Dream2Learn: STRUCTURED GENERATIVE DREAMING FOR CONTINUAL LEARNING

Anonymous authors

Paper under double-blind review

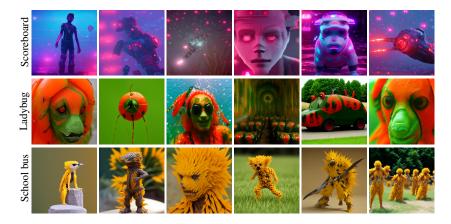


Figure 1: **Dreamed classes generated by D2L**. Examples of dreamed classes synthesized from their corresponding real classes (left). These samples emerge as semantically distinct yet **structurally coherent representations** in the generator's latent space, forming intermediate concepts that enhance the continual classifier's generalization to future tasks.

ABSTRACT

Continual learning struggles with balancing plasticity and stability while mitigating catastrophic forgetting. Inspired by human sleep and dreaming mechanisms, we propose **Dream2Learn** (**D2L**), a generative approach that enables models, trained in a continual learning setting, to synthesize structured additional training signals driven by their internal knowledge. Unlike prior methods that rely on real data to simulate the dreaming process, D2L autonomously constructs semantically distinct yet structurally coherent dreamed classes, conditioning a diffusion model via soft prompt optimization. These dynamically generated samples expand the classifier's representation space, reinforcing past knowledge while structuring features in a way that facilitates adaptation to future tasks. In particular, by integrating dreamed classes into training, D2L enables the model to self-organize its latent space, improving generalization and adaptability to new data. Experiments on Mini-ImageNet, FG-ImageNet, and ImageNet-R show that D2L surpasses existing methods across all evaluated metrics. Notably, it achieves positive forward transfer, confirming its ability to enhance adaptability by structuring representations for future tasks.

1 Introduction

Humans possess a remarkable ability to learn continuously, consolidate past experiences, and generalize knowledge to novel situations (Kumaran et al., 2016; McClelland et al., 1995). This process is also facilitated by memory replay and restructuring during sleep, where the brain synthesizes realistic dreams derived from awake experiences to prepare for future challenges (Ji & Wilson, 2007; Walker & Stickgold, 2004; Singh et al., 2022). In contrast, deep learning models in continual learning (CL) suffer from catastrophic forgetting, wherein previously acquired knowledge deteriorates when new tasks are introduced (McCloskey & Cohen, 1989). Traditional CL methods attempt to address this

issue through rehearsal-based strategies, regularization techniques, or architectural modifications. However, they often struggle to effectively balance stability and plasticity, thereby limiting both long-term knowledge retention and the capacity for adaptation (De Lange & Tuytelaars, 2021; Parisi et al., 2019). Among these, rehearsal-based strategies are widely used due to their ability to stabilize learning by replaying stored examples. Yet, despite their effectiveness, such approaches diverge significantly from how the human brain consolidates memory. Rather than relying on the exact replay of past experiences, the brain engages in generative processes during dreaming, recombining perceptual elements from daily life to construct novel and plausible future scenarios (Llewellyn, 2015; Schwartz, 2003). This process allows for efficient knowledge reinforcement, enabling the brain to improve generalization and anticipate future challenges. Translating this process into artificial neural networks is non-trivial, as it requires the ability to synthesize meaningful and structured representations of the previously learned knowledge without relying on external supervision.

To accomplish this task, in this paper we propose **Dream2Learn** (**D2L**), a generative dreaming process that synthesizes training samples directly from the classifier's internal representations. Unlike WSCL (Sorrenti et al., 2024), which relies on surrogate real data to simulate dreams, and other sleep-based approaches that primarily reinforce existing representations (Tadros et al., 2022; Harun et al., 2023), D2L autonomously constructs future-adaptive representations (the *dreams*, indeed), ensuring task relevance and enhancing the model's ability to generalize to new tasks.

As illustrated in Fig. 1, D2L generates structured dreamed classes that serve as intermediate representations, facilitating continual learning. Instead of merely blending past class features, these dreamed samples form coherent yet distinct new concepts, expanding the representation space in a way that supports future task adaptation. By integrating "dreamed classes" into training, the classifier learns high-level reusable features, reinforcing forward transfer while mitigating catastrophic forgetting. This process mirrors the role of REM sleep, where synthetic experiences help refine learned representations, maintaining long-term adaptability as new data distributions emerge.

Our experiments on Mini-ImageNet, FG-ImageNet, and ImageNet-R show that our strategy significantly boosts performance when integrated with standard continual learning methods.

2 RELATED WORK

Continual Learning (CL) (De Lange et al., 2021; Parisi et al., 2019) encompasses a family of machine learning techniques that aim to develop models that learn incrementally while avoiding catastrophic forgetting (McCloskey & Cohen, 1989). Common strategies include regularization techniques (Kirkpatrick et al., 2017; Zenke et al., 2017), architectural modifications (Schwarz et al., 2018; Mallya & Lazebnik, 2018), and replay-based methods (Robins, 1995; Rebuffi et al., 2017; Buzzega et al., 2020). More recent approaches enhance model robustness through contrastive learning (Mai et al., 2021; Cha et al., 2021) and latent space regularization (Frascaroli et al., 2024), while experience replay optimizes sample selection for efficient memory retention (Aljundi et al., 2019; Chaudhry et al., 2021). Generative Replay (GR) (Shin et al., 2017; Rios & Itti, 2019; Liu et al., 2020) has emerged as an alternative to buffer-based experience replay by synthesizing past samples, but early methods often faced mode collapse and underperformed compared to traditional replay. Although DDGR (Gao & Liu, 2023), SDDR (Jodelet et al., 2023), and DiffClass (Meng et al., 2024) improve sample fidelity, the role of GR remains retrospective: the generator mainly acts as a memory proxy, reconstructing prior distributions for rehearsal rather than proactively reorganizing representations. Inspired by cognitive neuroscience, several works explore memory mechanisms modeled on brain function. DualNet (Pham et al., 2021) and DualPrompt (Wang et al., 2022a) introduce parallel learning pathways, while CLS-ER (Arani et al., 2022) and FearNet (Kemker & Kanan, 2018) implement short- and long-term memory systems. These approaches focus on stabilizing representations during learning but do not incorporate offline processes for restructuring knowledge. Sleep-based learning offers a complementary perspective, drawing from evidence that wake-sleep cycles refine memory representations (Hinton et al., 1995; Deperrois et al., 2022). Sleep Replay Consolidation (Tadros et al., 2022) applies Hebbian plasticity, and SIESTA (Harun et al., 2023) introduces intermittent consolidation to support online learning. WSCL (Sorrenti et al., 2024) alternates wake and sleep cycles to simulate the benefits of dreaming for memory consolidation. However, instead of generating internal experiences during sleep phases, it shapes the latent space of the classifier using pre-defined representations, limiting the biological plausibility of the dreaming process.

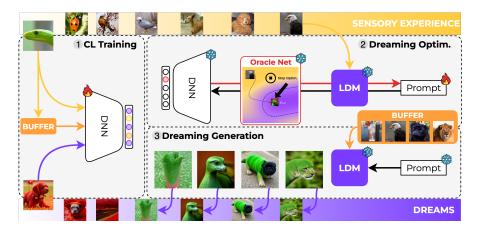


Figure 2: **Overview of Dream2Learn.** (1) During CL training, a deep neural network (DNN) learns from real sensory images (the current task distribution plus the buffer) and dreamed samples produced by a latent diffusion model (LDM). (2) The dreaming optimization process refines the LDM prompts, with an Oracle Network providing a stopping criterion that prevents collapse. (3) Prompts generate auxiliary classes: dreamed samples are not buffered, but rather enrich the representation space with coherent latent clusters that foster knowledge reuse and adaptation (see Appendix A).

D2L reframes generation as a prospective mechanism: rather than replicating past data for rehearsal, generation is used to proactively structure the representation space towards upcoming tasks. It introduces a self-sufficient generative dreaming mechanism, by generating additional training signals from the classifier's internal representations, ensuring task relevance and autonomous dreaming. Through soft prompt optimization, it identifies semantically distinct yet structurally coherent classes in the diffusion model's latent space, which act as intermediate anchors that prime future learning dynamics. Thus, unlike GR techniques that focus on reconstructing or augmenting past distributions (Jodelet et al., 2023; Meng et al., 2024), D2L actively shapes future-adaptive representations, transforming dreaming into a mechanism for fostering forward knowledge transfer and long-term retention, enabling the classifier to adapt more effectively to unseen tasks.

3 Method

We formulate our continual learning setting as the problem of training a model F_{θ} over a sequence of T visual classification tasks $\{\tau_1,\ldots,\tau_T\}$, with each task τ_t associated to a dataset $\mathcal{D}_t = \{(\mathbf{x}_{t,1},y_{t,1}),\ldots,(\mathbf{x}_{t,n_t},y_{t,n_t})\}$. Observations $\mathbf{x}_{t,i}$ belong to an image space \mathcal{I} , and class sets are disjoint across tasks, i.e., $y_{t,i} \in \mathcal{C}_t$, $\mathcal{C}_j \cap \mathcal{C}_k = \varnothing$. The model's output layer has as many neurons as the total number of classes, i.e., $\sum n_t$. Notation-wise, we will treat \mathcal{D}_t as a probability distribution, when clear from the context.

We also assume the availability of a replay buffer \mathcal{B} , where we store a limited number of samples from past tasks for rehearsal, and of a pre-trained and frozen image generator G. Our approach requires that G can be conditioned from both textual prompts (with the possibility of adding learnable tokens) and input images; these requirements are easily satisfied by standard text-conditioned latent diffusion models (LDM) — e.g., Stable Diffusion conditioned by CLIP embeddings (Ramesh et al., 2022; Luo et al., 2023) — with an image adapter (Ye et al., 2023)¹. Formally, $G: \mathcal{I} \times \mathcal{P} \to \mathcal{I}$, with \mathcal{P} being the space of sequences of textual token embeddings². We employ G, with appropriate conditioning, to synthesize dream images from past knowledge, thus creating an auxiliary synthetic data stream for preparation to future tasks. At the beginning of our procedure, the model F_{θ} is trained to learn how to perform task τ_1 . Since no knowledge is initially present (as θ is randomly initialized), we bootstrap the model by training it on task data \mathcal{D}_1 , optimizing a cross-entropy loss:

$$\min_{\boldsymbol{\theta}} \mathcal{L}_{CE}(F_{\boldsymbol{\theta}}, \mathcal{D}_1) = -\mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_1} \Big[\log p(y | \mathbf{x}; \boldsymbol{\theta}) \Big], \tag{1}$$

¹We use h94/IP-Adapter

²In practice, G is also made stochastic by receiving a random noise $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, which is omitted for brevity.

with $p(y|\mathbf{x}; \boldsymbol{\theta})$ being the likelihood of the correct class, given model parameters $\boldsymbol{\theta}$. During this bootstrap phase, we also populate the buffer \mathcal{B} via reservoir sampling (Lopez-Paz & Ranzato, 2017).

The bootstrapped classifier can now be used to synthesize new classes as "dream" variants of what the model has seen up to this point. Dream classes are created by optimizing a learnable prompt \mathbf{p}_c for each class $c \in \mathcal{C}_1$, such that $G(\mathbf{x}, \mathbf{p}_c)$ transforms an input image \mathbf{x} into a "dreamed" versions that vaguely resemble target class c, thereby creating a synthetic distribution for a novel "dream class". The details about this optimization process are given in Sec. 3.1. Using this procedure, at task τ_1 we introduce n_1 dream classes, i.e., as many as the current task's actual classes. We indicate with \mathcal{D}_1^d the distribution of dream classes defined at this stage.

Let \mathcal{D}_{τ_1} be the mixture distribution which equally samples from real data \mathcal{D}_1 and from the dream distribution \mathcal{D}_1^d . The classifier F_{θ} is then fine-tuned on \mathcal{D}_{τ_1} , replacing \mathcal{D}_1 in Eq. 1.

On subsequent tasks τ_t , t>1, we can exploit the model's knowledge on dream classes to ease its learning of new classes. At the beginning of τ_t , we forward samples from each new class $c \in \mathcal{C}_t$ through the model, and map c to the output dream neuron with the largest average likelihood, as in (Bellitto et al., 2022). This allows to bootstrap each class maximizing the reuse of relevant features and preventing disrupting weight updates (details on this procedure in Sec. 3.1). The dream classes corresponding to the assigned classification heads are removed. We then train F_{θ} on task data \mathcal{D}_t and on \mathcal{D}_{t-1}^{d*} , the residual dream distribution obtained from \mathcal{D}_{t-1}^d by removing the discarded dream classes, optimizing the following:

$$\min_{\boldsymbol{\theta}} \Big[\mathcal{L}_{CE}(F_{\boldsymbol{\theta}}, \mathcal{D}_{t-1}^{d*} \cup \mathcal{D}_{t}) + \mathcal{L}_{CL}(F_{\boldsymbol{\theta}}, \mathcal{D}_{t}, \mathcal{B}) \Big], \tag{2}$$

where \mathcal{L}_{CL} is an additional continual learning loss that counters forgetting and explicitly leverages the replay buffer \mathcal{B} for rehearsal. In practice, when sampling from the dream distributions \mathcal{D}_{t-1}^{d*} , we employ items stored in the buffer as input conditions to the generator G, to increase variability in the dreamed images. Importantly, dreamed samples are never added to \mathcal{B} (refer to Appendix E); only their prompts are retained as part of a persistent dream inventory. After training on task τ_t and storing rehearsal samples into \mathcal{B} , we update the dream inventory for the next task, by optimizing a new set of prompts $\{\mathbf{p}_c \mid c \in \mathcal{C}_t\}$, corresponding to new dream class distributions. The set of n_t newly-generated dream distributions is used to replace an equal number of existing dreaming classes using again the mapping strategy in (Bellitto et al., 2022). We detailed the algorithm in Appendix A.

3.1 Dreaming optimization and mapping

The dreaming optimization process for task τ_t consists of learning a proper conditioning for generator G, in order to synthesize samples of novel concepts, expanding the model's representation space while preserving feature reuse.

For each real task class $c \in C_t$, we aim to generate a corresponding dreamed class c^d that is distinct from all real classes, while contributing to a structured representation in the latent space.

To achieve this, we optimize a learnable prompt \mathbf{p}_c that conditions the generator G to synthesize samples of class c^d . Our objective is to identify a transformation trajectory in the LDM latent space such that, given an arbitrary real image \mathbf{x} as input to G, the learned prompt \mathbf{p}_c guides G to generate a dreamed version \mathbf{x}^d that shares some characteristics with class c, while remaining distinct enough to not be classified as c by the model F_{θ} . This ensures that the dreamed samples populate a structured latent space region that remains visually coherent but semantically separated from real classes.

Formally, we structure the dream class condition $\mathbf{p}_c = [\mathbf{p}_{\text{soft},c}, \mathbf{p}_{\text{text},c}]$ with $\mathbf{p}_{\text{text},c}$ being the fixed text prompt describing the transformation for class c, as: "An image of class [c]", and $\mathbf{p}_{\text{soft},c}$ being a learnable soft prompt vector optimized to refine the conditioning for class c. Due to the stochasticity of G, multiple dreamed samples can be generated from the same real image \mathbf{x} and condition \mathbf{p}_c . Fig. 3 shows the dreaming optimization process in the LDM latent space.

Prompt optimization is performed by minimizing the cross-entropy loss:

$$\min_{\mathbf{p}_{col}} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_i \setminus \mathcal{D}_i^c} \left[-\log p(c|G(\mathbf{x}, \mathbf{p}_c); \boldsymbol{\theta}) \right], \tag{3}$$

where \mathcal{D}_i^c is the subset of real samples belonging to class c, excluded from the optimization process: this ensures that optimization is not conditioned on images already belonging to the target distribution, allowing the process to gradually converge toward it while generating novel yet structured concepts. As optimization progresses, dreamed samples populate a distinct but structured latent region, allowing future tasks to benefit from enhanced feature reuse and transferability.

216
217 $\mathbf{p}_{c} = [\mathbf{p}_{text,c}, \mathbf{p}_{soft,c}] = [\mathbf{An} \text{ image of class [c]}, \mathbf{p}_{soft,c}]$ 218
219
220
221
222
223
224
225
226
227
228
229

Figure 3: Visualization of the dreaming optimization process in the latent space of a LDM. Given a real sample \mathbf{x} , the optimization refines the soft prompt $\mathbf{p}_{\text{soft},c}$ to steer the diffusion model towards generating a dreamed counterpart that aligns with the target class c (e.g., a green mamba in this example). The dreaming process explores latent regions where images are visually similar yet distinct from target classes, forming novel intermediate classes (violet zones).

Dreaming optimization produces a set of conditioning prompts $\{\mathbf{p}_c \mid c \in \mathcal{C}_t\}$ for each class of task τ_t . Next, we determine the output neurons to which the new dream classes should be mapped, replacing a subset of dream classes from past tasks. The rationale for this step is to map new classes over "similar" past dream classes, to ensure a smooth integration and prevent high gradients during training. Thus, let \mathcal{C} be the set of all output model neurons, and $\mathcal{C}_{\text{real}} = \bigcup_{i \leq t} \mathcal{C}_i$ the set of outputs assigned to real past tasks. We compute the set of possible destination neurons for the new dream classes as $\mathcal{C}_{\text{avail}} = \mathcal{C} \setminus \mathcal{C}_{\text{real}}$. Then, we obtain the output neuron c_{out} for dream class c^d as:

$$c_{\text{out}} = \underset{c \in \mathcal{C}_{\text{avail}}}{\min} \mathbb{E}_{\mathbf{x} \sim G_{c^d}} \left[-\log p(c|\mathbf{x}; \boldsymbol{\theta}) \right], \tag{4}$$

where G_c is the distribution associated to samples produced by G when conditioned with \mathbf{p}_c . In practice, c^d replaces the dream class to which it is more "aligned" in terms of classification likelihood.

Figure 4: **Examples of dreaming optimization trajectories showing collapse**. From left to right, the images depict different stages of the optimization process. Each row illustrates the evolution of three example images throughout the same prompt optimization. Initially, the generated samples maintain meaningful variations. However, as optimization progresses, they become increasingly similar, reducing diversity and leading to less effective representations.

3.2 Oracle-guided dreaming optimization

One key challenge in the dreaming process is determining when to stop optimizing the soft prompt $\mathbf{p}_{\text{soft},c}$ to avoid collapse or excessive task-specific bias, as illustrated in Fig. 4. If optimization continues indefinitely toward the convergence of Eq. 3, the generated samples risk becoming redundant or

overfitting to the current task, reducing their effectiveness for future learning. To prevent this, we introduce an oracle network that predicts the optimal stopping point by evaluating whether further refinement of $\mathbf{p}_{\text{soft},c}$ contributes to meaningful latent representation learning. The oracle is trained on a separate dataset \mathcal{D}_O , where stopping decisions are labeled based on the quality of generated dreams.

Formally, we define the oracle network O, which takes as input a sequence of feature vectors extracted over a temporal window of k optimization steps and provides a binary decision:

$$O(\mathbf{Z}_t) \in \{0, 1\} \tag{5}$$

where \mathbf{Z}_t is the aggregated feature matrix over the last k generated samples:

$$\mathbf{Z}_t = [\mathbf{z}_{t-k+1}, \mathbf{z}_{t-k+2}, \dots, \mathbf{z}_t] \tag{6}$$

The components of each vector $\mathbf{z}_i \in \mathbb{R}^4$ are the following quantities, computed using the generator G_c conditioned by $\mathbf{p}_{\mathrm{soft},c}$ at the i-th optimization iteration of Eq. 3: 1) $\mathbb{E}_{\mathbf{x}} \big[\mathrm{sim}(\mathbf{x}, G_c(\mathbf{x})) \big]$, with $\mathrm{sim}(\cdot)$ measuring the structural similarity between the generated image $G_c(\mathbf{x})$ and its conditioning image \mathbf{x} , ensuring that the generated image maintains structural coherence; 2) $\mathbb{E}_{\mathbf{x}} \big[f_{\theta}(\mathbf{x})^{\mathsf{T}} f_{\theta} \big(G_c(\mathbf{x}) \big) \big]$, i.e., the dot product between feature embeddings f extracted by the classifier F_{θ} , capturing the alignment between the representations of \mathbf{x} and $G_c(\mathbf{x})$; 3) $\mathbb{E}_{\mathbf{x}} \big[Q \big(G_c(\mathbf{x}) \big) \big]$, where Q computes the CLIP-based Image Quality Assessment (Wang et al., 2023), evaluating the perceptual quality of the generated image; 4) $\mathbb{E}_{\mathbf{x}} \big[\sigma \Big(f_{\theta} \big(G_c(\mathbf{x}) \big) \Big) \big]$, i.e., the standard deviation of the feature embeddings, capturing the diversity within generated samples. The optimization process halts once the oracle outputs 1 for n consecutive iterations, ensuring robustness to fluctuations in individual predictions. Once trained, the oracle network O is frozen and used across all tasks to determine when to stop the optimization of $\mathbf{p}_{\mathrm{soft},c}$, ensuring that the dreaming process remains effective without collapsing. Additional training details for the oracle are reported in Appendix B.

4 EXPERIMENTAL RESULTS

4.1 BENCHMARKS AND TRAINING PROCEDURE

We evaluate D2L on three continual learning benchmarks, obtained by splitting image classification datasets into a series of disjoint tasks:

- **Split Mini-ImageNet** (Vinyals et al., 2016): a widely used few-shot learning dataset, consisting of ImageNet 100 classes with 600 samples each, commonly adapted for continual learning;
- **Split FG-ImageNet** (Russakovsky et al., 2015)³, a fine-grained image classification benchmark with 100 animal classes from ImageNet, designed to evaluate continual learning methods on a more challenging task.
- Split ImageNet-R (Hendrycks et al., 2021) comprises various renditions of 200 ImageNet classes (e.g., paintings, sculptures, embroidery, cartoons, etc.), with 150 samples each, introducing strong intra-class variations.

In our experimental setup, half of the classes in each dataset are used for the first task, while the remaining classes are equally split across the subsequent tasks. In particular, excluding the first task, the Mini-ImageNet and FG-ImageNet datasets consist of 10 tasks with 5 classes each, whereas the ImageNet-R dataset consists of 5 tasks with 20 classes each.

In terms of training procedure, we adopt ResNet-18 (He et al., 2016) as the backbone and train for 10 epochs per task using SGD (learning rate 0.03, batch size 32). Given the large number of classes, we use buffer sizes of 2000 and 5000.

Prompt optimization is performed in Stable Diffusion's text space via cross-entropy loss, guided by classifier predictions. We use Adam (learning rate 0.1, batch size 1), with the number of iterations controlled by an oracle network. The oracle is a single-hidden-layer MLP trained on a labeled dream quality dataset \mathcal{D}_O (see Sec. 3.2) using Adam (0.001, 500 epochs). It stops optimization when a termination signal is predicted in at least n = 2 of the past k = 3 iterations. We use ImageNet-R as \mathcal{D}_O when testing on Mini-ImageNet or FG-ImageNet, and FG-ImageNet for ImageNet-R. Results are for class-incremental setting, reported as mean \pm std over 5 runs.

 $^{^3}$ Split FG-ImageNet is derived from https://www.kaggle.com/datasets/ambityga/imagenet100

4.2 RESULTS

To assess the impact of our method, we evaluate its effectiveness when applied in conjunction to continual learning state-of-the-art models. Since the dream generation mechanism relies on combining learned prompts with past experiences stored in the buffer, we apply it exclusively in conjunction with rehearsal-based methods. Specifically, we consider DER++ (Buzzega et al., 2020), ER-ACE (Caccia et al., 2022), and ER (Chaudhry et al., 2019b), comparing their performance with and without the dreaming generation. Tab. 1 presents results in terms of *final average accuracy (FAA)* in the class-incremental setting, i.e., the accuracy on a separate test set including all task classes, measured after training on the last task, with no knowledge on task identity at inference time. Our approach leads to a significant improvement in performance across all benchmarks, demonstrating the importance of mimicking human dreaming for mitigating forgetting.

Table 1: Class-incremental final average accuracy (FAA) of rehearsal-based methods, with and without dreaming, for buffer sizes 2000 and 5000.

	Mini-ImageNet		FG-ImageNet		ImageNet-R	
	2000	5000	2000	5000	2000	5000
ER	27.91±3.49	34.21±3.04	21.08±2.38	22.21±3.44	7.68±0.97	10.69±1.29
\hookrightarrow D2L	31.18 ±2.74	39.75 ±2.61	23.53 ±1.98	32.73 ±3.39	8.67 ±0.66	11.84 ±0.95
DER++	14.74±2.14	26.92 ± 4.72	14.43±3.68	23.86 ± 2.54	6.08 ± 0.81	8.29 ± 1.15
\hookrightarrow D2L	21.06 ±5.45	31.91 ±5.19	18.86 ±3.22	25.38 ±2.17	8.60 ±1.00	10.89 ±1.56
ER-ACE	33.26±3.51	40.59 ± 1.20	24.79±5.02	30.16 ± 4.97	7.09 ± 0.59	9.44 ± 0.70
\hookrightarrow D2L	40.90 ±0.95	47.32 ±0.89	31.57 ±1.20	38.50 ±1.01	9.54 ±0.39	12.51±0.56

Table 2: Forward Transfer (FWT) of rehearsal-based methods, with and without dreaming, for buffer sizes 2000 and 5000.

	Mini-ImageNet		FG-ImageNet		ImageNet-R	
	2000	5000	2000	5000	2000	5000
ER	-2.58	-1.62	-1.88	-1.52	-1.32	-0.64
\hookrightarrow D2 L	+0.33	+0.47	+1.79	+1.19	+0.24	+0.14
DER++	-1.55	-2.00	-1.36	-2.48	-1.03	-1.83
\hookrightarrow D2 L	+0.97	+0.71	-0.13	+1.86	+0.30	+0.24
ER-ACE	-1.99	-2.45	-2.00	-2.16	-2.46	-1.27
\hookrightarrow D2 L	+1.05	-1.58	+1.09	+0.08	-0.25	+0.17

One of our key claims is that our dreaming mechanism enhances a model's ability to prepare for future tasks. To validate this, we evaluate forward transfer (FWT) (Lopez-Paz & Ranzato, 2017), measuring how well the model leverages prior knowledge when learning new tasks. FWT is defined as the average difference between the accuracy on a task τ_t by a model trained up to τ_{t-1} , and the accuracy on τ_t by a randomly initialized model. Since a continually trained model often predicts known classes, FWT is typically negative. Table 2 shows that dream generation improves FWT, with D2L achieving positive forward transfer in some cases, similar to WSCL. However, WSCL achieves positive forward transfer by relying on additional real data to simulate dreams, whereas D2L internally generates these dreams by leveraging the model's own internal knowledge. Furthermore, we conduct a comprehensive performance analysis by comparing the best performing version of our approach from Tab. 1 (i.e., ER-ACE + D2L) with state-of-the-art continual learning methods: ⁴ GSS (Aljundi et al., 2019), A-GEM (Chaudhry et al., 2019a), iCaRL (Rebuffi et al., 2017), FDR (Benjamin et al., 2019), BiC (Wu et al., 2019), and RPC (Pernici et al., 2021). Results are shown in Table 3. To contextualize these results, we also define a lower bound as training without any countermeasure to forgetting (Fine-tune). ER-ACE + D2L outperforms state-of-the-art methods across all examined datasets and

⁴Results were obtained using the original code released alongside the corresponding papers.

Table 3: Comparison with state-of-the-art methods, in terms of class-incremental final average accuracy (FAA), for buffer sizes 2000 and 5000.

Method	Mini-ImageNet		FG-ImageNet		ImageNet-R	
Fine-tune	6.72±1.20		6.98±0.10		4.46±0.15	
			Buffer-based methods			
	2000	5000	2000	5000	2000	5000
GSS	6.40±0.38	5.71±0.08	8.07±0.26	9.23±0.85	5.08±0.13	4.29±0.32
A-GEM	6.78 ± 1.13	7.45 ± 0.76	6.20±1.11	6.11 ± 1.13	4.69±0.03	6.29 ± 0.84
RPC	$9.22{\pm}0.30$	9.02 ± 0.24	8.13±0.11	7.41 ± 0.74	5.71±0.03	6.32 ± 0.80
DER++	14.74±2.14	26.92 ± 4.72	14.43±3.68	$23.86{\pm}2.54$	6.08±0.81	$8.29{\pm}1.15$
FDR	15.46 ± 1.10	11.58 ± 0.96	9.17±2.40	12.91 ± 0.95	5.71±0.18	5.77 ± 0.10
iCaRL	16.46±0.51	16.50 ± 0.33	8.54 ± 0.88	$8.86{\pm}0.25$	1.97±0.28	1.91 ± 0.29
ER	27.91±3.49	34.21 ± 3.04	21.08 ± 2.38	22.21 ± 3.44	7.68 ± 0.97	10.69 ± 1.29
BiC	30.56±7.41	37.84 ± 0.61	27.83±2.75	32.29 ± 0.70	7.15±1.14	$8.60{\pm}2.07$
ER-ACE	33.26±3.51	$40.59{\pm}1.20$	24.79±5.02	30.16 ± 4.97	7.09 ± 0.59	$9.44 {\pm} 0.70$
ER-ACE + D2L	40.90 ±0.95	47.32 ±0.89	31.57 ±1.20	38.50 ±1.01	9.54 ±0.39	12.51 ±0.56

Table 4: **Ablation on the oracle.** Results on Mini-ImageNet comparing our method with Fixed optimization.

	Buffer size			
Method	2000	5000		
ER-ACE baseline	33.26±3.51	40.59±1.20		
+ Fixed optim.	38.94 ± 0.97	46.41 ± 0.55		
+ Oracle (D2L)	40.90 ± 0.95	47.32 ± 0.89		

Table 5: **Impact of dream class updates.** Comparison on Mini-ImageNet of different dreaming strategies.

	Buffer size			
Dreaming	2000	5000		
No dreams	33.36±3.51	40.59±1.20		
At beginning	$36.93{\pm}2.09$	41.59 ± 2.54		
Incremental	$36.85{\pm}1.16$	43.87 ± 2.90		
D2L	40.90 ±0.95	47.32 ±0.89		

buffer sizes, with significant margins. Note that our method targets continual learning from scratch with a randomly initialized convolutional backbone, without external pre-training. By contrast, a separate line of work relies on pre-trained models, either via full/partial fine-tuning (Ramasesh et al., 2021; Boschini et al., 2022; Ostapenko et al., 2022) or prompt tuning (Wang et al., 2022b; Smith et al., 2023) that adapts frozen ViT backbones. These approaches operate in a different evaluation regime, adapting an already rich representation and thus conflating the effect of the CL strategy with benefits from large-scale pre-training and transformer inductive biases. In our setting, the classifier's emergent knowledge directly guides the dreaming generation process, so mixing regimes would not yield an informative head-to-head comparison. For clarity and fairness, we therefore restrict comparison to methods that, like ours, train a CNN backbone from scratch under the same protocol constraints.

4.3 MODEL ANALYSIS

Model analysis is primarily conducted to assess the contribution of the dream generation strategy. The ER-ACE model (Chaudhry et al., 2019b), identified as the top-performing method when combined with our approach (see Tab. 1), is used as the baseline model for this study. All experiments are performed on the Mini-ImageNet dataset (Vinyals et al., 2016).

We first ablate the oracle and consider *Fixed optimization*, where prompt updates stop once the classifier predicts the target class for four consecutive steps. This criterion assumes the trajectory has reached and stabilized in the target representation space, but it limits adaptability; our full method avoids this issue and achieves superior performance (Tab. 4). Then, we assess how updating dreams during the sequential learning of tasks affects the overall performance. Our default strategy creates new dream classes at the end of each task—equal in number to that task's classes—and replaces

an equal number of old ones, keeping the classifier output size fixed. We compare this with three variants: (1) *No dreams*, a baseline without generated classes; (2) *At beginning only*, where dream classes are generated once during the first task and reused throughout; and (3) *Incremental*, which accumulates dream classes across tasks, expanding the output layer with weights sampled from $\mathcal{N}(\mu_{\mathbf{w}}; \sigma_{\mathbf{w}}^2)$ based on existing neurons. As shown in Tab. 5, our replacement strategy yields the best results. Fixed dreams limit forward transfer by excluding later tasks, while incremental expansion likely degrades performance due to increased task complexity.

We also compare D2L with WSCL (Sorrenti et al., 2024) on Mini-ImageNet under different buffer sizes. While WSCL achieves slightly higher accuracy (compare to Tab. 4): 42.38% (±1.16) with a 2000-sized buffer and 48.30% (±2.60) with a 5000-sized buffer, it does so by using an auxiliary dataset to pre-activate future task heads. This mechanism, while effective, does not simulate a true dreaming process. In contrast, D2L explicitly models dreaming by generating task-relevant samples guided by the classifier's internal knowledge—mirroring how humans rely on memory-driven simulations to reinforce learning.

To further validate our method, we also replaced the dreaming mechanism with alternative strategies for creating class blends, namely Mixup-based methods applied either in image space or in latent/text diffusion space. The corresponding results are reported in the Appendix C. Finally, we want to support that dreams generated by D2L come from the classifier's internal knowledge and cannot unintentionally resemble future classes. To this aim we assess if dreams are truly out-of-distribution (OOD) with respect to the target dataset. In particular, we generate dreams using our method on the Mini-ImageNet benchmark and classify each generated image using a ViT-B/16 model pre-trained on ImageNet-1K. This model acts as an external expert not involved in the training process, mapping each dream to one of the 1000 ImageNet classes. We then measure how many dreams are classified into the 100 classes used in Mini-ImageNet, and how many are mapped to the remaining 900 classes. Results show that only 10.11% of the dreams are assigned to the 100 classes in Mini-ImageNet, while 89.89% are mapped to the other 900 classes. This roughly matches the underlying class prior (10% vs. 90%), suggesting that dreams are OOD relative to Mini-ImageNet images and therefore cannot qualitatively anticipate the target classes.

5 LIMITATIONS

While D2L—generated dreams are qualitatively distant from the target dataset, a residual limitation is the potential categorical leakage of future-class information. To quantify this, we performed a *leak test* using a joint classifier trained on all classes in the sequence. A *leak* is counted when a future class is assigned to a head previously seeded by a dream that the joint model also maps to that class. On MiniImageNet experiments, we observe 1.76 *leaks* on average (3.93% of class replacements). We remark that these events are not only rare but also contingent on the premise that Stable Diffusion can faithfully synthesise future classes—a premise the OOD-distribution experiment fails to support. Nonethenless, mitigation of this theoritical leakage could involve unlearning future-class concepts from the diffusion model—e.g., through concept-erasure or negative-gradient editing—prior to prompt optimization.

6 CONCLUSION

In this work, we introduced **Dream2Learn**, an approach inspired by the ability of the human brain to consolidate past experiences and anticipate future ones through dreaming. Our method pairs a classification network with a generative model to synthesize structured training signals, reinforcing past knowledge and enhancing forward transfer—allowing the model to leverage prior knowledge to improve learning on future tasks. Experiments on standard continual learning benchmarks show that dreaming helps mitigate forgetting and can support feature learning by expanding the classifier's representation space, turning negative forward transfer into positive. Using soft prompt optimization within a latent diffusion model, D2L generates novel yet coherent classes with the oracle model helping to maintain sample quality by preventing collapse.

In summary, D2L offers a practical approach to structuring model knowledge over time. By generating intermediate representations, it illustrates the potential of synthetic data to support abstraction and transfer in continual learning.

Reproducibility Statement. All CL experiments are implemented on top of the Mammoth framework https://github.com/aimagelab/mammoth; baseline results are obtained using the implementations provided within the framework under the same memory and protocol constraints. Data pre-processing steps, data splits, used hyperparameters mirroring our setup are documentend in the Appendix F. Assumptions, architectural choices and training details for the oracle network are explained in the main text and expanded in the Appendix B. The full codebase for prompt optimization, generation and experiment scripts will be publicly released upon acceptance.

REFERENCES

- Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient Based Sample Selection for Online Continual Learning. In *Advances in Neural Information Processing Systems*, 2019.
- Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual learning method based on complementary learning system. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=uxxFrDwrE7Y.
- Giovanni Bellitto, Matteo Pennisi, Simone Palazzo, Lorenzo Bonicelli, Matteo Boschini, and Simone Calderara. Effects of auxiliary knowledge on continual learning. In 2022 26th International Conference on Pattern Recognition (ICPR), pp. 1357–1363. IEEE, 2022.
- Ari S Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing networks in function space. In *International Conference on Learning Representations Workshop*, 2019.
- Matteo Boschini, Lorenzo Bonicelli, Angelo Porrello, Giovanni Bellitto, Matteo Pennisi, Simone Palazzo, Concetto Spampinato, and Simone Calderara. Transfer without forgetting. In *European Conference on Computer Vision*, 2022.
- Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark Experience for General Continual Learning: a Strong, Simple Baseline. In *Advances in Neural Information Processing Systems*, 2020.
- Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky. New Insights on Reducing Abrupt Representation Change in Online Continual Learning. In *International Conference on Learning Representations Workshop*, 2022.
- Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In *IEEE International Conference on Computer Vision*, 2021.
- Arslan Chaudhry, Marc' Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient Lifelong Learning with A-GEM. In *International Conference on Learning Representations Workshop*, 2019a.
- Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS Torr, and Marc'Aurelio Ranzato. On tiny episodic memories in continual learning. In *International Conference on Machine Learning Workshop*, 2019b.
- Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz. Using hindsight to anchor past knowledge in continual learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2021.
- Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from non-stationary data streams. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 8250–8259, October 2021.
- Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2021.
- Nicolas Deperrois, Mihai. A. Petrovici, Walter Senn, and Jakob Jordan. Learning cortical representations through perturbed and adversarial dreaming. *Elife*, 11, Apr 2022.

543

544

546

547

548

549

550

551

552 553

554

555

556

558

559

560

561 562

563

564

565

566

567 568

569

570

571 572

573

574

575

576

577

578

579 580

581 582

583

584 585

586

588

589

590

- 540 Emanuele Frascaroli, Riccardo Benaglia, Matteo Boschini, Luca Moschella, Cosimo Fiorini, Emanuele Rodolà, and Simone Calderara. Latent spectral regularization for continual learning. 542 Pattern Recognition Letters, 184:119–125, 2024.
 - Rui Gao and Weiwei Liu. Ddgr: Continual learning with deep diffusion-based generative replay. In International Conference on Machine Learning, pp. 10744–10763. PMLR, 2023.
 - Md Yousuf Harun, Jhair Gallardo, Tyler L. Hayes, Ronald Kemker, and Christopher Kanan. SIESTA: Efficient online continual learning with sleep. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=MqDV1BWRRV.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016.
 - Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 8340–8349, 2021.
 - Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The" wake-sleep" algorithm for unsupervised neural networks. Science, 268(5214):1158–1161, 1995.
 - Daoyun Ji and Matthew A. Wilson. Coordinated memory replay in the visual cortex and hippocampus during sleep. *Nat Neurosci*, 10(1):100–107, Jan 2007.
 - Quentin Jodelet, Xin Liu, Yin Jun Phua, and Tsuyoshi Murata. Class-incremental learning using diffusion model for distillation and replay. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3425-3433, 2023.
 - Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learning. In International Conference on Learning Representations, 2018.
 - James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. *Proceedings of the National Academy of Sciences*,
 - Dharshan Kumaran, Demis Hassabis, and James L. McClelland. What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated. Trends Cogn Sci, 20(7):512-534, Jul 2016.
 - Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D Bagdanov, Shangling Jui, and Joost van de Weijer. Generative feature replay for class-incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 226–227, 2020.
 - Sue Llewellyn. Dream to Predict? REM Dreaming as Prospective Coding. Front Psychol, 6:1961,
 - David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learning. In Advances in Neural Information Processing Systems, 2017.
 - Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo Huang, Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module. arXiv preprint arXiv:2311.05556, 2023.
 - Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. Supervised contrastive replay: Revisiting the nearest class mean classifier in online class-incremental continual learning. In IEEE International Conference on Computer Vision and Pattern Recognition Workshops, 2021.
 - Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765–7773, 2018.

- James L McClelland, Bruce L McNaughton, and Randall C. O'Reilly. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. *Psychol Rev*, 102(3):419–457, Jul 1995.
 - Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. *Psychology of learning and motivation*, 1989.
 - Zichong Meng, Jie Zhang, Changdi Yang, Zheng Zhan, Pu Zhao, and Yanzhi Wang. Diffclass: Diffusion-based class incremental learning. In *European Conference on Computer Vision*, pp. 142–159. Springer, 2024.
 - Oleksiy Ostapenko, Timothee Lesort, Pau Rodriguez, Md Rifat Arefin, Arthur Douillard, Irina Rish, and Laurent Charlin. Continual learning with foundation models: An empirical study of latent replay. In Sarath Chandar, Razvan Pascanu, and Doina Precup (eds.), *Proceedings of The 1st Conference on Lifelong Learning Agents*, volume 199 of *Proceedings of Machine Learning Research*, pp. 60–91. PMLR, 22–24 Aug 2022.
 - German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning with neural networks: A review. *Neural Networks*, 2019.
 - Federico Pernici, Matteo Bruni, Claudio Baecchi, Francesco Turchini, and Alberto Del Bimbo. Class-incremental learning with pre-allocated fixed classifiers. In *International Conference on Pattern Recognition*, 2021.
 - Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow. *Advances in Neural Information Processing Systems*, 2021.
 - Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic forgetting in neural networks. In *International conference on learning representations*, 2021.
 - Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv e-prints*, 2022.
 - Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL: Incremental classifier and representation learning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, 2017.
 - Amanda Rios and Laurent Itti. Closed-loop memory gan for continual learning. In *Proceedings of the 28th International Joint Conference on Artificial Intelligence*, pp. 3332–3338, 2019.
 - Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 1995.
 - Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International journal of computer vision*, 115:211–252, 2015.
 - Sophie Schwartz. Are life episodes replayed during dreaming? *Trends Cogn Sci*, 7(8):325–327, Aug 2003.
 - Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual learning. In *International Conference on Machine Learning*, 2018.
 - Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay. *Advances in neural information processing systems*, 30, 2017.
 - Dhairyya Singh, Kenneth A. Norman, and Anna C. Schapiro. A model of autonomous interactions between hippocampus and neocortex driving sleep-dependent memory consolidation. *Proceedings of the National Academy of Sciences of the United States of America*, 119(44), November 2022. ISSN 0027-8424.
 - James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed attention-based prompting for rehearsal-free continual learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11909–11919, 2023.

- Amelia Sorrenti, Giovanni Bellitto, Federica Proietto Salanitri, Matteo Pennisi, Simone Palazzo, and Concetto Spampinato. Wake-sleep consolidated learning. *IEEE Transactions on Neural Networks and Learning Systems*, pp. 1–12, 2024. doi: 10.1109/TNNLS.2024.3458440.
 - Timothy Tadros, Giri P Krishnan, Ramyaa Ramyaa, and Maxim Bazhenov. Sleep-like unsupervised replay reduces catastrophic forgetting in artificial neural networks. *Nature communications*, 13(1): 7742, 2022.
 - Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning. In *Advances in Neural Information Processing Systems*, 2016.
 - Matthew P. Walker and Robert Stickgold. Sleep-dependent learning and memory consolidation. *Neuron*, 44(1):121–133, Sep 2004.
 - Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel of images. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 2555–2563, 2023.
 - Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for rehearsal-free continual learning. In *Proceedings of the European Conference on Computer Vision*, pp. 631–648. Springer, 2022a.
 - Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 139–149, June 2022b.
 - Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large scale incremental learning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, 2019.
 - Songlin Yan, Fan Zhou, Rui Zhao, Mengyang Yang, Xiaojun Chang, and Yi-Dong Zhang. Ddgr: Continual learning with deep diffusion-based generative replay. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*, 2023.
 - Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.
 - Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In *International Conference on Machine Learning*, 2017.
 - Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In *International Conference on Learning Representations*, 2018.

APPENDICES

702

703704705

706

708

709

710 711 712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728 729

730

731

732

733

734

735

736

738

739

740

741

742

743

744

745

746

747

748

749750751

752 753

754

755

A METHOD ALGORITHM

Algorithm 1 delineates the D2L pipeline introduced in Sec. 3. For clarity of presentation, the pipeline is simplified by omitting the initial and final tasks. During the initial task, the absence of dreaming classes reduces the training loss to Eq. 1, while the final task does not perform dreaming generation and optimization as these phases are unnecessary.

Algorithm 1 Dream2Learn (D2L)

```
Notation
     T, the number of task
     C_t, the classes of task t
     F_{\theta}, the continual classifier
     G, the generator
     \mathcal{B}, the buffer
     \mathcal{D}_t, the real data distribution at task t
     \mathcal{D}_{t-1}^d the \mathit{dream} distribution used during continual training at task t
     \mathcal{D}_t^r, the distribution of the dream classes to be removed at task t
     \mathcal{D}_{t-1}^{d*}, the residual dream classes after mapping at task t
     x, a real image
     \mathbf{x}^d, a generated dream image
     \mathbf{p}_c, the learnable prompt associated with class c
     \mathcal{D}_{t,c}^d, the distribution of dreams generated after task t from class c
     \mathcal{D}_{t,\mathcal{C}_t}^d, the distribution of dreams generated after task t from classes \mathcal{C}_t
     \mathcal{D}_t^d, the distribution of all dreams after task t
```

```
1: for t = 2 to T - 1 do
               \mathcal{D}_t^r \leftarrow Mapping(F_{\theta}, \mathcal{D}_t)
 2:
                                                                                                                                                      \mathcal{D}_{t-1}^{d*} \leftarrow \mathcal{D}_{t-1}^{d} \setminus \mathcal{D}_{t}^{r}
 3:
 4:
               for all epochs do
                                                                                                                                                                        ⊳ CL training
                       loss \leftarrow \mathcal{L}_{CE}(F_{\theta}, \mathcal{D}_{t-1}^{d*} \cup \mathcal{D}_{t}) + \mathcal{L}_{CL}(F_{\theta}, \mathcal{D}_{t}, \mathcal{B})
 5:
                       \mathcal{B} \leftarrow ReservoirSample(\mathcal{B}, \mathcal{D}_t)
 6:
                       update \theta
 7:
 8:
               end for
                                                                                                                                                   ⊳ dreaming optimization
 9:
               for all c \in \mathcal{C}_t do
10:
                       repeat
                              \mathbf{x}^d \leftarrow G(\mathbf{x}, \mathbf{p}_c)
11:
                              loss \leftarrow \mathcal{L}_{CE}(F_{\theta}, (\mathbf{x}^d, c))
12:
                              update p_c
13:
                              stop \leftarrow Oracle(\mathbf{x}, \mathbf{x}^d)
14:
                       until stop
15:
                      \mathcal{D}_{t,c}^d \leftarrow Generate(G, \mathcal{B}, \mathbf{p}_c)
16:
                                                                                                                                                      ▶ dreaming generation
17:
               \mathcal{D}_{t,\mathcal{C}_t}^d \leftarrow \bigcup_c \mathcal{D}_{t,c}^d
18:
               \mathcal{D}_t^r \leftarrow Mapping(F_{\boldsymbol{\theta}}, \mathcal{D}_{t,\mathcal{C}_t}^d)
19:
                                                                                                                                                 \mathcal{D}_{t}^{d} \leftarrow (\mathcal{D}_{t-1}^{d*} \setminus \mathcal{D}_{t}^{r}) \cup \mathcal{D}_{t,\mathcal{C}_{t}}^{d}
20:
21: end for
```

B ORACLE TRAINING AND GENERALIZATION

In the main paper (Sec. 3.2) we introduced the oracle network O, whose goal is to determine the stopping point during prompt optimization. The formal definition of O is already provided in the main manuscript; here we detail its training procedure.

B.1 DATASETS

To avoid semantic overlap between the oracle's training data and the continual evaluation benchmarks, we always trained the oracle on classes from a disjoint dataset. Concretely:

- When the benchmark was Mini-ImageNet or FG-ImageNet, the oracle was trained on dreaming trajectories from ImageNet-R;
- When the benchmark was ImageNet-R, the oracle was trained on dreaming trajectories from FG-ImageNet.

This ensures that the oracle never sees classes related to the benchmarks in which it is applied, thus preventing task-specific bias.

Each trajectory was obtained by optimizing the soft prompt $\mathbf{p}_{\text{soft},c}$ for up to 500 steps. The stopping point was labeled as the iteration at which generated samples exhibited both high perceptual quality and sufficient diversity, while avoiding collapse or excessive specialization.

B.2 FEATURES

The oracle network takes as input feature sequences $\mathbf{Z}_t = [\mathbf{z}_{t-k+1}, \dots, \mathbf{z}_t]$, with each $\mathbf{z}_i \in \mathbb{R}^4$ summarizing properties of the generated samples at iteration i. In order to train the oracle network O, we initially designed a pool of 25 candidate features capturing different aspects of the generation process. These features can be grouped into three broad categories:

- Image-level quality metrics. We compute average SSIM, PSNR, and MSE among pairs of generated images at the same optimization step. These same metrics are also computed between each generated image and its conditioning (target) image. We also compute CLIP-iQA scores (quality, complexity, naturalness, realism) on both generated and target images.
- Feature-based statistics. We extract classifier feature-level statistics: cosine similarity
 and MSE computed either among generated images or between generated and conditioning
 images. We therefore computed embeddings standard deviation on both generated and target
 images.
- Classifier-based uncertainty signals. From the target classifier logits we compute statistical descriptors including variance, entropy, range (max-min), and kurtosis, averaged across generated samples. We also include the cross-entropy loss signal used during prompt optimization.

To reduce redundancy and identify the most informative subset, we performed a SHAP-based feature importance analysis across multiple trajectories. Four features consistently ranked highest and were retained for the oracle used in the main experiments:

- 1. SSIM between conditioning and generated images (structural fidelity).
- 2. Cosine similarity between classifier embeddings of conditioning and generated images (semantic alignment).
- 3. CLIP-iQA quality score of generated images (perceptual quality).
- 4. Standard deviation of classifier embeddings within generated samples (diversity).

These four features jointly capture complementary aspects of generation dynamics: (i) structural coherence, (ii) semantic alignment, (iii) perceptual quality, and (iv) diversity. Importantly, they are not tied to dataset-specific semantics, which explains why the oracle generalizes robustly across benchmarks even when trained only once on disjoint classes.

B.3 MODEL

The oracle O is implemented as a lightweight multilayer perceptron (MLP). It receives as input the temporal feature sequence $\mathbf{Z}_t = [\mathbf{z}_{t-k+1}, \dots, \mathbf{z}_t]$, where each $\mathbf{z}_i \in \mathbb{R}^4$ contains the metrics described in Sec. B.2. The network consists of a single hidden layer with 32 units, ReLU activation, and a sigmoid output for binary classification.

Table 6: **Ablation on dream generation strategies.** Evaluation on Mini-ImageNet comparing interpolation-based baselines with our proposed D2L.

	Buffer size			
Method	2000	5000		
ER-ACE baseline	33.26±3.51	40.59±1.20		
+ Mixup	36.84 ± 0.94	44.82 ± 1.27		
+ Continual Mixup	36.05±1.22	43.45 ± 0.83		
+ Textual Mixup	31.89 ± 0.50	-		
+ Synth Mixup	36.99 ± 0.26	_		
+ Oracle (D2L)	40.90 ±0.95	47.32 ±0.89		

The model is trained supervisedly on labeled dreaming trajectories with the Adam optimizer for a maximum of 500 iterations, using binary cross-entropy loss. A validation split is employed for early stopping. Once trained, the oracle is frozen and used across a sequence of tasks including only classes never seen during its training. Its inference overhead is negligible (less than 1 ms per step), making it effectively free compared to prompt optimization and dream generation.

B.4 GENERALIZATION

To assess the generalization capability of the oracle, we trained a single model on a dedicated dream-quality dataset constructed from 100 ImageNet classes, disjoint from all benchmarks used in the main experiments (Mini-ImageNet, FG-ImageNet, and ImageNet-R). Labels were assigned by inspecting dreaming trajectories and selecting the iteration that yielded high-quality and diverse images without collapse.

This general-purpose oracle was then applied across all tasks and datasets, without retraining or adaptation. The predicted stopping points differed from those obtained with dataset-specific oracles by only 9.28 iterations on average (out of 500 optimization steps). Importantly, no trajectory collapse was observed and continual learning performance remained unchanged.

These results confirm that oracle training does not need to be repeated for each benchmark: a single instance trained once on a disjoint dataset generalizes robustly. This is explained by the choice of features—structural similarity, embedding alignment, CLIP-based perceptual quality, and embedding diversity—which capture dataset-agnostic properties of generation dynamics.

C COMPARISON WITH MIXUP-BASED STRATEGIES

In principle, the dreaming process could be replaced by surrogate samples generated from past knowledge using interpolation-based techniques. To test this hypothesis, we substituted our dreamed classes with synthetic ones obtained through different Mixup strategies and related baselines.

- Mixup (Zhang et al., 2018): combines images from the current data stream with samples from the replay buffer to form auxiliary synthetic classes.
- **Continual Mixup**: applies the same interpolation scheme, but only between images sampled from the replay buffer.
- Textual Mixup: interpolates text embeddings of class prompts, producing mixed conditioning signals without structural generation.
- **Synth Mixup**: interpolates directly in the latent space of the diffusion model.

As shown in Table 6, D2L consistently outperforms all interpolation-based strategies. In contrast to Mixup variants, which rely on static blending of existing representations, D2L produces distinct and task-aware latent clusters. Importantly, our generation process is explicitly guided by the knowledge encoded in the classifier.

D EVALUATION ACROSS MULTIPLE TASK ORDERINGS

While earlier experiments considered a fixed task sequence, we also evaluate D2L under multiple random class orderings to obtain a more robust assessment of its generalization across datasets. Specifically, we repeated the main experiments using three different class orderings (random seeds: 1607, 23, and 0) with a buffer size of 2000. We report mean and standard deviation across these runs. Results in Table 7 confirm that D2L consistently outperforms the baseline across all datasets, showing that its benefits are stable and not tied to a particular task sequence.

Table 7: Evaluation under multiple task orderings. Results are averaged over three random class sequences (seeds: 1607, 23, 0) with buffer size 2000. D2L consistently outperforms the baseline.

Dataset	Baseline (mean \pm std)	D2L (mean \pm std)
SeqMINIIMG	32.39 ± 1.25	$\textbf{39.42} \pm \textbf{2.42}$
SeqImageNet-FG	27.18 ± 2.08	$\textbf{33.32} \pm \textbf{1.54}$
SeqImageNet-R	8.28 ± 1.03	$\textbf{9.93} \pm \textbf{0.41}$

E GENERATIVE REPLAY VS. DREAM2LEARN

In this section, we aim to clarify the conceptual differences between *generative replay* (GR) methods and our proposed Dream2Learn (D2L), and we provide additional experimental results for completeness.

GR methods such as DGR (Shin et al., 2017) or DDGR (Yan et al., 2023) discard the memory buffer and rely entirely on a generative model to reconstruct past data, with the objective of preserving knowledge of previous tasks through explicit replay. In contrast, D2L differs along two fundamental dimensions:

- **Buffer.** Unlike GR, D2L retains a fixed-size buffer (e.g., 2000 samples), ensuring direct access to real exemplars throughout training. Nonetheless, **buffer never contains generated images**.
- **Generation.** While GR employs generation to reproduce past samples that directly replace the buffer, D2L leverages generation in a profoundly different way: generated images in D2L do not serve as memory replacements, but as additional data stream (additional classes) that pre-activate future-class representations.

This conceptual divergence means that direct comparisons should be interpreted carefully, as the underlying objectives and mechanisms are not the same. Nevertheless, since both approaches involve generative components during training and thus incur comparable overheads, we report results against representative GR methods under the same buffer constraint, as shown in Tab. 8.

Table 8: Comparison with generative replay methods under the same buffer constraint (2000 samples). While D2L is not a generative replay method, its use of generation for anticipatory transfer leads to superior performance compared to GR approaches.

Method	SeqMiniImageNet	SeqImageNet-FG	SeqImageNet-R
DGR (Shin et al., 2017)	23.33 ± 0.32	26.17 ± 0.21	7.00 ± 0.26
DDGR (Yan et al., 2023)	37.48 ± 0.98	30.81 ± 0.54	9.21 ± 0.17
ER-ACE + D2L (ours)	40.90 ± 0.95	31.57 ± 1.20	9.54 ± 0.39

These results confirm that D2L achieves higher accuracy than GR approaches, despite pursuing a different goal. Whereas GR attempts to reconstruct and replay the past, D2L leverages anticipatory generation to expand and stabilize the representation space, proving more effective across all benchmarks.

F REPRODUCIBILITY DETAILS

921922923

918

919 920

F.1 ADDITIONAL TRAINING DETAILS

924925926927

928

929

930

931

932

933

934

All experiments are conducted on a workstation with 384-core CPU, 1TB RAM and 4 NVIDIA H100 GPUs. The continual learning methods are trained on a single NVIDIA H100 GPU. As a reference, each training run with ER-ACE on Mini-ImageNet requires approximately 3 hours. The dream generation process, based on the use of Stable Diffusion, is the most computationally intensive part. To this aim, we use 4 NVIDIA H100 GPUs and it requires approximately 6 hours per run (including both prompt optimization and dreams generation), with PyTorch DistributedDataParallel. Results in Sec. 4.2 are reported in terms of mean and standard deviation over five runs with different random seeds.

935936937

938939940

F.2 Hyperparameter Search

941942943

944

945 946 In Tables 9, 10 and 11 we show the best hyperparameters combinations for each method.

947 948 949

950 951

952

Table 9: Mini-ImageNet

953954955956

957

958

959

960

961

962

963

964

965

966

967

```
Method
            Buffer
                     Mini-ImageNet
Fine-tune
                     lr: 0.03
ER
             2000
                     lr: 0.03;
ER
             5000
                     lr: 0.03;
DER++
             2000
                     lr: 0.01; alpha: 0.1; beta: 0.5;
DER++
             5000
                     lr: 0.01; alpha: 0.1; beta: 0.5;
             2000
                     lr: 0.01; mom: 0 wd: 0
ER-ACE
ER-ACE
             5000
                     lr: 0.01; mom: 0 wd: 0
GSS
             2000
                     lr: 0.03;
GSS
             5000
                     lr: 0.03;
             2000
A-GEM
                     lr: 0.03;
A-GEM
             5000
                     lr: 0.03;
RPC
             2000
                     lr: 0.03;
RPC
             5000
                     lr: 0.03;
FDR
             2000
                     lr: 0.03; alpha:0.3;
             5000
                     lr: 0.03; alpha:0.3;
FDR
             2000
iCaRL
                     lr: 0.03;
             5000
iCaRL
                     lr: 0.03;
             2000
BiC
                     lr: 0.03;
BiC
             5000
                     lr: 0.03;
```

Table 10: FG-ImageNet

975
976
977
978
979
980
981
982
983
984
985
986

Method	Buffer	FG-ImageNet
Fine-tune	-	lr: 0.03
ER	2000	lr: 0.03;
ER	5000	lr: 0.03;
DER++	2000	lr: 0.03; alpha: 0.1; beta: 0.5;
DER++	5000	lr: 0.03; alpha: 0.1; beta: 0.5;
ER-ACE	2000	lr: 0.03; mom: 0 wd: 0
ER-ACE	5000	lr: 0.03; mom: 0 wd: 0
GSS	2000	lr: 0.03;
GSS	5000	lr: 0.03;
A-GEM	2000	lr: 0.03;
A-GEM	5000	lr: 0.03;
RPC	2000	lr: 0.03;
RPC	5000	lr: 0.03;
FDR	2000	lr: 0.03; alpha:0.3;
FDR	5000	lr: 0.03; alpha:0.3;
iCaRL	2000	lr: 0.03;
iCaRL	5000	lr: 0.03;
BiC	2000	lr: 0.03;
BiC	5000	lr: 0.03;

Table 11: ImageNet-R

Method	Buffer	ImageNet-R
Fine-tune	_	lr: 0.03
ER	2000	lr: 0.03;
ER	5000	lr: 0.03;
DER++	2000	lr: 0.03; alpha: 0.1; beta: 0.5;
DER++	5000	lr: 0.03; alpha: 0.1; beta: 0.5;
ER-ACE	2000	lr: 0.03; mom: 0 wd: 0
ER-ACE	5000	lr: 0.03; mom: 0 wd: 0
GSS	2000	lr: 0.03;
GSS	5000	lr: 0.03;
A-GEM	2000	lr: 0.03;
A-GEM	5000	lr: 0.03;
RPC	2000	lr: 0.03;
RPC	5000	lr: 0.03;
FDR	2000	lr: 0.03; alpha:0.3;
FDR	5000	lr: 0.03; alpha:0.3;
iCaRL	2000	lr: 0.03;
iCaRL	5000	lr: 0.03;
BiC	2000	lr: 0.03;
BiC	5000	lr: 0.03;

TASK SEQUENCE DETAILS

In Tables 12, 13 and 14 we report the combination of class order and their division into tasks employed in our experiments during the continual training. Each name corresponds to a different synset of the ImageNet dataset.

Table 12: Mini-ImageNet

Task			Synsets		
	n02091244	n01770081	n03207743	n01749939	n02110063
	n02174001	n02165456	n02687172	n09246464	n02871525
	n01855672	n03062245	n04149813	n04067472	n04522168
	n02138441	n04509417	n04275548	n03888605	n01981276
_	n02091831	n03400231	n02219486	n02795169	n03773504
$ au_1$	n03337140	n01558993	n03998194	n02129165	n03127925
	n02457408	n02108915	n04389033	n04604644	n03908618
	n02443484	n02116738	n03854065	n03544143	n09256479
	n04251144	n02606052	n02113712	n02950826	n07747607
	n02108551	n02108089	n07613480	n03527444	n02823428
$ au_2$	n01532829	n02981792	n02120079	n03476684	n03047690
$ au_3$	n02971356	n02074367	n06794110	n04612504	n03924679
$ au_4$	n01910747	n02105505	n03584254	n03770439	n01930112
$ au_5$	n04435653	n03347037	n03535780	n04243546	n04596742
$ au_6$	n02099601	n04418357	n02089867	n03272010	n03220513
$ au_7$	n04146614	n04443257	n02111277	n02747177	n04515003
$ au_8$	n13054560	n01843383	n07584110	n13133613	n04258138
$ au_9$	n03075370	n02966193	n03417042	n03146219	n03838899
$ au_{10}$	n03775546	n03017168	n03980874	n02114548	n03676483
$ au_{11}$	n01704323	n07697537	n02101006	n04296562	n02110341

Table 13: FG-ImageNet

Task			Synsets		
$ au_1$	n01943899	n01753488	n01819313	n01601694	n01695060
	n02028035	n01675722	n01498041	n01774750	n01608432
	n01685808	n01978287	n01537544	n01742172	n01924916
	n01829413	n01818515	n01494475	n01877812	n02027492
	n02058221	n01491361	n01910747	n01729977	n02018207
	n01824575	n01986214	n01860187	n01773797	n01630670
	n01796340	n01687978	n01984695	n01729322	n01833805
	n01776313	n01443537	n01560419	n02018795	n01985128
	n01677366	n01755581	n01739381	n01770081	n02013706
	n01978455	n02037110	n01514668	n01440764	n01855672
$ au_2$	n01756291	n01770393	n01775062	n01632458	n01820546
$ au_3$	n01496331	n01582220	n01734418	n01622779	n01632777
$ au_4$	n01806143	n01773549	n01774384	n02077923	n01740131
$ au_5$	n01484850	n01914609	n01665541	n01667778	n01847000
$ au_6$	n01667114	n01728572	n01693334	n01843383	n01950731
$ au_7$	n01514859	n02012849	n01773157	n01614925	n01795545
$ au_8$	n01944390	n02011460	n01883070	n02002556	n01798484
$ au_9$	n02051845	n01644900	n01531178	n01968897	n01698640
$ au_{10}$	n01592084	n01955084	n01930112	n02007558	n01735189
$ au_{11}$	n01751748	n01664065	n01749939	n02006656	n01828970

Table 14: ImageNet-R

Task	Synsets									
$ au_1$	n02165456	n03594945	n02325366	n02814860	n02966193	n02480495	n02106030	n02088364	n02066245	n02843684
	n04591713	n02110185	n02092339	n02980441	n01833805	n03947888	n03602883	n03649909	n02841315	n01855672
	n02007558	n03424325	n03710193	n02992529	n12267677	n02233338	n04254680	n07714990	n01644373	n02077923
	n02138441	n03498962	n01484850	n01847000	n02113799	n02129165	n02119022	n07697537	n02480855	n02009912
	n07693725	n02445715	n04487394	n02802426	n09835506	n04133789	n02113023	n02091134	n02110341	n02317335
	n02607072	n07768694	n07880968	n01843383	n02769748	n03494278	n02106166	n04086273	n01944390	n02098286
	n01806143	n01514859	n01498041	n07614500	n04465501	n02398521	n02117135	n02808440	n02112018	n02906734
	n02486410	n07720875	n02110958	n03124170	n01632777	n01986214	n02437616	n04192698	n02134084	n02655020
	n02086240	n03345487	n02395406	n04147183	n01748264	n02113624	n03272010	n03495258	n02128385	n03467068
	n02096585	n04310018	n04146614	n04536866	n07745940	n02088238	n02363005	n02364673	n02226429	n07753592
τ_2	n02510455	n04266014	n02948072	n07695742	n02099712	n02112137	n07873807	n02102318	n02106662	n01774750
	n02219486	n02114367	n01614925	n07734744	n01770393	n01616318	n04275548	n03452741	n02950826	n02883205
τ_3	n02279972	n03775071	n01443537	n02088466	n04325704	n02129604	n02091032	n07714571	n02085620	n04347754
	n01677366	n04118538	n01882714	n07697313	n01820546	n02097298	n02088094	n03372029	n02108915	n02797295
$ au_4$	n01531178	n03930630	n02268443	n02823750	n02106550	n01494475	n02190166	n02346627	n02130308	n02481823
	n07718472	n04522168	n07753275	n01910747	n02447366	n02109525	n02099601	n01784675	n04141076	n04389033
τ_5	n03481172	n02483362	n02749479	n04552348	n02123045	n01860187	n03676483	n02526121	n02236044	n04409515
	n02423022	n02206856	n02108089	n02051845	n10565667	n07749582	n01630670	n02128757	n02939185	n02672831
τ_6	n02951358	n07920052	n01518878	n02793495	n03773504	n01694178	n09472597	n02909870	n02701002	n03888257
	n01983481	n02356798	n02410509	n07742313	n02391049	n03630383	n02094433	n02056570	n02071294	n01534433