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Abstract

Melanoma is a prevalent lethal type of cancer that is treatable if diagnosed at early stages of develop- 1

ment. Skin lesions are a typical warning signs for diagnosing melanoma at early stage, but they often 2

led to delayed diagnosis due to high similarities of cancerous and benign lesions at early stages of 3

melanoma. Deep learning (DL) has been used to classify skin lesion pictures with a high classifica- 4

tion accuracy, but clinical adoption of DL for this task has been quite limited. A major reason is that 5

the decision processes of DL models are often uninterpretable which makes them black boxes that 6

are challenging to trust. We develop an explainable DL architecture for melanoma diagnosis. Our 7

architecture segments input images and generates clinically interpretable melanoma indicator masks 8

that are then used for classification. Since our architecture is trained to mimic expert dermatologists, 9

it generates explainable decisions. We also benefit from self-supervised learning to address the chal- 10

lenge of data annotations which is often expensive and time-consuming in medical domains. Our 11

experiments demonstrate that the proposed architectures matches clinical explanations considerably 12

better than existing architectures and at the same time maintains high classification accuracies. 13

1 Introduction 14

Melanoma is a prevalent type of skin cancer that can be highly deadly in advanced stages Hodi et al. (2010). For 15

this reason, early detection of melanoma is the most important factor for successful treatment of patients because the 16

5-year survival rate can reduce from a virtually 100% rate to only 5-19% Sandru et al. (2014) as melanoma progresses. 17

New skin moles or changes in existing moles are the most distinct symptoms of melanoma. However, due to similarity 18

of benign and cancerous moles, melanoma diagnosis is a sensitive task that can be preformed by trained dermatologist. 19

Upon inspecting suspicious moles, dermatologists use dermoscopy and biopsy to examine the pattern of skin lesions 20

for accurate diagnosis. If skin moles are not screened and graded on time, melanoma maybe diagnosed too late. 21

Unfortunately, this situation affects the low-income populations and people of color more significantly due to having 22

more limited access to healthcare even if changes in skin lesions are visually noticed. Advances in deep learning 23

(DL) along with accessibility of smartphones have led to emergence of automatic diagnosis of melanoma using skin 24

lesion photographs acquired by the user Codella et al. (2017); Sultana & Puhan (2018); Li & Shen (2018); Adegun 25

& Viriri (2019); Kassani & Kassani; Naeem et al. (2020); Jojoa Acosta et al. (2021). The results of using DL for 26

melanoma diagnosis are promising when evaluated only in terms of diagnosis accuracy with rates close to those of 27

expert dermatologists. Despite this success, however, adoption of these models in clinical setting has been limited. 28

A primary challenge for adopting deep learning in clinical tasks is the challenge of interpretability. Deep neural 29

networks (DNNs) sometimes are called “black boxes” because their internal decision-making process is opaque. As a 30

result, it is challenging to convince clinicians to rely on models that are not well-understood. Existing explainability 31

methods Shrikumar et al. (2017); Selvaraju et al. (2017); Zhang et al. (2018); Pope et al. (2019) try to clarify decisions 32

of these black boxes to help users or developers understand the most important areas of the image that the model 33

attends to in making the classification. As shown in Figure 1, an attention map can be visualized in the form of 34

a heatmap, where the importance of each spatial pixel is visualized by its intensity. However, an attention map is 35

not particularly helpful in clinical settings, e.g., Grad-Cam Selvaraju et al. (2017) simply highlights the entire mole 36

in the melanoma image in Figure 1. In other words, the highlighted regions are often too large to show the shape 37

of a clinically interpretable region or indicator, or extremely deviate from the regions of interest to dermatologists. 38
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Figure 1: (Left) a skin mole photograph; (right) explainability
heatmap generated via Grad-Cam Selvaraju et al. (2017) for a
DNN trained to distinguish benign and cancerous moles.

A reason behind this deficiency is that many explain-39

ability methods primarily consider the last DNN layer40

for heatmap generation, whereas some interpretable fea-41

tures maybe encoded at earlier layers of a trained DNN.42

More importantly, there is no guarantee that a trained43

DNN uses human interpretable indicators for decision-44

making Feather et al. (2019); Avramidis et al. (2022),45

irrespective of improving DL explainability algorithms.46

In other words, a model may learn to rely on dramati-47

cally different features from those used by humans when48

trained using high-level labels, yet have high classifica-49

tion accuracy rates.50

We argue existing explainability methods may not be sufficient for explainable DL in high-stakes domain such as51

medicine due to the end-to-end training pipeline of DL. In other words, a model that is trained only using a high-level52

abstract labels, e.g., cancerous vs benign, may learn to extract indicator features that are totally different compared53

to the features human experts use for classification, i.e., diagnosis. In contrast, dermatologists are trained to perform54

their diagnosis through identifying intermediate indicator biomarkers that are discovered over decades of accumulative55

hypothesis testing Argenziano et al. (1998). The solution that we propose is to benefit from intermediate-level anno-56

tations that denote human-interpretable features in the training pipeline to enforce a DNN learn a decision-making57

process more similar to clinical experts. The challenge that we face is that data annotation, particularly in medical58

applications, is an expensive and time-consuming task and generating a finely annotated dataset is infeasible. To cir-59

cumvent this challenge, we use self-supervised learning Chen et al. (2020) to train a human-interpretable model using60

only a small fine-annotated Dataset And a large coarse-annotated dataset. Our empirical experiments demonstrate that61

our approach leads to high classification accuracy and can generate explanations more similar to expert dermatologists.62

2 Related Work63

Explainability in Deep Learning Existing explainability methods in deep learning primarily determine which spa-64

tial regions of the input image or a combination of regions led to a specific decision or contribute significantly to the65

network prediction (see Figure 1). There are two main approaches to identify regions of interest when using DNNs:66

Model-based methods and model agnostic methods. Model-based methods work based on the details of the specific67

architecture of a DNN. These methods examine the activations or weights of the DNN to find regions of importance.68

Grad-CAM and Layerwise Relevance propagation Samek et al. (2016) are examples of such methods. Attention-based69

methods Dosovitskiy et al. (2020) similarly identify important image regions. Model agnostic methods methods sepa-70

rate the explanations from the model which offers wide applicability. These methods (e.g., LIME Ribeiro et al. (2016))71

manipulate inputs (e.g., pixels, regions or superpixels) and measure how changes in input images affect the output. If72

an input perturbation has no effect, it is not relevant to decision-making. In contrast, if a change has a major impact73

(e.g., changing the classification from melanoma to normal), then the region is important to the classification. SHapley74

Additive exPlanations (SHAP) Lundberg & Lee (2017) can assign each feature or region an importance value for a75

particular prediction. Note, however, the regions found by these algorithms do not necessarily correspond to interme-76

diate concepts or diagnostic features that are known to experts or novices. Hence, while these algorithms are helpful77

to explain classifications of DNNs, they do not help training models that mimic humans when making predictions. In78

the evolving landscape of explainable AI, particularly in the medical domain, counterfactual explanations have gained79

prominence. A study by Metta et al. (2023) focuses on enhancing trust in medical diagnoses of skin lesions through80

transparent deep learning models. Dhurandhar et al. (2018) introduce a novel angle to counterfactual explanations81

by emphasizing pertinent negatives. Bodria et al. (2023) provide an extensive overview and benchmarking of var-82

ious explanation methods for black-box models. Collectively, these studies highlight the necessity and methods of83

explainable models in medical diagnostics for greater acceptance and reliability.84

Identifying regions of interest is also related to semantic segmentation Noh et al. (2015); Stan & Rostami (2022)85

which divides an image into segments that are semantically meaningful (e.g., separating moles from background skin86

in diagnosing melanoma or segmenting a clinical indicator from the rest of a mole). U-Nets Ronneberger et al. (2015)87

specifically have been found to be quite effective in solving segmentation tasks within medical domains. However,88

they do not indicate the importance of regions to overall classification, a key step in explaining model decision. The89
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major deficiency is that most segmentation image methods mostly segment based on spatial similarities and do not 90

offer any explanation how these segments that are generated can be used for classification of the input image. In 91

our works, we build an explainable architecture that solves segmentation tasks that localize clinically interpretable 92

indicators on input images and then train a classifier sub-network to make decisions based on the identified indicators. 93

Deep Learning for Melanoma Diagnosis Dermatology is one of the most common use cases of DL in medicine, 94

with many existing works in the literature Codella et al. (2017); Sultana & Puhan (2018); Li & Shen (2018); Adegun & 95

Viriri (2019); Kassani & Kassani; Naeem et al. (2020); Jojoa Acosta et al. (2021). Despite significant progress in DL, 96

these methods simply train a DL on a labeled dataset, often binary labels for cancerous vs benign, using supervised 97

learning. Despite being naive in terms the learning algorithms they use, these works lead to decent performances, 98

comparable with expert clinicians. However, there is still room for improving explainability characteristics of these 99

methods to convince clinicians adopting DL for melanoma diagnosis in practice. Only a few existing works have 100

explored explainability of AI models for melanoma diagnosis. Murabayashi et al. Murabayashi & Iyatomi (2019b) 101

use clinical indicators and benefit from virtual adversarial training Miyato et al. (2018) and transfer learning Isele et al. 102

(2016) to train a model that predicts the clinical indicators in addition to the binary label to improve explainability. 103

Nigar et al. Nigar et al. (2022) simply use LIME to study interpretability of their algorithm. Stieler et al. Stieler et al. 104

(2021) use the ABCD-rule, an empirically-driven diagnostic approach of dermatologists, while training a model to 105

improve interpretability. Shorfuzzaman Shorfuzzaman (2022) used meta-learning to train an ensemble of DNNs, each 106

predicting a clinical indicator, to use indicators to explain decisions. These existing works, however, do not spatially 107

locate the indicators. We develop and architecture that solves segmentation tasks to generate spatial masks on the input 108

image to locate clinical indicators spatially through solving a weaky-supervised tasks. As a result, our architecture 109

identifies clinical indicators and their spatial location on input images to explain particular decisions that it makes. 110

Self-Supervised Learning for Data Augmentation We rely on intermediate-level annotations to solve segmenta- 111

tion tasks. The challenge is that annotating medical data is often expensive and existing annotated datasets are small. 112

To over come this challenge, we rely on self-supervised learning (SSL) for data augmentation. SSL harnesses inherent 113

patterns and relationships using unannotated data to enhance the robustness and generalization of models when ac- 114

quiring large annotated datasets proves challenging. SSL has found notable traction in solving medical image analysis 115

tasks. To name a few works, Chen et al. Chen et al. (2019) demonstrated the benefit of self-supervised learning for 116

utilizing unannotated datasets in medical image analysis. Azizi et al. Azizi et al. (2021) demonstrate that using SSL 117

can significantly increase classification rate of medical images. Tang et al. Tang et al. (2022) utilized SSL for ex- 118

tracting robust features that enhance medical image segmentation. We have also demonstrated that SSL can enhance 119

model generalization in unsupervised domain adaptation scenarios Jian & Rostami (2023). These works underlie the 120

potential of SSL in addressing data scarcity and enhancing the quality of medical analyses. In our work, we rely on 121

SSL to improve the quality of features that are learned to preform the corresponding segmentation tasks. 122

3 Problem Formulation 123

Our goal is to develop a DL framework for melanoma diagnosis such that the model provides human-interpretable 124

explanations behind its decisions. Most existing works for melanoma diagnosis based on DL consider that we have 125

access to a single dataset that includes skin lesion images along with corresponding binary labels for cancerous vs 126

benign cases Premaladha & Ravichandran (2016); Zhang (2017); Codella et al. (2017); Sultana & Puhan (2018); Li & 127

Shen (2018); Adegun & Viriri (2019); Kassani & Kassani; Naeem et al. (2020); Jojoa Acosta et al. (2021). The stan- 128

dard end-to-end supervised learning is then used to train a suitable DNN, e.g., a convolutional neural network (CNN). 129

However, as explained, this simple baseline does not lead to training a model with human interpretable explanations. 130

To overcome this challenge, we assume that we have access to a dataset annotated with intermediate information that 131

are in the forms of spatial masks that visualize clinical indicators on the input images (see Figure 3, where the second 132

column visualizes such masks). Our goal would be developing a DNN architecture that not only learns to classify skin 133

lesion images, but also localizes clinical indicators and then uses them for decision making, similar to clinicians. 134

To train explainable DL architectures, we can rely on public datasets where images are annotated with clinically 135

plausible indicators Codella et al. (2019); Tschandl et al. (2018). These indicator commonly are used by dermatol- 136

ogists. Dermatology residents are often trained to diagnose melanoma based on identifying them. We try to mimic 137

this two-stage diagnosis protocol that clinicians use by training the model to first predict and localize the indica- 138
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tors as intermediate-level abstractions and then use them for predicting the downstream binary diagnosis label. Let139

DL = {xi, yi, (zij)d
j=1}M

i=1 denotes this dataset, where xi and yi denote the images and their binary diagnostic labels.140

Additionally, Zij denotes a feature mask array with the same size as the input image, where for each 1 ≤ j ≤ d, the141

mask denotes the spatial location of a clinically interpretable indicator, e.g., pigmented network, on the input image in142

the form of a a binary segmentation mask (see Figure 3 for instances of such a dataset). In our formulation, we refer143

to this dataset as Dataset A which can be used to learn predicting and locating clinical indicators.144

A naive idea is for training an explainable model is to use a suitable architecture and train one segmentation model per145

each indicator, e.g., U-Net Ronneberger et al. (2015), to predict indicator masks given the input. Previously, this idea146

has been used for training explainable ML models in medical domains Sharma et al. (2022). In our problem, we can147

use one U-Net for each of the d indicators and train them using Dataset A. Hence, we will have d image segmentation148

models that determine spatial locations of each indicator for input images. However, there are two shortcomings that149

makes this solution non-ideal. First, we will still need a secondary classification model to determine the diagnosis150

label from the indicators Murabayashi & Iyatomi (2019b) and coupling it with the segmentation models is not trivial.151

More importantly, the size of the Dataset A may not be large enough for training segmentation models. The challenge152

in our formulation is that privacy concerns and high annotation costs of medical image datasets limits the size of153

publicly available instances of Dataset A that are well-annotated with indicator masks. Moreover, only a subset of154

instances contains a particular type of indicator which makes the dataset sparse. Since we likely will encounter the155

challenge of attribute sparsity, we likely will face overfitting during testing stage. Increasing the size of Dataset A156

can be helpful but note that preparing Dataset A is a challenging task because existing medical records rarely include157

instances of indicator masks. Hence, a dermatologist should determine the absence and presence of each indicator and158

locate them on images in addition to a binary diagnosis label which is a time-consuming task. Our idea is to benefit159

from an additional dataset that is easier to prepare to make learning from a small instance of Dataset A feasible.160

Fortunately, there are larger publicly available datasets that are coarsely annotated, where only the binary diagnostic161

label is accessible. We aim to leverage such a large coarsely-annotated dataset to solve the corresponding segmentation162

tasks. Let DUL = {x′
i}N

i=1 denote such a dataset, where x′
i denotes an input image and M << N . We refer to this163

dataset as Dataset B in our formulation. Preparing Dataset B is much easier than preparing Dataset A because we164

only need to go though existing medical records to prepare Dataset B according to the filed diagnosis. We benefit165

from both Dataset A and Dataset B to train an architecture that learns to identify and localize clinically relevant166

indicators and then predict the diagnostic labels. In other words, we use Dataset B as a source of knowledge to167

overcome the challenge of having a small Dataset A. Note that we cannot benefit from unsupervised domain adaptation168

because we want to transfer knowledge from the unannotated domain to the annotated domain. For this reason, we169

use SSL for extracting robust features. Although Dataset B is not attributed finely, it is similar to Dataset A and170

transferring knowledge between these two datasets is feasible. We formulate a weakly supervised learning problem171

for this purpose. Specifically, we use SSL to train an encoder that can better represent input images using Dataset172

B. SSL would enable the encoder to extract features that can be used to locate the indicators. Additionally, we train173

multiple encoders to separately learn each indicator, so that we can apply unique operations to each encoder and174

improve performance. Finally, we concatenate the output feature vectors of these encoders and use the resulting175

feature vector to predict the binary labels yi, making the model’s prediction process similar to an expert.176

4 Proposed Architecture and Algorithm177

We outline our proposed architecture and its key components, emphasizing the roles of each module. The primary178

goal is to train the Bio-U-Net architecture to ensure the Grad-CAM heatmaps from ResNet’s last convolution layer179

align closely with the ground truth mask.180

4.1 Overview of the network architecture181

Figure 2 visualizes the proposed architecture. In short, we first train a base network for diagnostic classification182

and then generate a heatmap using the final convolution layer. We then use the generated heatmap as inputs to a183

segmentation module to localize each melanoma indicator. Our architecture, named Bio-U-Net, consists of four184

subnetworks:185
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Figure 2: Proposed architecture for explainable diagnosis of melanoma: the architecture is trained to simultaneously classify skin
lesion pictures using a CNN classifier and learn to localize melanoma clinical indicators on the input image using a U-Net-based
segmentation network that receives its input from the heatmaps that encode attention of the classification subnetwork.

(A) Our foundational network, referred to as subnetwork(1), is a ResNet50 backbone, pretrained on Ima- 186

geNet. Since we benefit from self-supervised learning to train subnetwork(1), we append a projection head at 187

the final ResNet50 layer to adapt the base architecture. The entire architecture of subnetwork(B) is denoted as 188

fCLR(·). Formally, the network’s operation can be expressed as fCLR(x′
i) = P1(E1(x′

i)), where x′
i ∈ DUL. 189

In this expression, E1(·) signifies the feature extraction capacity of ResNet50, and P1(·) represents our pro- 190

jection head, which consists of two fully connected layers that outputs a feature vector. 191

(B) For diagnostic classification, we employ a separate ResNet50 network, referred to as subnetwork(2). This 192

subnetwork utilizes the trained feature extractor, E1(·), from subnetwork(1). Subnetwork(2) can be depicted 193

as fRes(xi) = fc1(E1(xi)), where xi ∈ DL and fc1(·) is a fully connected layer for label prediction. 194

(C) We introduce a segmentation subnetwork, termed subnetwork(3), grounded on the U-Net architecture for 195

pinpointing clinical indicators. Instead of the standard U-Net encoder, we incorporate the trained encoder 196

E1(·) from subnetwork(2). Subnetwork(3) is described by fSeg(H), where H consists of 12 heatmaps. Each 197

heatmap is generated from a bottleneck unit of ResNet50 using Grad-CAM, considering that all three convo- 198

lutional layers within such a unit produce analogous localization maps with Grad-CAM. Hence, we extract 199

one representative heatmap from each bottleneck unit, leading to 3 heatmaps per block and a total of 12 for 200

the entire ResNet50 architecture. The decoder D1(·) mirrors E1(·) and crafts indicator masks, aiding precise 201

localization, with encoder-decoder connections similar to the orignal U-Net architecture. 202

(D) Subnetwork(4): After training a subnetwork(3) for all melanoma indicators, all the encoders — 203

Epigment, Eglobule, Enegative, Estreaks, and Emilia — are frozen to ensure their weights remain unchanged (for 204

a discussion on these indicators, please check the Experimental Setup section). For every image x ∈ DL, the 205

encoded vectors from each of the five encoders are computed and concatenated as: 206

v(x) = [Epigment(x), Eglobule(x), Enegative(x), Estreaks(x), Emilia(x)] .

This concatenated vector v(x) is then fed to a softmax layer S(·) which is exclusively trained: 207

S(v(x)) = final classification of x.
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In short, our architecture learns to classify the input images. Then, we use Grad-CAM to generate 12 attention208

heatmaps. These heatmaps do not necessarily show interpretable indicators, but are useful for classification which209

means that they should have correlations with features that expert clinicians use. Our idea is to feed these heatmaps to210

the segmentation subnetworks and generate the indicator biomarker localization masks using GRAD-CAM heatmaps.211

As a result, the architecture learns to generate explanations along with diagnosis labels. We can see that our full212

architecture can be trained using only Dataset A but as we discussed using SSL is necessary to mitigate overfitting.213

4.2 Self-Supervised Learning for Bio-U-Net214

We aim to train the Bio-U-Net architecture such that the Grad-CAM maps produced from the last convolution layer215

of E1 closely align with the ground truth mask. Note that the number of annotated images for certain biomarker216

indicators (e.g., the pigment network) is limited and other indicator appear more frequently a in existing datasets. This217

prominence can introduce biases, potentially overshadowing the detection of less frequent indicators. To tackle these218

challenges and to utilize both Dataset A and Dataset B effectively, we use SimCLR Chen et al. (2020) to benfit from219

self-supervised learning to enhance visual representations in two primary aspects:220

1. Diverse Feature Representations: SimCLR helps our model to recognize diverse image patterns. By con-221

trasting various transformations of the same image, the model captures the subtleties of less common indica-222

tors while not solely focusing on predominant diagnostic indicators.223

2. Leveraging Unannotated Data: SimCLR capitalizes on the valuable information in the unannotated dataset.224

As a result, the model learns richer representations, bolstering its capability to identify the indicators.225

As visualized in Figure 2, two independent data augmenters, T1(·) and T2(·), chosen randomly from transformations226

that include rotation, scaling, cropping, and flipping, generate augmented versions of Dataset B samples. This aug-227

mentation is crucial for determining the contrastive learning loss. Each image x′
i ∈ DUL yields two unique augmented228

images after processing through the augmenters. These images are fed into the shared encoder E1(·) and projection229

head P1(·) to produce two 128-length features. Each training cycle processes a minibatch of N input images, creat-230

ing 2N augmented images in total. We treat each pair of augmented images as positive samples, whereas the other231

2(N − 1) are considered negative samples. The contrastive loss is adopted as our semi-supervised loss:.232

LCLR = − log exp(sim(fCLR(T1(xi)), fCLR(T2(xj)))/τ)∑2N

k=1 exp(sim(fCLR(T1(xi)), fCLR(T2(xk)))/τ)
, (1)

where, sim(u, v) = uT v
∥u∥∥v∥ , k ̸= i, and τ is a temperature parameter. After training the encoders on Dataset B, the233

obtained knowledge can be transferred to Dataset A. Our complete training pipeline is presented in Algorithm 1.234

4.3 Bio-U-Net Baseline Training and Feature-driven Attention Heatmaps235

The baseline architecture of Bio-U-Net consists of two primary subnetworks: fRes(·) and fSeg(·).236

Classification and Localization: we first train fRes(·) for the task of skin lesion classification using a supervised237

learning strategy. This network is adept at predicting diagnostic labels with a high accuracy. To identify regions of238

the input image that correspond to the model’s decision, we employ Grad-CAM. While Grad-CAM can compute the239

gradient of the classification score with respect to the last convolutional feature map, it often highlights a broader area240

that doesn’t always align with the detailed annotations of experts which we try to improve upon in our work.241

Fusion of Semantic and Structural Information: wet meld the low-level details of an image, such as boundaries or242

textures of objects, with high-level semantic information, like the overall context of the object. This fusion ensures243

that the network not only focuses on the overall lesion area but emphasizes regions that align more closely with expert244

annotations. Since early convolutional layers can provide attention to low-level details and high-level layers give245

more semantic context, we benefit from all layer Grad-CAM heatmaps within the network. These maps illustrate246

how the network attends to the image at various abstraction levels. Merely averaging these attention maps might not247

provide precise information regarding the location of a specific indicator. Hence, we used the binary masks provided248

by experts and reconstructed these masks using the fSeg(·) subnetwork. Note that we optimized a model for each249

diagnostic indicator separately, ensuring detailed attention to each specific one, resulting in accurate localization and250
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subsequent interpretation. In devising this strategy, we adopted a new encoder E3(·) which mimics the architecture of 251

E1(·) to avoid interference with the parameters of E1(·). For every training image, we use a bottleneck block within 252

Grad-CAM to generate attention maps, giving us a set of localization masks, offering attention information at different 253

abstraction levels. This process can be represented as fGrad_CAM (bi, j), where bi is the bottleneck block and j is the 254

label index. As a result of our training pipeline, we use the attention maps created by the network to classify images, 255

to reconstruct semantic maps for the clinical indicators. Hence, when our model classifies an image to be cancerous, it 256

also provides masks that locate the relevant clinical indicators on the input image that has led to the model’s decision. 257

4.4 Refining Heatmap for Diagnostic Clarity 258

Algorithm 1 Proposed Architecture Training Approach
Inputs (xi, yi)N

i=1 ∈ DL, (x′
i, y′

i)
M
i=1 ∈ DUL, (bi)12

i=1
1: Initialize subnetworks:
2: fCLR(x′

i) = E1(P1(x′
i))

3: fRes(xi) = fc1(E1(xi))
4: fSeg(H) = D1(E1(H))
5: Initialize fGrad_CAM (bi, j) where bi ∈ E3
6: Define T1, T2 : two separate data augmentation operators
7: while j < d do
8: while Not stop do
9: Sample batch B1 = x′

i ∈ DUL

10: Generate fCLR(T1(B1)) and fCLR(T2(B1))
11: Update E1(·) and P1(·) using LCLR

12: Sample batch B2 = {(xi, yi) ∈ DL}
13: Compute fRes(B2) and update E1(·), fc1(·) using LBCE

14: Load optimal θ for E3, use fGradCAM (bi, j) to compute hi

15: Assemble H = (hi)12
i=1

16: Generate fSeg(H) and update E1(·), D1(·) by optimizing
the LSoftDice loss

17: end while
18: end while
19: Load five best encoder parameters onto

Epigment, Eglobule, Enegative, Estreaks, Emilia
20: Concatenate the outputs from the 5 encoders
21: Train a logistic regression model using the concatenated outputs

Refining the heatmaps generated by the model is of im- 259

portant for having accurate predicted masks. Improved 260

heatmaps not only elucidate model decisions but also 261

augment its diagnostic capability. The quality of these 262

heatmaps is pivotal for accurately pinpointing the re- 263

gions of interest that underpin the model’s predictions. 264

We introduce a novel strategy by feeding 12 distinct 265

heatmaps into the model. Originating from different 266

layers of the network, these heatmaps encapsulate a 267

plethora of features, especially capturing those minute 268

details that are often glossed over by classic explainabil- 269

ity techniques. By emphasizing on these granular as- 270

pects, our model demonstrates an enhanced sensitivity to 271

features that can be crucial for precise diagnostic evalu- 272

ations. Since inputting a multitude of heatmaps might 273

scatter the model’s focus, we employ the soft dice loss: 274

LSoftDice = 1 −
2

∑
P ixels ytrueypredict∑

P ixels y2
true +

∑
P ixels y2

pred

(2)

Distinct from conventional binary losses, the soft dice loss employs the predicted probabilities and facilitates a 275

smoother gradient flow, nudging the model to be more receptive to subtle intricacies. Our objective isn’t to perfect 276

segmentation outcomes using these heatmaps, but to hone the model’s attention to essential features. By synergizing 277

the multi-heatmap input strategy with the soft dice loss, we generate sharper and enhanced Grad-CAM heatmaps. This 278

refined visualization proffers diagnostic lucidity, offering a transparent window into the model’s decision-making. 279

5 Experimental Validation 280

We validate our architecture using real-world datasets. Our implementation code is provided as a supplement. 281

5.1 Experimental Setup 282

Datasets We used the ISIC dataset Codella et al. (2019); Tschandl et al. (2018). The dataset is a real-world repository 283

of dermatoscopic images, making it ideal for our experiments. 284

Dataset A We extracted data from Task 2 of the ISIC 2018 dataset. This task is designed to detect five critical 285

dermoscopic attributes: pigment network, negative network, streaks, milia-like cysts, and globules. The importance of 286

these attributes is underscored by their wide application in clinical melanoma detection processes. For a comprehensive 287

understanding of these biomarkers, readers can refer to the detailed ISIC 2018 documentation Codella et al. (2019); 288

Tschandl et al. (2018). Dataset A comprises 2594 images, each having binary labels for melanoma diagnosis. The 289

distribution of these attributes is represented in Table 1 which reveals the sparse nature of the attributes. 290

Dataset B We use Task 3 of ISIC 2019 which is considerably larger with 25331 images. Each image in Dataset B has 291

only binary diagnosis labels, without detailed annotations pertaining to the specific melanoma indicators. 292
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Dermoscopic Attribute Images with Attribute (Non-empty Masks) Images without Attribute (Empty Masks)

globules 603 1991
milia_like_cyst 682 1912
negative network 190 2404
pigment network 1523 881
streaks 100 2494

Table 1: Distribution analysis for ISIC 2018 Task 2 dataset, detailing images that possess or lack specific dermoscopic attributes.

Baselines for Comparison: While the ResNet50 subnetwork forms the backbone of Bio-U-Net, the modifications and293

layers introduced in Bio-U-Net are tailored to optimize both accuracy and interpretability in tandem. We juxtapose294

Bio-U-Net with ResNet50 when common interpretability techniques is applied on a ResNet50 trained for classification.295

We relied on the class activation mapping (CAM) methods, including, Layer-CAM, Grad-CAM, and Grad-CAM++.296

The utility of LIME on melanoma datasets necessitated its inclusion in our comparisons. Despite a rich literature297

on adopting AI for diagnosing melanoma, there are not many existing methods that offer interpretability. We could298

only compare against VAT Murabayashi & Iyatomi (2019a) which is a more advanced method and is the most similar299

method to our work. For all these techniques, interpretability was performed on the last layer of ResNet50.300

Evaluation Metrics: we aim for accurate pinpointing of melanoma indicators within images. We use the Continuous301

Dice metric Shamir et al. (2019) because it’s effective at comparing how closely our generated indicator masks match302

the human annotated ones. Additionally, we measure classification accuracy to understand how well we’re diagnosing303

melanoma. Our evaluation balances both the clarity of our model’s decisions and its ability to diagnose accurately.304

Implementation Details For details about the algorithm implementation, optimizations hyperparameters, and the used305

hardware, please refer to the supplementary material. Our code also includes all details for implementation.306

5.2 Performance Analysis307

We first analyze the influence of melanoma indicators on model diagnosis efficacy. Upon training, the ResNet50 sub-308

network and the Bio-U-Net architecture achieve classification accuracies of 76% and 82%, respectively. We observe309

that Bio-U-Net’s embedded subnetworks for segmentation and localization not only has the potential to enhance ex-310

plainability, but also demonstrably elevate classification performance. This observation is not surprising because the311

clinical protocols can be considered a gold standard diagnosis procedure that have emerged during decades of clinical312

procedures. We conclude that incorporating human expert knowledge into the deep learning pipeline can improve313

performance of deep learning in complicated tasks for which the size of the annotated training dataset is not large.314

Table 2 provides a comparison for the efficacy of localizing the five melanoma indicators, benchmarked using the315

Continuous DICE metric. Figure 3 provides localization results for a sample of input images to offer the possibility316

of visual inspection for the possibility of a more intuitive comparison. Additional examples are also provided in the317

Appendix. A close inspection of the results underscores several key observations:318

globules milia_like_cyst negative pigment streaks

fRes(·) + Grad-Cam 14.21 0.0 15.78 41.03 5.16
fRes(·) + Grad-Cam++ 7.95 0.67 13.67 26.85 3.5
fRes(·) + Layer-Cam 14.53 0.0 15.89 40.67 5.83
fRes(·) + Lime 3.36 1.65 4.00 13.26 2.00
VAT Murabayashi & Iyatomi (2019a) 2.05 0.76 2.33 19.36 1.5
Bio-U-Net 15.16 2.33 20.89 32.79 14.17

Table 2: Melanoma indicator localization performance comparison based on the Continuous DICE metric. Higher values indicate
better performance.

• CAM-Based Explainability Methods: The CAM-based methods, applied atop ResNet50, have a consistent319

performance pattern. For instance, ‘globules’ indicator is identified at 14.21%, 7.95%, and 14.53% rates using320
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Grad-CAM, Grad-CAM++, and Layer-CAM, respectively. Their general tendency to focus on central regions 321

yields almost circular areas of attention. The circularity suggests an overemphasis on dominant features, 322

potentially sidelining subtle yet crucial indicators, leading to deviation from human-centered interpretability. 323

• Lime: yields a Continuous DICE score of 3.36% for ‘globules’ and 1.65% for ‘milia_like_cyst‘. Its heatmap 324

is scattered with white pixels, indicating a widespread attribution which, although granular, is less focused. 325

This diffused pattern poses challenges when pinpointing specific regions pivotal for melanoma diagnosis. 326

• VAT: presents an innovative approach towards predicting explainable melanoma indicators using the 7-point 327

checklist, especially when faced with a limited number of labeled data. This method offers potential im- 328

provements in melanoma diagnosis accuracy, even rivaling expert dermatologists. When using Grad-CAM 329

to observe its attention detection regions, VAT’s performance seems suboptimal for certain features, mani- 330

festing scores such as a mere 2.05% for ‘globules’ and 19.36% for ‘pigment’. This observation suggests that 331

while VAT’s approach is unique and holds promise, there are areas in which its feature detection capability, 332

especially in the heatmaps generated from the final layer of ResNet50, could be enhanced. This is particularly 333

evident for more dispersed or nuanced features like ‘streaks’, where it only managed a score of 1.5%. 334

• Bio-U-Net: Bio-U-Net’s prowess stands out. It registers scores of 15.16% for ‘globules’, a marked 2.33% for 335

‘milia_like_cyst’—a clear rise from the near-zero performance by some CAM methods—and an impressive 336

20.89% for ‘negative’. The architecture reliably zeroes in on dispersed attention regions, resulting in cohe- 337

sive and pinpointed heatmaps. These figures, especially the leap in scores for indicators like ‘negative’ and 338

‘streaks’ to 20.89% and 14.17% respectively, underline Bio-U-Net’s adeptness at detecting indicators. 339

These analytical findings accentuate the pivotal role of integrating human-interpretable annotations into deep learning 340

training pipelines. They advocate for DNN architectural designs that not only enhance explainability but also leverage 341

these annotations to optimize the model’s overall efficacy for the designated tasks. 342

Figure 3: Localization of indicators for samples of dermatoscopic images. Presented from top to bottom is a sample input image ac-
companied by localization maps crafted by clinicians for several biomarkers indicators: globules, milia like cyst, negative network,
pigment network, and streaks. From left to right, visualizations cover the input image, the ground truth mask of the indicator, and
masks produced by Grad-CAM, Grad-CAM++, LayerCAM, Lime, VAT, and Bio-U-Net. CAM-based feature maps, underpinned
by a Resnet50 backbone trained for classification, reveal that Bio-U-Net generated masks are aligned with human-created masks.
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5.3 Ablative and Analytic Experiments343

We provide experiments to offer a deeper insight about our proposed architecture. We first study the effect of the344

architecture components on the downstream performance. We then offer experiments with alternative possibilities to345

demonstrate that our design is optimal.346

Ablative experiments on the components of the proposed architecture: We conducted an ablation study to inves-347

tigate the contribution of each component of Bio-U-Net on the localization performance. Table 3 presents the results348

of our ablative study when the subnetworks are removed from the architecture. We observe that when the subnet-349

work fCLR(·) is removed, the localization results for the “streaks” and “negative network” indicators were reduced.350

This observation was expected because “streaks” and “negative network” indicators pertain to only a small number of351

samples and appear in a scattered and discontinuous manner in the input images. We conclude that SSL is extremely352

helpful for localizing infrequent indicators that appear in a scattered and discontinuous manner in the input images.353

fSeg fCLR globules milia_like_cyst negative pigment streaks Mel

fRes(·) 14.21 0.0 15.78 41.03 5.16 0.76
fRes(·) + fSeg(·) ✓ 15.21 0.5 17.78 39.58 3.83 0.76
fRes(·) + fCLR(·) ✓ 15.11 1.0 17.44 39.53 12.67 0.80
Bio-U-Net ✓ ✓ 15.16 2.33 20.89 32.79 14.17 0.82

Table 3: Ablative study on the importance of subnetworks of Bio-U-Net on identifying indicators.

Figure 4 also presents generated masks from the ablative study on the subnetworks using a number of samples. Rows354

represent different indicators, while columns denote various network configurations in line with Table 3. We ob-355

serve that for the case of “globules” (first row), Bio-U-Net produces a sharp boundary compared to when either356

fCLR(·) or fSeg(·) is omitted. Both of these singular removals manifest in suboptimal mask outcomes. In the case357

of “milia_like_cyst” (second row), omission of fCLR(·) leads to a mask that is blurred and offset. Without fSeg(·),358

the mask aligns closely with the ground truth. Bio-U-Net’s rendition aligns almost perfectly with the ground truth.359

For “negative network” (third row), masks post fCLR(·) removal almost vanish, highlighting the component’s impor-360

tance. Omitting just fSeg(·) yields an accurate mask. In the “pigment network” instance (fourth row), characterized361

by scattered indicators, we observe that without fSeg(·), the network’s attention is on five specific dots. After fCLR(·)362

removal, focus narrows to two primary areas, indicating fCLR(·)’s role in broadening the network’s attention to dis-363

persed regions. Finally, for “streaks” (fifth row), we see that omitting fCLR(·) results in a smaller, concentrated364

mask. Without fSeg(·), there’s a larger, central-focused mask. Bio-U-Net divides its attention uniformly, mirroring365

the ground truth closely. In summary, contrasting different configurations accentuates each component’s critical role366

in Bio-U-Net to generate masks that are more similar to masks generated by expert dermatologists.367

Impact of updating fSeg(·) within one training epoch: A natural question for our optimization procedure is how368

often fSeg(·) should be updated during each training epoch for improved performance. Figure 5 shows how segmenta-369

tion performance metrics change when we update fSeg(·) more times across attributes. The first column in the figure370

gives the input data, the second column shows results from Bio-U-Net, and the next columns show results when we371

repeat fSeg(·) two, three, four and five times, respectively. Looking at the ‘streaks’ attribute, Bio-U-Net (in the second372

column) pinpoint two main areas quite well. We conclude that additional updating of fSeg(·) is not necessarily helpful.373

For a thorough analysis, Table 4 provides the impact of refining fSeg(·) on indicator localization performance across374

all dataset samples. We observe that updating fSeg(·) once can improve results for four of the five clinical indicator.375

But the downside is that the accuracy value for diagnosing melanoma drops. For instance, the best score for “pigment376

network” happens after the fourth repeat, but repeating also lowers the score for “streaks”. This observation indicates377

that additional updates can be helpful for some features but not for others. For this reason, we update fSeg(·) just once378

per iteration to keep our procedure consistent, simple, and straightforward.379

380

Using five separate encoders vs. standard multi-task learning We study whether using multi-task learning (MTL)381

can improve the results. Table 5 provides results for MTL. In this table, Bio-U-Net uses an encoder that predicts one in-382

termediate feature and the Melanoma label. Bio-U-Net-(Two-tasks) and Bio-U-Net-(Five-tasks) let the encoder predict383

two and five intermediate indicators, respectively. Bio-U-Net-(Six-tasks) lets the encoder predict all five intermediate384
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Figure 4: Generated masks for the ablative study on subnetworks: from top to bottom are samples of globules, milia_like_cyst,
negative network, pigment network, streaks. From left to right are input image, ground truth mask, and mask generated by fRes(·)
, fRes(·) + fCLR(·) ,fRes(·) + fSeg(·) , and Bio-U-Net, following Table 3.

Figure 5: Impact of updating fSeg(·): the columns, from left to right, display ground truth, one-repeated (Bio-U-Net), re-
peated once, repeated twice, repeated three times, and repeated four times. Vertically, the rows present samples of globules,
milia_like_cyst, negative network, pigment network, and streaks.

features and also adds the Melanoma label. From the table, it’s clear that adding the Melanoma label helps increasing 385

AUC to 84% and the scores for “pigment” and “streaks”. We conclude that the melanoma label is important to improve 386

performance. However, when we predict five or six tasks at once, the Continuous Dice Coefficient (cDC) for some 387

indicators becomes less. This observation indicates that when a model is trained to solve a number of tasks in an MTL 388

setting, it might not perform better on all tasks. One reason might be that when we optimize fSeg(·) for each indicator 389

in an MTL setting, the tasks might interfere with each other during training, leading to negative transfer across the 390

tasks. Hence, we decided to use a separate encoder for each intermediate feature to ensure indicators do not interfere 391

with each other. As a result, we observed improved cDC values, justifying our design choice. 392
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globules milia_like_cyst negative pigment streaks Melanoma

fRes(·) 14.21 0.0 15.78 41.03 5.16 0.76
Bio-U-Net (One Repeat) 15.16 2.33 20.89 32.79 14.17 0.82
Repeat 2 14.89 2.67 21.22 37.92 15.50 0.80
Repeat 3 14.84 0.16 16.33 39.01 12.83 0.82
Repeat 4 13.68 1.00 19.00 43.19 7.93 0.81
Repeat 5 13.26 1.83 16.89 38.04 11.5 0.80

Table 4: Evaluation of localization precision for the five clinical indicators using the Continuous Dice Coefficient (in percentage).

globules milia_like_cyst negative pigment streaks Melanoma

fRes(·) 14.21 0.0 15.78 41.03 5.16 0.76
Bio-U-Net 15.16 2.33 20.89 32.79 14.17 0.82
Bio-U-Net-(Two-tasks) 14.16 1.16 20.22 37.88 14.33 0.84
Bio-U-Net-(Five-tasks) 15.89 0.5 19.44 15.64 10.67 0.82
Bio-U-Net-(Six-tasks) 14.68 1.5 19.33 23.21 11.83 0.83

Table 5: Comparison of accuracy for five clinical indicators using MTL. The table shows Continuous Dice Coefficient percentages.

Effect of the mask generation threshold on the localization performance A major parameter that affects the lo-393

calization perofrmnace significantly is the process to generate binary masks from the architecture output. We study394

the effect of the threshold parameter value on the localization performance in Table ?. We observe that in the case395

of “Globus” indicator, performance remains consistently acceptable across diverse thresholds which underlines Grad-396

CAM’s efficacy for localizing this attribute. Such resilience indicates that the feature’s spatial localization remains397

largely unaffected by threshold perturbations. However, the challenges of detecting the minuscule cysts emerge in the398

case of “Milia”. Higher thresholds effectively suppress less relevant activations. This observation is substantiated by399

the table; average scores from the 0.5 to 0.9 thresholds outpace those between 0.0 and 0.4. This observation suggests400

that Milia’s dispersed nature results in a diffused attention map. Hence, selecting the right threshold can therefore401

enhance model fidelity. In the case of “Negative” indicator, optimal performance was obtained at the threshold value402

of 0.6, emphasizing the benefits of focusing on dominant heatmap regions for this feature. This observation implies403

that the most influential regions correlate well with expected feature representations. In the case of ‘̀Pigment” indi-404

cator, notable peaks are observed at threshold values 0.2 and 0.5 which suggests that pruning suboptimal activations405

augments the clarity of pigment-centric localization. Finaly, for the “Streaks” indicator, given its potential fragmented406

nature, streaks present a formidable challenge for gradient-based localization tools like Grad-CAM. This empirical407

exploration suggests an optimal performance at the 0.6 threshold value. Note also that leveraging Grad-CAM visual-408

izations from the final layer of ResNet assured consistent outcomes, minimizing significant deviations from the ground409

truth. A delicate balance between the intrinsic feature characteristics and heatmap preprocessing emerges as pivotal.410

In summary, this experiment provides the nuanced relationship between specific feature attributes and their heatmap411

representations. The decision to use a threshold of 0.6 in the actual experiment was guided by the varied behavior412

exhibited by different attributes, underscoring the complexity inherent in each feature.413

Thresholds 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Globus 15.16 15.21 14.78 15.31 14.05 13.78 15.26 15.63 14.73 17.00
Milia 2.33 2.29 4.29 1.01 0.06 3.85 3.84 3.79 2.67 4.19
Negative 20.89 21.22 16.00 23.44 14.11 18.22 22.22 20.66 15.88 18.44
Pigment 32.79 38.26 33.97 31.17 33.28 38.67 32.47 34.73 35.95 32.78
Streaks 14.17 14.33 12.16 13.83 13.00 14.33 18.66 14.50 15.16 13.33

Table 6: Dice coefficients across various thresholds for different features. The results reveal that each feature can have varying
performance across different thresholds. The reported values are Continuous Dice Coefficient percentages.

12



Under review as submission to TMLR

6 Conclusions 414

We developed an architecture for explainable diagnosis of melanoma using skin lesion images. Our architecture is 415

designed to localize melanoma clinical indicators spatially and use them to predict the downstream diagnosis label. 416

As a result, it performs the task similar to a clinician, leading to a human interpretable decision-making process. 417

We benefited from self-supervised learning to address the challenge of annotated data scarcity for our task because 418

it requires coarse annotations with respect to clinical indicators. Experimental results demonstrate that our model 419

is able to generate localization masks for identifying clinical biomarkers and generates more plausible and localized 420

explanations compared to existing classification architectures. Future works include further verification by clinicians 421

and extension to learning settings with distributed data and extensions to other similar clinical applications. 422
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A Implementation Details537

We provide details of our experimental implementation.538

A.1 Network Architecture539

Figure 6 provides a more detailed depiction of our architecture, specifically focusing on the dimensions or sizes of540

individual layers.541

Figure 6: Proposed architecture for explainable diagnosis of melanoma: the architecture is trained to simultaneously classify skin
lesion pictures using a CNN classifier and learn to localize melanoma clinical indicators on the input image using a U-Net-based
segmentation network. The classification branch receive its input from the segmentation path to enforce classifying images based
on clinical indicators.

A.2 Hardware and Optimization Parameters542

The complete framework has been instantiated through the utilization of the PyTorch library and underwent training on543

a system equipped with four NVIDIA RTX 2080Ti GPUs, each possessing 11GB of memory. Our chosen architecture,544

Bio-U-Net, incorporates ResNet50 as its encoder, leveraging pretrained weights from ImageNet to enhance its initial545

learning. Throughout the training phase, we employed the Adam optimizer with a consistent set of hyperparameters546

(learning rate = 1−4, weight decay = 1−4) across all tasks. This standardized optimization approach contributes to the547

stability and uniformity of the training process for various objectives within our framework.548

subnetwork(1)/SIMCLR subnetwork(2)/Resnet subnetwork(3)/Unet Bio-U-Net/Total
FLOPs 43.2 129.5 469.3 642.0

Table 7: Model Computational Complexity (in billion FLOPs).

The table above delineates the computational complexity of each subnetwork within the Bio-U-Net model, measured549

in billion FLOPs (Floating Point Operations per Second). Subnetwork 1, known as SIMCLR, requires 43.2 billion550

FLOPs and is generally associated with self-supervised learning in image recognition. Subnetwork 2, the Resnet, has551

a complexity of 129.5 billion FLOPs, a popular architecture in deep learning for image processing. Subnetwork 3, the552

Unet, with its 469.3 billion FLOPs, is integral for tasks like image segmentation, which is crucial in medical image553

analysis, such as identifying melanoma in skin lesion images. The total computational load of the Bio-U-Net model is554

642.0 billion FLOPs. Despite this high computational requirement, the model’s primary advantage lies in its one-time555
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training process. Once trained, it can efficiently process a variety of melanoma-related queries without the need for 556

retraining. This feature not only saves significant computational resources and time but also leverages the individual 557

strengths of each subnetwork for comprehensive and efficient melanoma analysis and diagnosis. 558

A.3 Optimization Implementation Details 559

Preprocessing: The initial phase of our training process involves the training of the subnetwork fCLR(·), wherein 560

Dataset B acts as the input. To ensure uniformity, each image within Dataset B undergoes resizing to dimensions 561

of 512 × 512. Subsequently, normalization is applied to achieve a zero mean and unit variance for the images. To 562

enhance the model’s generalization capabilities, we implement data augmentation techniques, encompassing random 563

operations such as rotation, cropping, adjustments to brightness, contrast, saturation, and flipping. 564

Within each mini-batch, a positive example is paired with 23 negative examples, resulting in a batch size set at 24. 565

This configuration aids in training the network with a more balanced representation of positive and negative instances. 566

Additionally, the temperature parameter τ is fixed at a value of 0.5, contributing to the stability and effectiveness of 567

the contrastive learning process during the training of fCLR(·). 568

We then perform the classification task using all of Dataset A’s data, each resized to 512 × 512, and normalize images 569

with zero mean and unit variance without performing any data augmentation. Due to the large size of the images and 570

memory cap, the batch size is set to 16. 571

Segmentation training: Upon the successful conclusion of the classification task, our next step involves the utiliza- 572

tion of Grad-CAM to generate an attention heatmap. This heatmap is created by inputting a bottleneck block along 573

with the designated target attribute index into the Grad-CAM process. Subsequently, we systematically replace each 574

bottleneck one at a time, repeating the process until all bottlenecks have been explored. 575

Following the acquisition of these heatmaps, our approach involves inputting them into the fSeg(·) subnetwork, which 576

is then trained to function as the reconstruction module. Throughout this training phase, a batch size of 8 is employed, 577

ensuring efficiency and effectiveness in the learning process of the fSeg(·) subnetwork. This iterative procedure, 578

incorporating Grad-CAM and subsequent training, plays a crucial role in refining the overall performance and inter- 579

pretability of our model. 580

Upon the conclusion of the network training phase, our subsequent step involves the generation of heatmaps through 581

the application of Grad-CAM. Specifically, we denote these heatmaps as fGradCAM (bi, j), where bi is an element of 582

the set E1(·). Here, E1(·) represents the encoder, and bi refers to the bottleneck block. The encoder is loaded with the 583

optimal checkpoint parameters obtained during training, and the index of the selected attribute is supplied as input. 584

To determine the final localization mask for the biomarker indicators, we specifically choose the heatmap associated 585

with the last block in the process. This meticulous selection ensures that the generated heatmap accurately reflects the 586

most relevant and discriminative features pertaining to the selected biomarker attributes. In essence, the Grad-CAM 587

approach, coupled with the utilization of optimal checkpoint parameters, enhances the precision and interpretability 588

of the final localization masks for biomarkers within our model. 589

B Additional Experimental Results 590

Illustrations from Figure 7 to Figure 10 provide additional instances of generated maps, enabling a more in-depth 591

examination and comparison. The visual representations in these figures showcase that our methodology consis- 592

tently produces maps that exhibit a notably higher degree of resemblance to those generated by dermatologists. This 593

observation underscores the effectiveness and accuracy of our approach in generating maps that closely align with 594

human-interpretable features. 595
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Figure 7: More examples of feature globules; Examples showing that fSeg can make the framework focus more on small important
regions rather than large ones
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Figure 8: More examples of feature Milia like Cyst; Example showing that fCLR can help framewrok find large region of small
scatter points and fSeg can make the framework focus more on small important regions rather than large ones
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Figure 9: More examples of feature negative network; Example showing that fSeg can make the framework focus more on small
important regions rather than large ones
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Figure 10: More examples of feature streaks; Example showing that fCLR can help framewrok find large region of small scatter
points and fSeg can make the framework focus more on small important regions rather than large ones
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