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Figure 1: 3D structures of [-lactamase’s one mutation from the test set experiment. Samples
are (a) from T-REMD:; (b) predicted using the finetuned AlphaFlow (AlphaFlow-FT); (c) pre-
dicted using the pretrained AlphaFlow (AlphaFlow—-PT), given a sequence unseen during train-
ing. AlphaFlow-FT generates more diverse conformations. The Wasserstein distance be-
tween T-REMD and AlphaFlow-FT samples (1.67) is smaller than that between T-REMD and
AlphaFlow-PT samples (2.15), which tells that AlphaFlow-FT samples follow the T-REMD
ensemble distribution better.

Introduction. A group of heterogeneous conformations of a protein, also known as an ensemble
of conformations, is a key to understanding protein functions. This is because many proteins are
mechanical machines that perform tasks by changing their shapes. Nevertheless, the main focus of
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Figure 2: UMAP embedding of the samples of one mutation. Samples from T-REMD training set
are embedded with samples from (a) AlphaFlow-FT; (b) AlphaFlow-PT; (c) AF2, AF3, and
RF2. T-REMD samples are in red. Others in (a) and (b) are colored by their densities; more yellow
means of higher density and more blue of less density. AF2 samples are in black, AF3 blue, and
RF2 cyan in (c). Samples of AlphaFlow-FT cover better the distribution of T"-REMD while those

of other models cluster around a region.

protein structure prediction from a sequence thus far has been to accurately predict a single structure,
e.g., AlphaFold (AF) [Abramson et al.|(2024)] and ESMFold [Lin et al|(2023)]. Recently, works
on predicting multiple conformations by subsampling MSAs (multiple sequence alignments) [del
Alamo et al.[(2022)] or by clustering MSAs [Wayment-Steele et al.|(2024)] were introduced. While
they can predict heterogeneous conformations, they are limited w.r.t. the diversity of predicted struc-
tures as well as the trainability on data other than Protein Data Bank (PDB) [Berman et al. (2000)]
structures, such as on molecular dynamics (MD) simulation trajectories. AlphaFlow [Jing et al.
(2024)] overcame this limitation by incorporating a Flow Matching (FM) [Lipman et al.| (2023)]
framework with AlphaFold as a denoising model. Since an FM model can generate diverse samples
by transforming the initial samples from a prior distribution, AlphaFlow has a potential to generate
ensembles of conformations. The authors showed that it can be trained on MD trajectories and gen-
erate physically feasible ensembles. In this paper, we look more closely into AlphaFlow’s ability on
learning MD ensembles that are generated using Temperature Replica Exchange Molecular Dynam-
ics (T-REMD) [Qi et al.| (2018)]. This is an exploratory study before improving its architecture for
proposing our own model.

Experiments. Our dataset consists of 117 sets of trajectories; each set contains MD trajectories
of a certain mutation (i.e., having a unique sequence) of 3-lactamase. T-REMD was used to gen-
erate the trajectories. It is an enhanced sampling method that provides considerably better sam-
pling of the conformational space of a protein compared to normal MD simulations. For a pro-
tein, 4 replicas were simulated in parallel at 310 — 340 K. We finetuned AlphaFlow on these data
(AlphaFlow-FT), starting from AlphaFlow pretrained on PDB structures (AlphaFlow-PT, pro-
vided by the original paper). First, we experimented on one mutation only (exp—train), i.e.,
trained the model on all trajectories of a mutation and compared the predicted samples to the train-
ing samples. Note that the input to the model for prediction is the sequence of the mutation. This
experiment is to check if the model learns the distribution of the training data faithfully in the easiest
setup. Next, out of all 117 sets of mutations, we trained on 85 sets with 10 sets for validation. The
remaining 22 sets were held out as the test set (exp—test). During the test, the model predicts the
ensembles of structures using the sequences of the mutations in the test set. The predicted structures
per mutation are compared against the ones corresponding to each mutation to check if the former
follows the distribution of the latter.

Results. To qualitatively check if the model learned well the distribution of the training data in
exp-train, we embed the predicted and training samples together into low dimensional spaces
using Uniform Manifold Approximation and Projection (UMAP) [Mclnnes et al.|(2020)]. To quan-
titatively check it, we compute the Wasserstein distance between those samples, using RMSD (root-
mean-square distance) as the cost. For exp—test, the checks are performed with the predicted
and test samples. Figure [2] shows the UMAP embeddings of samples from exp-train. The
predicted samples are (a) from AlphaFlow-FT, (b) from AlphaFlow-PT, and (c) from AF2/3
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and RoseTTAFold2 (RF2) [Baek et al.|(2023)]. The number of samples are 950, 1000, 1000, 5,
5, and 5 for the training data and the models, respectively. The samples from AlphaFlow-FT
cover some of the clusters in the training samples (Figure [2(a)). On the contrary, the samples from
AlphaFlow-PT cluster around one region (Figure Z(b)). Interestingly, this region corresponds
to the one in which the samples from AF2/3 and RF2 fall. This shows that AlphaFlow that is not
finetuned on MD trajectories tends to generate samples only near the PDB structures. The Wasser-
stein distance between samples of T-REMD and AlphaFlow-FT is 2.27, between T-REMD and
AlphaFlow-PT 3.39, between T-REMD and AF2/AF3/RF2 3.43, 3.44, 3.52. This shows that
AlphaFlow-FT samples follow that of the training data better than others. For exp—test, the
mean/median (std.) of the Wasserstein distances, across the 22 mutations, between samples of T-
REMD and AlphaFlow-FT is 2.49/2.45 (0.68), and between T-REMD and AlphaFlow-PT
2.81/2.86 (0.67). Figure [I| shows 3D structures of a mutation from this experiment. The struc-
tures from AlphaFlow-FT look more diverse than those from its counterpart. The Wasserstein
distance between the structures from T-REMD and A1phaFlow—-FT (1.67) is smaller than that
between the structures from T-REMD and AlphaFlow—PT (2.15). This tells us that the samples
from AlphaFlow-FT follow T-REMD test set, which is not used for training, more faithfully. The
UMAP embeddings for all mutations from exp—test (not shown in the paper) confirm this trend.

Conclusions and Future Works. This paper investigates the viability of AlphaFlow for gener-
ating ensembles of conformations by training it on MD trajectories of various mutations of (-
lactamase. The experiments show that AlphaFlow which is not finetuned on MD trajectories has
difficulty in generating diverse conformations outside the narrow region around the static structures
learned from PDB data. Our next step is to make the model generate more diverse conformations
and more faithfully follow the ensembles generated by MD simulations. Potential directions in-
clude swapping the denoising model, i.e., AlphaFold, with another model, or using different input
embeddings other than MSAs or Protein Language Models.

MEANINGFULNESS STATEMENT

This paper is a preliminary work towards developing a novel generative model for ensembles of
protein conformations. Learning the representation of protein conformation ensembles is crucial
for understanding protein functions and ultimately the mechanism of life. This paper explores the
possibility of learning a reliable representation of protein conformation ensembles from MD trajec-
tories using a state-of-the-art method. In doing so, we gained valuable insights into the workings of
AlphaFlow and Flow Matching models, which help us develop our own improved generative model.
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