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Abstract

With the rapid advancement in large language001
models (LLMs), their ability in code genera-002
tion has received significant attention. Eval-003
uating this capability involves assessing both004
robustness and memorization behaviors. Ro-005
bustness expects that syntactic modifications006
of a prompt—without changing its seman-007
tics—should produce functionally equivalent008
generated code. Conversely, memorization oc-009
curs when an LLM produces code very sim-010
ilar to solutions seen during training, even011
when the prompt’s meaning has semantically012
changed. In this paper, we systematically inves-013
tigate these phenomena by introducing three014
prompt-variation strategies: mutation (minor015
textual noise), paraphrasing (different word-016
ing, same meaning), and code-rewriting (simi-017
lar wording, different meaning). Based on these018
strategies, we propose two metrics to quantify019
these behaviors: Robustness Ratio (RR), mea-020
suring how consistently models solve tasks de-021
spite textual perturbations, and Memorization022
Risk Index (MRI), capturing how often models023
reproduce known solutions despite semantic024
prompt changes. Our experiment illustrates025
that as task complexity increases and model026
size decreases, robustness generally declines.027
Additionally, supervised fine-tuning (SFT) sig-028
nificantly improves origin accuracy but often at029
the expense of increased memorization, while030
proximal policy optimization (PPO) provides a031
more balanced trade-off.032

1 Introduction033

Large language models (LLMs) have made incred-034

ible advances in automated code generation, and035

are rapidly becoming essential tools in software036

development. Modern code-focused LLMs can037

achieve state-of-the-art performance on program-038

ming benchmarks (Rozière et al., 2024). For exam-039

ple, specialized models like Qwen-2.5 Coder(Hui040

et al., 2024) and Code Llama (Rozière et al., 2024)041

have pushed the boundaries of translating natural042

language into code (Hui et al., 2024). However, 043

questions remain about how well these models gen- 044

eralize beyond their training data, specifically in 045

terms of robustness and memorization. 046

Robustness in LLMs refers to a model’s capacity 047

to consistently deliver accurate and reliable out- 048

puts across varied scenarios, ensuring performance 049

stability even when queries are phrased differently 050

or posed within diverse contexts. In the context 051

of code generation, as suggested by (Sarker et al., 052

2024) robustness evaluates the degree to which the 053

semantically equivalent prompts elicit semantically 054

equivalent responses. 055

Memorization occurs when LLMs rely on re- 056

calling specific training examples rather than gen- 057

uine generation (Hartmann et al., 2023), (Lu et al., 058

2024). In the code generation domain, as suggested 059

by (Yang et al., 2024), memorization evaluates the 060

extent to which an LLM reproduces code solutions 061

from its training data when systematically exposed 062

to prompts that differ semantically from the origi- 063

nal but still similar in text. 064

In this paper, we evaluate robustness and mem- 065

orization as two key dimensions of generalization. 066

We introduce a multilevel evolution framework that 067

generates variant coding tasks using three distinct 068

evolution methods: mutation, paraphrasing, and 069

code-rewriting. Specifically, the code-rewriting 070

method creates semantically modified but superfi- 071

cially similar tasks, while paraphrasing and mu- 072

tation generate tasks that preserve semantics but 073

differ significantly at the textual level. We fur- 074

ther introduce two key metrics: Robustness Ratio 075

(RR), quantifying how robust models are to prompt 076

variations, and Memorization Risk Index (MRI), 077

assessing how likely models reproduce memorized 078

solutions after semantic modifications to tasks. 079

Our evaluation framework examines whether 080

LLMs can sustain their performance on these 081

variant tasks. To ensure comprehensive insights 082

across varying difficulty levels, our assessment 083
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covers from introductory programming problems084

in MBPP+ (Liu et al., 2023) to complex, multi-085

library scenarios BIGCODEBENCH (Zhuo et al.,086

2024). Furthermore, we finetune several base mod-087

els—including Qwen-2.5-7B and Qwen-2.5-Coder088

7B—using two popular fine-tuning strategies: Su-089

pervised Fine-Tuning (SFT) and Proximal Policy090

Optimization (PPO) to investigate the effect of post-091

training technique on robustness and memorization092

of models.093

Contributions. In summary, our work makes the094

following key contributions:095

• We propose a novel multi-level evolution frame-096

work that systematically generates diverse task097

variants (mutation, paraphrasing, code-rewriting),098

along with two metrics: Robustness Ratio (RR)099

for robustness evaluation and Memorization Risk100

Index (MRI) for detecting memorization. These101

tools provide a better understanding of LLM ro-102

bustness and memorization behaviors.103

• We conduct extensive evaluation of robustness104

and memorization spanning two established105

benchmarks: MBPP+, consisting of simple intro-106

ductory Python problems, and BIGCODEBENCH,107

comprising complex, multi-library coding scenar-108

ios that reflect real-world software tasks.109

• Our comprehensive analysis of SFT and PPO of-110

fers key insights into fine-tuning trade-offs: SFT111

significantly improves raw accuracy but increases112

memorization risk, while PPO achieves a better113

balance between accuracy and memorization.114

2 Related Work115

2.1 Code Generation with LLMs116

Large Language Models (LLMs) have shown re-117

markable ability in automated code generation.118

Models such as ChatGPT(OpenAI et al., 2024),119

Qwen-Coder (Hui et al., 2024), and DeepSeek-120

Coder (Guo et al., 2024) have pushed the bound-121

aries in the coding domain, notably with ChatGPT122

achieving state-of-the-art performance on challeng-123

ing benchmarks such as BigCodeBench (Zhuo124

et al., 2024) and the EvalPlus leaderboard (Liu125

et al., 2023).126

While LLM-based code generation models have127

made significant strides in translating natural lan-128

guage to executable code, most evaluations focus129

on static benchmark performance, overlooking ro-130

bustness to prompt variations and memorization131

behaviors. To address this, we introduce a novel132

multi-level evolution framework, enabling system- 133

atic assessment of these critical generalization as- 134

pects. 135

2.2 Robustness and Memorization in Code 136

Generation. 137

Robustness Robustness refers to the phe- 138

nomenon that when minor changes are applied to 139

input, the LLM fails to generated consistent and 140

correct responses (Li et al., 2022). Besides, meta- 141

morphic prompt testing (Wang and Zhu, 2024) has 142

proved that LLM code outputs are highly sensitive 143

to how problems are presented. 144

Memorization Memorization refers to the LLM 145

will provide the exact text snippet in the training 146

data (Carlini et al., 2019), (Bayat et al., 2024). 147

In the domain of code generation, new methods 148

(Wang et al., 2024) have been proposed to measure 149

and expose code memorization. Moreover, Liu 150

et al. (2023) shows many LLM outputs that passed 151

the original tests fail the larger suite. Together, 152

these analyses reveal that direct copying of training 153

code is common, and that standard evaluations and 154

simple prompts often fail to detect it. 155

3 Methodology 156

3.1 Multi-level Evolution 157

We propose a multi-level evolution framework to 158

systematically assess robustness and memorization 159

in LLM-generated code. Figure 1 illustrates our 160

multi-level evolution methods. We categorize task 161

evolution into two scenarios based on whether the 162

semantic remains consistent. Specifically, muta- 163

tion and paraphrasing evolutions preserve seman- 164

tic equivalence, whereas code-rewriting evolution 165

generates semantically different tasks. 166

Mutation Evolution. To assess whether LLMs 167

are robust to superficial textual noise, mutation evo- 168

lution applies small perturbations—such as word- 169

scrambling, random-capitalization, and character- 170

noising—that preserve the underlying problem se- 171

mantics. This approach simulates common input 172

variations encountered in real-world scenarios, test- 173

ing the model’s ability to generate correct code 174

even when prompts are noisy or non-standard. For- 175

mally, let x ∈ T denote the original problem 176

prompt in the text space T . Mutation evolution 177

applies a perturbation function ϵ1 : T → T such 178

that the mutated prompt xmut = ϵ1(x) preserves 179
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Paraphrasing

Xpar = ε2(X)

Develop a function that
identifies the common
elements between two
provided sets.

Original Task

C
def func(s1,s2):

 return (s1&s2)

X 
Write a function to
find the shared
elements from the
given two sets.

Semantic Equivalent
Semantic Different

Mutation

Xmut = ε1(X)

Wr!ite a functIon to
fInd teh shraed
Eelments from teh
gVine wto sEt.

Code Rewriting

             Xrew = desc(Crew)

Write a function to
identify the common
elements from two
provided sets by ensuring
the result is sorted.

Crew = ε3(C) ≠  C

def func(s1,s2):

 return sorted(s1&s2)

Figure 1: The multi-level evolution framework workflow. "X" denotes text and "C" denotes code. Same-colored
boxes indicate semantic equivalence. Mutation and Paraphrasing evolution keep the same semantic, while code
rewriting creates a new task. Code rewriting first rewrite a new code solution Crew from the origin solution C, then
generating a new description Xrew for the new code. All evolutions are performed by GPT-4.1, shown as the robot.

the original semantics:180

xmut = ϵ1(x), x, xmut ∈ T181

where ϵ1 injects textual noise without altering182

the problem’s underlying meaning.183

Paraphrasing Evolution. Paraphrasing evolu-184

tion aims to evaluate whether LLMs can generalize185

to diverse surface realizations of the same problem.186

In this setting, prompts are reworded textual expres-187

sion but preserve semantics. Formally, let x ∈ T188

be the original prompt. We define a paraphrasing189

function ϵ2 : T → T such that:190

xpar = ϵ2(x), x, xpar ∈ T191

where xpar is a semantically equivalent but textu-192

ally different paraphrase of x. This process tests193

whether LLMs can solve the same programming194

problem across varied linguistic formulations.195

Code-Rewriting Evolution. Code-rewriting evo-196

lution evaluates a model’s ability to distinguish197

new problem semantics that are superficially simi-198

lar to origin tasks. Specifically, we first modify the199

ground truth solution while preserving the original200

function signature—including the function name,201

input, and output format. We then generate a new202

task description that reflects the altered code. For-203

mally, let x ∈ T be the original prompt and c ∈ C204

its ground truth code solution in code space C. We205

apply a rewriting function ϵ3 that produces a new206

code crew = ϵ3(c) where crew ̸= c functionally but207

both c and crew share the same signature. The new 208

prompt xrew is then generated from crew, resulting 209

in a semantically different task: 210

xrew = desc(crew) 211

where sig(crew) = sig(c), crew ̸= c 212

where desc(·) denotes generating a description 213

from code, and sig(·) extracts the function signa- 214

ture. This process enables us to assess whether 215

LLMs can recognize and solve tasks that share for- 216

mat but differ in semantic content. 217

Task Generation Details. All evolution 218

tasks—mutation, paraphrasing, and code- 219

rewriting—are automatically generated using 220

GPT-4.1. The full prompts for generating these 221

task variants are included in Appendix A. 222

3.2 Evaluation Metrics 223

3.2.1 Robustness 224

(1) Pass@1 Accuracy For a task set T , Pass@1 225

is the fraction of tasks for which the model’s 226

top-1 prediction passes all unit tests. We re- 227

port it as Acc(T ). It is the standard measure in 228

code-generation work. 229

(2) Robustness Ratios. For each transformation 230

type ϕ ∈ [mut, pra] (mut for mutation and par 231

for paraphrase), we compute a Robustness Ratio 232

(RR): 233

RRϕ = min
(
1,

Acc(Tϕ)
Acc(Tori)

)
(1) 234
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which asks: once we perturb a prompt with-235

out changing its semantics, what fraction of236

previously-solved tasks remain solved?237

The cap at 1 makes the score comparable across238

models: values below 1 indicates performance239

drop, while values above 1 are truncated to avoid240

inflating means. This ratio formulation has two241

advantages: (i) it is unit-free, letting us compare242

models with different base accuracies, and (ii) it243

decouples absolute skill (Acc) from stability under244

perturbation.245

Reporting. For every model we present246 [
Acc(Tori), RRmut, RRpar

]
247

to distinguish robustness from (i) character-level248

mutations and (ii) paraphrastic rewrites.249

3.2.2 Memorization250

A model memorizes when it reproduces code that251

solves the original task but fails once the underly-252

ing semantics are changed by code-rewriting(§3.1).253

The metric thus integrates two signals:254

• Similarity between the model-generated so-255

lution for the rewritten task and the original256

ground-truth solution, and257

• Performance drop by semantic rewriting.258

(1) Solution–Similarity. For every rewritten task259

i ∈ Trew, we measure260

• AST similarity: normalised tree-edit overlap261

between abstract-syntax trees (1 = identical262

structure, 0 = unrelated)263

• Edit similarity: 1 - (Levenshtein distance /264

max-len), capturing token-level overlap.265

Formally, let ASTi ∈ [0, 1] denote AST similarity,266

and let Editi ∈ [0, 1] denote edit similarity. We267

combine these scores into a unified similarity score:268

Si =
ASTi + Editi

2
269

Because our analysis is corpus-level, we define270

the mean similarity over all rewritten tasks as:271

Sim(Trew) =
1

|Trew|
∑
i∈Trew

Si, Sim ∈ [0, 1].272

(2) Relative Accuracy Drop (RAD). To capture 273

the performance loss induced by semantic rewrit- 274

ing, we define RAD as the relative reduction in 275

accuracy from original tasks to rewritten tasks: 276

RAD = max

(
0,

Acc(Tori)− Acc(Trew)

Acc(Tori)

)
277

where Acc(·) is computed as defined in Eq. (3.2.1), 278

and RAD ∈ [0, 1]. RAD is 0 when meaning 279

changes do not hurt accuracy and positive when 280

they do. The max(0, ) prevents negative values 281

when a rewritten task happens to be easier. 282

(3) Memorization Risk Index (MRI). Finally, 283

we introduce the MRI, defined as the product of 284

solution-similarity and relative accuracy drop: 285

MRI = Sim(Trew) × RAD, MRI ∈ [0, 1]. 286

Product makes MRI is high only when both condi- 287

tions for harmful memorization hold: (i) the model 288

copies the original solution’s surface form (high 289

Sim) and (ii) that copied solution now fails (high 290

RAD). This multiplicative design sharply distin- 291

guishes superficial recall from generalization. 292

Reporting. For every model, we report: 293[
Acc(Tori), Acc(Trew), RAD, Sim(Trew), MRI

]
. 294

to assess model coding proficiency, sensitivity 295

to semantic changes, similarity-based copying ten- 296

dencies, and overall memorization risk separately 297

and comprehensively. 298

3.3 Fine-Tuning Methods 299

To investigate the memorization phenomenon, we 300

use the original data for finetuning. Additionally, 301

to assess the impact of fine-tuning, we select base 302

models as the foundation for this process. 303

3.3.1 Supervised Finetuning 304

Supervised Finetuning adapts a pre-trained model 305

to a specific task by training it on a labeled dataset, 306

teaching it to predict the correct label for each input. 307

In our setup, coding problems serve as the inputs, 308

while code solutions act as the corresponding labels. 309

However, overfitting occurs when the model fits 310

the training data too closely, reducing its ability 311

to generalize to unseen tasks. This is typically 312

indicated by a rise in validation loss, signaling that 313

the model has begun memorizing training examples 314

rather than capturing the underlying task principles. 315

Therefore, we distinguish between early-stage and 316
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late-stage memorization. Late-stage memorization317

aligns closely with traditional overfitting, so we318

select the checkpoint just before overfitting sets in,319

ensuring a clearer distinction between early-stage320

memorization and overfitting.321

3.3.2 Reinforcement Learning322

In the large language model era, Reinforcement323

Learning enhances fine-tuning efficiency. A324

leading method is Proximal Policy Optimization325

(PPO)(Schulman et al., 2017), which alternates be-326

tween sampling data through interaction with the327

environment, and optimizing a "surrogate" objec-328

tive function using stochastic gradient ascent. We329

utilize the same model architecture for the actor,330

critic, and reference models, and define the reward331

function based on the correctness of the generated332

code. Compared to other reinforcement learning333

methods like DPO (Rafailov et al., 2024), we sug-334

gest that using accuracy as the reward function of-335

fers a more direct and efficient optimization path.336

4 Experiments337

4.1 Datasets338

We conduct our evaluation on two widely-adopted339

code generation benchmarks: MBPP+ (Liu et al.,340

2023) and BigCodeBench (Zhuo et al., 2024).341

Dataset Statistics. MBPP+ contains 378 tasks,342

and BigCodeBench comprises 1140 tasks. We use343

4:1 train/test split for fine-tuning. For models with-344

out fine-tuning, we use the complete set of bench-345

mark tasks for evaluation. For models that undergo346

SFT and PPO, we train on the training split and347

evaluate on the test split.348

Task Evolution. For each task in the test set, we349

generate three types of variants using our multi-350

level evolution framework 3.1. For each original351

task, we generate one variant for each evolution352

type, resulting in four versions per task: original,353

mutation, paraphrased, and code-rewritten. More354

about generating evolved datasets can be found in355

the appendix D.356

Data Validation. To ensure the reliability of our357

evolved datasets, we conducted a manual quality358

assurance process. Two senior researchers with359

expertise in the field randomly reviewed 10% gen-360

erated evolution problems for each dataset for cor-361

rectness and clarity. Any issues identified during362

this review were rectified by re-running the genera-363

tion scripts and re-assessing the outputs.364

Data Release and Reproducibility. All evolved 365

task variants and the prompts used for task gener- 366

ation will be released publicly upon publication, 367

ensuring reproducibility and facilitating future re- 368

search (see Appendix A for prompt details). 369

4.2 Models 370

In this paper, we choose Qwen-2.5 series, Qwen- 371

2.5-Coder series, LLaMA-3.1 series and Llama-4- 372

Maverick-17B-16E series to conduct the scale-up 373

experiments. For fine-tuning section, we choose 374

Qwen-2.5-7B, and Qwen-2.5-Coder-7B due to 375

the trade-off between their performance and our 376

computational resources. All training and infer- 377

ence were conducted on a server equipped with 4 378

NVIDIA H100 GPUs (80GB each), with a total 379

computational budget of approximately 40 GPU 380

hours, using PyTorch and HuggingFace Transform- 381

ers. 382

4.3 Result Analysis 383

Tables 1 and 2 summarize our robustness and mem- 384

orization evaluations across both datasets. 385

4.3.1 Robustness Analysis 386

1. Mutation remains more challenging, with 387

robustness plateauing at larger model scales. 388

Across both benchmarks, the mutation robustness 389

ratio (RRmut) is consistently lower than the para- 390

phrase ratio (RRpar), confirming that character- 391

level perturbations degrade model performance 392

more significantly than semantic paraphrasing. For 393

QWEN-INSTRUCT evaluated on MBPP+, RRmut 394

sharply increases from 0.85 at 0.5B to near-optimal 395

0.99 at 7B, and decreasing marginally to 0.94–0.96 396

at the 14–32B scale. A similar saturation trend is 397

evident on BIGCODEBENCH, peaking at 0.94 for 398

the 14B checkpoint. 399

2. Paraphrasing can occasionally improve accu- 400

racy. Smaller models (0.5–3B) reach RRpar ≥ 401

1.00, meaning paraphrased prompts solve as 402

many—or slightly more—tasks than the originals. 403

We manually inspected 10 random prompt pairs 404

where accuracy improved and found that 6 con- 405

tained clearer imperative wording (see examples 406

in B. We therefore conjecture that GPT-4.1 para- 407

phrasing could reduce prompt ambiguity, benefit- 408

ing weaker models. Larger checkpoints (≥7B) al- 409

ready parse the original phrasing well, and thus 410

RRpar stabilises around 0.95–1.00. A controlled 411

user-study or ambiguity annotation would be re- 412

quired to confirm this explanation. 413
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Model Acc(Tori) ↑Acc(Tmut) ↑Acc(Tpar) ↑RRmut ↑RRpar ↑Acc(Trew) ↑Sim(Trew)↓RAD ↓MRI ↓

Qwen-2.5-0.5B-Instruct 0.36 0.30 0.39 0.85 1.00 0.30 0.26 0.15 0.04
Qwen-2.5-1.5B-Instruct 0.55 0.51 0.57 0.93 1.00 0.52 0.17 0.04 0.01
Qwen-2.5-3B-Instruct 0.59 0.54 0.59 0.91 1.00 0.59 0.15 0.00 0.00
Qwen-2.5-7B-Instruct 0.65 0.64 0.64 0.99 0.99 0.62 0.14 0.04 0.01
Qwen-2.5-14B-Instruct 0.66 0.63 0.63 0.96 0.97 0.63 0.16 0.03 0.01
Qwen-2.5-32B-Instruct 0.70 0.66 0.69 0.94 0.97 0.70 0.15 0.00 0.00

Qwen-2.5-coder-0.5B-Instruct 0.39 0.34 0.44 0.87 1.00 0.33 0.21 0.14 0.03
Qwen-2.5-coder-1.5B-Instruct 0.54 0.49 0.56 0.90 1.00 0.48 0.26 0.12 0.03
Qwen-2.5-coder-3B-Instruct 0.61 0.55 0.60 0.90 0.99 0.57 0.25 0.05 0.01
Qwen-2.5-coder-7B-Instruct 0.64 0.61 0.65 0.94 1.00 0.63 0.24 0.02 0.01
Qwen-2.5-coder-14B-Instruct 0.68 0.64 0.68 0.95 1.00 0.66 0.21 0.03 0.01
Qwen-2.5-coder-32B-Instruct 0.69 0.65 0.69 0.95 1.00 0.66 0.17 0.03 0.01

Llama-3.1-8B-Instruct 0.55 0.52 0.56 0.95 1.00 0.54 0.13 0.00 0.00
Llama-3.1-70B-Instruct 0.58 0.53 0.56 0.91 0.96 0.64 0.22 0.00 0.00

Llama-4-Maverick-17B-16E 0.51 0.46 0.53 0.92 1.00 0.57 0.33 0.00 0.00
Llama-4-Scout-17B-16E-Instruct 0.62 0.58 0.61 0.94 0.97 0.61 0.14 0.00 0.00

Table 1: Evaluation of scale-up models on MBPP+. Tori, Tmut, Tpar, Trew denote the origin, mutation, paraphrasing
and code-rewriting datasets respectively. Acc: accuracy, RR: robustness ratio, Sim: solution similarity, RAD:
relative accuracy drop, MRI: memorization risk index.

3. Task complexity influences robustness. Ab-414

solute accuracies on BIGCODEBENCH are approx-415

imately 20 percentage points lower than those on416

MBPP+. Correspondingly, robustness ratios also417

decrease, with peak values for RRmut dropping418

from 0.99 to 0.94 and RRpar from 1.00 to 0.93.419

Thus, tasks that are more challenging appear more420

vulnerable to linguistic perturbations, indicating421

the necessity of robustness evaluations that extend422

beyond simpler benchmark problems.423

Additional Observations Coder-tuned variants424

marginally outperform instruction models at425

smaller scales (0.5–3B) but converge in perfor-426

mance at larger scales (14–32B). This suggests that427

code-specific pre-training primarily aids models428

yet to achieve high capacity.429

In summary, model robustness improves signif-430

icantly with increased parameters up to the inter-431

mediate size range (approximately 7–14B) before432

reaching saturation. Paraphrasing appears less ad-433

versarial compared to mutation and may occasion-434

ally clarify task descriptions.435

4.3.2 Memorization Analysis436

1. Memorization declines rapidly on simpler437

tasks but persists on more complex scenarios.438

On the introductory-level tasks in MBPP+, mem-439

orization risk (MRI) decreases notably as models440

scale up. For instance, Qwen-2.5-Instruct’s MRI441

falls from 0.04 at 0.5B parameters to effectively442

zero at 32B. Conversely, on the more challeng-443

ing BIGCODEBENCH, MRI values remain signifi-444

cant even at large scales (0.09 for Qwen-2.5-32B- 445

Instruct), indicating that memorization continues 446

to affect complex, multi-library tasks. This dis- 447

crepancy shows that while larger models better cap- 448

ture underlying semantics, they do not completely 449

eliminate memorization, especially in scenarios de- 450

manding deeper reasoning. 451

2. Code-specific pre-training encourages 452

code reuse but does not substantially increase 453

memorization. Coder-specialized models con- 454

sistently produce higher similarity scores than 455

their instruction-tuned counterparts—for instance, 456

Qwen-2.5-coder-32B-Instruct shows a similarity 457

score of 0.35 versus 0.30 for the instruction-only 458

variant on BIGCODEBENCH. However, the relative 459

accuracy drop (RAD) remains comparable across 460

these variants, translating to only a slight increase 461

in MRI (0.11 vs. 0.09). This pattern suggests code- 462

focused pre-training promotes superficial reuse of 463

training snippets without significantly exacerbating 464

harmful memorization. 465

3. Low RAD values reflect genuine generaliza- 466

tion rather than memorization. Several mod- 467

els—including Llama variants and mid-sized Qwen 468

models—achieve RAD scores near or exactly zero 469

while retaining moderate solution similarities (rang- 470

ing from 0.13 to 0.33). A closer manual inspec- 471

tion of these instances (see Appendix C) revealed 472

that models effectively generalize by modifying 473

only internal logic—such as substituting explicit 474

loops with list comprehensions or switching from 475
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Model Acc(Tori) ↑Acc(Tmut) ↑Acc(Tpar) ↑RRmut ↑RRpar ↑Acc(Trew) ↑Sim(Trew)↓RAD ↓MRI ↓

Qwen-2.5-0.5B-Instruct 0.09 0.05 0.10 0.58 1.00 0.04 0.27 0.55 0.15
Qwen-2.5-1.5B-Instruct 0.22 0.18 0.24 0.80 1.00 0.12 0.26 0.46 0.12
Qwen-2.5-3B-Instruct 0.31 0.25 0.30 0.81 0.97 0.18 0.31 0.42 0.13
Qwen-2.5-7B-Instruct 0.38 0.33 0.35 0.87 0.92 0.23 0.28 0.38 0.11
Qwen-2.5-14B-Instruct 0.39 0.36 0.37 0.94 0.94 0.25 0.24 0.35 0.08
Qwen-2.5-32B-Instruct 0.44 0.38 0.41 0.85 0.92 0.30 0.30 0.31 0.09

Qwen-2.5-coder-0.5B-Instruct 0.11 0.06 0.13 0.55 1.00 0.05 0.32 0.49 0.15
Qwen-2.5-coder-1.5B-Instruct 0.24 0.17 0.24 0.73 0.99 0.13 0.34 0.45 0.15
Qwen-2.5-coder-3B-Instruct 0.36 0.28 0.33 0.76 0.92 0.21 0.38 0.43 0.16
Qwen-2.5-coder-7B-Instruct 0.41 0.34 0.36 0.82 0.89 0.26 0.35 0.37 0.13
Qwen-2.5-coder-14B-Instruct 0.47 0.40 0.42 0.85 0.90 0.32 0.35 0.32 0.11
Qwen-2.5-coder-32B-Instruct 0.48 0.39 0.43 0.80 0.88 0.33 0.35 0.31 0.11

Llama-3.1-8B-Instruct 0.31 0.26 0.29 0.84 0.95 0.21 0.22 0.31 0.07
Llama-3.1-70B-Instruct 0.42 0.34 0.39 0.83 0.93 0.28 0.30 0.34 0.10

Llama-4-Maverick-17B-16E 0.42 0.36 0.38 0.86 0.90 0.25 0.28 0.38 0.10
Llama-4-Scout-17B-16E-Instruct 0.40 0.34 0.36 0.86 0.90 0.28 0.23 0.33 0.08

Table 2: Evaluation of scale-up models on BigCodeBench. Tori, Tmut, Tpar, Trew denote the origin, mutation,
paraphrasing and code-rewriting datasets respectively. Acc: accuracy, RR: robustness ratio, Sim: solution
similarity, RAD: relative accuracy drop, MRI: memorization risk index.

slice-based lookup to binary search—while pre-476

serving all naming conventions. Such results con-477

firm our metric appropriately distinguishes harm-478

less syntactic similarity from problematic memo-479

rization, penalizing models only when superficial480

code reuse leads to functional failures.481

Additional Observations Task complexity sig-482

nificantly impacts memorization risk. Median MRI483

values on BigCodeBench are roughly three times484

higher than those on MBPP+ (0.11 vs. 0.03), in-485

dicating the necessity of evaluating memorization486

across diverse and challenging tasks to get an accu-487

rate picture of a model’s generalization capabilities.488

4.3.3 Impact of Fine-Tuning Strategies on489

Robustness and Memorization490

Tables 3 and 4 shows notable differences in robust-491

ness and memorization across different fine-tuning492

strategies.493

1. SFT boosts accuracy but introduces high494

memorization risk. Models fine-tuned via SFT495

consistently achieve accuracy gains on original496

tasks (e.g., increasing accuracy from 0.64 to497

0.66 on MBPP+ and from 0.32 to 0.39 on Big-498

CodeBench for Qwen-2.5-7B). However, these499

improvements come with pronounced increases500

in memorization, as indicated by much higher501

MRI scores (0.19 on MBPP+ and 0.14 on Big-502

CodeBench). Thus, SFT enhances surface-level503

accuracy at the expense of genuine generalization.504

2. PPO balances accuracy improvements and 505

memorization risk. Fine-tuning with PPO re- 506

sults in accuracy gains on simpler tasks (0.64 to 507

0.70 on MBPP+) and minor or negligible changes 508

on more challenging datasets like BigCodeBench. 509

Crucially, PPO maintains significantly lower mem- 510

orization risks compared to SFT (MRI of 0.07 511

vs. 0.19 on MBPP+, and 0.05 vs. 0.14 on Big- 512

CodeBench). This suggests reinforcement learning 513

strategies encourage models to produce correct yet 514

novel code rather than relying on direct memoriza- 515

tion of training examples. 516

3. The effect of fine-tuning on robustness varies 517

by dataset complexity. SFT noticeably improves 518

robustness ratios on the simpler MBPP+ bench- 519

mark (achieving robustness ratios of 1.00). Con- 520

versely, on the more complex BigCodeBench tasks, 521

SFT provides no robustness advantage—and occa- 522

sionally even reduces robustness. PPO shows rel- 523

atively stable robustness ratios across both bench- 524

marks, aligning with baseline models, implying 525

that PPO neither significantly improves nor nega- 526

tively impacts robustness. 527

Implications for Fine-Tuning Decisions: 528

• If maximizing accuracy is the priority and the 529

risks associated with memorization are accept- 530

able, then SFT remains the optimal strategy. 531

• If generalization and minimizing memoriza- 532

tion risk are critical, PPO provides a better bal- 533

ance by offering modest accuracy improvements 534
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Model Acc(Tori) ↑Acc(Tmut) ↑Acc(Tpar) ↑RRmut ↑RRpar ↑Acc(Trew) ↑Sim(Trew)↓RAD ↓MRI ↓

Qwen-2.5-7B 0.64 0.59 0.64 0.92 1.00 0.59 0.20 0.09 0.02
Qwen-2.5-7B-Instruct 0.64 0.62 0.64 0.96 1.00 0.62 0.18 0.04 0.01
Qwen-2.5-7B-SFT 0.66 0.68 0.67 1.00 1.00 0.45 0.59 0.32 0.19
Qwen-2.5-7B-PPO 0.70 0.67 0.66 0.96 0.94 0.59 0.45 0.15 0.07

Qwen-2.5-Coder-7B 0.66 0.64 0.68 0.98 1.00 0.57 0.32 0.14 0.04
Qwen-2.5-Coder-7B-Instruct 0.67 0.64 0.70 0.96 1.00 0.59 0.34 0.12 0.04
Qwen-2.5-Coder-7B-SFT 0.71 0.68 0.71 0.96 1.00 0.50 0.59 0.30 0.17
Qwen-2.5-Coder-7B-PPO 0.70 0.67 0.64 0.96 0.92 0.59 0.52 0.15 0.08

Table 3: Fine-tuning results on MBPP+. Tori, Tmut, Tpar, Trew denote the origin, mutation, paraphrasing and code-
rewriting datasets respectively. Acc: accuracy, RR: robustness ratio, Sim: solution similarity, RAD: relative
accuracy drop, MRI: memorization risk index.

Model Acc(Tori) ↑Acc(Tmut) ↑Acc(Tpar) ↑RRmut ↑RRpar ↑Acc(Trew) ↑Sim(Trew)↓RAD ↓MRI ↓

Qwen-2.5-7B 0.32 0.25 0.33 0.79 1.00 0.22 0.22 0.32 0.07
Qwen-2.5-7B-Instruct 0.36 0.36 0.34 1.00 0.95 0.28 0.27 0.22 0.06
Qwen-2.5-7B-SFT 0.39 0.32 0.34 0.82 0.89 0.25 0.41 0.34 0.14
Qwen-2.5-7B-PPO 0.33 0.27 0.32 0.80 0.96 0.24 0.18 0.29 0.05

Qwen-2.5-Coder-7B 0.38 0.29 0.36 0.76 0.95 0.27 0.34 0.29 0.10
Qwen-2.5-Coder-7B-Instruct 0.42 0.31 0.36 0.74 0.86 0.28 0.35 0.34 0.12
Qwen-2.5-Coder-7B-SFT 0.42 0.35 0.40 0.84 0.96 0.26 0.42 0.38 0.16
Qwen-2.5-Coder-7B-PPO 0.35 0.29 0.34 0.83 0.98 0.27 0.42 0.24 0.10

Table 4: Fine-tuning results on BigCodeBench. Tori, Tmut, Tpar, Trew denote the origin, mutation, paraphrasing and
code-rewriting datasets respectively. Acc: accuracy, RR: robustness ratio, Sim: solution similarity, RAD: relative
accuracy drop, MRI: memorization risk index.

while considerably reducing memorization.535

5 Conclusion536

In this paper, we proposed a multi-level evolution537

framework designed to separately evaluate robust-538

ness against semantic-preserving textual pertur-539

bations and memorization when subtle seman-540

tic changes occur. By systematically generating541

variants of programming tasks—through mutation,542

paraphrasing, and code-rewriting—and introducing543

clear, interpretable metrics (such as RRmut, RRpar,544

RAD, Sim, and MRI), we provided a comprehen-545

sive approach for distinguishing genuine coding546

capability from superficial memorization.547

Our experiments on both introductory548

(MBPP+) and more complex real-world549

tasks (BIGCODEBENCH) produced several key550

insights. First, we found that robustness improves551

significantly as models grow from small to552

intermediate scales, but plateaus beyond that,553

particularly against character-level perturbations.554

Second, we observed that paraphrasing generally555

poses less challenge than mutation, and can556

sometimes even enhance clarity and improve557

performance, showing the importance of evaluat-558

ing both subtle and substantial linguistic changes.559

Third, task complexity significantly influences 560

robustness, with complex, multi-library scenar- 561

ios demonstrating noticeably lower robustness 562

compared to simpler problems. 563

In analyzing fine-tuning strategies, we noted dis- 564

tinct patterns: SFT substantially improves raw 565

accuracy but at the expense of high memoriza- 566

tion risk, whereas PPO provides a more balanced 567

trade-off, moderately improving accuracy with- 568

out significantly increasing memorization. 569

Implications. For practitioners aiming to de- 570

velop reliable code-generation tools, our findings 571

recommend: (1) combining general-purpose pre- 572

training with explicit robustness-focused pertur- 573

bation methods, (2) favoring reinforcement learn- 574

ing strategies like PPO over pure supervised fine- 575

tuning when true generalization is critical, and (3) 576

routinely reporting memorization metrics, such as 577

MRI, alongside standard accuracy measures. 578

6 Limitations 579

While our multi-level evolution framework, robust- 580

ness ratio and memorization risk index offer an 581

effective evaluation of robustness and memoriza- 582

tion in LLM code generation, several limitations 583

require further exploration: 584
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(1) Mitigation Approach: Further research is585

needed for reducing the impact of memorization586

and improving robustness.587

(2) Evaluation Transferability: While our current588

evaluation metrics are tailored for code generation,589

exploring their applicability to other domains, such590

as mathematical reasoning, could provide valuable591

insights.592

These limitations highlight the importance of on-593

going research and development efforts aimed at594

addressing the challenges associated with robust-595

ness and memorization in LLM code generation.596

7 Ethical Considerations597

Our multi-level evolution framework is guided by598

ethical principles to ensure responsible outcomes.599

(1) Data: Our dataset is constructed from MBPP-600

Plus and BigCodeBench dataset, which guarantees601

ethical fairness. We actively work to eliminate602

any harmful or offensive content from the evolved603

datasets to mitigate potential risks.604

(2) Responsible Usage and License: The use of605

these prompts and codes is intended solely for eval-606

uating robustness and memorization in LLM code607

generation tasks. We encourage the responsible use608

of the evolved dataset for educational and scientific609

purposes, while strongly discouraging any harmful610

or malicious activities.611

(3) AI Usage: Apart from the evolution process,612

during paper writing, we only use AI agents like613

GPT-4o to correct semantics in writing.614
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Appendix793

A Prompts for Task Generation794

We provide the full instruction prompts used to795

generate each evolution variant (mutation, para-796

phrasing, and code-rewriting) with GPT-4.1. For797

each evolution type, the system and user messages798

are shown as passed to the API.799

A.1 Mutation Evolution800

System Prompt

System: You are a helpful assistant. Your goal is to
transform a given ‘coding task prompt’ into a new version.
Follow the instructions carefully to transform the prompt.

801

Mutation Evolution User Prompt

User: Given a coding task description "The Given
Prompt" and its canonical solution "Code", perform the
following steps:

• X word-scrambling operations
• Y random-capitalization operations
• Z character-noising operations

Definitions (one “operation” = one change):

• **Word scrambling**: choose a single word (alpha-
betic token) and randomly shuffle its internal letters.

• **Random capitalization**: flip the case of one letter
(upper to lower or lower to upper) anywhere in the
text.

• **Character noising**: insert, delete, **or** substi-
tute one character (letter, digit, or punctuation).
Please gives your answers to "Mutation Prompt"
without any additional text or explanation.

Response: Format your response as:

Mutation Prompt:
[Updated task description]

NOTE: The values X, Y, and Z — representing the number
of word-scrambling, random-capitalization, and character-
noising operations respectively — are automatically com-
puted based on the length of the original prompt. Specifi-
cally, we apply a total of ≈ 4 noise operations per 5 words.
We first ensure at least one operation of each type is in-
cluded (i.e., X, Y, Z ≥ 1), then randomly distribute the
remaining operations among the three types. This strat-
egy ensures a consistent noise budget proportional to the
prompt’s length while maintaining diversity in corruption
types.

802

A.2 Paraphrasing Evolution 803

804

Paraphrasing Evolution User Prompt

User: Given a coding-task description "The Given
Prompt", produce a paraphrased version called "Para-
phrased Prompt".

Guidelines:

1. Keep the task’s meaning, requirements, and in-
put/output specifications identical.

2. Refresh the wording: use synonyms, change sen-
tence order, or rephrase clauses to add light linguistic
“noise,” but do **not** drop or add information.

3. Preserve any code-related tokens (e.g., variable
names, file names, I/O examples) exactly as they
appear unless the original prompt explicitly marks
them as placeholders.

4. Retain the original structural cues—for example, if
the prompt begins with ’Write a Python function. . . ’,
your rewrite should also begin with that instruction,
albeit rephrased

Please gives your answers to "Paraphrased Prompt" with-
out any additional text or explanation. Response: For-
mat your response as:

Paraphrased Prompt:
[Updated task description]

805

A.3 Code-Rewriting Evolution 806

Code-Rewriting Evolution User Prompt

User: You are a helpful assistant. Your goal is to trans-
forms a given ’coding task prompt’ into a new version.
Follow the instructions carefully to transform the prompt.
Given a coding task description "The Given Prompt" and
its canonical solution "Code", perform the following steps:

1. Modify the canonical solution to create "New Code"
by altering its core logic or structure (e.g., chang-
ing loop behavior, condition checks, or algorithmic
approach).

2. Avoid superficial changes like variable renaming.
Ensure the modified code has different semantics so
that we expect anyone who can solve the original
problem can also solve your rewritten one.

3. Update "The Given Prompt" to create "Rewritten
Prompt". The new prompt must:

(a) - Match the original’s input/output parameter
format exactly.

(b) - Reflect the modified code’s logic changes
explicitly (e.g., ’count elements divisible by 5’
instead of ’sum even numbers’).

(c)
4. "New Code" must run in O(n log n) time or better

(unless the original algorithm is already asymptoti-
cally optimal).

5. Ensure "New Code" runs in O(n log n) time or better
(if possible).

Response: Format your response exactly as:

New Code:
807
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[code]

Explanation:
[logic changes]

Rewritten Prompt:
[updated description]

Old Entry Point:
[original function name]

New Entry Point:
[updated function name]

808

Additionally, we ensured the validity of test809

cases for all rewritten tasks across both datasets.810

For MBPP+, we reuse the official test case inputs811

and generate the expected outputs using the rewrit-812

ten ground-truth solutions, ensuring direct compa-813

rability. For BigCodeBench, we adopt the proce-814

dure outlined in (Zhuo et al., 2024), constructing815

test cases for each rewritten task based on their816

guidelines to guarantee consistency and correct-817

ness. We installed all packages required by both818

dataset for assessing function correctness.819

B Examples of Clearer Paraphrased820

Prompts821

Mbpp/604

Original Prompt: Write a function to re-
verse words separated by spaces in a given
string.
Paraphrased Prompt: Create a function
that takes a string as input and returns the
string with all words, which are divided by
spaces, reversed in order.

822

Mbpp/752

Original Prompt: Write a function
to find the nth jacobsthal number.
https://www.geeksforgeeks.org/jacobsthal-
and-jacobsthal-lucas-numbers/ 0, 1, 1, 3, 5,
11, 21, 43, 85, 171, 341, 683, 1365, 2731,
...
Paraphrased Prompt: Create a
function that computes the nth
Jacobsthal number. Refer to
https://www.geeksforgeeks.org/jacobsthal-
and-jacobsthal-lucas-numbers/ for more
information. The sequence begins as
follows: 0, 1, 1, 3, 5, 11, 21, 43, 85, 171,
341, 683, 1365, 2731, ...

823

Mbpp/753

Original Prompt: Write a function
to find minimum k records from tuple
list. https://www.geeksforgeeks.org/python-
find-minimum-k-records-from-tuple-list/ -
in this case a verbatim copy of test cases.
Paraphrased Prompt: Create a func-
tion that retrieves the smallest k ele-
ments from a list of tuples. Refer to
https://www.geeksforgeeks.org/python-
find-minimum-k-records-from-tuple-list/
and use the provided test cases exactly as
they are.

824

C Examples of Harmless Internal Logic 825

Modifications 826

We listed two representative cases from Llama3.1- 827

8B-Instruct where a model has preserved all func- 828

tion and variable names yet altered only the internal 829

implementation (e.g., swapping loops for compre- 830

hensions or changing search strategies), illustrating 831

“harmless” syntactic similarity. 832

C.1 Task Mbpp/18: List Comprehension <-> 833

Explicit Loop 834

Model Answer in Original Set (list 835
comprehension) 836
def remove_dirty_chars(string, second_string): 837

second_string_set = set(second_string) 838
filtered = [c for c in string if c not in 839
second_string_set] 840
return ''.join(filtered) 841842

Model Answer in Rewritten Set (explicit loop) 843
def remove_dirty_chars(string, second_string): 844

second_string_set = set(second_string) 845
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result = []846
for c in reversed(string):847

if c not in second_string_set:848
result.append(c)849

return ''.join(reversed(result))850851

Here, the function name ‘remove_dirty_chars‘,852

parameters, lookup-set variable, and character vari-853

able ‘c‘ all remain identical; only the comprehen-854

sion is replaced by a two-step loop.855

C.2 Task Mbpp/793: Reverse-Index Lookup856

Binary Search857

Model Answer in Original Set (slice + index)858
def last(arr, x):859

try:860
return len(arr) - 1 - arr[::-1].index(x)861

except ValueError:862
return -1863864

Model Answer in Rewritten Set (binary search)865
866

def last(arr, x):867
low, high = 0, len(arr) - 1868
result = -1869
while low <= high:870

mid = (low + high) // 2871
if arr[mid] == x:872

result = mid873
low = mid + 1874

elif arr[mid] < x:875
low = mid + 1876

else:877
high = mid - 1878

return result879880

Again, ‘last‘, ‘arr‘, and ‘x‘ are preserved; the881

lookup logic is simply swapped from a reverse-882

slice search to an iterative binary-search routine.883

D Evolved-Task Generation (GPT-4.1)884

• API version: gpt-4.1-2025-04-14.885

• Prompt template: shown in Appendix. A.886

• Parameters: temperature 0.7, top-p 1.0, max-887

tokens 1080.888

• Post-processing: regex clean-up.889
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