Under review as a conference paper at ICLR 2026

Dream2Learn: STRUCTURED GENERATIVE DREAMING
FOR CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

el
3
[*]
]
3]
-
o
)
wn

Ladybug

School bus

Figure 1: Dreamed classes generated by D2L. Examples of dreamed classes synthesized from their
corresponding real classes (left). These samples emerge as semantically distinct yet structurally
coherent representations in the generator’s latent space, forming intermediate concepts that enhance
the continual classifier’s generalization to future tasks.

ABSTRACT

Continual learning struggles with balancing plasticity and stability while mitigating
catastrophic forgetting. Inspired by human sleep and dreaming mechanisms, we
propose Dream2Learn (D2L), a generative approach that enables models, trained
in a continual learning setting, to synthesize structured additional training signals
driven by their internal knowledge. Unlike prior methods that rely on real data to
simulate the dreaming process, D2L autonomously constructs semantically distinct
yet structurally coherent dreamed classes, conditioning a diffusion model via soft
prompt optimization. These dynamically generated samples expand the classifier’s
representation space, reinforcing past knowledge while structuring features in
a way that facilitates adaptation to future tasks. In particular, by integrating
dreamed classes into training, D2L enables the model to self-organize its latent
space, improving generalization and adaptability to new data. Experiments on
Mini-ImageNet, FG-ImageNet, and ImageNet-R show that D2L surpasses existing
methods across all evaluated metrics. Notably, it achieves positive forward transfer,
confirming its ability to enhance adaptability by structuring representations for
future tasks.

1 INTRODUCTION

Humans possess a remarkable ability to learn continuously, consolidate past experiences, and gener-

alize knowledge to novel situations (Kumaran et al| 2016}, McClelland et al}[1995). This process is

also facilitated by memory replay and restructuring during sleep, where the brain synthesizes realistic
dreams derived from awake experiences to prepare for future challenges (Ji & Wilson|, 2007, [Walker]
I& Stickgold, [2004} [Singh et al.} [2022)). In contrast, deep learning models in continual learning (CL)
suffer from catastrophic forgetting, wherein previously acquired knowledge deteriorates when new
tasks are introduced (McCloskey & Cohenl [1989). Traditional CL methods attempt to address this

Under review as a conference paper at ICLR 2026

issue through rehearsal-based strategies, regularization techniques, or architectural modifications.
However, they often struggle to effectively balance stability and plasticity, thereby limiting both
long-term knowledge retention and the capacity for adaptation (De Lange & Tuytelaars, [2021} |Parisi
et al.|[2019). Among these, rehearsal-based strategies are widely used due to their ability to stabilize
learning by replaying stored examples. Yet, despite their effectiveness, such approaches diverge
significantly from how the human brain consolidates memory. Rather than relying on the exact
replay of past experiences, the brain engages in generative processes during dreaming, recombining
perceptual elements from daily life to construct novel and plausible future scenarios (Llewellyn,
2015; |Schwartz, 2003). This process allows for efficient knowledge reinforcement, enabling the brain
to improve generalization and anticipate future challenges. Translating this process into artificial
neural networks is non-trivial, as it requires the ability to synthesize meaningful and structured
representations of the previously learned knowledge without relying on external supervision.

To accomplish this task, in this paper we propose Dream2Learn (D2L), a generative dreaming
process that synthesizes training samples directly from the classifier’s internal representations. Unlike
WSCL (Sorrenti et al., [2024), which relies on surrogate real data to simulate dreams, and other
sleep-based approaches that primarily reinforce existing representations (Tadros et al.l 2022} [Harun
et al.; |2023), D2L autonomously constructs future-adaptive representations (the dreams, indeed),
ensuring task relevance and enhancing the model’s ability to generalize to new tasks.

As illustrated in Fig. [T} D2L generates structured dreamed classes that serve as intermediate represen-
tations, facilitating continual learning. Instead of merely blending past class features, these dreamed
samples form coherent yet distinct new concepts, expanding the representation space in a way that
supports future task adaptation. By integrating “dreamed classes" into training, the classifier learns
high-level reusable features, reinforcing forward transfer while mitigating catastrophic forgetting.
This process mirrors the role of REM sleep, where synthetic experiences help refine learned represen-
tations, maintaining long-term adaptability as new data distributions emerge.

Our experiments on Mini-ImageNet, FG-ImageNet, and ImageNet-R show that our strategy signifi-
cantly boosts performance when integrated with standard continual learning methods.

2 RELATED WORK

Continual Learning (CL) (De Lange et al., 2021} [Parisi et al., 2019) encompasses a family of
machine learning techniques that aim to develop models that learn incrementally while avoiding
catastrophic forgetting (McCloskey & Cohenl [1989). Common strategies include regularization
techniques (Kirkpatrick et al., 2017 [Zenke et al.,|2017), architectural modifications (Schwarz et al.,
2018} [Mallya & Lazebnik, 2018)), and replay-based methods (Robins| |[1995} Rebutffi et al., 2017}
Buzzega et al., 2020). More recent approaches enhance model robustness through contrastive
learning (Mai et al., 2021} |Cha et al.,|2021)) and latent space regularization (Frascaroli et al.| 2024)),
while experience replay optimizes sample selection for efficient memory retention (Aljundi et al.
2019; |[Chaudhry et al., 2021). Generative Replay (GR) (Shin et al., 2017} Rios & Itti, |2019; |[Liu
et al., 2020) has emerged as an alternative to buffer-based experience replay by synthesizing past
samples, but early methods often faced mode collapse and underperformed compared to traditional
replay. Although DDGR (Gao & Liu, |[2023), SDDR (Jodelet et al., 2023), and DiffClass (Meng et al.|
2024) improve sample fidelity, the role of GR remains retrospective: the generator mainly acts as a
memory proxy, reconstructing prior distributions for rehearsal rather than proactively reorganizing
representations. Inspired by cognitive neuroscience, several works explore memory mechanisms
modeled on brain function. DualNet (Pham et al 2021) and DualPrompt (Wang et al.l 2022a)
introduce parallel learning pathways, while CLS-ER (Arani et al.| [2022)) and FearNet (Kemker
& Kanan, 2018) implement short- and long-term memory systems. These approaches focus on
stabilizing representations during learning but do not incorporate offline processes for restructuring
knowledge. Sleep-based learning offers a complementary perspective, drawing from evidence that
wake-sleep cycles refine memory representations (Hinton et al., 1995} |Deperrois et al.l 2022). Sleep
Replay Consolidation (Tadros et al.l [2022)) applies Hebbian plasticity, and SIESTA (Harun et al.|
2023)) introduces intermittent consolidation to support online learning. WSCL (Sorrenti et al., [2024)
alternates wake and sleep cycles to simulate the benefits of dreaming for memory consolidation.
However, instead of generating internal experiences during sleep phases, it shapes the latent space of
the classifier using pre-defined representations, limiting the biological plausibility of the dreaming
process.

Under review as a conference paper at ICLR 2026

2 Dreaming Optim.
Oracle Net g’?

f |!:|Ii > Prompt

[e]eXeXe]e)
NNa

"
12

Figure 2: Overview of Dream2Learn. (1) During CL training, a deep neural network (DNN) learns
from real sensory images (the current task distribution plus the buffer) and dreamed samples produced
by a latent diffusion model (LDM). (2) The dreaming optimization process refines the LDM prompts,
with an Oracle Network providing a stopping criterion that prevents collapse. (3) Prompts generate
auxiliary classes: dreamed samples are not buffered, but rather enrich the representation space with
coherent latent clusters that foster knowledge reuse and adaptation (see Appendix E[)

D2L reframes generation as a prospective mechanism: rather than replicating past data for rehearsal,
generation is used to proactively structure the representation space towards upcoming tasks. It
introduces a self-sufficient generative dreaming mechanism, by generating additional training signals
from the classifier’s internal representations, ensuring task relevance and autonomous dreaming.
Through soft prompt optimization, it identifies semantically distinct yet structurally coherent classes
in the diffusion model’s latent space, which act as intermediate anchors that prime future learning
dynamics. Thus, unlike GR techniques that focus on reconstructing or augmenting past distribu-
tions (Jodelet et al |, 2023} Meng et al} [2024), D2L actively shapes future-adaptive representations,
transforming dreaming into a mechanism for fostering forward knowledge transfer and long-term
retention, enabling the classifier to adapt more effectively to unseen tasks.

3 METHOD

We formulate our continual learning setting as the problem of training a model Fy over a se-
quence of T visual classification tasks {71,...,7r}, with each task 7; associated to a dataset
Dy ={(x¢,1,Y,1) 5+ (Xt n,, Yt,n,) ;- Observations x; ; belong to an image space Z, and class sets
are disjoint across tasks, i.e., ¥ € C¢, C; N Cy, = &. The model’s output layer has as many neurons
as the total number of classes, i.e., >_ n;. Notation-wise, we will treat D; as a probability distribution,
when clear from the context.

We also assume the availability of a replay buffer B, where we store a limited number of samples from
past tasks for rehearsal, and of a pre-trained and frozen image generator G. Our approach requires
that G can be conditioned from both textual prompts (with the possibility of adding learnable tokens)
and input images; these requirements are easily satisfied by standard text-conditioned latent diffusion

models (LDM) — e.g., Stable Diffusion conditioned by CLIP embeddings (Ramesh et al.} [2022;
*2023

— with an image adapter 'l Formally, G : Z x P — Z, with P being
the space of sequences of textual token embeddings’| We employ G, with appropriate conditioning,
to synthesize dream images from past knowledge, thus creating an auxiliary synthetic data stream
for preparation to future tasks. At the beginning of our procedure, the model Fp is trained to learn
how to perform task 7. Since no knowledge is initially present (as € is randomly initialized), we
bootstrap the model by training it on task data D, optimizing a cross-entropy loss:

mein ﬁCE(Fg, Dl) = *]E(x,y)w’Dl [Ing(mX; 9)}) (1)

'We use h94/IP-Adapter
’In practice, G is also made stochastic by receiving a random noise ¢ ~ A(0,T), which is omitted for
brevity.

https://huggingface.co/h94/IP-Adapter

Under review as a conference paper at ICLR 2026

with p(y|x; @) being the likelihood of the correct class, given model parameters 6. During this
bootstrap phase, we also populate the buffer B via reservoir sampling (Lopez-Paz & Ranzatol 2017).

The bootstrapped classifier can now be used to synthesize new classes as “dream” variants of what
the model has seen up to this point. Dream classes are created by optimizing a learnable prompt p,
for each class ¢ € Cy, such that G(x, p.) transforms an input image x into a “dreamed” versions that
vaguely resemble target class c, thereby creating a synthetic distribution for a novel “dream class”.
The details about this optimization process are given in Sec.[3.1] Using this procedure, at task 7, we
introduce n; dream classes, i.e., as many as the current task’s actual classes. We indicate with Df the
distribution of dream classes defined at this stage.

Let D,, be the mixture distribution which equally samples from real data D; and from the dream
distribution D{. The classifier Fp is then fine-tuned on D,,, replacing D; in Eq.

On subsequent tasks 7, ¢ > 1, we can exploit the model’s knowledge on dream classes to ease its
learning of new classes. At the beginning of 7, we forward samples from each new class ¢ € C;
through the model, and map c to the output dream neuron with the largest average likelihood, as
in (Bellitto et al.;[2022). This allows to bootstrap each class maximizing the reuse of relevant features
and preventing disrupting weight updates (details on this procedure in Sec. [3.1). The dream classes
corresponding to the assigned classification heads are removed. We then train Fy on task data Dy
and on D§* |, the residual dream distribution obtained from D§ , by removing the discarded dream
classes, optimizing the following:

mein ECE(FQ,Dfil UDt) +£CL(F07Dt7B):|> (2)

where L¢ is an additional continual learning loss that counters forgetting and explicitly leverages
the replay buffer B for rehearsal. In practice, when sampling from the dream distributions D¢,
we employ items stored in the buffer as input conditions to the generator G, to increase variability
in the dreamed images. Importantly, dreamed samples are never added to B (refer to Appendix [E);
only their prompts are retained as part of a persistent dream inventory. After training on task 7, and
storing rehearsal samples into 53, we update the dream inventory for the next task, by optimizing
a new set of prompts {p. | ¢ € C;}, corresponding to new dream class distributions. The set of n;
newly-generated dream distributions is used to replace an equal number of existing dreaming classes
using again the mapping strategy in (Bellitto et al., [2022). We detailed the algorithm in Appendix [A]

3.1 DREAMING OPTIMIZATION AND MAPPING

The dreaming optimization process for task 7; consists of learning a proper conditioning for generator
G, in order to synthesize samples of novel concepts, expanding the model’s representation space
while preserving feature reuse.

For each real task class ¢ € Cy, we aim to generate a corresponding dreamed class c? that is distinct
from all real classes, while contributing to a structured representation in the latent space.

To achieve this, we optimize a learnable prompt p. that conditions the generator GG to synthesize
samples of class c?. Our objective is to identify a transformation trajectory in the LDM latent space
such that, given an arbitrary real image x as input to G, the learned prompt p. guides G to generate a
dreamed version x? that shares some characteristics with class ¢, while remaining distinct enough to
not be classified as c by the model Fy. This ensures that the dreamed samples populate a structured
latent space region that remains visually coherent but semantically separated from real classes.
Formally, we structure the dream class condition p. = [Psoft,c, Prext,c] With Prext,c being the fixed text
prompt describing the transformation for class ¢, as: “An image of class [c]”, and Psori,c
being a learnable soft prompt vector optimized to refine the conditioning for class c. Due to the
stochasticity of GG, multiple dreamed samples can be generated from the same real image x and
condition p.. Fig.[3]shows the dreaming optimization process in the LDM latent space.

Prompt optimization is performed by minimizing the cross-entropy loss:

min By p\p; [—log p(c|G(x,pe); 0)], 3)
where Dy is the subset of real samples belonging to class ¢, excluded from the optimization process:
this ensures that optimization is not conditioned on images already belonging to the target distribution,
allowing the process to gradually converge toward it while generating novel yet structured concepts.
As optimization progresses, dreamed samples populate a distinct but structured latent region, allowing
future tasks to benefit from enhanced feature reuse and transferability.

Under review as a conference paper at ICLR 2026

Pc= [Pte:l:t,c’ psoft,c] = [An image of class [C] ;psoft,c]
—

Figure 3: Visualization of the dreaming optimization process in the latent space of a LDM.
Given a real sample x, the optimization refines the soft prompt pyof, to steer the diffusion model
towards generating a dreamed counterpart that aligns with the target class c (e.g., a green mamba in
this example). The dreaming process explores latent regions where images are visually similar yet
distinct from target classes, forming novel intermediate classes (violet zones).

Dreaming optimization produces a set of conditioning prompts {p. | ¢ € C;} for each class of task 7;.
Next, we determine the output neurons to which the new dream classes should be mapped, replacing
a subset of dream classes from past tasks. The rationale for this step is to map new classes over
“similar” past dream classes, to ensure a smooth integration and prevent high gradients during training.
Thus, let C be the set of all output model neurons, and Creqt = |J,~; C; the set of outputs assigned
to real past tasks. We compute the set of possible destination neurons for the new dream classes as
Cavail = C \ Crear- Then, we obtain the output neuron ¢, for dream class c as:

Cou = argminEx~,, [—log p(clx;0)], @)
€€ Cavail

where G is the distribution associated to samples produced by G when conditioned with p.. In
practice, c? replaces the dream class to which it is more “aligned” in terms of classification likelihood.

Figure 4: Examples of dreaming optimization trajectories showing collapse. From left to right,
the images depict different stages of the optimization process. Each row illustrates the evolution of
three example images throughout the same prompt optimization. Initially, the generated samples
maintain meaningful variations. However, as optimization progresses, they become increasingly
similar, reducing diversity and leading to less effective representations.

3.2 ORACLE-GUIDED DREAMING OPTIMIZATION
One key challenge in the dreaming process is determining when to stop optimizing the soft prompt

Psoft,c t0 avoid collapse or excessive task-specific bias, as illustrated in Fig. El If optimization contin-
ues indefinitely toward the convergence of Eq.[3] the generated samples risk becoming redundant or

Under review as a conference paper at ICLR 2026

overfitting to the current task, reducing their effectiveness for future learning. To prevent this, we
introduce an oracle network that predicts the optimal stopping point by evaluating whether further
refinement of pgfi - contributes to meaningful latent representation learning. The oracle is trained
on a separate dataset Do, where stopping decisions are labeled based on the quality of generated
dreams.

Formally, we define the oracle network O, which takes as input a sequence of feature vectors extracted
over a temporal window of k optimization steps and provides a binary decision:

O(Z:) €{0,1} ®)
where Z; is the aggregated feature matrix over the last k£ generated samples:
Zi = [Zt—kt1,Zt—kt2s - - -5 Bt (6)

The components of each vector z; € R* are the following quantities, computed using the generator
G conditioned by Py, at the i-th optimization iteration of Eq.[3f 1) Ex [sim(x, G¢(x)], with sim(+)
measuring the structural similarity between the generated image G.(x) and its conditioning image
x, ensuring that the generated image maintains structural coherence; 2) Ex [fo(x)T fo (Gc(x))], i.e.,
the dot product between feature embeddings f extracted by the classifier Fy, capturing the alignment
between the representations of x and G¢(x); 3) Ex [Q(G.(x))], where Q computes the CLIP-based
Image Quality Assessment (Wang et al.| 2023)), evaluating the perceptual quality of the generated

image; 4) Ex [cr (fo (Gp(x)))} , .., the standard deviation of the feature embeddings, capturing the

diversity within generated samples. The optimization process halts once the oracle outputs 1 for n
consecutive iterations, ensuring robustness to fluctuations in individual predictions. Once trained, the
oracle network O is frozen and used across all tasks to determine when to stop the optimization of
Psoft,c» €nsuring that the dreaming process remains effective without collapsing. Additional training
details for the oracle are reported in Appendix [B]

4 EXPERIMENTAL RESULTS

4.1 BENCHMARKS AND TRAINING PROCEDURE

We evaluate D2L on three continual learning benchmarks, obtained by splitting image classification
datasets into a series of disjoint tasks:

* Split Mini-ImageNet (Vinyals et al.,2016): a widely used few-shot learning dataset, consisting of
ImageNet 100 classes with 600 samples each, commonly adapted for continual learning;

» Split FG-ImageNet (Russakovsky et al., 2015ﬂ a fine-grained image classification benchmark
with 100 animal classes from ImageNet, designed to evaluate continual learning methods on a more
challenging task.

* Split ImageNet-R (Hendrycks et al.l|2021) comprises various renditions of 200 ImageNet classes
(e.g., paintings, sculptures, embroidery, cartoons, etc.), with 150 samples each, introducing strong
intra-class variations.

In our experimental setup, half of the classes in each dataset are used for the first task, while the
remaining classes are equally split across the subsequent tasks. In particular, excluding the first task,
the Mini-ImageNet and FG-ImageNet datasets consist of 10 tasks with 5 classes each, whereas the
ImageNet-R dataset consists of 5 tasks with 20 classes each.

In terms of training procedure, we adopt ResNet-18 (He et al.,2016) as the backbone and train for 10
epochs per task using SGD (learning rate 0.03, batch size 32). Given the large number of classes, we
use buffer sizes of 2000 and 5000.

Prompt optimization is performed in Stable Diffusion’s text space via cross-entropy loss, guided by
classifier predictions. We use Adam (learning rate 0.1, batch size 1), with the number of iterations
controlled by an oracle network. The oracle is a single-hidden-layer MLP trained on a labeled dream
quality dataset Do (see Sec. [3.2) using Adam (0.001, 500 epochs). It stops optimization when a
termination signal is predicted in at least n = 2 of the past k = 3 iterations. We use ImageNet-R as
Do when testing on Mini-ImageNet or FG-ImageNet, and FG-ImageNet for ImageNet-R. Results
are for class-incremental setting, reported as mean + std over 5 runs.

3Split FG-ImageNet is derived from |https://www.kaggle.com/datasets/ambityga/
imagenet100

https://www.kaggle.com/datasets/ambityga/imagenet100
https://www.kaggle.com/datasets/ambityga/imagenet100

Under review as a conference paper at ICLR 2026

4.2 RESULTS

To assess the impact of our method, we evaluate its effectiveness when applied in conjunction
to continual learning state-of-the-art models. Since the dream generation mechanism relies on
combining learned prompts with past experiences stored in the buffer, we apply it exclusively in
conjunction with rehearsal-based methods. Specifically, we consider DER++ (Buzzega et al., 2020),
ER-ACE (Caccia et al.,2022), and ER (Chaudhry et al.l|2019b), comparing their performance with
and without the dreaming generation. Tab.[I| presents results in terms of final average accuracy (FAA)
in the class-incremental setting, i.e., the accuracy on a separate test set including all task classes,
measured after training on the last task, with no knowledge on task identity at inference time. Our
approach leads to a significant improvement in performance across all benchmarks, demonstrating
the importance of mimicking human dreaming for mitigating forgetting.

Table 1: Class-incremental final average accuracy (FAA) of rehearsal-based methods, with and
without dreaming, for buffer sizes 2000 and 5000.

‘ Mini-ImageNet FG-ImageNet ImageNet-R
‘ 2000 5000 2000 5000 2000 5000
ER 27.91+£3.49 34.21£3.04 | 21.08£2.38 22.214+3.44 | 7.68£0.97 10.691+1.29

—D2L | 31.18+2.74 39.75+2.61 | 23.53£1.98 32.73+£3.39 | 8.67£0.66 11.84:+0.95
DER++ 14.74£2.14 26.92+£4.72 | 14.43+£3.68 23.86+2.54 | 6.08+0.81 8.29+£1.15

—D2L | 21.06+5.45 31.91+5.19 | 18.86+£3.22 25.38+2.17 | 8.60£1.00 10.89£1.56
ER-ACE | 33.26£3.51 40.59£1.20 | 24.794+5.02 30.16+4.97 | 7.09+0.59 9.44+0.70

—D2L | 40.90£0.95 47.324+0.89 | 31.57+1.20 38.50£1.01 | 9.54+0.39 12.51+0.56

Table 2: Forward Transfer (FWT) of rehearsal-based methods, with and without dreaming, for
buffer sizes 2000 and 5000.

‘ Mini-ImageNet FG-ImageNet = ImageNet-R

‘ 2000 5000 2000 5000 2000 5000

ER -2.58 -1.62 -1.88 -1.52 | -1.32 -0.64
—D2L | +0.33 +0.47 | +1.79 +1.19 | +0.24 +0.14
DER++ -1.55 -2.00 -1.36 -2.48 | -1.03 -1.83
—D2L | +0.97 +0.71 -0.13 +1.86 | +0.30 +0.24
ER-ACE | -1.99 -2.45 -2.00 -2.16 | 246 -1.27
—D2L | +1.05 -1.58 +1.09 +0.08 | -0.25 +0.17

One of our key claims is that our dreaming mechanism enhances a model’s ability to prepare for
future tasks. To validate this, we evaluate forward transfer (FWT) (Lopez-Paz & Ranzato, [2017)),
measuring how well the model leverages prior knowledge when learning new tasks. FWT is defined
as the average difference between the accuracy on a task 74 by a model trained up to 7;_1, and the
accuracy on 7y by a randomly initialized model. Since a continually trained model often predicts
known classes, FWT is typically negative. Table [2] shows that dream generation improves FWT, with
D2L achieving positive forward transfer in some cases, similar to WSCL. However, WSCL achieves
positive forward transfer by relying on additional real data to simulate dreams, whereas D2L internally
generates these dreams by leveraging the model’s own internal knowledge. Furthermore, we conduct a
comprehensive performance analysis by comparing the best performing version of our approach from
Tab.[1|(i.e., ER-ACE + D2L) with state-of-the-art continual learning methods: ['| GSS (Aljundi et al.,
2019), A-GEM (Chaudhry et al.l 2019a), iCaRL (Rebutffi et al.,2017), FDR (Benjamin et al.| 2019),
BiC (Wu et al., 2019), and RPC (Pernici et al., 2021). Results are shown in Table@ To contextualize
these results, we also define a lower bound as training without any countermeasure to forgetting
(Fine-tune). ER-ACE + D2L outperforms state-of-the-art methods across all examined datasets and

*Results were obtained using the original code released alongside the corresponding papers.

Under review as a conference paper at ICLR 2026

Table 3: Comparison with state-of-the-art methods, in terms of class-incremental final average
accuracy (FAA), for buffer sizes 2000 and 5000.

Method ‘ Mini-ImageNet FG-ImageNet ImageNet-R
Fine-tune ‘ 6.72+1.20 6.98+0.10 4.46+0.15
Buffer-based methods
‘ 2000 5000 2000 5000 2000 5000

GSS 6.40+0.38 5.71+0.08 8.07+0.26 9.23+0.85 | 5.084+0.13 4.29+0.32
A-GEM 6.78+1.13 7.45+0.76 6.20+1.11 6.11+1.13 | 4.694+0.03 6.2940.84
RPC 9.22+0.30 9.02+0.24 8.13+0.11 7.41£0.74 | 5.71+£0.03 6.3240.80
DER++ 14.74+£2.14 26.92+4.72 | 14.4343.68 23.864+2.54 | 6.084+0.81 8.29+1.15
FDR 1546+£1.10 11.58+£0.96 | 9.17+£2.40 12914095 | 5.71+0.18 5.77+0.10
iCaRL 16.46+£0.51 16.50+0.33 | 8.54+0.88 8.86+0.25 | 1.974+0.28 1.91+0.29
ER 27914349 3421+£3.04 | 21.084+2.38 22.214+3.44 | 7.68+0.97 10.69+1.29
BiC 30.56+7.41 37.84+0.61 | 27.834+2.75 32.2940.70 | 7.15+1.14 8.60+2.07
ER-ACE 33.26+3.51 40.59+1.20 | 24.7945.02 30.164+4.97 | 7.0940.59 9.44+0.70

ER-ACE +D2L | 40.90+£0.95 47.32+0.89 | 31.57£1.20 38.50£1.01 | 9.54+0.39 12.51+£0.56

Table 4: Ablation on the oracle. Results 1able 5: Impact of dream class updates. Com-
on Mini-ImageNet comparing our method with ~ Parison on Mini-ImageNet of different dreaming

Fixed optimization. strategies.
‘ Buffer size b) ‘ Buffer size
Method reaming
e | 2000 5000 | 2000 5000

ER-ACE baseline | 33.2643.51 40.59+1.20 Nodreams | 33.36£3.51 40.59+1.20
+ Fixed optim. | 38.9440.97 46.4140.55 Atbeginning | 36.93+2.09 41.59+2.54
+ Oracle (D2L) | 40.90+0.95 47.32+0.89 Incremental 36.85+1.16 43.87+2.90
D2L 40.90-£0.95 47.3240.89

buffer sizes, with significant margins. Note that our method targets continual learning from scratch
with a randomly initialized convolutional backbone, without external pre-training. By contrast, a
separate line of work relies on pre-trained models, either via full/partial fine-tuning (Ramasesh et al.,
2021} Boschini et al.|[2022} |Ostapenko et al.| |2022)) or prompt tuning (Wang et al., 2022bj; Smith et al.|
2023)) that adapts frozen ViT backbones. These approaches operate in a different evaluation regime,
adapting an already rich representation and thus conflating the effect of the CL strategy with benefits
from large-scale pre-training and transformer inductive biases. In our setting, the classifier’s emergent
knowledge directly guides the dreaming generation process, so mixing regimes would not yield an
informative head-to-head comparison. For clarity and fairness, we therefore restrict comparison to
methods that, like ours, train a CNN backbone from scratch under the same protocol constraints.

4.3 MODEL ANALYSIS

Model analysis is primarily conducted to assess the contribution of the dream generation strategy. The
ER-ACE model (Chaudhry et al.,2019b), identified as the top-performing method when combined
with our approach (see Tab. [I)), is used as the baseline model for this study. All experiments are
performed on the Mini-ImageNet dataset (Vinyals et al., 2016).

We first ablate the oracle and consider Fixed optimization, where prompt updates stop once the
classifier predicts the target class for four consecutive steps. This criterion assumes the trajectory has
reached and stabilized in the target representation space, but it limits adaptability; our full method
avoids this issue and achieves superior performance (Tab.[). Then, we assess how updating dreams
during the sequential learning of tasks affects the overall performance. Our default strategy creates
new dream classes at the end of each task—equal in number to that task’s classes—and replaces

Under review as a conference paper at ICLR 2026

an equal number of old ones, keeping the classifier output size fixed. We compare this with three
variants: (1) No dreams, a baseline without generated classes; (2) At beginning only, where dream
classes are generated once during the first task and reused throughout; and (3) Incremental, which
accumulates dream classes across tasks, expanding the output layer with weights sampled from
N (jiw; 02,) based on existing neurons. As shown in Tab. |5} our replacement strategy yields the best
results. Fixed dreams limit forward transfer by excluding later tasks, while incremental expansion
likely degrades performance due to increased task complexity.

We also compare D2L. with WSCL (Sorrenti et al.} 2024) on Mini-ImageNet under different buffer
sizes. While WSCL achieves slightly higher accuracy (compare to Tab. d): 42.38% (+1.16) with
a 2000-sized buffer and 48.30% (£2.60) with a 5000-sized buffer, it does so by using an auxiliary
dataset to pre-activate future task heads. This mechanism, while effective, does not simulate a
true dreaming process. In contrast, D2L explicitly models dreaming by generating task-relevant
samples guided by the classifier’s internal knowledge—mirroring how humans rely on memory-driven
simulations to reinforce learning.

To further validate our method, we also replaced the dreaming mechanism with alternative strategies
for creating class blends, namely Mixup-based methods applied either in image space or in latent/text
diffusion space. The corresponding results are reported in the Appendix [C| Finally, we want to
support that dreams generated by D2L come from the classifier’s internal knowledge and cannot
unintentionally resemble future classes. To this aim we assess if dreams are truly out-of-distribution
(OOD) with respect to the target dataset. In particular, we generate dreams using our method on the
Mini-ImageNet benchmark and classify each generated image using a ViT-B/16 model pre-trained on
ImageNet-1K. This model acts as an external expert not involved in the training process, mapping
each dream to one of the 1000 ImageNet classes. We then measure how many dreams are classified
into the 100 classes used in Mini-ImageNet, and how many are mapped to the remaining 900 classes.
Results show that only 10.11% of the dreams are assigned to the 100 classes in Mini-ImageNet, while
89.89% are mapped to the other 900 classes. This roughly matches the underlying class prior (10%
vs. 90%), suggesting that dreams are OOD relative to Mini-ImageNet images and therefore cannot
qualitatively anticipate the target classes.

5 LIMITATIONS

While D2L—generated dreams are qualitatively distant from the target dataset, a residual limitation is
the potential categorical leakage of future-class information. To quantify this, we performed a leak
test using a joint classifier trained on all classes in the sequence. A leak is counted when a future
class is assigned to a head previously seeded by a dream that the joint model also maps to that class.
On MinilmageNet experiments, we observe 1.76 leaks on average (3.93% of class replacements). We
remark that these events are not only rare but also contingent on the premise that Stable Diffusion
can faithfully synthesise future classes—a premise the OOD-distribution experiment fails to support.
Nonethenless, mitigation of this theoritical leakage could involve unlearning future-class concepts
from the diffusion model—e.g., through concept-erasure or negative-gradient editing—prior to
prompt optimization.

6 CONCLUSION

In this work, we introduced Dream2Learn, an approach inspired by the ability of the human brain
to consolidate past experiences and anticipate future ones through dreaming. Our method pairs a
classification network with a generative model to synthesize structured training signals, reinforcing
past knowledge and enhancing forward transfer—allowing the model to leverage prior knowledge
to improve learning on future tasks. Experiments on standard continual learning benchmarks show
that dreaming helps mitigate forgetting and can support feature learning by expanding the classifier’s
representation space, turning negative forward transfer into positive. Using soft prompt optimization
within a latent diffusion model, D2L generates novel yet coherent classes with the oracle model
helping to maintain sample quality by preventing collapse.

In summary, D2L offers a practical approach to structuring model knowledge over time. By generating
intermediate representations, it illustrates the potential of synthetic data to support abstraction and
transfer in continual learning.

Under review as a conference paper at ICLR 2026

Reproducibility Statement. All CL experiments are implemented on top of the Mammoth frame-
work https://github.com/aimagelab/mammoth; baseline results are obtained using the
implementations provided within the framework under the same memory and protocol constraints.
Data pre-processing steps, data splits, used hyperparameters mirroring our setup are documentend
in the Appendix [F} Assumptions, architectural choices and training details for the oracle network
are explained in the main text and expanded in the Appendix The full codebase for prompt
optimization, generation and experiment scripts will be publicly released upon acceptance.

REFERENCES

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient Based Sample Selection
for Online Continual Learning. In Advances in Neural Information Processing Systems, 2019.

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general con-
tinual learning method based on complementary learning system. In International Confer-
ence on Learning Representations, 2022. URL |https://openreview.net/forum?id=
uxxXEFrDwrE7Yl

Giovanni Bellitto, Matteo Pennisi, Simone Palazzo, Lorenzo Bonicelli, Matteo Boschini, and Simone
Calderara. Effects of auxiliary knowledge on continual learning. In 2022 26th International
Conference on Pattern Recognition (ICPR), pp. 1357-1363. IEEE, 2022.

Ari S Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing networks in
function space. In International Conference on Learning Representations Workshop, 2019.

Matteo Boschini, Lorenzo Bonicelli, Angelo Porrello, Giovanni Bellitto, Matteo Pennisi, Simone
Palazzo, Concetto Spampinato, and Simone Calderara. Transfer without forgetting. In European
Conference on Computer Vision, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
Experience for General Continual Learning: a Strong, Simple Baseline. In Advances in Neural
Information Processing Systems, 2020.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New Insights on Reducing Abrupt Representation Change in Online Continual Learning. In
International Conference on Learning Representations Workshop, 2022.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In IEEE Interna-
tional Conference on Computer Vision, 2021.

Arslan Chaudhry, Marc’ Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
Lifelong Learning with A-GEM. In International Conference on Learning Representations
Workshop, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’ Aurelio Ranzato. On tiny episodic memories in continual
learning. In International Conference on Machine Learning Workshop, 2019b.

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz. Using hindsight
to anchor past knowledge in continual learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2021.

Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from non-
stationary data streams. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 8250-8259, October 2021.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Nicolas Deperrois, Mihai. A. Petrovici, Walter Senn, and Jakob Jordan. Learning cortical representa-
tions through perturbed and adversarial dreaming. Elife, 11, Apr 2022.

10

https://github.com/aimagelab/mammoth
https://openreview.net/forum?id=uxxFrDwrE7Y
https://openreview.net/forum?id=uxxFrDwrE7Y

Under review as a conference paper at ICLR 2026

Emanuele Frascaroli, Riccardo Benaglia, Matteo Boschini, Luca Moschella, Cosimo Fiorini,
Emanuele Rodola, and Simone Calderara. Latent spectral regularization for continual learning.
FPattern Recognition Letters, 184:119-125, 2024.

Rui Gao and Weiwei Liu. Ddgr: Continual learning with deep diffusion-based generative replay. In
International Conference on Machine Learning, pp. 10744-10763. PMLR, 2023.

Md Yousuf Harun, Jhair Gallardo, Tyler L. Hayes, Ronald Kemker, and Christopher Kanan. SIESTA:
Efficient online continual learning with sleep. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.net/forum?id=MgDV1BWRRV.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
2016.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340-8349, 2021.

Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The" wake-sleep" algorithm
for unsupervised neural networks. Science, 268(5214):1158-1161, 1995.

Daoyun Ji and Matthew A. Wilson. Coordinated memory replay in the visual cortex and hippocampus
during sleep. Nat Neurosci, 10(1):100-107, Jan 2007.

Quentin Jodelet, Xin Liu, Yin Jun Phua, and Tsuyoshi Murata. Class-incremental learning using dif-
fusion model for distillation and replay. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 3425-3433, 2023.

Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learning. In
International Conference on Learning Representations, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
2017.

Dharshan Kumaran, Demis Hassabis, and James L. McClelland. What Learning Systems do Intelligent
Agents Need? Complementary Learning Systems Theory Updated. Trends Cogn Sci, 20(7):512—
534, Jul 2016.

Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D Bagdanov,
Shangling Jui, and Joost van de Weijer. Generative feature replay for class-incremental learning. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops,
pp. 226-227, 2020.

Sue Llewellyn. Dream to Predict? REM Dreaming as Prospective Coding. Front Psychol, 6:1961,
2015.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, 2017.

Simian Luo, Yiqgin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinério Passos, Longbo Huang,
Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module. arXiv
preprint arXiv:2311.05556, 2023.

Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. Supervised contrastive replay: Revis-
iting the nearest class mean classifier in online class-incremental continual learning. In /IEEE
International Conference on Computer Vision and Pattern Recognition Workshops, 2021.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
7765-7773, 2018.

11

https://openreview.net/forum?id=MqDVlBWRRV

Under review as a conference paper at ICLR 2026

James L McClelland, Bruce L McNaughton, and Randall C. O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychol Rev, 102(3):419-457, Jul 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of learning and motivation, 1989.

Zichong Meng, Jie Zhang, Changdi Yang, Zheng Zhan, Pu Zhao, and Yanzhi Wang. Diffclass:
Diffusion-based class incremental learning. In European Conference on Computer Vision, pp.
142-159. Springer, 2024.

Oleksiy Ostapenko, Timothee Lesort, Pau Rodriguez, Md Rifat Arefin, Arthur Douillard, Irina
Rish, and Laurent Charlin. Continual learning with foundation models: An empirical study of
latent replay. In Sarath Chandar, Razvan Pascanu, and Doina Precup (eds.), Proceedings of The
1st Conference on Lifelong Learning Agents, volume 199 of Proceedings of Machine Learning
Research, pp. 60-91. PMLR, 22-24 Aug 2022.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 2019.

Federico Pernici, Matteo Bruni, Claudio Baecchi, Francesco Turchini, and Alberto Del Bimbo.
Class-incremental learning with pre-allocated fixed classifiers. In International Conference on
Pattern Recognition, 2021.

Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow. Advances
in Neural Information Processing Systems, 2021.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International conference on learning representations, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv e-prints, 2022.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2017.

Amanda Rios and Laurent Itti. Closed-loop memory gan for continual learning. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence, pp. 3332-3338, 2019.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 1995.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211-252, 2015.

Sophie Schwartz. Are life episodes replayed during dreaming? Trends Cogn Sci, 7(8):325-327, Aug
2003.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual
learning. In International Conference on Machine Learning, 2018.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Dhairyya Singh, Kenneth A. Norman, and Anna C. Schapiro. A model of autonomous interactions
between hippocampus and neocortex driving sleep-dependent memory consolidation. Proceedings
of the National Academy of Sciences of the United States of America, 119(44), November 2022.
ISSN 0027-8424.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 11909—11919, 2023.

12

Under review as a conference paper at ICLR 2026

Amelia Sorrenti, Giovanni Bellitto, Federica Proietto Salanitri, Matteo Pennisi, Simone Palazzo, and
Concetto Spampinato. Wake-sleep consolidated learning. IEEE Transactions on Neural Networks
and Learning Systems, pp. 1-12, 2024. doi: 10.1109/TNNLS.2024.3458440.

Timothy Tadros, Giri P Krishnan, Ramyaa Ramyaa, and Maxim Bazhenov. Sleep-like unsupervised
replay reduces catastrophic forgetting in artificial neural networks. Nature communications, 13(1):
7742, 2022.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, 2016.

Matthew P. Walker and Robert Stickgold. Sleep-dependent learning and memory consolidation.
Neuron, 44(1):121-133, Sep 2004.

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and
feel of images. In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
2555-2563, 2023.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In Proceedings of the European Conference on Computer Vision,
pp. 631-648. Springer, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 139-149,
June 2022b.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, 2019.

Songlin Yan, Fan Zhou, Rui Zhao, Mengyang Yang, Xiaojun Chang, and Yi-Dong Zhang. Ddgr:
Continual learning with deep diffusion-based generative replay. In Proceedings of the 40th
International Conference on Machine Learning (ICML), 2023.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, 2017.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

13

Under review as a conference paper at ICLR 2026

APPENDICES

A METHOD ALGORITHM

Algorithm [l|delineates the D2L pipeline introduced in Sec. |3} For clarity of presentation, the pipeline
is simplified by omitting the initial and final tasks. During the initial task, the absence of dreaming
classes reduces the training loss to Eq.[I] while the final task does not perform dreaming generation

and optimization as these phases are unnecessary.

Algorithm 1 Dream2Learn (D2L)

Notation
T, the number of task
C;, the classes of task ¢
Fp, the continual classifier
G, the generator
B, the buffer
D,, the real data distribution at task ¢
D | the dream distribution used during continual training at task ¢
Dy, the distribution of the dream classes to be removed at task ¢
D¢ |, the residual dream classes after mapping at task ¢
X, a real image
x?, a generated dream image
D¢, the learnable prompt associated with class ¢
Dﬁ .» the distribution of dreams generated after task ¢ from class c
Dﬁ X the distribution of dreams generated after task ¢ from classes C;

D¢, the distribution of all dreams after task ¢

I: fort =2toT — 1do

22 Dy < Mapping(Fg, Dy)

3 D, + Df_ \ D}

4 for all epochs do

5: lOSS(—EcE(Fg,Dgil UDt)—‘rECL(Fg,Dt,B)
6: B < ReservoirSample(B, Dy)
7 update 6

8: end for

9: for all c € C; do
10: repeat
11: x? + G(x,p.)
12: loss < Logp(Fa, (x%,¢))
13: update p.
14: stop + Oracle(x,x?)
15: until stop
16: D . < Generate(G, B, p.)

17: end for

18: Dgct — UC'Df_’C

19: Dj + Mappmg(Fg,Df,Ct)
20: Di« (Df*,\ Dj) U DY,
21: end for

> real classes mapping

> CL training

> dreaming optimization

> dreaming generation

> dream classes mapping

B ORACLE TRAINING AND GENERALIZATION

In the main paper (Sec. [3.2) we introduced the oracle network O, whose goal is to determine the
stopping point during prompt optimization. The formal definition of O is already provided in the

main manuscript; here we detail its training procedure.

14

Under review as a conference paper at ICLR 2026

B.1 DATASETS

To avoid semantic overlap between the oracle’s training data and the continual evaluation benchmarks,
we always trained the oracle on classes from a disjoint dataset. Concretely:

* When the benchmark was Mini-ImageNet or FG-ImageNet, the oracle was trained on
dreaming trajectories from ImageNet-R;

* When the benchmark was ImageNet-R, the oracle was trained on dreaming trajectories from
FG-ImageNet.

This ensures that the oracle never sees classes related to the benchmarks in which it is applied, thus
preventing task-specific bias.

Each trajectory was obtained by optimizing the soft prompt pyof, for up to 500 steps. The stopping
point was labeled as the iteration at which generated samples exhibited both high perceptual quality
and sufficient diversity, while avoiding collapse or excessive specialization.

B.2 FEATURES

The oracle network takes as input feature sequences Z; = [z;—k+1,...,%t], with each z; € R*
summarizing properties of the generated samples at iteration 4. In order to train the oracle network O,
we initially designed a pool of 25 candidate features capturing different aspects of the generation
process. These features can be grouped into three broad categories:

* Image-level quality metrics. We compute average SSIM, PSNR, and MSE among pairs
of generated images at the same optimization step. These same metrics are also computed
between each generated image and its conditioning (target) image. We also compute CLIP-
iQA scores (quality, complexity, naturalness, realism) on both generated and target images.

* Feature-based statistics. We extract classifier feature-level statistics: cosine similarity
and MSE computed either among generated images or between generated and conditioning
images. We therefore computed embeddings standard deviation on both generated and target
images.

* Classifier-based uncertainty signals. From the target classifier logits we compute statistical
descriptors including variance, entropy, range (max—min), and kurtosis, averaged across
generated samples. We also include the cross-entropy loss signal used during prompt
optimization.

To reduce redundancy and identify the most informative subset, we performed a SHAP-based feature
importance analysis across multiple trajectories. Four features consistently ranked highest and were
retained for the oracle used in the main experiments:

1. SSIM between conditioning and generated images (structural fidelity).

2. Cosine similarity between classifier embeddings of conditioning and generated images
(semantic alignment).

3. CLIP-iQA quality score of generated images (perceptual quality).

4. Standard deviation of classifier embeddings within generated samples (diversity).
These four features jointly capture complementary aspects of generation dynamics: (i) structural
coherence, (ii) semantic alignment, (iii) perceptual quality, and (iv) diversity. Importantly, they are

not tied to dataset-specific semantics, which explains why the oracle generalizes robustly across
benchmarks even when trained only once on disjoint classes.

B.3 MODEL

The oracle O is implemented as a lightweight multilayer perceptron (MLP). It receives as input the
temporal feature sequence Z; = [z;—k+1, . . ., Z), where each z; € R* contains the metrics described
in Sec. The network consists of a single hidden layer with 32 units, ReLU activation, and a
sigmoid output for binary classification.

15

Under review as a conference paper at ICLR 2026

Table 6: Ablation on dream generation strategies. Evaluation on Mini-ImageNet comparing
interpolation-based baselines with our proposed D2L.

‘ Buffer size
Method ‘

2000 5000

ER-ACE baseline 33.264+3.51 40.59+1.20
+ Mixup 36.844+0.94 44.82+1.27
+ Continual Mixup | 36.05+1.22 43.4540.83
+ Textual Mixup 31.89£0.50 -

+ Synth Mixup 36.99+0.26 -
+ Oracle (D2L) 40.90+0.95 47.32+0.89

The model is trained supervisedly on labeled dreaming trajectories with the Adam optimizer for a
maximum of 500 iterations, using binary cross-entropy loss. A validation split is employed for early
stopping. Once trained, the oracle is frozen and used across a sequence of tasks including only classes
never seen during its training. Its inference overhead is negligible (less than 1 ms per step), making it
effectively free compared to prompt optimization and dream generation.

B.4 GENERALIZATION

To assess the generalization capability of the oracle, we trained a single model on a dedicated dream-
quality dataset constructed from 100 ImageNet classes, disjoint from all benchmarks used in the main
experiments (Mini-ImageNet, FG-ImageNet, and ImageNet-R). Labels were assigned by inspecting
dreaming trajectories and selecting the iteration that yielded high-quality and diverse images without
collapse.

This general-purpose oracle was then applied across all tasks and datasets, without retraining or
adaptation. The predicted stopping points differed from those obtained with dataset-specific oracles
by only 9.28 iterations on average (out of 500 optimization steps). Importantly, no trajectory collapse
was observed and continual learning performance remained unchanged.

These results confirm that oracle training does not need to be repeated for each benchmark: a single
instance trained once on a disjoint dataset generalizes robustly. This is explained by the choice of
features—structural similarity, embedding alignment, CLIP-based perceptual quality, and embedding
diversity—which capture dataset-agnostic properties of generation dynamics.

C COMPARISON WITH MIXUP-BASED STRATEGIES

In principle, the dreaming process could be replaced by surrogate samples generated from past
knowledge using interpolation-based techniques. To test this hypothesis, we substituted our dreamed
classes with synthetic ones obtained through different Mixup strategies and related baselines.

* Mixup (Zhang et al., 2018): combines images from the current data stream with samples
from the replay buffer to form auxiliary synthetic classes.

Continual Mixup: applies the same interpolation scheme, but only between images sampled
from the replay buffer.

 Textual Mixup: interpolates text embeddings of class prompts, producing mixed condition-
ing signals without structural generation.

* Synth Mixup: interpolates directly in the latent space of the diffusion model.
As shown in Table[6] D2L consistently outperforms all interpolation-based strategies. In contrast to
Mixup variants, which rely on static blending of existing representations, D2L produces distinct and

task-aware latent clusters. Importantly, our generation process is explicitly guided by the knowledge
encoded in the classifier.

16

Under review as a conference paper at ICLR 2026

D EVALUATION ACROSS MULTIPLE TASK ORDERINGS

While earlier experiments considered a fixed task sequence, we also evaluate D2L under multiple
random class orderings to obtain a more robust assessment of its generalization across datasets.
Specifically, we repeated the main experiments using three different class orderings (random seeds:
1607, 23, and 0) with a buffer size of 2000. We report mean and standard deviation across these
runs. Results in Table[/|confirm that D2L consistently outperforms the baseline across all datasets,
showing that its benefits are stable and not tied to a particular task sequence.

Table 7: Evaluation under multiple task orderings. Results are averaged over three random class
sequences (seeds: 1607, 23, 0) with buffer size 2000. D2L consistently outperforms the baseline.

Dataset ‘ Baseline (mean =+ std) ‘ D2L (mean + std)
SeqMINIIMG 3239 £ 1.25 39.42 +2.42
SeqlmageNet-FG 27.18 £ 2.08 33.32 +1.54
SeqlmageNet-R 8.28 +1.03 9.93 + 0.41

E GENERATIVE REPLAY VS. DREAM2LEARN

In this section, we aim to clarify the conceptual differences between generative replay (GR) meth-
ods and our proposed Dream2Learn (D2L), and we provide additional experimental results for
completeness.

GR methods such as DGR (Shin et al., 2017) or DDGR (Yan et al., 2023) discard the memory buffer
and rely entirely on a generative model to reconstruct past data, with the objective of preserving
knowledge of previous tasks through explicit replay. In contrast, D2L differs along two fundamental
dimensions:

e Buffer. Unlike GR, D2L retains a fixed-size buffer (e.g., 2000 samples), ensuring direct
access to real exemplars throughout training. Nonetheless, buffer never contains generated
images.

* Generation. While GR employs generation to reproduce past samples that directly replace
the buffer, D2L leverages generation in a profoundly different way: generated images in
D2L do not serve as memory replacements, but as additional data stream (additional classes)
that pre-activate future-class representations.

This conceptual divergence means that direct comparisons should be interpreted carefully, as the
underlying objectives and mechanisms are not the same. Nevertheless, since both approaches involve
generative components during training and thus incur comparable overheads, we report results against
representative GR methods under the same buffer constraint, as shown in Tab. B}

Table 8: Comparison with generative replay methods under the same buffer constraint (2000 samples).
While D2L is not a generative replay method, its use of generation for anticipatory transfer leads to
superior performance compared to GR approaches.

Method ‘ SeqMinilmageNet SeqImageNet-FG = SeqImageNet-R
DGR (Shin et al.,[2017) 2333 £0.32 26.17 £0.21 7.00 £ 0.26
DDGR (Yan et al.| [2023) 37.48 £0.98 30.81 £0.54 9.21 £0.17
ER-ACE + D2L (ours) 40.90 £ 0.95 31.57 £ 1.20 9.54 £+ 0.39

These results confirm that D2L achieves higher accuracy than GR approaches, despite pursuing a
different goal. Whereas GR attempts to reconstruct and replay the past, D2L leverages anticipa-
tory generation to expand and stabilize the representation space, proving more effective across all
benchmarks.

17

Under review as a conference paper at ICLR 2026

F REPRODUCIBILITY DETAILS

F.1 ADDITIONAL TRAINING DETAILS

All experiments are conducted on a workstation with 384-core CPU, 1TB RAM and 4 NVIDIA H100
GPUs. The continual learning methods are trained on a single NVIDIA H100 GPU. As a reference,
each training run with ER-ACE on Mini-ImageNet requires approximately 3 hours. The dream
generation process, based on the use of Stable Diffusion, is the most computationally intensive part.
To this aim, we use 4 NVIDIA H100 GPUs and it requires approximately 6 hours per run (including
both prompt optimization and dreams generation), with PyTorch DistributedDataParallel. Results in
Sec.[d.2]are reported in terms of mean and standard deviation over five runs with different random
seeds.

F.2 HYPERPARAMETER SEARCH

In Tables[9} [[0]and [TT|we show the best hyperparameters combinations for each method.

Table 9: Mini-ImageNet

Method | Buffer | Mini-ImageNet

Fine-tune — | 1r: 0.03
ER 2000 | 1r: 0.03;
ER 5000 | Ir: 0.03;

DER++ 2000 | Ir: 0.01; alpha: 0.1; beta: 0.5;
DER++ 5000 | Ir: 0.01; alpha: 0.1; beta: 0.5;
ER-ACE 2000 | Ir: 0.01; mom: O wd: O
ER-ACE 5000 | 1r: 0.01; mom: O wd: O

GSS 2000 | 1r: 0.03;

GSS 5000 | Ir: 0.03;

A-GEM 2000 | 1r: 0.03;

A-GEM 5000 | 1r: 0.03;

RPC 2000 | Ir: 0.03;
RPC 5000 | 1r: 0.03;
FDR 2000 | Ir: 0.03; alpha:0.3;
FDR 5000 | Ir: 0.03; alpha:0.3;
iCaRL 2000 | 1r: 0.03;
iCaRL 5000 | 1r: 0.03;
BiC 2000 | Ir: 0.03;
BiC 5000 | 1r: 0.03;

18

Under review as a conference paper at ICLR 2026

Table 10: FG-ImageNet

Method | Buffer | FG-ImageNet

Fine-tune — | Ir: 0.03
ER 2000 | Ir: 0.03;
ER 5000 | Ir: 0.03;

DER++ 2000 | Ir: 0.03; alpha: 0.1; beta: 0.5;
DER++ 5000 | Ir: 0.03; alpha: 0.1; beta: 0.5;
ER-ACE 2000 | 1r: 0.03; mom: O wd: O
ER-ACE 5000 | Ir: 0.03; mom: O wd: O

GSS 2000 | 1r: 0.03;

GSS 5000 | Ir: 0.03;

A-GEM 2000 | Ir: 0.03;

A-GEM 5000 | 1r: 0.03;

RPC 2000 | Ir: 0.03;
RPC 5000 | Ir: 0.03;
FDR 2000 | Ir: 0.03; alpha:0.3;
FDR 5000 | Ir: 0.03; alpha:0.3;
iCaRL 2000 | 1r: 0.03;
iCaRL 5000 | 1r: 0.03;
BiC 2000 | Ir: 0.03;
BiC 5000 | Ir: 0.03;

Table 11: ImageNet-R

Method | Buffer | ImageNet-R

Fine-tune — | 1r: 0.03
ER 2000 | 1r: 0.03;
ER 5000 | Ir: 0.03;

DER++ 2000 | Ir: 0.03; alpha: 0.1; beta: 0.5;
DER++ 5000 | Ir: 0.03; alpha: 0.1; beta: 0.5;
ER-ACE 2000 | Ir: 0.03; mom: O wd: O
ER-ACE 5000 | 1r: 0.03; mom: O wd: O

GSS 2000 | 1r: 0.03;

GSS 5000 | 1r: 0.03;

A-GEM 2000 | Ir: 0.03;

A-GEM 5000 | 1r: 0.03;

RPC 2000 | 1r: 0.03;
RPC 5000 | 1r: 0.03;
FDR 2000 | Ir: 0.03; alpha:0.3;
FDR 5000 | Ir: 0.03; alpha:0.3;
iCaRL 2000 | 1r: 0.03;
iCaRL 5000 | Ir: 0.03;
BiC 2000 | 1r: 0.03;
BiC 5000 | 1r: 0.03;

F.3 TASK SEQUENCE DETAILS

In Tables 12} [I3]and[T4] we report the combination of class order and their division into tasks employed
in our experiments during the continual training. Each name corresponds to a different synset of the
ImageNet dataset.

19

Under review as a conference paper at ICLR 2026

Table 12: Mini-ImageNet

Task

Synsets

T1

T2
73
T4
75
T6
T7
78
T9
T10
T11

n02091244
n02174001
n01855672
n02138441
n02091831
n03337140
n02457408
n02443484
n04251144
n02108551
n01532829
n02971356
n01910747
n04435653
n02099601
n04146614
n13054560
n03075370
n03775546
n01704323

n01770081
n02165456
n03062245
n04509417
n03400231
n01558993
n02108915
n02116738
n02606052
n02108089
n02981792
n02074367
n02105505
n03347037
n04418357
n04443257
n01843383
n02966193
n03017168
n07697537

n03207743
n02687172
n04149813
n04275548
n02219486
n03998194
n04389033
n03854065
n02113712
n07613480
n02120079
n06794110
n03584254
n03535780
n02089867
n02111277
n07584110
n03417042
n03980874
n02101006

n01749939
n09246464
n04067472
n03888605
n02795169
n02129165
n04604644
n03544143
n02950826
n03527444
n03476684
n04612504
n03770439
n04243546
n03272010
n02747177
nl13133613
n03146219
n02114548
n04296562

n02110063
n02871525
n04522168
n01981276
n03773504
n03127925
n03908618
n09256479
n07747607
n02823428
n03047690
n03924679
n01930112
n04596742
n03220513
n04515003
n04258138
n03838899
n03676483
n02110341

Table 13:

FG-ImageNet

Task

Synsets

T1

T2
73
T4
75
T6
T7
T8
T9
T10
T11

n01943899
n02028035
n01685808
n01829413
n02058221
n01824575
n01796340
n01776313
n01677366
n01978455
n01756291
n01496331
n01806143
n01484850
n01667114
n01514859
n01944390
n02051845
n01592084
n01751748

n01753488
n01675722
n01978287
n01818515
n01491361
n01986214
n01687978
n01443537
n01755581
n02037110
n01770393
n01582220
n01773549
n01914609
n01728572
n02012849
n02011460
n01644900
n01955084
n01664065

n01819313
n01498041
n01537544
n01494475
n01910747
n01860187
n01984695
n01560419
n01739381
n01514668
n01775062
n01734418
n01774384
n01665541
n01693334
n01773157
n01883070
n01531178
n01930112
n01749939

n01601694
n01774750
n01742172
n01877812
n01729977
n01773797
n01729322
n02018795
n01770081
n01440764
n01632458
n01622779
n02077923
n01667778
n01843383
n01614925
n02002556
n01968897
n02007558
n02006656

n01695060
n01608432
n01924916
n02027492
n02018207
n01630670
n01833805
n01985128
n02013706
n01855672
n01820546
n01632777
n01740131
n01847000
n01950731
n01795545
n01798484
n01698640
n01735189
n01828970

20

Under review as a conference paper at ICLR 2026

Table 14: ImageNet-R

Task

Synsets

1

T2

73

T4

T6

n02165456
n04591713
n02007558
n02138441
n07693725
n02607072
n01806143
n02486410
n02086240
n02096585
n02510455
n02219486
n02279972
n01677366
n01531178
n07718472
n03481172
n02423022
n02951358
n01983481

n03594945
n02110185
n03424325
n03498962
n02445715
n07768694
n01514859
n07720875
n03345487
n04310018
n04266014
n02114367
n03775071
n04118538
n03930630
n04522168
n02483362
n02206856
n07920052
n02356798

n02325366
n02092339
n03710193
n01484850
n04487394
n07880968
n01498041
n02110958
n02395406
n04146614
n02948072
n01614925
n01443537
n01882714
n02268443
n07753275
n02749479
n02108089
n01518878
n02410509

n02814860
n02980441
n02992529
n01847000
n02802426
n01843383
n07614500
n03124170
n04147183
n04536866
n07695742
n07734744
n02088466
n07697313
n02823750
n01910747
n04552348
n02051845
n02793495
n07742313

n02966193
n01833805
nl2267677
n02113799
n09835506
n02769748
n04465501
n01632777
n01748264
n07745940
n02099712
n01770393
n04325704
n01820546
n02106550
n02447366
n02123045
n10565667
n03773504
n02391049

n02480495
n03947888
n02233338
n02129165
n04133789
n03494278
n02398521
n01986214
n02113624
n02088238
n02112137
n01616318
n02129604
n02097298
n01494475
n02109525
n01860187
n07749582
n01694178
n03630383

n02106030
n03602883
n04254680
n02119022
n02113023
n02106166
n02117135
n02437616
n03272010
n02363005
n07873807
n04275548
n02091032
n02088094
n02190166
n02099601
n03676483
n01630670
n09472597
n02094433

n02088364
n03649909
n07714990
n07697537
n02091134
n04086273
n02808440
n04192698
n03495258
n02364673
n02102318
n03452741
n07714571
n03372029
n02346627
n01784675
n02526121
n02128757
n02909870
n02056570

n02066245
n02841315
n01644373
n02480855
n02110341
n01944390
n02112018
n02134084
n02128385
n02226429
n02106662
n02950826
n02085620
n02108915
n02130308
n04141076
n02236044
n02939185
n02701002
n02071294

n02843684
n01855672
n02077923
n02009912
n02317335
n02098286
n02906734
n02655020
n03467068
n07753592
n01774750
n02883205
n04347754
n02797295
n02481823
n04389033
n04409515
n02672831
n03888257
n01534433

21

	Introduction
	Related Work
	Method
	Dreaming optimization and mapping
	Oracle-guided dreaming optimization

	Experimental Results
	Benchmarks and training procedure
	Results
	Model analysis

	Limitations
	Conclusion
	Method algorithm
	Oracle Training and Generalization
	Datasets
	Features
	Model
	Generalization

	Comparison with mixup-based strategies
	Evaluation across multiple task orderings
	Generative Replay vs. Dream2Learn
	Reproducibility Details
	Additional training details
	Hyperparameter Search
	Task sequence details

