

Assume that for any t ∈ (s, s′), β−2(l)− 1 > D. Then

log γ̃max(s
′)− log γ̃max(s) <

∫ s′

s

(β−2 − 1)
d log ρ

dt
dt.

On the other hand, by Lemma.4.1, the right hand side can be upper bounded as follows.∫ s

s′
(β−2 − 1)

d log ρ

dt
dt ≤

∫ s

s′

d log γ̃max

dt
dt = log γ̃max(s

′)− log γ̃max(s).

This is a contradiction, implying that there exists t ∈ (s, s′) such that β(s)−2 − 1 < D. Thus,

|1− β(t)| < 1− 1/
√
D + 1 < 1− 1/

√
l−1 + 1 < l−1,

i.e., tl = t satisfies the condition. Note that liml→∞ tl → ∞ since tl ≥ s > tl−1 + ϵ for any l.

Equipped with these convergence results, we can now prove Theorem 4.1 by exploiting the argument
on the approximate KKT condition introduced in Dutta et al. (2013). In this paper, they defined a
notion of (ϵ, δ)-KKT point, which can be stated for our optimization problem P as follows:

A point θ ∈ Rm is a first-order (ϵ, δ)-KKT Point of P if there exist multipliers µ = (µ1, . . . , µn)
such that the following four conditions are satisfied:
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1. Primal Feasibility: yif(xi; θ) ≥ 1 for all i ∈ [n].

2. Dual Feasability: µi ≥ 0 for all i ∈ [n]

3. Approximate Stationarity:∥∥∇θ
1
2∥θ∥

2
Λmax

−
∑
i µiyihi

∥∥ ≤ ϵ with some hi ∈ ∂◦θf(xi; θ) for each i ∈ [n].

4. Approximate Complementarity:
∑
i µi (yif(xi; θ)− 1) ≤ δ.

We call this set of four conditions as the first-order (ϵ, δ)-KKT condition. In the proof for Theorem
4.1, we use the following fact.

Lemma E.5. Under assumptions A1 to A5 and A7, ψα(θ(t)) with α = − log(qmin) satisfies the first-
order (ϵ(t), δ(t))-KKT condition with a multiplier µ(t), where ϵ(t), δ(t), µ(t) are given as follows:

ϵ(t) =
√
λmaxγ̃

−λmax

(
2(1− β) +mmaxi∈[m]:λi ̸=λmax

q
2(λi−λmax)
min

)1/2
δ(t) = e−1nλmaxγ̃

−2λmax log((nL)−1)−1

µi(t) = c−1q
(1−2λmax)
min e−qi ∀i ∈ [m].

(28)

Here c = ∥dθdt ∥/∥Λθ∥.

We prove this lemma right after showing the proof of Theorem 4.1.

Proof of Theorem 4.1. By Corollary of Theorem 3.6 in Dutta et al. (2013) (or Theorem C.4 in Lyu
& Li (2019)), it suffices to show the following two statements:

• There exist a sequence of time {tk}k∈N and a sequence of real numbers {αk}k∈N such
that ψαk

(θ(tk)) satisfies the first-order (ϵk, δk)-KKT condition, where ϵk, δk → 0 and
ψαk

(θ(tk)) converges.

• limk→∞ ψαk
(θ(tk)) satisfies MFCQ condition.

The second point directly follows from Lemma A.4. We prove the first statement with the result of
Lemma E.5. By Lemma E.4, we can find a sequence of time {tk}k∈N on which β → 1. Furthermore,
because γ̃ is lower bounded by Lemma E.3, qmin → ∞ by Lemma E.2 and L → 0 by Lemma E.2,
ϵ(t), δ(t) on this sequence converge to 0: ϵ(tk), δ(tk) → 0. Lastly we showψα(tk)(θ(tk)) converges.
Notice that ψα(tk)(θ(tk)) = q̂−Λ

min(tk)θ̂(tk), where q̂min(tk) is the minimum margin of the model
f(x; θ̂(tk)). By A6, θ̂(tk) converges, and by the continuity of f(x; θ), q̂min(tk) converges. There-
fore to show the convergence of ψα(tk)(θ(tk)), it suffices to show that q̂min(t) is lower-bounded by
a positive value. This can be seen as follows:

q̂min =


∥∥∥θ̂∥∥∥

Λmax

∥θ∥Λmax


λ−1
max

qmin ≥ qmin

∥θ∥λ
−1
max

Λmax

≥ logL−1

∥θ∥λ
−1
max

Λmax

= γ̃,

where γ̃ is non-decreasing and upper-bounded by Corollary D.1.

Proof of Lemma E.5. We verify each of four conditions one by one.

1. Primal Feasibility:
It is straight forward to check that this choice of α implies ψα(θ) satisfies primal feasibility, as for
all i ∈ [n],

yif(xi;ψα(θ)) = eαyif(xi; θ) ≥ eαqmin = 1.

2. Dual Feasibility:
It is clear that this choice of µ satisfies dual feasibility as qmin > 0.
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3. Approximate Stationarity:
By Lemma A.2, for any h ∈ ∂◦θf(xi, θ), we can expand the sum as follows:∑

i

µiyi∂
◦
θf(xi;ψα(θ)) =

∑
i

µiyie
α(I−Λ)∂◦θf(xi; θ)

= c−1q
(1−2λmax)
min q

(−I+Λ)
min

(∑
i

e−qiyi∂
◦
θf(xi; θ)

)
= c−1q

(Λ−2λmax)
min (−∂◦θL) .

Hence, there exists a combination of hi ∈ ∂◦θf(xi, ψα(θ)) such that
∑
i µiyihi = c−1q

(Λ−2λmax)
min

dθ
dt .

By substituting the expression of c, we obtain∑
i

µiyihi = q−λmax

min ∥Λθ∥Q
dθ
dt

∥dθdt ∥
,

where Q is a diagonal matrix such that Qii = q
(λi−λmax)
min . Now consider the derivative,

∇θ
1

2
∥ψα(θ)∥2Λmax

= DΛψα(θ) = q−λmax

min DΛθ,

where D is a diagonal indicator matrix such that Dii = 1 iff λi = λmax. Combining these last two
expressions together, we can now bound the squared norm,∥∥∥∥∥∇θ

1

2
∥ψα(θ)∥2Λmax

−
∑
i

µiyihi

∥∥∥∥∥
2

=

∥∥∥∥∥q−λmax

min DΛθ − q−λmax

min ∥Λθ∥Q
dθ
dt

∥dθdt ∥

∥∥∥∥∥
2

= q−2λmax

min ∥Λθ∥2
∥∥∥∥∥D Λθ

∥Λθ∥
−Q

dθ
dt

∥dθdt ∥

∥∥∥∥∥
2

≤ λmax

(
qmin

∥θ∥λ
−1
max

Λ

)−2λmax
∥∥∥∥∥D Λθ

∥Λθ∥
−Q

dθ
dt

∥dθdt ∥

∥∥∥∥∥
2

≤ λmaxγ̃
−2λmax

∥∥∥∥∥D Λθ

∥Λθ∥
−Q

dθ
dt

∥dθdt ∥

∥∥∥∥∥
2

,

where the second to last inequality applies Lemma D.2, and the last inequality applies the definition
of the normalized margin. We now bound the squared norm in the RHS using the definition of β,∥∥∥∥∥D Λθ

∥Λθ∥
−Q

dθ
dt

∥dθdt ∥

∥∥∥∥∥
2

=

∥∥∥∥∥D
(

Λθ

∥Λθ∥
−

dθ
dt

∥dθdt ∥

)
+ (D −Q)

dθ
dt

∥dθdt ∥

∥∥∥∥∥
2

≤

∥∥∥∥∥D
(

Λθ

∥Λθ∥
−

dθ
dt

∥dθdt ∥

)∥∥∥∥∥
2

+

∥∥∥∥∥(D −Q)
dθ
dt

∥dθdt ∥

∥∥∥∥∥
2

≤

∥∥∥∥∥ Λθ

∥Λθ∥
−

dθ
dt

∥dθdt ∥

∥∥∥∥∥
2

+ ∥D −Q∥2

≤

∥∥∥∥∥ Λθ

∥Λθ∥
−

dθ
dt

∥dθdt ∥

∥∥∥∥∥
2

+
∑

λi ̸=λmax

q
2(λi−λmax)
min

≤ 2(1− β) +m max
λi ̸=λmax

q
2(λi−λmax)
min

Combing the upper bounds we get∥∥∥∥∥∇θ
1

2
∥ψα(θ)∥2Λmax

−
∑
i

µiyihi

∥∥∥∥∥
2

≤ λmaxγ̃
−2λmax

(
2(1− β) +m max

λi ̸=λmax

q
2(λi−λmax)
min

)
= ϵ2(t).
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4. Approximate Complementary:
Expand the following sum with the defined values for α and µi,∑

i

µi (yif(xi;ψα(θ))− 1) =
∑
i

µi
(
q−1
minyif(xi; θ)− 1

)
=
∑
i

µi
qmin

(qi − qmin)

= c−1q−2λmax

min

∑
i

e−qi (qi − qmin)

Notice the lower bound on the scalar c,

c =
∥dθdt ∥
∥Λθ∥

≥
|⟨dθdt ,

Λθ
∥Λθ∥ ⟩|

∥Λθ∥
=

ν

∥Λθ∥2
≥ L log((nL)−1)

∥Λθ∥2
≥ e−qmin log((nL)−1)

∥Λθ∥2

where the last inequality follows from L ≥ e−qmin . Using this lower bound for c, we can upper
bound the previous expression as∑

i

µi (yif(xi;ψα(θ))− 1) ≤ q−2λmax

min ∥Λθ∥2 log((nL)−1)−1

(∑
i

e−(qi−qmin) (qi − qmin)

)
The function f(z) = e−zz attains its global maximum at z = 1, implying we can further upper
bound this quantity as∑

i

µi (yif(xi;ψα(θ))− 1) ≤ e−1nq−2λmax

min ∥Λθ∥2 log((nL)−1)−1

≤ e−1n

(
qmin

∥θ∥λ
−1
max

Λ

)−2λmax

log((nL)−1)−1λmax

= e−1nγ̃−2λmax log((nL)−1)−1λmax

= δ(t),

where the second to last inequality applies Lemma D.2.
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F PROOF OF LEMMA 5.1

In this section, we provide a proof of Lemma 5.1.

Proof of Lemma 5.1. Notice that in the homogeneous case, all the parameters have the largest λ,
and therefore P = I and P⊥ = 0. By substituting these to the expressions of wquasi−hom and
l(wquasi−hom) in Eq.5.1, we can obtain those of whom and l(whom). Therefore in the following, we
focus on proving expressions for the quasi-homogeneous case.

By symmetry, Eq.4 can be reduced to the following optimization problem over a single ball,

Eq.4 = min
w∈Rd

[
∥Pw∥ : min

x∈B(µ,r)
⟨w, x⟩ ≥ 1

]
.

The minimization over x ∈ B(µ, r) above can be further reduced as follows:

min
x∈B(µ,r)

⟨w, x⟩ = ⟨w, µ⟩ − max
x∈B(0,r)

⟨w, x⟩

= ⟨w, µ⟩ − r∥w∥
= ⟨Pw,Pµ⟩+ ⟨P⊥w,P⊥µ⟩ − r∥w∥

.

Hence, the optimization problem Eq.4 can be reduced as follows:

Eq.4 = min
w∈Rd

[∥Pw∥ : ⟨Pw,Pµ⟩+ ⟨P⊥w,P⊥µ⟩ − r∥w∥ ≥ 1]

= min
w1∈Rm,w2∈Rd−m

[
∥w1∥ : ⟨w1, Pµ⟩+ ⟨w2, P⊥µ⟩ − r

√
∥w1∥2 + ∥w2∥2 ≥ 1

]
(29)

Here we split the optimization over w ∈ Rd by considering the orthogonal vectors w1 = Pw
and w2 = P⊥w2 separately. Because the objective function ∥w1∥ is independent of w2, the last
expression above is equivalent to the following:

min
w1∈Rm

[
∥w1∥ : ⟨w1, Pµ⟩+ max

w2∈Rd−m

[
⟨w2, P⊥µ⟩ − r

√
∥w1∥2 + ∥w2∥2

]
≥ 1

]
.

The maximization over w2 ∈ Rm−d is achieved if w2 is parallel to P⊥µ, and hence, by letting ρw
denote ∥w2∥,

max
w2∈Rd−m

[
⟨w2, P⊥µ⟩ − r

√
∥w1∥2 + ∥w2∥2

]
= max
ρw∈R≥0

[
ρµρw − r

√
∥w1∥2 + ρ2w

]
= ρµ

 ρµ/r√
1− ρ2µ/r

2
∥w1∥

− r

√
∥w1∥2 +

ρ2µ/r
2

1− ρ2µ/r
2
∥w1∥2

= −r
√
1− ρ2µ/r

2∥w1∥, (30)

where the maximization over ρµ ∈ R≥0 on the second line of the equation above is achieved if only
if ρµ =

ρµ/r√
1−ρ2µ/r2

∥w1∥, and hence the maximization over w2 ∈ Rd−m on the first line is achieved

if and only if

w2 =
∥w1∥

r
√
1− ρ2µ/r

2
P⊥µ. (31)
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Therefore, by substituting Eq.30, we obtain

Eq.4 = min
w1∈Rm

[
∥w1∥ : ∥w1∥

(
⟨ w1

∥w1∥
, Pµ⟩ − r

√
1− ρ2µ/r

2

)
≥ 1

]
= min
w1∈Rm

[(
⟨ w1

∥w1∥
, Pµ⟩ − r

√
1− ρ2µ/r

2

)−1

: ⟨ w1

∥w1∥
, Pµ⟩ − r

√
1− ρ2µ/r

2 > 0

]

=

(
max
w1∈Rm

[
⟨ w1

∥w1∥
, Pµ⟩ − r

√
1− ρ2µ/r

2 : ⟨ w1

∥w1∥
, Pµ⟩ − r

√
1− ρ2µ/r

2 > 0

])−1

=
(
∥Pµ∥ − r

√
1− ρ2µ/r

2
)−1

=
(√

1− ρ2µ − r
√
1− ρ2µ/r

2
)−1

.

Note that this quantity is positive since r < 1 by assumption, and the minimization over w ∈ Rm is
achieved if and only if w1 is parallel to Pµ,

w1 ∝ Pµ. (32)

Notice that the optimizers of Eq.29, and hence those of Eq.4, need to satisfy both Eq.32 and Eq.31.
This means that the optimizer is unique and is given as follows:

wquasi-hom =
(√

1− ρ2µ − r
√
1− ρ2µ/r

2
)−1

 1√
1− ρ2µ

Pµ+
1

r
√
1− ρ2µ/r

2
P⊥µ


By normalizing this, we obtain the expression in Eq.5. At this minimizer wquasi-hom, the robustness l
is obtained as

l(wquasi-hom) = ∥wquasi-hom∥−1 min
x∈B(µ,A)

⟨wquasi-hom, x⟩

= ∥wquasi-hom∥−1 ⟨wquasi-hom, µ⟩ − r

=
√

1− r−2ρ2µ

√
1− ρ2µ + r−1ρ2µ − r

=
√
1− r−2ρ2µ

(√
1− ρ2µ −

√
r2 − ρ2µ

)
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G PROOF OF THEOREM 6.1

We here first state the rigorous version of Theorem 6.1
Theorem G.1 (Neural Collapse). Under assumptions A8, A9, and d ≥ C, any global optimum of
the optimization problem Eq.8 satisfies Neural Collapse, i.e.,

• For any class c ∈ [C], there exists a vector h̄c such that hi = h̄c for any data i ∈ [n] with
yi = c.

• The convex hull of {wc}c∈[C] forms a regular (C − 1)-simplex, centered at the origin.

• For any c ∈ [C], h̄c and wc are equivalent up to re-scaling.

• argmaxc∈[C] w
T
c h + bc = argminc∈[C]

∥∥h− h̄c
∥∥ for any h ∈ Rd, i.e., any feature vector

is classified to the class c with the nearest class mean h̄c.

Proof sketch for Theorem G.1. To prove Theorem G.1, we study a sequence of three relaxed
optimization problems, starting from Eq.8, and introduce five lemmas (Lemma G.1 to G.5) charac-
terizing the minimizers of these relaxed problems. The optimization problem Eq.8 can be reduced
to the following by A8,

min
(w,b,h)

∑
c∈[C]

|wc|2 + |b|2 s.t.

{
mini∈[n] qi ≥ 1∑
j(hi)j = 0,

∑
j(hi)

2
j = 1 ∀i ∈ [n],

(33)

where qi ∈ R is defnied as

qi := (wyi)
Thi + byi −max

c ̸=yi

[
(wc)

Thi + bc
]
. (34)

The minimizers of this optimization problem are characterized in Lemma G.5. To prove Lemma G.5,
we will consider the following further relaxed problem,

min
(w,b,h)

∑
c∈[C]

|wc|2 + |b|2 s.t.

{
mini∈[n] qi ≥ 1∑
j(hi)

2
j = 1 ∀i ∈ [n].

(35)

This problem is analyzed in Lemma G.4. This optimization problem is equivalent to our last relaxed
problem,

min
(w,b)

∑
c∈[C]

|wc|2 + |b|2 s.t. max
{hi}i∈[n]

min
i∈[n]

qi :
∑
j

(hi)
2
j = 1 ∀i ∈ [n]

 ≥ 1. (36)

The minimizers of this problem are analyzed in Lemma G.3, with the help of Lemma G.2, which
analyzes a further relaxed problem and Lemma G.1, which analyzes the constraint in Eq.36. We will
now introduce and prove Lemmas G.1 through G.5.

Let H denote the set of {hi}i∈[n] satisfying the constraints
∑
j(hi)

2
j = 1 for any i ∈ [n], ∆c denote

the (C − 2)-simplex formed by {wc′}c′∈[C]/{c}, and ∆ denote the standard (C − 2)-simplex.
Lemma G.1. Under assumption A9, the following equality holds

max
{hi}∈H

min
i∈[n]

qi = min
c∈[C]

Lc, (37)

with
Lc := min

α∈∆
∥wc − w′

c(α)∥+ (b− b′c(α)), (38)

where w′
c(α) : ∆ → ∆c and b′c(α) : ∆ → R are defined as w′

c(α) :=
∑
c′∈[C]/{c} αic(c′)wc′ and

b′c(α) :=
∑
c′∈[C]/{c} αic(c′)bc′ , where ic(·) : [C]/{c} → [C − 1] is given by ic(c′) = c′ if c′ < c

and ic(c′) = c′ − 1 otherwise. Any maximizer of the quantity above is given by hi = h∗yi where

h∗c =
wc − w∗

c

∥wc − w∗
c∥
, (39)

with w∗
c = w′

c(α) with α minimizing Eq.38.
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Proof.

max
{hi}∈H

min
i∈[n]

qi = min
i∈[n]

max
h:∥h∥=1

[
(wyi)

Th+ byi − max
c′∈[C]/{yi}

[
(wc′)

Th+ bc′
]]

= min
c∈[C]

max
h:∥h∥=1

[
(wc)

Th+ bc − max
c′∈[C]/{c}

[
(wc′)

Th+ bc′
]]
,

where the maximization over {hi}i∈[n] is achieved when

hi ∈ argmax
h:∥h∥=1

[
(wyi)

Th+ byi − max
c′∈[C]/{yi}

[
(wc′)

Th+ bc′
]]
.

The quantity inside the parenthesis can be reduced as follows.

(wc)
Th+ bc − max

c′∈[C]/{c}

[
(wc′)

Th+ bc′
]

= min
c′∈[C]/{c}

(wc − wc′)
T
h+ (b− bc′)

= min
α∈∆

(wc − w′
c(α))

T
h+ (b− b′c(α)),

Therefore by the minimax theorem,

max
h:∥h∥=1

[
(wc)

Th+ bc − max
c′∈[C]/{c}

[
(wc′)

Th+ bc′
]]

= max
h:||h||=1

min
α∈∆

(wc − w′
c(α))

T
h+ (b− b′c(α))

= min
α∈∆

max
h:||h||=1

(wc − w′
c(α))

T
h+ (b− b′c(α))

= min
α∈∆

∥wc − w′
c(α)∥+ (b− b′c(α))

= Lc,

where the maximization over h is achieved if and only if h =
wc−w∗

c

∥wc−w∗
c∥

. Hence Eq.37 holds. Clearly,

the maximizer is hi =
wyi

−w∗
yi

∥wyi
−w∗

yi
∥ .

By Lemma G.1, the optimization problem Eq.36 is reduced to

min
(w,b)

∑
c

|wc|2 + |b|2 s.t. min
c∈[C]

Lc ≥ 1. (40)

We will later show that this minimization is achieved when the convex hull of {wc}c∈[C] forms
a regular simplex. However, before dealing with Eq.40, we first solve the minimization of the
following easier problem.

Lemma G.2. Consider
Zc := ∥wc − w′

c(ᾱ)∥+ (b− b′c(ᾱ)), (41)

where ᾱ := ((C−1)−1, (C−1)−1, · · · , (C−1)−1) is the bary-center of simplex ∆. The minimizer
of the following optimization problem

min
({wc}c∈[C],b)

∑
c

|wc|2 + |b|2 s.t. min
c∈[C]

Zc ≥ 1, (42)

is achieved if and only if the following conditions are met:
∥wc∥ = C−1

C∑
c∈[C] wc = 0

b = 0.

(43)

Furthermore, at these minimizers Zc = 1 for any c ∈ [C].
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Proof. Notice that the constraint of this optimization problem is translationally invariant, i.e., for any
w̄ ∈ Rd and any {wc}c∈[C] satisfying minc∈[C] Zc ≥ 1, {wc + w̄}c∈[C] also satisfies the constraint.
Hence, the minimizer of Eq.42 should satisfy the stationary condition with respect to the derivative
of w̄i for all i ∈ [d], i.e., ∑

c∈[C]

wc = 0. (44)

In the following, we consider the optimization with this new constraint Eq.44. Next, we relax the
constraint minc Zc ≥ 1 to C−1

∑
c Zc ≥ 1 (clearly C−1

∑
c Zc ≥ minc∈[C] Zc). By the help of

Eq.44, this averaged value is calculated as

C−1
∑
c∈[C]

Zc = C−1
∑
c∈[C]

[∥wc − w′
c(ᾱ)∥+ (bc − b′c(ᾱ))]

= C−1
∑
c∈[C]

∥∥∥∥wc − −1

C − 1
wc

∥∥∥∥+
(bc − (C − 1)−1

∑
c′∈[C]/{c}

bc′


= C−1

∑
c∈[C]

 C

C − 1
∥wc∥+

(bc − (C − 1)−1
∑

c′∈[C]/{c}

bc′


= (C − 1)−1

∑
c∈[C]

∥wc∥ .

Hence, the relaxed problem can be stated as follows:

min
(w,b)

∑
c

∥wc∥2 + ∥b∥2 s.t.
∑
c∈[C]

∥wc∥ ≥ C − 1.

Clearly, this can be achieved if and only if b = 0 and ∥wc∥ = C−1
C . Notice that this configuration

satisfies C−1
∑
c Zc = minc∈[C] Zc, and hence it is also the global optimum of the original problem

Eq.42. Lastly, it is easy to see that these minimizers satisfies

Zc =
C

C − 1
∥wc∥+

b− (C − 1)−1
∑

c′∈[C]/{c}

bc′

 = 1.

for any c ∈ [C].

Lemma G.3. Under assumptions A9 and d ≥ C, the minimization Eq.36 is achieved if and only if
the following conditions are met:

The convex hull of {wc}c∈[C] forms a regular (C − 1)-simplex
∥wc∥ = C−1

C ∀c ∈ [C]∑
c∈[C] wc = 0

b = 0.

(45)

Proof. First we show that any point satisfying Eq.45 is a minimizer of Eq.36. Notice that the set of
({wc}c∈[C], b) satisfying Eq.45 is non-empty since d ≥ C. All elements of this set satisfy Zc = Lc
for any c ∈ [C] by the first condition in Eq.45, and are clearly minimizers of Eq.42 by the other
conditions in Eq.45 as shown in Lemma G.2. Thus, the elements satisfy minc∈[C] Lc ≥ 1. For any
c ∈ [C], Zc ≥ Lc, and hence{

({wc}c∈[C], b) : min
c∈[C]

Zc ≥ 1

}
⊇
{
({wc}c∈[C], b) : min

c∈[C]
Lc ≥ 1

}
.

Therefore, a point satisfying Eq.45 is a minimizer Eq.36.

Next we prove the inverse. We assume that ({wc}c∈[C], b) is a minimizer of Eq.36. This point must
also be a minimizer of Eq.42, because as we showed previously, there exists a minimizer of Eq.42
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satisfying minc∈[C] Lc ≥ 1. By Lemma G.2, this point satisfies Eq.43. Hence, this point satisfies
Eq.45 if the convex hull {wc}c∈C forms a regular (C − 1)-simplex. Since Zc = 1 for any c ∈ [C]
by Lemma G.2 and Zc ≥ Lc ≥ 1, Lc = Zc = 1. This implies that the bary-center w′

c(ᾱ) is the
point in ∆c closest to wc. In the following, we argue that this property implies that ∥wc1 − wc2∥
is independent of the choice of distinct pair c1, c2 ∈ [C], implying that the convex hull {wc}c∈[C]

forms a regular simplex.

For any c1 ∈ [C],
∥∥w′

c1(ᾱ)
∥∥ = ∥wc1∥ /(C − 1) = C−1. Since Lc > 0 for any c ∈ [C], all the

vector wc are distinct, and hence, w′
c1(ᾱ) is perpendicular to wc2 − w′

c1(ᾱ). Therefore,

∥∥wc2 − w′
c1(ᾱ)

∥∥2 = ∥wc2∥
2 −

∥∥w′
c1(ᾱ)

∥∥2 =
(C − 1)2

C2
− C−2 =

C − 2

C
.

Thus,

∥wc2 − wc1∥
2

=
∥∥wc2 − w′

c1(ᾱ)
∥∥2 + ∥∥wc1 − w′

c1(ᾱ)
∥∥2

= (C − 2)/C + 1

= 2C−1(C − 1).

This is independent of c1 and c2, implying that the simplex is regular.

Lemma G.4. Under assumption A9 and d ≥ C, the minimization Eq.35 is achieved if and only if
the following conditions are met:



The convex hull of {wc}c∈[C] forms a regular (C − 1)-simplex
∥wc∥ = C−1

C ∀c ∈ [C]∑
c∈[C] wc = 0

b = 0

hi =
C
C−1wyi ∀i ∈ [n].

(46)

Proof. We first show that a minimizer of Eq.35 satisfies Eq.46. For a minimizer
({wc}c∈[C], b, {hi}i∈[n]) of Eq.35, ({wc}c∈[C], b) is a minimizer of Eq.36. Thus, by Lemma G.3,
the minimizer satisfies the first four properties. Additionally, by Lemma G.1,

max
{hi}

min
i∈[n]

qi :
∑
j

(hi)
2
j = 1 ∀i ∈ [C]

 = min
c∈[C]

Lc = 1.

Therefore, to satisfy the constraint mini∈[n] qi ≥ 1 in Eq.35, {hi}i∈[n] needs to be a maximizer of
the equation above. Again by Lemma G.1, this maximizer is given by

hi =
wyi − w∗

yi∥∥wyi − w∗
yi

∥∥ =
wyi − w′

yi(ᾱ)∥∥wyi − w′
yi(ᾱ)

∥∥ =
C

C − 1
wyi ,

which is the last condition.

We now prove the inverse. We assume that ({wc}c∈[C], b, {hi}i∈[n]) satisfies Eq.46. By Lemma G.3,
({wc}c∈[C], b) is a minimizer of Eq.36. Since the minimum value of Eq.36 is equivalent to the
minimum value of Eq.35, it suffices to show that ({wc}c∈[C], b, {hi}i∈[n]) satisfies the constraints
in Eq.35, which can be seen as follows:

min
i∈[n]

qi = min
i∈[n]

min
c∈[C]/{yi}

(wyi − wc)
T C

C − 1
wyi =

C − 1

C
− −1

C
= 1∑

j

(hi)
2
j =

∑
j

(
C

C − 1
wyi)

2
j = 1.
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Lemma G.5. Under assumption A9 and d ≥ C, the minimization Eq.33 is achieved if and only if
the following conditions are met:



The convex hull of {wc}c∈[C] forms a regular (C − 1)-simplex
∥wc∥ = C−1

C ∀c ∈ [C]∑
c∈[C] wc = 0

b = 0

hi =
C
C−1wyi ∀i ∈ [n]∑

i∈[d](wc)i = 0 ∀c ∈ [C].

(47)

Proof. Since Eq.33 has an additional constraint∑
j

(hi)j = 0 ∀i ∈ [C], (48)

compared to Eq.35, by Lemma G.4, it suffices to show

• ({wc}c∈[C], b, {hi}i∈[n]) satisfies Eq.46 and Eq.48 if and only if Eq.47 is met.

• There exists ({wc}c∈[C], b, {hi}i∈[n]) satisfying Eq.47.

First we show the first statement. We assume Eq.46 and Eq.48. Then the last equality in Eq.47 holds
as follows: ∑

j∈[d]

(wc)j =
∑
j∈[d]

(
C − 1

C
hi

)
j

= 0,

where i ∈ [n] is such that yi = c. The existence is assured by A9. The other equalities in Eq.47
trivially holds since they are equivalent to Eq.46. Conversely, if Eq.47 holds, Eq.46 trivially holds
and Eq.48 holds as well since ∑

j∈[d]

(hi)j =
∑
j

(
C

C − 1
wyi

)
j

= 0.

The existence of ({wc}c∈[C], b, {hi}i∈[n]) satisfying Eq.47 can be seen by the fact that regular (C−
1)-simplex is in (C − 1)-dimensional subspace, and we can rotate the simplex such that it is inside
the (d − 1)-dimensional subspace constrained by

∑
i∈[d](wc)i = 0 ∀c ∈ [C], without violating

the other equalities in Eq.47.

proof of Theorem G.1. By A8, the optimization problem Eq.8 can be reduced to Eq.33. Hence, by
Lemma G.5, the minimizer’s condition is given by Eq.47, which implies the first three properties of
Neural Collapse hold with h̄c = h∗c . The last property can be proved as follows.

The distance between h and h∗c is given by

∥h− h∗c∥
2

= ∥h∥2 + ∥h∗c∥
2 − 2hTh∗c

= ∥h∥2 + 1− 2C

C − 1
hTwc.

Hence,

argminc∈[C] ∥h− h∗c∥ = argminc∈[C]

(
∥h∥2 + 1− 2C

C − 1
hTwc

)
= argmaxc∈[C] h

Twc

= argmaxc∈[C] h
Twc + bc.
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H EXTENSION TO MULTI-CLASS CLASSIFICATION

In this section, we extend Theorem 4.1 to the case of multi-classification tasks with cross-entropy
loss. The analysis here largely relies on Appendix G in Lyu & Li (2019).

We consider a classification task of data {xi, yi}i∈[n] whose label yi which now takes values in [C],
where C ∈ N is the number of classes. Our model’s output is given by f(x; θ) ∈ RC , and the
cross-entropy loss with this model is defined as

L := −n−1
∑
j∈[n]

log
exp(fyj (xj ; θ))∑
c∈[C] exp(fc(xj ; θ))

= n−1
∑
j∈[n]

log(1 + e−q̃j ), (49)

where q̃j := − log
(∑

c∈[C]/{yj} e
−sjc

)
, and sjc := fyj (xj : θ) − fc(xj ; θ). Notice that sjc is a

quasi-homogeneous function. Hence, if Lemma E.2 holds and θ goes to infinity as t → ∞, which
we will show later in this section, sjc goes to infinity. Therefore, when t≫ 1,

q̃j ∼ − log

(
max

c∈[C]/{yj}
e−sjc

)
= min
c∈[C]/{yj}

sjc (→ ∞),

and by Taylor expansion of logarithm log(1 + e−q̃j ) ∼ e−q̃j ,

L =
∑
j∈[n]

log(1 + e−q̃j ) ∼
∑
j∈[n]

e−q̃j .

This expression is now equivalent to the one of binary classification tasks with the exponential loss.
Note that the effective margin is now given by minc∈[C]/{yj} sjc, which implies that its asymptotic
behavior at the later stage of training is similar to the one with the exponential loss. Being aware of
this fact, we can show a variant of Theorem 4.1 with a modified version of separability condition:

A10 (Strong Separability for CE Loss). There exists a time t0 such that L(θ(t0)) < n−1 log 2.

Under A1,A2, A4, A6, A7, and , A10 with cross-entropy loss Eq.49, there exists an α ∈ R such that
ψα(limt→∞ θ̂(t)) is a first-order KKT point of the following optimization problem

minimize
1

2
∥θ∥2Λmax

subject to min
c∈[C]/{yj}

sjc ≥ 1 ∀j ∈ [n].

The modification of our proof of Theorem 4.1 is quite similar to the extension done in Lyu & Li
(2019) and straightforward except the part where we show the lower bound of d

dt log ∥θ∥Λ and
divergence ∥θ∥Λ → ∞. Hence here we will focus on this non-trivial part and ask readers to refer
Lyu & Li (2019) and Nacson et al. (2019b) for the other details.

Similar to the first inequality of Lemma 4.1, we can show the following:
1

2

d

dt
∥θ∥2Λ ≥ (1− e−nL) log

(
enL − 1

)
. (50)

It is easy to see that

1

2

d

dt
∥θ∥2Λ =

〈
dθ

dt
,Λθ

〉
=
∑
j∈[n]

1

1 + e−q̃j

∑
c∈[C]/{yj}

e−sjc⟨hjc,Λθ⟩ (hjc is some element of ∂◦θsjc)

=
∑
j∈[n]

1

1 + e−q̃j

∑
c∈[C]/{yj}

e−sjcsjc

≥
∑
j∈[n]

1

1 + e−q̃j

∑
c∈[C]/{yj}

e−sjc q̃j

=
∑
j∈[n]

q̃je
−q̃j

1 + e−q̃j
.
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Since q̃j can be uniformly lower bounded by L as follows

L ≥ n−1 log(1 + e−q̃j ), i.e., q̃j ≥ − log
(
enL − 1

)
,

∑
j∈[n]

q̃je
−q̃j

(1 + e−q̃j ) log(1 + e−q̃j )
≥

− log
(
enL − 1

)
elog(e

nL−1)

(1 + elog(enL−1)) log(1 + elog(enL−1))

=
−
(
enL − 1

)
log
(
enL − 1

)
nLenL

.

Here for the inequality, we exploit the fact that function xe−x

(1+e−x) log(1+e−x) is an increasing function.
With the help of this inequality, we get

1

2

d

dt
∥θ∥2Λ =

∑
j∈[n]

log(1 + e−q̃j )
q̃je

−q̃j

(1 + e−q̃j ) log(1 + e−q̃j )

≥
−
(
enL − 1

)
log
(
enL − 1

)
nLenL

∑
j∈[n]

log(1 + e−q̃j )

= (1− e−nL) log
(
enL − 1

)
.

Next, we show a variant of Lemma E.2. By utilizing the lower bound of 1
2
d
dt∥θ∥

2
Λ and introducing a

newly defined smoothed normalized margin γ̃ := − enL−1

∥θ∥λ
−1
max

Λ

,

−dL
dt

≥ λ−1
max

(1− e−nL)2 log
(
enL − 1

)2
∥θ∥2Λ

= λ−1
max(e

nL − 1)2 log(enL − 1)(2−2λmax)

(
−e

nL − 1

∥θ∥λ
−1
max

Λ

)2λmax

≥ λ−1
max(e

nL − 1)2 log(enL − 1)(2−2λmax)γ̃(t0)
2λmax .

where the last inequality relies on a version of Corollary D.1. Rearranging terms on both sides of
the inequality gives,

−dL
dt

(enL − 1)−2 log(enL − 1)−2(1−λmax) ≥ λ−1
maxγ̃(t0)

2λmax .

Integration from t0 to t, with the substitution −ndLdt (e
nL − 1)−2 = d(enL−1)−1

dt , gives

n−1

∫ (enL(t)−1)−1

(enL(t0)−1)−1

(− log z)−2(1−λmax)dz ≥ λ−1
maxγ̃(t0)

2λmax(t− t0).

The RHS diverges as t → ∞, and the LHS as a function of t is non-decreasing for z < 1, which is
true for all t ≥ t0 by Lemma D.1 and A10. Thus we can conclude that L−1 → ∞. Exploiting this
fact, we can easily show ∥θ∥Λ → ∞ as we discussed in the proof of Lemma E.2.
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I EXPERIMENT DETAILS

All empirical figures in this work were generated by the attached notebook. Here we briefly sum-
marize the experimental conditions used to generate these figures.

Logistic Regression (Fig. 1).

This plot was generated by sampling 100 sample from two Gaussian distributions N (±µ, σI) in
R2 where µ = [1/

√
2, 1/

√
2] and σ = 0.25. The parameters for both the homogeneous and quasi-

homogeneous model were initialized as standard random Gaussian vectors. The parameters were
trained with full batch gradient descent with a learning rate η = 0.5 for 1e5 steps. The maximum
ℓ2-margin solution was computed using scikit-learn’s SVM package Pedregosa et al. (2011).

Ball Classification (Fig. 4).

This plot was generated by sampling 1e4 random samples from the surface of two balls B(±µ, r)
in R3 for 100 linearly spaced radii r ∈ [0, 1]. The mean µ = [0.8660254, 0.4330127, 0.25] was
chosen such that ρµ = 0.5 and ρP⊥µ = 0.25. The quasi-homogeneous model was defined such
that D1 = 1, D2 = 5, and D3 = 10 leading to λ-values Λ = [1.0.2, 0.1]. The parameters for the
homogeneous and quasi-homogeneous model were initialized with the all ones vector. Using these
initializations and SciPy’s initial value problem ODE solver Virtanen et al. (2020) we then simulated
gradient flow until T = 1e5. The final value of the classifier for both models and their respective
robustness was recorded and used to generate the final plots.
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