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Figure 1: Dreamed classes generated by D2L. Examples of dreamed classes synthesized from their
corresponding real classes (left). These samples emerge as semantically distinct yet structurally
coherent representations in the generator’s latent space, forming intermediate concepts that enhance
the continual classifier’s generalization to future tasks.

ABSTRACT

Continual learning struggles with balancing plasticity and stability while mitigating
catastrophic forgetting. Inspired by human sleep and dreaming mechanisms, we
propose Dream2Learn (D2L), a generative approach that enables models, trained
in a continual learning setting, to synthesize structured additional training signals
driven by their internal knowledge. Unlike prior methods that rely on real data to
simulate the dreaming process, D2L autonomously constructs semantically distinct
yet structurally coherent dreamed classes, conditioning a diffusion model via soft
prompt optimization. These dynamically generated samples expand the classifier’s
representation space, reinforcing past knowledge while structuring features in
a way that facilitates adaptation to future tasks. In particular, by integrating
dreamed classes into training, D2L enables the model to self-organize its latent
space, improving generalization and adaptability to new data. Experiments on
Mini-ImageNet, FG-ImageNet, and ImageNet-R show that D2L surpasses existing
methods across all evaluated metrics. Notably, it achieves positive forward transfer,
confirming its ability to enhance adaptability by structuring representations for
future tasks.

1 INTRODUCTION

Humans possess a remarkable ability to learn continuously, consolidate past experiences, and gener-
alize knowledge to novel situations (Kumaran et al., 2016; McClelland et al., 1995). This process is
also facilitated by memory replay and restructuring during sleep, where the brain synthesizes realistic
dreams derived from awake experiences to prepare for future challenges (Ji & Wilson, 2007; Walker
& Stickgold, 2004; Singh et al., 2022). In contrast, deep learning models in continual learning (CL)
suffer from catastrophic forgetting, wherein previously acquired knowledge deteriorates when new
tasks are introduced (McCloskey & Cohen, 1989). Traditional CL methods attempt to address this
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issue through rehearsal-based strategies, regularization techniques, or architectural modifications.
However, they often struggle to effectively balance stability and plasticity, thereby limiting both
long-term knowledge retention and the capacity for adaptation (De Lange & Tuytelaars, 2021; Parisi
et al., 2019). Among these, rehearsal-based strategies are widely used due to their ability to stabilize
learning by replaying stored examples. Yet, despite their effectiveness, such approaches diverge
significantly from how the human brain consolidates memory. Rather than relying on the exact
replay of past experiences, the brain engages in generative processes during dreaming, recombining
perceptual elements from daily life to construct novel and plausible future scenarios (Llewellyn,
2015; Schwartz, 2003). This process allows for efficient knowledge reinforcement, enabling the brain
to improve generalization and anticipate future challenges. Translating this process into artificial
neural networks is non-trivial, as it requires the ability to synthesize meaningful and structured
representations of the previously learned knowledge without relying on external supervision.
To accomplish this task, in this paper we propose Dream2Learn (D2L), a generative dreaming
process that synthesizes training samples directly from the classifier’s internal representations. Unlike
WSCL (Sorrenti et al., 2024), which relies on surrogate real data to simulate dreams, and other
sleep-based approaches that primarily reinforce existing representations (Tadros et al., 2022; Harun
et al., 2023), D2L autonomously constructs future-adaptive representations (the dreams, indeed),
ensuring task relevance and enhancing the model’s ability to generalize to new tasks.
As illustrated in Fig. 1, D2L generates structured dreamed classes that serve as intermediate represen-
tations, facilitating continual learning. Instead of merely blending past class features, these dreamed
samples form coherent yet distinct new concepts, expanding the representation space in a way that
supports future task adaptation. By integrating “dreamed classes" into training, the classifier learns
high-level reusable features, reinforcing forward transfer while mitigating catastrophic forgetting.
This process mirrors the role of REM sleep, where synthetic experiences help refine learned represen-
tations, maintaining long-term adaptability as new data distributions emerge.
Our experiments on Mini-ImageNet, FG-ImageNet, and ImageNet-R show that our strategy signifi-
cantly boosts performance when integrated with standard continual learning methods.

2 RELATED WORK

Continual Learning (CL) (De Lange et al., 2021; Parisi et al., 2019) encompasses a family of
machine learning techniques that aim to develop models that learn incrementally while avoiding
catastrophic forgetting (McCloskey & Cohen, 1989). Common strategies include regularization
techniques (Kirkpatrick et al., 2017; Zenke et al., 2017), architectural modifications (Schwarz et al.,
2018; Mallya & Lazebnik, 2018), and replay-based methods (Robins, 1995; Rebuffi et al., 2017;
Buzzega et al., 2020). More recent approaches enhance model robustness through contrastive
learning (Mai et al., 2021; Cha et al., 2021) and latent space regularization (Frascaroli et al., 2024),
while experience replay optimizes sample selection for efficient memory retention (Aljundi et al.,
2019; Chaudhry et al., 2021). Generative Replay (GR) (Shin et al., 2017; Rios & Itti, 2019; Liu
et al., 2020) has emerged as an alternative to buffer-based experience replay by synthesizing past
samples, but early methods often faced mode collapse and underperformed compared to traditional
replay. Although DDGR (Gao & Liu, 2023), SDDR (Jodelet et al., 2023), and DiffClass (Meng et al.,
2024) improve sample fidelity, the role of GR remains retrospective: the generator mainly acts as a
memory proxy, reconstructing prior distributions for rehearsal rather than proactively reorganizing
representations. Inspired by cognitive neuroscience, several works explore memory mechanisms
modeled on brain function. DualNet (Pham et al., 2021) and DualPrompt (Wang et al., 2022a)
introduce parallel learning pathways, while CLS-ER (Arani et al., 2022) and FearNet (Kemker
& Kanan, 2018) implement short- and long-term memory systems. These approaches focus on
stabilizing representations during learning but do not incorporate offline processes for restructuring
knowledge. Sleep-based learning offers a complementary perspective, drawing from evidence that
wake-sleep cycles refine memory representations (Hinton et al., 1995; Deperrois et al., 2022). Sleep
Replay Consolidation (Tadros et al., 2022) applies Hebbian plasticity, and SIESTA (Harun et al.,
2023) introduces intermittent consolidation to support online learning. WSCL (Sorrenti et al., 2024)
alternates wake and sleep cycles to simulate the benefits of dreaming for memory consolidation.
However, instead of generating internal experiences during sleep phases, it shapes the latent space of
the classifier using pre-defined representations, limiting the biological plausibility of the dreaming
process.
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Figure 2: Overview of Dream2Learn. (1) During CL training, a deep neural network (DNN) learns
from real sensory images (the current task distribution plus the buffer) and dreamed samples produced
by a latent diffusion model (LDM). (2) The dreaming optimization process refines the LDM prompts,
with an Oracle Network providing a stopping criterion that prevents collapse. (3) Prompts generate
auxiliary classes: dreamed samples are not buffered, but rather enrich the representation space with
coherent latent clusters that foster knowledge reuse and adaptation (see Appendix A).

D2L reframes generation as a prospective mechanism: rather than replicating past data for rehearsal,
generation is used to proactively structure the representation space towards upcoming tasks. It
introduces a self-sufficient generative dreaming mechanism, by generating additional training signals
from the classifier’s internal representations, ensuring task relevance and autonomous dreaming.
Through soft prompt optimization, it identifies semantically distinct yet structurally coherent classes
in the diffusion model’s latent space, which act as intermediate anchors that prime future learning
dynamics. Thus, unlike GR techniques that focus on reconstructing or augmenting past distribu-
tions (Jodelet et al., 2023; Meng et al., 2024), D2L actively shapes future-adaptive representations,
transforming dreaming into a mechanism for fostering forward knowledge transfer and long-term
retention, enabling the classifier to adapt more effectively to unseen tasks.

3 METHOD

We formulate our continual learning setting as the problem of training a model Fθ over a se-
quence of T visual classification tasks {τ1, . . . , τT }, with each task τt associated to a dataset
Dt = {(xt,1, yt,1) , . . . , (xt,nt

, yt,nt
)}. Observations xt,i belong to an image space I, and class sets

are disjoint across tasks, i.e., yt,i ∈ Ct, Cj ∩ Ck = ∅. The model’s output layer has as many neurons
as the total number of classes, i.e.,

∑
nt. Notation-wise, we will treat Dt as a probability distribution,

when clear from the context.

We also assume the availability of a replay buffer B, where we store a limited number of samples from
past tasks for rehearsal, and of a pre-trained and frozen image generator G. Our approach requires
that G can be conditioned from both textual prompts (with the possibility of adding learnable tokens)
and input images; these requirements are easily satisfied by standard text-conditioned latent diffusion
models (LDM) — e.g., Stable Diffusion conditioned by CLIP embeddings (Ramesh et al., 2022; Luo
et al., 2023) — with an image adapter (Ye et al., 2023)1. Formally, G : I × P → I, with P being
the space of sequences of textual token embeddings2. We employ G, with appropriate conditioning,
to synthesize dream images from past knowledge, thus creating an auxiliary synthetic data stream
for preparation to future tasks. At the beginning of our procedure, the model Fθ is trained to learn
how to perform task τ1. Since no knowledge is initially present (as θ is randomly initialized), we
bootstrap the model by training it on task data D1, optimizing a cross-entropy loss:

min
θ
LCE(Fθ,D1) = −E(x,y)∼D1

[
log p(y|x;θ)

]
, (1)

1We use h94/IP-Adapter
2In practice, G is also made stochastic by receiving a random noise ϵ ∼ N (0, I), which is omitted for

brevity.
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with p(y|x;θ) being the likelihood of the correct class, given model parameters θ. During this
bootstrap phase, we also populate the buffer B via reservoir sampling (Lopez-Paz & Ranzato, 2017).

The bootstrapped classifier can now be used to synthesize new classes as “dream” variants of what
the model has seen up to this point. Dream classes are created by optimizing a learnable prompt pc

for each class c ∈ C1, such that G(x,pc) transforms an input image x into a “dreamed” versions that
vaguely resemble target class c, thereby creating a synthetic distribution for a novel “dream class”.
The details about this optimization process are given in Sec. 3.1. Using this procedure, at task τ1 we
introduce n1 dream classes, i.e., as many as the current task’s actual classes. We indicate with Dd

1 the
distribution of dream classes defined at this stage.
Let Dτ1 be the mixture distribution which equally samples from real data D1 and from the dream
distribution Dd

1 . The classifier Fθ is then fine-tuned on Dτ1 , replacing D1 in Eq. 1.
On subsequent tasks τt, t > 1, we can exploit the model’s knowledge on dream classes to ease its
learning of new classes. At the beginning of τt, we forward samples from each new class c ∈ Ct
through the model, and map c to the output dream neuron with the largest average likelihood, as
in (Bellitto et al., 2022). This allows to bootstrap each class maximizing the reuse of relevant features
and preventing disrupting weight updates (details on this procedure in Sec. 3.1). The dream classes
corresponding to the assigned classification heads are removed. We then train Fθ on task data Dt

and on Dd∗
t−1, the residual dream distribution obtained from Dd

t−1 by removing the discarded dream
classes, optimizing the following:

min
θ

[
LCE(Fθ,Dd∗

t−1 ∪ Dt) + LCL(Fθ,Dt,B)
]
, (2)

where LCL is an additional continual learning loss that counters forgetting and explicitly leverages
the replay buffer B for rehearsal. In practice, when sampling from the dream distributions Dd∗

t−1,
we employ items stored in the buffer as input conditions to the generator G, to increase variability
in the dreamed images. Importantly, dreamed samples are never added to B (refer to Appendix E);
only their prompts are retained as part of a persistent dream inventory. After training on task τt and
storing rehearsal samples into B, we update the dream inventory for the next task, by optimizing
a new set of prompts {pc | c ∈ Ct}, corresponding to new dream class distributions. The set of nt

newly-generated dream distributions is used to replace an equal number of existing dreaming classes
using again the mapping strategy in (Bellitto et al., 2022). We detailed the algorithm in Appendix A.

3.1 DREAMING OPTIMIZATION AND MAPPING

The dreaming optimization process for task τt consists of learning a proper conditioning for generator
G, in order to synthesize samples of novel concepts, expanding the model’s representation space
while preserving feature reuse.
For each real task class c ∈ Ct, we aim to generate a corresponding dreamed class cd that is distinct
from all real classes, while contributing to a structured representation in the latent space.
To achieve this, we optimize a learnable prompt pc that conditions the generator G to synthesize
samples of class cd. Our objective is to identify a transformation trajectory in the LDM latent space
such that, given an arbitrary real image x as input to G, the learned prompt pc guides G to generate a
dreamed version xd that shares some characteristics with class c, while remaining distinct enough to
not be classified as c by the model Fθ. This ensures that the dreamed samples populate a structured
latent space region that remains visually coherent but semantically separated from real classes.
Formally, we structure the dream class condition pc = [psoft,c,ptext,c] with ptext,c being the fixed text
prompt describing the transformation for class c, as: “An image of class [c]”, and psoft,c
being a learnable soft prompt vector optimized to refine the conditioning for class c. Due to the
stochasticity of G, multiple dreamed samples can be generated from the same real image x and
condition pc. Fig. 3 shows the dreaming optimization process in the LDM latent space.

Prompt optimization is performed by minimizing the cross-entropy loss:

min
psoft,c

Ex∼Di\Dc
i

[
− log p(c|G(x,pc);θ)

]
, (3)

where Dc
i is the subset of real samples belonging to class c, excluded from the optimization process:

this ensures that optimization is not conditioned on images already belonging to the target distribution,
allowing the process to gradually converge toward it while generating novel yet structured concepts.
As optimization progresses, dreamed samples populate a distinct but structured latent region, allowing
future tasks to benefit from enhanced feature reuse and transferability.
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Figure 3: Visualization of the dreaming optimization process in the latent space of a LDM.
Given a real sample x, the optimization refines the soft prompt psoft,c to steer the diffusion model
towards generating a dreamed counterpart that aligns with the target class c (e.g., a green mamba in
this example). The dreaming process explores latent regions where images are visually similar yet
distinct from target classes, forming novel intermediate classes (violet zones).

Dreaming optimization produces a set of conditioning prompts {pc | c ∈ Ct} for each class of task τt.
Next, we determine the output neurons to which the new dream classes should be mapped, replacing
a subset of dream classes from past tasks. The rationale for this step is to map new classes over
“similar” past dream classes, to ensure a smooth integration and prevent high gradients during training.
Thus, let C be the set of all output model neurons, and Creal =

⋃
i≤t Ci the set of outputs assigned

to real past tasks. We compute the set of possible destination neurons for the new dream classes as
Cavail = C \ Creal. Then, we obtain the output neuron cout for dream class cd as:

cout = argmin
c∈Cavail

Ex∼G
cd

[
− log p(c|x;θ)

]
, (4)

where Gc is the distribution associated to samples produced by G when conditioned with pc. In
practice, cd replaces the dream class to which it is more “aligned” in terms of classification likelihood.

Figure 4: Examples of dreaming optimization trajectories showing collapse. From left to right,
the images depict different stages of the optimization process. Each row illustrates the evolution of
three example images throughout the same prompt optimization. Initially, the generated samples
maintain meaningful variations. However, as optimization progresses, they become increasingly
similar, reducing diversity and leading to less effective representations.

3.2 ORACLE-GUIDED DREAMING OPTIMIZATION

One key challenge in the dreaming process is determining when to stop optimizing the soft prompt
psoft,c to avoid collapse or excessive task-specific bias, as illustrated in Fig. 4. If optimization contin-
ues indefinitely toward the convergence of Eq. 3, the generated samples risk becoming redundant or

5
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overfitting to the current task, reducing their effectiveness for future learning. To prevent this, we
introduce an oracle network that predicts the optimal stopping point by evaluating whether further
refinement of psoft,c contributes to meaningful latent representation learning. The oracle is trained
on a separate dataset DO, where stopping decisions are labeled based on the quality of generated
dreams.
Formally, we define the oracle network O, which takes as input a sequence of feature vectors extracted
over a temporal window of k optimization steps and provides a binary decision:

O(Zt) ∈ {0, 1} (5)

where Zt is the aggregated feature matrix over the last k generated samples:

Zt = [zt−k+1, zt−k+2, . . . , zt] (6)

The components of each vector zi ∈ R4 are the following quantities, computed using the generator
Gc conditioned by psoft,c at the i-th optimization iteration of Eq. 3: 1) Ex

[
sim(x, Gc(x)

]
, with sim(·)

measuring the structural similarity between the generated image Gc(x) and its conditioning image
x, ensuring that the generated image maintains structural coherence; 2) Ex

[
fθ(x)

⊺fθ
(
Gc(x)

)]
, i.e.,

the dot product between feature embeddings f extracted by the classifier Fθ , capturing the alignment
between the representations of x and Gc(x); 3) Ex

[
Q
(
Gc(x)

)]
, where Q computes the CLIP-based

Image Quality Assessment (Wang et al., 2023), evaluating the perceptual quality of the generated
image; 4) Ex

[
σ
(
fθ

(
Gc(x)

))]
, i.e., the standard deviation of the feature embeddings, capturing the

diversity within generated samples. The optimization process halts once the oracle outputs 1 for n
consecutive iterations, ensuring robustness to fluctuations in individual predictions. Once trained, the
oracle network O is frozen and used across all tasks to determine when to stop the optimization of
psoft,c, ensuring that the dreaming process remains effective without collapsing. Additional training
details for the oracle are reported in Appendix B.

4 EXPERIMENTAL RESULTS

4.1 BENCHMARKS AND TRAINING PROCEDURE

We evaluate D2L on three continual learning benchmarks, obtained by splitting image classification
datasets into a series of disjoint tasks:

• Split Mini-ImageNet (Vinyals et al., 2016): a widely used few-shot learning dataset, consisting of
ImageNet 100 classes with 600 samples each, commonly adapted for continual learning;

• Split FG-ImageNet (Russakovsky et al., 2015)3, a fine-grained image classification benchmark
with 100 animal classes from ImageNet, designed to evaluate continual learning methods on a more
challenging task.

• Split ImageNet-R (Hendrycks et al., 2021) comprises various renditions of 200 ImageNet classes
(e.g., paintings, sculptures, embroidery, cartoons, etc.), with 150 samples each, introducing strong
intra-class variations.

In our experimental setup, half of the classes in each dataset are used for the first task, while the
remaining classes are equally split across the subsequent tasks. In particular, excluding the first task,
the Mini-ImageNet and FG-ImageNet datasets consist of 10 tasks with 5 classes each, whereas the
ImageNet-R dataset consists of 5 tasks with 20 classes each.
In terms of training procedure, we adopt ResNet-18 (He et al., 2016) as the backbone and train for 10
epochs per task using SGD (learning rate 0.03, batch size 32). Given the large number of classes, we
use buffer sizes of 2000 and 5000.
Prompt optimization is performed in Stable Diffusion’s text space via cross-entropy loss, guided by
classifier predictions. We use Adam (learning rate 0.1, batch size 1), with the number of iterations
controlled by an oracle network. The oracle is a single-hidden-layer MLP trained on a labeled dream
quality dataset DO (see Sec. 3.2) using Adam (0.001, 500 epochs). It stops optimization when a
termination signal is predicted in at least n = 2 of the past k = 3 iterations. We use ImageNet-R as
DO when testing on Mini-ImageNet or FG-ImageNet, and FG-ImageNet for ImageNet-R. Results
are for class-incremental setting, reported as mean ± std over 5 runs.

3Split FG-ImageNet is derived from https://www.kaggle.com/datasets/ambityga/
imagenet100
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4.2 RESULTS

To assess the impact of our method, we evaluate its effectiveness when applied in conjunction
to continual learning state-of-the-art models. Since the dream generation mechanism relies on
combining learned prompts with past experiences stored in the buffer, we apply it exclusively in
conjunction with rehearsal-based methods. Specifically, we consider DER++ (Buzzega et al., 2020),
ER-ACE (Caccia et al., 2022), and ER (Chaudhry et al., 2019b), comparing their performance with
and without the dreaming generation. Tab. 1 presents results in terms of final average accuracy (FAA)
in the class-incremental setting, i.e., the accuracy on a separate test set including all task classes,
measured after training on the last task, with no knowledge on task identity at inference time. Our
approach leads to a significant improvement in performance across all benchmarks, demonstrating
the importance of mimicking human dreaming for mitigating forgetting.

Table 1: Class-incremental final average accuracy (FAA) of rehearsal-based methods, with and
without dreaming, for buffer sizes 2000 and 5000.

Mini-ImageNet FG-ImageNet ImageNet-R

2000 5000 2000 5000 2000 5000

ER 27.91±3.49 34.21±3.04 21.08±2.38 22.21±3.44 7.68±0.97 10.69±1.29
↪→D2L 31.18±2.74 39.75±2.61 23.53±1.98 32.73±3.39 8.67±0.66 11.84±0.95

DER++ 14.74±2.14 26.92±4.72 14.43±3.68 23.86±2.54 6.08±0.81 8.29±1.15
↪→D2L 21.06±5.45 31.91±5.19 18.86±3.22 25.38±2.17 8.60±1.00 10.89±1.56

ER-ACE 33.26±3.51 40.59±1.20 24.79±5.02 30.16±4.97 7.09±0.59 9.44±0.70
↪→D2L 40.90±0.95 47.32±0.89 31.57±1.20 38.50±1.01 9.54±0.39 12.51±0.56

Table 2: Forward Transfer (FWT) of rehearsal-based methods, with and without dreaming, for
buffer sizes 2000 and 5000.

Mini-ImageNet FG-ImageNet ImageNet-R

2000 5000 2000 5000 2000 5000

ER -2.58 -1.62 -1.88 -1.52 -1.32 -0.64
↪→D2L +0.33 +0.47 +1.79 +1.19 +0.24 +0.14

DER++ -1.55 -2.00 -1.36 -2.48 -1.03 -1.83
↪→D2L +0.97 +0.71 -0.13 +1.86 +0.30 +0.24

ER-ACE -1.99 -2.45 -2.00 -2.16 -2.46 -1.27
↪→D2L +1.05 -1.58 +1.09 +0.08 -0.25 +0.17

One of our key claims is that our dreaming mechanism enhances a model’s ability to prepare for
future tasks. To validate this, we evaluate forward transfer (FWT) (Lopez-Paz & Ranzato, 2017),
measuring how well the model leverages prior knowledge when learning new tasks. FWT is defined
as the average difference between the accuracy on a task τt by a model trained up to τt−1, and the
accuracy on τt by a randomly initialized model. Since a continually trained model often predicts
known classes, FWT is typically negative. Table 2 shows that dream generation improves FWT, with
D2L achieving positive forward transfer in some cases, similar to WSCL. However, WSCL achieves
positive forward transfer by relying on additional real data to simulate dreams, whereas D2L internally
generates these dreams by leveraging the model’s own internal knowledge. Furthermore, we conduct a
comprehensive performance analysis by comparing the best performing version of our approach from
Tab. 1 (i.e., ER-ACE + D2L) with state-of-the-art continual learning methods: 4 GSS (Aljundi et al.,
2019), A-GEM (Chaudhry et al., 2019a), iCaRL (Rebuffi et al., 2017), FDR (Benjamin et al., 2019),
BiC (Wu et al., 2019), and RPC (Pernici et al., 2021). Results are shown in Table 3. To contextualize
these results, we also define a lower bound as training without any countermeasure to forgetting
(Fine-tune). ER-ACE + D2L outperforms state-of-the-art methods across all examined datasets and

4Results were obtained using the original code released alongside the corresponding papers.
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Table 3: Comparison with state-of-the-art methods, in terms of class-incremental final average
accuracy (FAA), for buffer sizes 2000 and 5000.

Method Mini-ImageNet FG-ImageNet ImageNet-R

Fine-tune 6.72±1.20 6.98±0.10 4.46±0.15

Buffer-based methods

2000 5000 2000 5000 2000 5000

GSS 6.40±0.38 5.71±0.08 8.07±0.26 9.23±0.85 5.08±0.13 4.29±0.32
A-GEM 6.78±1.13 7.45±0.76 6.20±1.11 6.11±1.13 4.69±0.03 6.29±0.84
RPC 9.22±0.30 9.02±0.24 8.13±0.11 7.41±0.74 5.71±0.03 6.32±0.80
DER++ 14.74±2.14 26.92±4.72 14.43±3.68 23.86±2.54 6.08±0.81 8.29±1.15
FDR 15.46±1.10 11.58±0.96 9.17±2.40 12.91±0.95 5.71±0.18 5.77±0.10
iCaRL 16.46±0.51 16.50±0.33 8.54±0.88 8.86±0.25 1.97±0.28 1.91±0.29
ER 27.91±3.49 34.21±3.04 21.08±2.38 22.21±3.44 7.68±0.97 10.69±1.29
BiC 30.56±7.41 37.84±0.61 27.83±2.75 32.29±0.70 7.15±1.14 8.60±2.07
ER-ACE 33.26±3.51 40.59±1.20 24.79±5.02 30.16±4.97 7.09±0.59 9.44±0.70

ER-ACE + D2L 40.90±0.95 47.32±0.89 31.57±1.20 38.50±1.01 9.54±0.39 12.51±0.56

Table 4: Ablation on the oracle. Results
on Mini-ImageNet comparing our method with
Fixed optimization.

Buffer size
Method

2000 5000

ER-ACE baseline 33.26±3.51 40.59±1.20
+ Fixed optim. 38.94±0.97 46.41±0.55
+ Oracle (D2L) 40.90±0.95 47.32±0.89

Table 5: Impact of dream class updates. Com-
parison on Mini-ImageNet of different dreaming
strategies.

Buffer size
Dreaming

2000 5000

No dreams 33.36±3.51 40.59±1.20
At beginning 36.93±2.09 41.59±2.54
Incremental 36.85±1.16 43.87±2.90
D2L 40.90±0.95 47.32±0.89

buffer sizes, with significant margins. Note that our method targets continual learning from scratch
with a randomly initialized convolutional backbone, without external pre-training. By contrast, a
separate line of work relies on pre-trained models, either via full/partial fine-tuning (Ramasesh et al.,
2021; Boschini et al., 2022; Ostapenko et al., 2022) or prompt tuning (Wang et al., 2022b; Smith et al.,
2023) that adapts frozen ViT backbones. These approaches operate in a different evaluation regime,
adapting an already rich representation and thus conflating the effect of the CL strategy with benefits
from large-scale pre-training and transformer inductive biases. In our setting, the classifier’s emergent
knowledge directly guides the dreaming generation process, so mixing regimes would not yield an
informative head-to-head comparison. For clarity and fairness, we therefore restrict comparison to
methods that, like ours, train a CNN backbone from scratch under the same protocol constraints.

4.3 MODEL ANALYSIS

Model analysis is primarily conducted to assess the contribution of the dream generation strategy. The
ER-ACE model (Chaudhry et al., 2019b), identified as the top-performing method when combined
with our approach (see Tab. 1), is used as the baseline model for this study. All experiments are
performed on the Mini-ImageNet dataset (Vinyals et al., 2016).

We first ablate the oracle and consider Fixed optimization, where prompt updates stop once the
classifier predicts the target class for four consecutive steps. This criterion assumes the trajectory has
reached and stabilized in the target representation space, but it limits adaptability; our full method
avoids this issue and achieves superior performance (Tab. 4). Then, we assess how updating dreams
during the sequential learning of tasks affects the overall performance. Our default strategy creates
new dream classes at the end of each task—equal in number to that task’s classes—and replaces
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an equal number of old ones, keeping the classifier output size fixed. We compare this with three
variants: (1) No dreams, a baseline without generated classes; (2) At beginning only, where dream
classes are generated once during the first task and reused throughout; and (3) Incremental, which
accumulates dream classes across tasks, expanding the output layer with weights sampled from
N (µw;σ2

w) based on existing neurons. As shown in Tab. 5, our replacement strategy yields the best
results. Fixed dreams limit forward transfer by excluding later tasks, while incremental expansion
likely degrades performance due to increased task complexity.
We also compare D2L with WSCL (Sorrenti et al., 2024) on Mini-ImageNet under different buffer
sizes. While WSCL achieves slightly higher accuracy (compare to Tab. 4): 42.38% (±1.16) with
a 2000-sized buffer and 48.30% (±2.60) with a 5000-sized buffer, it does so by using an auxiliary
dataset to pre-activate future task heads. This mechanism, while effective, does not simulate a
true dreaming process. In contrast, D2L explicitly models dreaming by generating task-relevant
samples guided by the classifier’s internal knowledge—mirroring how humans rely on memory-driven
simulations to reinforce learning.
To further validate our method, we also replaced the dreaming mechanism with alternative strategies
for creating class blends, namely Mixup-based methods applied either in image space or in latent/text
diffusion space. The corresponding results are reported in the Appendix C. Finally, we want to
support that dreams generated by D2L come from the classifier’s internal knowledge and cannot
unintentionally resemble future classes. To this aim we assess if dreams are truly out-of-distribution
(OOD) with respect to the target dataset. In particular, we generate dreams using our method on the
Mini-ImageNet benchmark and classify each generated image using a ViT-B/16 model pre-trained on
ImageNet-1K. This model acts as an external expert not involved in the training process, mapping
each dream to one of the 1000 ImageNet classes. We then measure how many dreams are classified
into the 100 classes used in Mini-ImageNet, and how many are mapped to the remaining 900 classes.
Results show that only 10.11% of the dreams are assigned to the 100 classes in Mini-ImageNet, while
89.89% are mapped to the other 900 classes. This roughly matches the underlying class prior (10%
vs. 90%), suggesting that dreams are OOD relative to Mini-ImageNet images and therefore cannot
qualitatively anticipate the target classes.

5 LIMITATIONS

While D2L–generated dreams are qualitatively distant from the target dataset, a residual limitation is
the potential categorical leakage of future-class information. To quantify this, we performed a leak
test using a joint classifier trained on all classes in the sequence. A leak is counted when a future
class is assigned to a head previously seeded by a dream that the joint model also maps to that class.
On MiniImageNet experiments, we observe 1.76 leaks on average (3.93% of class replacements). We
remark that these events are not only rare but also contingent on the premise that Stable Diffusion
can faithfully synthesise future classes—a premise the OOD-distribution experiment fails to support.
Nonethenless, mitigation of this theoritical leakage could involve unlearning future-class concepts
from the diffusion model—e.g., through concept-erasure or negative-gradient editing—prior to
prompt optimization.

6 CONCLUSION

In this work, we introduced Dream2Learn, an approach inspired by the ability of the human brain
to consolidate past experiences and anticipate future ones through dreaming. Our method pairs a
classification network with a generative model to synthesize structured training signals, reinforcing
past knowledge and enhancing forward transfer—allowing the model to leverage prior knowledge
to improve learning on future tasks. Experiments on standard continual learning benchmarks show
that dreaming helps mitigate forgetting and can support feature learning by expanding the classifier’s
representation space, turning negative forward transfer into positive. Using soft prompt optimization
within a latent diffusion model, D2L generates novel yet coherent classes with the oracle model
helping to maintain sample quality by preventing collapse.
In summary, D2L offers a practical approach to structuring model knowledge over time. By generating
intermediate representations, it illustrates the potential of synthetic data to support abstraction and
transfer in continual learning. Please keep in mind that this is not a generative replay method.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. All CL experiments are implemented on top of the Mammoth frame-
work https://github.com/aimagelab/mammoth; baseline results are obtained using the
implementations provided within the framework under the same memory and protocol constraints.
Data pre-processing steps, data splits, used hyperparameters mirroring our setup are documentend
in the Appendix F. Assumptions, architectural choices and training details for the oracle network
are explained in the main text and expanded in the Appendix B. The full codebase for prompt
optimization, generation and experiment scripts will be publicly released upon acceptance.
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APPENDICES

A METHOD ALGORITHM

Algorithm 1 delineates the D2L pipeline introduced in Sec. 3. For clarity of presentation, the pipeline
is simplified by omitting the initial and final tasks. During the initial task, the absence of dreaming
classes reduces the training loss to Eq. 1, while the final task does not perform dreaming generation
and optimization as these phases are unnecessary.

Algorithm 1 Dream2Learn (D2L)

Notation
T , the number of task
Ct, the classes of task t
Fθ, the continual classifier
G, the generator
B, the buffer
Dt, the real data distribution at task t
Dd

t−1 the dream distribution used during continual training at task t
Dr

t , the distribution of the dream classes to be removed at task t
Dd∗

t−1, the residual dream classes after mapping at task t
x, a real image
xd, a generated dream image
pc, the learnable prompt associated with class c
Dd

t,c, the distribution of dreams generated after task t from class c
Dd

t,Ct
, the distribution of dreams generated after task t from classes Ct

Dd
t , the distribution of all dreams after task t

1: for t = 2 to T − 1 do
2: Dr

t ←Mapping(Fθ,Dt) ▷ real classes mapping
3: Dd∗

t−1 ← Dd
t−1 \ Dr

t
4: for all epochs do ▷ CL training
5: loss← LCE(Fθ,Dd∗

t−1 ∪ Dt) + LCL(Fθ,Dt,B)
6: B ← ReservoirSample(B,Dt)
7: update θ
8: end for
9: for all c ∈ Ct do ▷ dreaming optimization

10: repeat
11: xd ← G(x,pc)
12: loss← LCE(Fθ, (x

d, c))
13: update pc

14: stop← Oracle(x,xd)
15: until stop
16: Dd

t,c ← Generate(G,B,pc) ▷ dreaming generation
17: end for
18: Dd

t,Ct
←

⋃
cDd

t,c

19: Dr
t ←Mapping(Fθ,Dd

t,Ct
) ▷ dream classes mapping

20: Dd
t ← (Dd∗

t−1 \ Dr
t ) ∪ Dd

t,Ct

21: end for

B ORACLE TRAINING AND GENERALIZATION

In the main paper (Sec. 3.2) we introduced the oracle network O, whose goal is to determine the
stopping point during prompt optimization. The formal definition of O is already provided in the
main manuscript; here we detail its training procedure.
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B.1 DATASETS

To avoid semantic overlap between the oracle’s training data and the continual evaluation benchmarks,
we always trained the oracle on classes from a disjoint dataset. Concretely:

• When the benchmark was Mini-ImageNet or FG-ImageNet, the oracle was trained on
dreaming trajectories from ImageNet-R;

• When the benchmark was ImageNet-R, the oracle was trained on dreaming trajectories from
FG-ImageNet.

This ensures that the oracle never sees classes related to the benchmarks in which it is applied, thus
preventing task-specific bias.

Each trajectory was obtained by optimizing the soft prompt psoft,c for up to 500 steps. The stopping
point was labeled as the iteration at which generated samples exhibited both high perceptual quality
and sufficient diversity, while avoiding collapse or excessive specialization.

B.2 FEATURES

The oracle network takes as input feature sequences Zt = [zt−k+1, . . . , zt], with each zi ∈ R4

summarizing properties of the generated samples at iteration i. In order to train the oracle network O,
we initially designed a pool of 25 candidate features capturing different aspects of the generation
process. These features can be grouped into three broad categories:

• Image-level quality metrics. We compute average SSIM, PSNR, and MSE among pairs
of generated images at the same optimization step. These same metrics are also computed
between each generated image and its conditioning (target) image. We also compute CLIP-
iQA scores (quality, complexity, naturalness, realism) on both generated and target images.

• Feature-based statistics. We extract classifier feature-level statistics: cosine similarity
and MSE computed either among generated images or between generated and conditioning
images. We therefore computed embeddings standard deviation on both generated and target
images.

• Classifier-based uncertainty signals. From the target classifier logits we compute statistical
descriptors including variance, entropy, range (max–min), and kurtosis, averaged across
generated samples. We also include the cross-entropy loss signal used during prompt
optimization.

To reduce redundancy and identify the most informative subset, we performed a SHAP-based feature
importance analysis across multiple trajectories. Four features consistently ranked highest and were
retained for the oracle used in the main experiments:

1. SSIM between conditioning and generated images (structural fidelity).
2. Cosine similarity between classifier embeddings of conditioning and generated images

(semantic alignment).
3. CLIP-iQA quality score of generated images (perceptual quality).
4. Standard deviation of classifier embeddings within generated samples (diversity).

These four features jointly capture complementary aspects of generation dynamics: (i) structural
coherence, (ii) semantic alignment, (iii) perceptual quality, and (iv) diversity. Importantly, they are
not tied to dataset-specific semantics, which explains why the oracle generalizes robustly across
benchmarks even when trained only once on disjoint classes.

B.3 MODEL

The oracle O is implemented as a lightweight multilayer perceptron (MLP). It receives as input the
temporal feature sequence Zt = [zt−k+1, . . . , zt], where each zi ∈ R4 contains the metrics described
in Sec. B.2. The network consists of a single hidden layer with 32 units, ReLU activation, and a
sigmoid output for binary classification.
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Table 6: Ablation on dream generation strategies. Evaluation on Mini-ImageNet comparing
interpolation-based baselines with our proposed D2L.

Buffer size
Method

2000 5000

ER-ACE baseline 33.26±3.51 40.59±1.20
+ Mixup 36.84±0.94 44.82±1.27
+ Continual Mixup 36.05±1.22 43.45±0.83
+ Textual Mixup 31.89±0.50 –
+ Synth Mixup 36.99±0.26 –
+ Oracle (D2L) 40.90±0.95 47.32±0.89

The model is trained supervisedly on labeled dreaming trajectories with the Adam optimizer for a
maximum of 500 iterations, using binary cross-entropy loss. A validation split is employed for early
stopping. Once trained, the oracle is frozen and used across a sequence of tasks including only classes
never seen during its training. Its inference overhead is negligible (less than 1 ms per step), making it
effectively free compared to prompt optimization and dream generation.

B.4 GENERALIZATION

To assess the generalization capability of the oracle, we trained a single model on a dedicated dream-
quality dataset constructed from 100 ImageNet classes, disjoint from all benchmarks used in the main
experiments (Mini-ImageNet, FG-ImageNet, and ImageNet-R). Labels were assigned by inspecting
dreaming trajectories and selecting the iteration that yielded high-quality and diverse images without
collapse.

This general-purpose oracle was then applied across all tasks and datasets, without retraining or
adaptation. The predicted stopping points differed from those obtained with dataset-specific oracles
by only 9.28 iterations on average (out of 500 optimization steps). Importantly, no trajectory collapse
was observed and continual learning performance remained unchanged.

These results confirm that oracle training does not need to be repeated for each benchmark: a single
instance trained once on a disjoint dataset generalizes robustly. This is explained by the choice of
features—structural similarity, embedding alignment, CLIP-based perceptual quality, and embedding
diversity—which capture dataset-agnostic properties of generation dynamics.

C COMPARISON WITH MIXUP-BASED STRATEGIES

In principle, the dreaming process could be replaced by surrogate samples generated from past
knowledge using interpolation-based techniques. To test this hypothesis, we substituted our dreamed
classes with synthetic ones obtained through different Mixup strategies and related baselines.

• Mixup (Zhang et al., 2018): combines images from the current data stream with samples
from the replay buffer to form auxiliary synthetic classes.

• Continual Mixup: applies the same interpolation scheme, but only between images sampled
from the replay buffer.

• Textual Mixup: interpolates text embeddings of class prompts, producing mixed condition-
ing signals without structural generation.

• Synth Mixup: interpolates directly in the latent space of the diffusion model.

As shown in Table 6, D2L consistently outperforms all interpolation-based strategies. In contrast to
Mixup variants, which rely on static blending of existing representations, D2L produces distinct and
task-aware latent clusters. Importantly, our generation process is explicitly guided by the knowledge
encoded in the classifier.
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D EVALUATION ACROSS MULTIPLE TASK ORDERINGS

While earlier experiments considered a fixed task sequence, we also evaluate D2L under multiple
random class orderings to obtain a more robust assessment of its generalization across datasets.
Specifically, we repeated the main experiments using three different class orderings (random seeds:
1607, 23, and 0) with a buffer size of 2000. We report mean and standard deviation across these
runs. Results in Table 7 confirm that D2L consistently outperforms the baseline across all datasets,
showing that its benefits are stable and not tied to a particular task sequence.

Table 7: Evaluation under multiple task orderings. Results are averaged over three random class
sequences (seeds: 1607, 23, 0) with buffer size 2000. D2L consistently outperforms the baseline.

Dataset Baseline (mean ± std) D2L (mean ± std)

SeqMINIIMG 32.39 ± 1.25 39.42 ± 2.42
SeqImageNet-FG 27.18 ± 2.08 33.32 ± 1.54
SeqImageNet-R 8.28 ± 1.03 9.93 ± 0.41

E GENERATIVE REPLAY VS. DREAM2LEARN

In this section, we aim to clarify the conceptual differences between generative replay (GR) meth-
ods and our proposed Dream2Learn (D2L), and we provide additional experimental results for
completeness.

GR methods such as DGR (Shin et al., 2017) or DDGR (Yan et al., 2023) discard the memory buffer
and rely entirely on a generative model to reconstruct past data, with the objective of preserving
knowledge of previous tasks through explicit replay. In contrast, D2L differs along two fundamental
dimensions:

• Buffer. Unlike GR, D2L retains a fixed-size buffer (e.g., 2000 samples), ensuring direct
access to real exemplars throughout training. Nonetheless, buffer never contains generated
images.

• Generation. While GR employs generation to reproduce past samples that directly replace
the buffer, D2L leverages generation in a profoundly different way: generated images in
D2L do not serve as memory replacements, but as additional data stream (additional classes)
that pre-activate future-class representations.

This conceptual divergence means that direct comparisons should be interpreted carefully, as the
underlying objectives and mechanisms are not the same. Nevertheless, since both approaches involve
generative components during training and thus incur comparable overheads, we report results against
representative GR methods under the same buffer constraint, as shown in Tab. 8.

Table 8: Comparison with generative replay methods under the same buffer constraint (2000 samples).
While D2L is not a generative replay method, its use of generation for anticipatory transfer leads to
superior performance compared to GR approaches.

Method SeqMiniImageNet SeqImageNet-FG SeqImageNet-R

DGR (Shin et al., 2017) 23.33 ± 0.32 26.17 ± 0.21 7.00 ± 0.26
DDGR (Yan et al., 2023) 37.48 ± 0.98 30.81 ± 0.54 9.21 ± 0.17
ER-ACE + D2L (ours) 40.90 ± 0.95 31.57 ± 1.20 9.54 ± 0.39

These results confirm that D2L achieves higher accuracy than GR approaches, despite pursuing a
different goal. Whereas GR attempts to reconstruct and replay the past, D2L leverages anticipa-
tory generation to expand and stabilize the representation space, proving more effective across all
benchmarks.
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F REPRODUCIBILITY DETAILS

F.1 ADDITIONAL TRAINING DETAILS

All experiments are conducted on a workstation with 384-core CPU, 1TB RAM and 4 NVIDIA H100
GPUs. The continual learning methods are trained on a single NVIDIA H100 GPU. As a reference,
each training run with ER-ACE on Mini-ImageNet requires approximately 3 hours. The dream
generation process, based on the use of Stable Diffusion, is the most computationally intensive part.
To this aim, we use 4 NVIDIA H100 GPUs and it requires approximately 6 hours per run (including
both prompt optimization and dreams generation), with PyTorch DistributedDataParallel. Results in
Sec. 4.2 are reported in terms of mean and standard deviation over five runs with different random
seeds.

F.2 HYPERPARAMETER SEARCH

In Tables 9, 10 and 11 we show the best hyperparameters combinations for each method.

Table 9: Mini-ImageNet

Method Buffer Mini-ImageNet
Fine-tune – lr: 0.03
ER 2000 lr: 0.03;
ER 5000 lr: 0.03;
DER++ 2000 lr: 0.01; alpha: 0.1; beta: 0.5;
DER++ 5000 lr: 0.01; alpha: 0.1; beta: 0.5;
ER-ACE 2000 lr: 0.01; mom: 0 wd: 0
ER-ACE 5000 lr: 0.01; mom: 0 wd: 0
GSS 2000 lr: 0.03;
GSS 5000 lr: 0.03;
A-GEM 2000 lr: 0.03;
A-GEM 5000 lr: 0.03;
RPC 2000 lr: 0.03;
RPC 5000 lr: 0.03;
FDR 2000 lr: 0.03; alpha:0.3;
FDR 5000 lr: 0.03; alpha:0.3;
iCaRL 2000 lr: 0.03;
iCaRL 5000 lr: 0.03;
BiC 2000 lr: 0.03;
BiC 5000 lr: 0.03;
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Table 10: FG-ImageNet

Method Buffer FG-ImageNet
Fine-tune – lr: 0.03
ER 2000 lr: 0.03;
ER 5000 lr: 0.03;
DER++ 2000 lr: 0.03; alpha: 0.1; beta: 0.5;
DER++ 5000 lr: 0.03; alpha: 0.1; beta: 0.5;
ER-ACE 2000 lr: 0.03; mom: 0 wd: 0
ER-ACE 5000 lr: 0.03; mom: 0 wd: 0
GSS 2000 lr: 0.03;
GSS 5000 lr: 0.03;
A-GEM 2000 lr: 0.03;
A-GEM 5000 lr: 0.03;
RPC 2000 lr: 0.03;
RPC 5000 lr: 0.03;
FDR 2000 lr: 0.03; alpha:0.3;
FDR 5000 lr: 0.03; alpha:0.3;
iCaRL 2000 lr: 0.03;
iCaRL 5000 lr: 0.03;
BiC 2000 lr: 0.03;
BiC 5000 lr: 0.03;

Table 11: ImageNet-R

Method Buffer ImageNet-R
Fine-tune – lr: 0.03
ER 2000 lr: 0.03;
ER 5000 lr: 0.03;
DER++ 2000 lr: 0.03; alpha: 0.1; beta: 0.5;
DER++ 5000 lr: 0.03; alpha: 0.1; beta: 0.5;
ER-ACE 2000 lr: 0.03; mom: 0 wd: 0
ER-ACE 5000 lr: 0.03; mom: 0 wd: 0
GSS 2000 lr: 0.03;
GSS 5000 lr: 0.03;
A-GEM 2000 lr: 0.03;
A-GEM 5000 lr: 0.03;
RPC 2000 lr: 0.03;
RPC 5000 lr: 0.03;
FDR 2000 lr: 0.03; alpha:0.3;
FDR 5000 lr: 0.03; alpha:0.3;
iCaRL 2000 lr: 0.03;
iCaRL 5000 lr: 0.03;
BiC 2000 lr: 0.03;
BiC 5000 lr: 0.03;

F.3 TASK SEQUENCE DETAILS

In Tables 12, 13 and 14 we report the combination of class order and their division into tasks employed
in our experiments during the continual training. Each name corresponds to a different synset of the
ImageNet dataset.
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Table 12: Mini-ImageNet

Task Synsets
n02091244 n01770081 n03207743 n01749939 n02110063
n02174001 n02165456 n02687172 n09246464 n02871525
n01855672 n03062245 n04149813 n04067472 n04522168
n02138441 n04509417 n04275548 n03888605 n01981276
n02091831 n03400231 n02219486 n02795169 n03773504
n03337140 n01558993 n03998194 n02129165 n03127925
n02457408 n02108915 n04389033 n04604644 n03908618
n02443484 n02116738 n03854065 n03544143 n09256479
n04251144 n02606052 n02113712 n02950826 n07747607

τ1

n02108551 n02108089 n07613480 n03527444 n02823428
τ2 n01532829 n02981792 n02120079 n03476684 n03047690
τ3 n02971356 n02074367 n06794110 n04612504 n03924679
τ4 n01910747 n02105505 n03584254 n03770439 n01930112
τ5 n04435653 n03347037 n03535780 n04243546 n04596742
τ6 n02099601 n04418357 n02089867 n03272010 n03220513
τ7 n04146614 n04443257 n02111277 n02747177 n04515003
τ8 n13054560 n01843383 n07584110 n13133613 n04258138
τ9 n03075370 n02966193 n03417042 n03146219 n03838899
τ10 n03775546 n03017168 n03980874 n02114548 n03676483
τ11 n01704323 n07697537 n02101006 n04296562 n02110341

Table 13: FG-ImageNet

Task Synsets
n01943899 n01753488 n01819313 n01601694 n01695060
n02028035 n01675722 n01498041 n01774750 n01608432
n01685808 n01978287 n01537544 n01742172 n01924916
n01829413 n01818515 n01494475 n01877812 n02027492
n02058221 n01491361 n01910747 n01729977 n02018207
n01824575 n01986214 n01860187 n01773797 n01630670
n01796340 n01687978 n01984695 n01729322 n01833805
n01776313 n01443537 n01560419 n02018795 n01985128
n01677366 n01755581 n01739381 n01770081 n02013706

τ1

n01978455 n02037110 n01514668 n01440764 n01855672
τ2 n01756291 n01770393 n01775062 n01632458 n01820546
τ3 n01496331 n01582220 n01734418 n01622779 n01632777
τ4 n01806143 n01773549 n01774384 n02077923 n01740131
τ5 n01484850 n01914609 n01665541 n01667778 n01847000
τ6 n01667114 n01728572 n01693334 n01843383 n01950731
τ7 n01514859 n02012849 n01773157 n01614925 n01795545
τ8 n01944390 n02011460 n01883070 n02002556 n01798484
τ9 n02051845 n01644900 n01531178 n01968897 n01698640
τ10 n01592084 n01955084 n01930112 n02007558 n01735189
τ11 n01751748 n01664065 n01749939 n02006656 n01828970
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Table 14: ImageNet-R

Task Synsets

τ1

n02165456 n03594945 n02325366 n02814860 n02966193 n02480495 n02106030 n02088364 n02066245 n02843684
n04591713 n02110185 n02092339 n02980441 n01833805 n03947888 n03602883 n03649909 n02841315 n01855672
n02007558 n03424325 n03710193 n02992529 n12267677 n02233338 n04254680 n07714990 n01644373 n02077923
n02138441 n03498962 n01484850 n01847000 n02113799 n02129165 n02119022 n07697537 n02480855 n02009912
n07693725 n02445715 n04487394 n02802426 n09835506 n04133789 n02113023 n02091134 n02110341 n02317335
n02607072 n07768694 n07880968 n01843383 n02769748 n03494278 n02106166 n04086273 n01944390 n02098286
n01806143 n01514859 n01498041 n07614500 n04465501 n02398521 n02117135 n02808440 n02112018 n02906734
n02486410 n07720875 n02110958 n03124170 n01632777 n01986214 n02437616 n04192698 n02134084 n02655020
n02086240 n03345487 n02395406 n04147183 n01748264 n02113624 n03272010 n03495258 n02128385 n03467068
n02096585 n04310018 n04146614 n04536866 n07745940 n02088238 n02363005 n02364673 n02226429 n07753592
n02510455 n04266014 n02948072 n07695742 n02099712 n02112137 n07873807 n02102318 n02106662 n01774750

τ2 n02219486 n02114367 n01614925 n07734744 n01770393 n01616318 n04275548 n03452741 n02950826 n02883205

τ3
n02279972 n03775071 n01443537 n02088466 n04325704 n02129604 n02091032 n07714571 n02085620 n04347754
n01677366 n04118538 n01882714 n07697313 n01820546 n02097298 n02088094 n03372029 n02108915 n02797295
n01531178 n03930630 n02268443 n02823750 n02106550 n01494475 n02190166 n02346627 n02130308 n02481823

τ4 n07718472 n04522168 n07753275 n01910747 n02447366 n02109525 n02099601 n01784675 n04141076 n04389033

τ5
n03481172 n02483362 n02749479 n04552348 n02123045 n01860187 n03676483 n02526121 n02236044 n04409515
n02423022 n02206856 n02108089 n02051845 n10565667 n07749582 n01630670 n02128757 n02939185 n02672831
n02951358 n07920052 n01518878 n02793495 n03773504 n01694178 n09472597 n02909870 n02701002 n03888257

τ6 n01983481 n02356798 n02410509 n07742313 n02391049 n03630383 n02094433 n02056570 n02071294 n01534433
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