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ABSTRACT

We show how Prior-data Fitted Networks (PFNs) can be adapted to efficiently
predict Entropy Search (ES), an information-theoretic acquisition function. PFNs
were previously shown to be able to accurately approximate Gaussian Process
(GP) predictions. To approximate ES we extend them to condition on information
about the optimum of the underlying function. Conditioning on this information is
not straightforward and previous methods relied on complex, handcrafted, and/or
computationally heavy approximations. PFNs, however, offer learned approxi-
mations that require just a single forward pass. Additionally, we train α-PFN, a
new type of PFN model, on the information gains predicted by the first, letting us
directly predict the value of the acquisition function in a single forward pass, ef-
fectively avoiding the traditional sampling-based approximations. This approach
makes using Entropy Search and its variations straightforward and efficient in
practice. We validate our approach empirically on synthetic GP samples of up to
six dimensions, where the α-PFN matches or improves upon the regrets obtained
by current approximations to predictive and joint Entropy Search, at a reduced
computational cost. While this provides an initial proof of concept, the real po-
tential of our method lies in its ability to efficiently perform Entropy Search for
arbitrary function priors, unlike the current GP-specific approximations.

1 INTRODUCTION

Bayesian Optimization (BO) is designed to optimize a black-box function with few iterations. It
is especially beneficial in situations where function evaluation is costly. BO finds use in various
fields (Shahriari et al., 2015), such as tuning hyperparameters of large neural networks (Snoek et al.,
2012; Feurer and Hutter, 2019). Here, the function being optimized is the performance on a valida-
tion set, which necessitates a full training run for evaluation, and BO aims to identify the hyperpa-
rameter setting that will maximize this performance. To this end, the canonical BO framework main-
tains a probabilistic regression surrogate model of the black-box function fit to the performance ob-
servations thus far, and maximizes an acquisition function quantifying the exploration-exploitation
trade-off for the given posterior.

The information-theoretic class of acquisition functions (Villemonteix et al., 2009), such as Entropy
Search (ES, Hennig and Schuler, 2012) offers a principled way to perform global optimization of
Gaussian Process (GP) surrogate models (Williams and Rasmussen, 2006) by selecting queries that
maximize the expected information gain regarding the location of the optimum. Although ES offers
an elegant theoretical framework, its performance is hampered by complex approximation schemes,
and unlike classic acquisition functions (e.g., Expected Improvement (EI; Močkus, 1975), upper
confidence bound (UCB; Srinivas et al., 2010)) these do not have analytical solutions for GPs.

Previously, Entropy Search has been adapted to improve computational efficiency when used with
GPs. Hernández-Lobato et al. (2014) show that it is possible to rewrite the Entropy Search acqui-
sition function to depend on terms that are more tractable to estimate and approximate, resulting in
an acquisition function which they call Predictive Entropy Search (PES). Wang and Jegelka (2017)
proposed Max-value Entropy Search (MES) and most recently Hvarfner et al. (2022) and Tu et al.
(2022) proposed Joint Entropy Search (JES). Both adjust the original Entropy Search formulation
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to enable more efficient approximations and/or better BO performance. All of these rely on hand-
crafted, sampling-based approximations to estimate quantities that are not easily computed for a
Gaussian Process regression model, with PES requiring the most costly approximations (Hernández-
Lobato et al., 2014; Tu et al., 2022).

Recently, it has been shown that Prior-Data Fitted Networks (PFN; Müller et al., 2021), a
transformer-based conditional neural process (Garnelo et al., 2018) can be used to speed up training
and prediction of Gaussian Process regression models (Müller et al., 2023). The key idea of Müller
et al. (2023) is to use transformers to emulate prediction under the GP prior: the transformer takes as
input the training data (inputs and targets) and test data (inputs without targets), and output the pos-
terior predictive distribution for each test sample. By training on millions of samples from the GP
prior, the transformer learns to perform Bayesian prediction in a single forward pass. Inference can
be computationally more efficient compared to fully-Bayesian GPs, which require the use Markov
Chain Monte Carlo (MCMC; Robert et al., 1999). Furthermore, Müller et al. (2023) showed that
their approach is easily extended to other surrogate models, e.g., Bayesian neural networks, and
permits conditioning on additional context information (e.g., user expert priors).

We explore how the same technique can be applied to approximate quantities used in Entropy Search.
The Entropy Search acquisitions functions for PES, MES and JES all require multiple Monte Carlo
samples and several approximations derived by hand. Instead of mathematically deriving approxi-
mations, the transformer learns how to approximate the quantities we need by itself, offering learned
approximations in a single forward pass. Furthermore, PES, MES, and JES require MCMC sampling
for the fully Bayesian GP settings. To avoid these costly samples, we replace sampling by learning
by training a second transformer, α-PFN, which directly predicts the acquisition. We test the α-
PFN’s performance compared to the existing sampling-based approximations of PES, MES and JES
in terms of optimization performance (inference regret) and walltime (runtime of the optimization),
for the simplest setting: BO on synthetic GP samples for fixed hyperparameters. Crucially, the fully
Bayesian GP setting and other surrogate models such as Bayesian neural networks are left for future
work. As such, we provide an initial proof of concept demonstrating the approach.

2 BACKGROUND, NOTATION AND RELATED WORK

In this section, we introduce key concepts and related work our method builds upon. Further related
works are discussed in Appendix A.

2.1 BAYESIAN OPTIMIZATION (BO)

In Bayesian Optimization (BO), the goal is to maximize a function f(x) over a domain A. We denote
x∗ = argmaxx∈A f(x) and f∗ = f(x∗). We assume for simplicity that A = [0, 1]d. We only have
black box access to f(x), i.e., we can only obtain function evaluations which are typically corrupted
with noise: y = f(x) + ϵ. Bayesian Optimization is an iterative process, in each iteration t a query
xt is made to the black box function and the corresponding observation yt is revealed. Afterward the
surrogate model, such as Gaussian Process or transformer, is fitted to the collected data so far, i.e., it
is fitted on Dt = {(x1, y1), . . . , (xt, yt)} to predict the posterior predictive distribution p(y|Dt, x).
From the surrogate model, an acquisition function is derived, which we write as α = α(x,Dt), that
is maximized to determine the next query xt+1 = argmaxx∈A α(x,Dt).

2.2 ENTROPY SEARCH (ES)

The original Entropy Search (ES) method selects queries by maximizing the expected reduction in
the entropy of the optimum location x∗ (Hennig and Schuler, 2012):

αES(x,Dt) = H(p(x∗|Dt))− Ey∼p(y|Dt,x) [H(p(x∗|Dt ∪ {(x, y)})]. (1)

Here, H(p(x∗|Dt)) represents the entropy of the posterior distribution over the optimum location
given the observed data Dt. The first term is constant with respect to query selection and can be
ignored during optimization. The second term represents the expected entropy after obtaining the
new observation (x, y), where the expectation is taken over the predictive distribution p(y|Dt, x).
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Computing p(x∗|Dt) is generally intractable, as the entropy of the GP’s maximizer does not have
a closed-form expression and requires averaging over multiple samples of y. To approximate this,
Hennig and Schuler (2012) propose two methods: Monte Carlo sampling and Expectation Propaga-
tion (Minka, 2001). However, both approaches are computationally expensive, making ES imprac-
tical for many real-world applications.

Predictive Entropy Search (PES). The entropy reduction in ES can be expressed in terms of
mutual information (MI) between x∗ and y conditioned on Dt. Utilizing the symmetry of the MI in
x∗ and y, Hernández-Lobato et al. (2014) propose to optimize

αPES(x,Dt) = H(p(y|Dt, x))− Ex∗∼p(x∗|Dt) [H(p(y|Dt, x, x
∗))] (2)

which is equivalent to ES but allows more efficient approximations. The first term is analytically
tractable since the posterior of the GP is Gaussian. Hernández-Lobato et al. (2014) propose a se-
quence of approximations to accurately estimate the entropy in the second term, and the outer expec-
tation over x∗ is distributed according to p(x∗|Dt). To obtain these, sample paths from the GP poste-
rior are approximated using random Fourier features (RFF, Rahimi and Recht, 2007). Each sample
path is maximized to obtain draws of the posterior over x∗. The predictive posterior p(y|Dt, x

∗)
cannot be obtained exactly. Thus, conditioning on tractable alternatives, such as convexity at x∗,
and constraints such as f(x∗) ≥ max

i∈[1,t]
yi, serves to approximate it.

Max-value Entropy Search (MES). Max-value Entropy Search (MES; Wang and Jegelka, 2017)
aims to reduce uncertainty over the maximum function value, f∗, by selecting the query point that
maximizes the expected information gain:

αMES(x,Dt) = H(p(y|Dt, x))− Ef∗∼p(f∗|Dt), [H(p(y|Dt, x, f
∗))] (3)

Here, the expectation is taken over the posterior distribution of f∗ given Dt. In addition to the
RFF sampling approach for f∗ and x∗ proposed by Hernández-Lobato et al. (2014), Wang and
Jegelka (2017) propose an simpler alternative for f∗ using a Gumbel distribution. Compared to PES,
MES reduces the expectation from d dimensions to one. Moreover, they assume that p(y|Dt, x, f

∗)
can be well-approximated by a truncated normal distribution, which enables an analytical entropy
calculation. However, this assumption holds only in noiseless settings (Takeno et al., 2020; Nguyen
et al., 2022). Due to the simpler approximation, MES is substantially faster than PES, and has seen
multiple extensions, e.g. to parallel queries (Moss et al., 2021) (GIBBON-MES), noisy (Takeno
et al., 2020; 2022) and multi-fidelity (Moss et al., 2021) problems.

Joint Entropy Search (JES). The distributions p(x∗|Dt) and p(f∗|Dt) can be multimodal and
only give a limited view. Therefore Hvarfner et al. (2022) and Tu et al. (2022) propose to reduce the
uncertainty on the joint distribution of the maximum value and its location:

αJES(x,Dt) = H(p(y|Dt, x))− E(x∗,f∗)∼p(x∗,f∗|Dt) [H(p(y|Dt, x, x
∗, f∗))] (4)

The expectation is approximated by sampling in the same manner as PES. For each sample, the
pair (x∗, f∗) is added to the GP’s training set so that the posterior can be updated using regular
GP machinery, conditioning either on a noiseless optimal value f∗ (Hvarfner et al., 2022), or a
y∗ = f∗+ ε containing observation noise (Tu et al., 2022). Both Hvarfner et al. (2022) and Tu et al.
(2022) use a local constraint to condition on the maximum similar to MES. The resulting extended
skew distribution (Nguyen et al., 2022; Hvarfner et al., 2022; 2023) does not admit a closed form
for the entropy, and is therefore approximated either by Monte Carlo sampling of the integral (Tu
et al., 2022) or moment matching with a Gaussian (Moss et al., 2021; Hvarfner et al., 2022), lower
bounding the MI (Moss et al., 2021).

2.3 PRIOR-DATA FITTED NETWORKS (PFNS)

Prior-data Fitted Networks (PFNs; Müller et al., 2021) are transformer neural networks that learn to
perform Bayesian predictions in a single forward pass by training on synthetic data sampled from
a predefined prior p(D), which defines a distribution over datasets D of input and output pairs
(x,y). During training, datasets from the prior are split in two parts: a training and test set. The
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transformer takes the training set (x,y)’s as input, and is trained to predict the correct outputs for the
test set inputs. The transformer is a decoder-only model that applies an attention mask to make sure
that while objects of the training and test set can attend to those in the training set, test set samples
cannot attend to each other and are predicted independently. This allows the model to learn how
to learn from a new dataset. After training the PFN, its weights are frozen. At inference time, the
training set and (unlabeled) test set are provided as input to the transformer, which then predicts
test targets during the forward pass. Note that no fitting takes place at test time, but rather the PFN
learns from the data in the input — also called the context — and therefore this is called in-context
learning (Brown et al., 2020). More specifically, it can be shown that the PFN performs in-context
Bayesian prediction (Müller et al., 2021), i.e., the PFN is a model q(y|x,D), which approximates
the posterior predictive distribution (PPD) p(y|D,x) for our prior p(D). PFN training is the largest
cost (typically training for 1 day on a single GPU), which needs to be performed once beforehand.
Afterward, the PFN can offer significantly reduced inference times.

The versatility of this paradigm, has lead to a variety of applications. PFNs has been used as a surro-
gate model in black-box (Müller et al., 2023) and Freeze-thaw Bayesian Optimization (Rakotoarison
et al., 2024); as a model for forecasting time-series (Dooley et al., 2024) and learning curves (Adri-
aensen et al., 2024; Viering et al., 2024); and as a foundation model for tabular data (Hollmann et al.,
2025).

Most relevant to our work, PFNs have been used to accurately approximate Gaussian Process re-
gression (Müller et al., 2021; 2023), where datasets consist of pairs of feature vectors x and the
regression targets y, for some function f sampled from a Gaussian Process prior. The feature vec-
tors x and the regression target y for the transformer are encoded via a single-layer feed-forward
neural network to generate an embedding for x and an embedding for y which are added together.
The output of the transformer is a bar distribution for each test point. The bin sizes are optimized to
work well for predicting targets from the prior. The bar distribution is trained via cross entropy loss.
As such, the regression task is essentially treated as a classification task by binning the y’s.

3 EXTENDING PFNS TO ENTROPY SEARCH

We develop a methodology to perform Entropy Search using PFNs for PES, MES, and JES. To do
this efficiently, we construct two PFN models. First, we train a base PFN model to learn how to
do Bayesian prediction conditioned on information of the location and/or value of the optimum.
While this base PFN can help generate more accurate Monte Carlo estimates for these acquisition
functions, this approach still requires optimizing samples from the posterior to estimate the expected
information gain, which is computationally expensive. Therefore, we train a second PFN model, the
α-PFN, which directly predicts the acquisition function–PES, MES, or JES—in a single forward
pass, using the information gain predicted by the base PFN model.

Precomputing Gaussian Process prior data. To construct our PFN models for GP inference,
we need to train the model on millions of samples from a GP prior. Furthermore, we need to
know x∗ and f∗ for each GP, which is quite expensive to compute. To make this more tractable, we
approximate GP samples using Random Fourier Features (RFFs; Rahimi and Recht, 2007), whereby
sample paths from the Gaussian Process are represented by a weight vector w in RFF space. To
obtain a sample path, one simply samples a new w. By fixing w, it is possible to evaluate the sample
path at any position x. For a fixed w, it is thus possible to maximize a function draw from a GP
over the domain A to estimate x∗ and f∗. Note that this is a difficult global optimization problem,
which we solve approximately by an ensemble of optimizers that are restarted multiple times. See
Appendix B for more details.

Learning the base PFN model to condition on the maximum of a GP. See Figure 1 which
illustrates the predictions of the PFN after conditioning. When we are training on GP data, we have
access to x∗ and f∗. The idea is to feed these into the context of the PFN during training. The
best estimates are obtained, in expectation, by taking this conditioning information into account.
Since the PFN is trained with performance in expectation, if trained well, it therefore should learn
to perform conditioning — see also the argument by Müller et al. (2021) that the transformer learns
to perform Bayesian Inference. Thus if we feed in x∗, the PFN approximates p(y|x,D, x∗) by
q(y|x,D, x∗). The same goes when conditioning on f∗ or on both (x∗, f∗). We train a single
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Figure 1: Here we illustrate the effect on the predictions made by the base PFN in 1D when
conditioning on different types of information (top) and we plot the corresponding entropy
H(q(y|D,x, I)) for the domain after conditioning (bottom). Top: when conditioning on I = x∗

(green line), note that the upper credible interval of the PPD around x∗ increases as expected. Con-
ditioning on I = f∗ (red) constrains the upper credible interval ≤ f∗ globally, which given the near
optimal observations, reduces this bound compared to the unconditioned model (grey). Condition-
ing on both (blue) as expected shrinks the credible interval around the true optimum (red star) to
zero, while imposing a global max-value constraint.

base model to support all four cases: unconditional, conditioning on x∗, f∗ and (x∗, f∗). These
cases are all equally probable during training. For more training details see Appendix C. Note
that our base PFN can be used an alternative to handcrafted approximations of the corresponding
right hand terms in equations 2, 3, and 4 since the entropy H of its output bar distribution can be
computed efficiently. This enables a universal approach to approximate all three Entropy Search
variants, sampling x∗ and/or f∗ by optimizing samples from the posterior to produce a Monte Carlo
estimate of the expected information gain in Equations 2, 3, and 4. That being said, depending on
the posterior, it may be costly to obtain enough samples to sufficiently reduce the variance of this
estimate. This motivates exploring α-PFN as an alternative, a learning-based approach for improved
compute efficiency and approximation accuracy.

Learning acquisition functions with α-PFN. After training the model q, we train a second
PFN model, the α-PFN, that takes the observation data D and query point x as input and predicts
acquisition α(x,D) directly, see Figure 2 for an illustration of the capabilities of this model. We
train this model to predict the following information gain target

H(q(y|D,x))−H(q(y|D,x, I)), (5)

where I is the data conditioned on. If we are training an PES-PFN, we have I = x∗, and I = f∗ for
MES-PFN and I = (x∗, f∗) for JES-PFN. Note that we train separate α-PFN’s for each ES variant.
During training, we feed in the true x∗ and/or f∗ that were precomputed. This info is only used to
determine the prediction target and is not required at test time. α-PFN will learn the distribution
of this information gain (the varying factor being the location and/or value of the optimum). The
mean of this distribution, which is the expected information gain, coincides with the PES/MES/JES
acquisition in equations 2/3/4 (note that these are also expectations with respect to I). For more
training details see Appendix D.

Handling domain shift under adaptive data collection. Müller et al. (2023) train PFNs for BO
by sampling inputs x uniformly from the domain. However, during the process of BO, x tends to
cluster around the local optima. This domain shift in the pretraining procedure appears to adversely
affect BO performance of our approach in higher dimensions. To combat this, we train both PFNs
with a sampling procedure that mimics the clustering behavior observed during the BO process (see
Appendix F for more detail and an ablation study).
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Figure 2: Here, we illustrate the acquisition functions as learned by the α-PFN’s in 1D. While
all three acquisitions may seem similar, they exhibit the expected differences around the inferred
optimum (black star). PES (green) favors sampling around this optimum, as this provides more
information about its location than sampling the optimum itself. MES (red) on the other hand is
greedier, often sampling close to the optimum as to gain most info about its value. JES (blue) aims
to find a middle ground between both approaches. It also worth noting that the joint expected gain
of JES logically dominates the individual gains of PES and MES.

Figure 3: Average log inference regret (top) and runtime per iteration (bottom) for the different
settings. Shaded region indicates standard error. Note that “Sampling-based” PES, MES and JES
apply specific and different type of approximations that were derived by hand, while our PFN uses
learned approximations. The JES-PFN closely matches the regret of the sampling-based JES im-
plementation, but the MES-PFN performance is significantly worse. PES-PFN performs quite well.
Sampling-based PES required overly much memory (4D required more than 48 GB of RAM), and
therefore we did not include it for the 4D and 6D cases. As expected the PFN runtimes are approx-
imately equal, and improve significantly upon the runtime of PES and JES, while sampling-based
MES is clearly the fastest.
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4 EXPERIMENTS AND RESULTS

Experimental setup. To validate our approach empirically, we assess it on Bayesian optimization
of synthetic functions sampled from the GP prior. We replicate the first setup by Hvarfner et al.
(2022) (JES) and consider their three settings (2D, 4D, and 6D) with fixed hyperparameters. See
Table 1 (Appendix) for details on the settings and Appendix E for details on BO. We compare
the performance of our α-PFN’s with the existing Entropy Search approximations in the BoTorch
library (Balandat et al., 2020): JES (Hvarfner et al., 2022), (GIBBON-)MES (Moss et al., 2021) and
PES (Hernández-Lobato et al., 2014). We call these “sampling-based approximations”, to contrast
these with our α-PFN which uses learned approximations. We do not include sampling-based PES
for 4D and 6D settings due its excessive memory requirement (>42 GB).

Evaluation metric. We evaluate all methods in terms of inference regret, which is the standard
evaluation measure for methods using information theoretic acquisition functions. Inference regret
is defined as f(x∗)− f(x̂∗), where x̂∗ is the maximizer of the posterior predictive distribution, i.e.,
x̂∗ = argmaxx∈AE[q(y|D,x)]. Note that this maximizer is approximated by performing gradient
descent on q(y|D,x), with a setup similar to that considered for the acquisition function optimization
(see Appendix E).

Experimental results. Figure 3 reports the log inference regret and time taken per iteration, both
averaged across 1000 GP function samples. It is useful to compare our results to those obtained by
Hvarfner et al. (2022), since our experimental setting corresponds closely. The comparison shows
that the regret obtained is in the correct range. The JES-PFN seems to closely match the perfor-
mance of its sampling-based approximation. The performance of the MES-PFN is however orders
of magnitude worse than its sampling-based approximation. Interestingly, the PES-PFN performs
surprisingly well compared to JES, beating it in the 2D setting, but its advantage gets smaller with
increasing dimensionality, and for the 6D setting it seems to perform slightly worse. This is surpris-
ing, since the PES approach of Hernández-Lobato et al. (2014) usually performs considerably worse
than MES and JES, as shown also by Hvarfner et al. (2022) and Wang and Jegelka (2017). This
indicates that the PFN may have learned a better approximation for computing the PES acquisition
than the sampling-based approximation of Hernández-Lobato et al. (2014).

Runtime comparison. The PFN approximations follow a similar runtime complexity across the
Entropy Search variants, as they primarily require only a forward pass of α-PFN to obtain the acqui-
sition values. In the considered settings, GIBBON’s MES approach of Moss et al. (2021) is faster
than the MES-PFN variant. This advantage can be attributed to the more advanced approximations
and optimized implementation, for example Moss et al. (2021) use efficient caching to speed up
parallel acquisition computations. Note that similar optimizations could be explored for α-PFN
and that, even without inference optimization, our PFN approximations are consistently faster than
PES throughout the full BO run and surpass the state-of-the-art JES implementation after 50 itera-
tions. Surprisingly, the runtime of JES in the 2D setting is similar to that of PES, while Hvarfner
et al. (2022) reports JES to be considerably faster, which may be due to implementation details and
warrants closer investigation in future work.

5 DISCUSSION AND CONCLUSION

Our initial results show the promise of our PFN approach to Entropy Search. We show it is capable of
simulating the state-of-the-art (JES) at reduced runtimes. Also, the strong performance of the α-PFN
for PES is encouraging, suggesting that the PFN can learn better approximations than handcrafted
sampling-based state-of-the-art ones. This is even more noteworthy, as PES is the computationally
most intractable, and our approach reduces overhead drastically. Our current MES results show
an opposite pattern: while MES can be efficiently approximated by traditional methods, our PFN
variant performs considerably worse, in terms of walltime and regret. A difficulty in evaluating this
suboptimal performance of the MES-PFN is that the true acquisition function values for MES are
not available. Perhaps, the approximations introduced by Wang and Jegelka (2017) and Moss et al.
(2021) are crucial for its good empirical performance. On the other hand, it could be that α-PFN
does not approximate MES well. Also, we observe a slight degradation in relative performance of
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α-PFN in terms of regret in the 6D setting. It remains to be seen how our approach scales to higher
dimensions and whether potential issues can be addressed by scaling up model training.

Another important question is the extent to which the results here generalize to real-world black-
box optimization tasks. Previous works (Müller et al., 2023; Rakotoarison et al., 2024) have shown
that PFNs are robust in out-of-distribution settings, but whether that observation generalizes to our
α-PFNs remains to be validated. It is worth noting that the synthetic, fixed hyperparameter setting,
considered, is ideal for our baselines both in terms of walltime and BO performance. While the
PFNs naturally generalize to the fully Bayesian setting, without additional computational cost, the
handcrafted approximations rely on sampling from the GP posterior, requiring MCMC in the fully
Bayesian setting. As such, we expect that for fully Bayesian settings, the α-PFN will lead to more
significant speedups, because learning can replace the MCMC samples (Müller et al., 2023).

Future research should include recent and faster approximation methods, such as parallel imple-
mentations for PES (Garrido-Merchán et al., 2023), and expand the experimentation setup to more
challenging cases, i.e., real tasks and complex priors. Furthermore, given that the context points re-
main constant within a BO iteration, we plan to implement the caching mechanism (e.g., following
the approach of Hollmann et al. (2025)) to further improve the inference speed of the α-PFN, which
is critical to reduce the runtime for the acquisition function optimization. Finally, we would like to
investigate the domain shift issue we observed and explore alternative solutions.
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(FEIH 2698644) and the state of Baden-Württemberg. Finally, the authors acknowledge Julien
Siems for his help in the presentation of this work.

REFERENCES

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, pages 3–33, 2019.

Julien Villemonteix, Emmanuel Vazquez, and Eric Walter. An informational approach to the global
optimization of expensive-to-evaluate functions. Journal of Global Optimization, 44:509–534,
2009.

Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global optimiza-
tion. Journal of Machine Learning Research, 13(6), 2012.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

8



Published at ICLR 2025 Workshop on Frontiers in Probabilistic Inference.
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Setting nr. d σf σl σn µ

1 2
√
10 0.1 0.1 0

2 4
√
10 0.2 0.1 0

3 6
√
10 0.3 0.1 0

Table 1: The different scenarios for which we evaluate α-PFN. d indicates the dimension of the
input space. We use the squared exponential kernel, where σ2

f is the variance of the Gaussian
Process (output scale) and σl is the length scale of the kernel. We add zero mean Gaussian noise
N(0, σ2

n) to the GP, and we set the mean µ of the GP to zero.

A FURTHER RELATED WORK

In Section 2, we discussed the key concepts our approach builds upon (BO, ES, and PFNs). How-
ever, other works have explored related ideas and in this section we briefly discuss these. In particu-
lar, other works have proposed the use of transformers to learn to emulate optimization procedures.
Chen et al. (2022) proposed the use of transformers to predict points to be selected for Bayesian
optimization, based off empirical traces of Bayesian optimization runs utilizing handcrafted acqui-
sition functions such as EI. Tiao et al. (2021) and later works by Song et al. (2022) propose the use
of binary classification models to directly predict acquisition functions such as probability of im-
provement or expected improvement. Following a similar idea, end-to-end approaches Volpp et al.
(2020); Maraval et al. (2023) have been also proposed to simultaneously learn both the acquisition
function and the surrogate model from scratch using reinforcement learning algorithms. Concurrent
with our work, Chang et al. (2024) proposes a similar approach to learning conditional probabili-
ties, differing mainly in that their method outputs the parameters of a Gaussian mixture to model
continuous output values. A comparison to their method is left for future work.

B PRE-COMPUTING APPROXIMATE GP DATA AND THEIR MAXIMA

B.1 GP APPROXIMATION

For each setting, we generate 1M approximate samples from the corresponding GP prior (see Ta-
ble 1) using the Random Fourier Feature approximation (RFF; Rahimi and Recht, 2007), 999K were
used for training the PFNs and 1000 in our validation experiment in Section 4. We use 5000 RFFs
when computing the GP approximations. We store the Random Fourier Features and the vector w
that represents the Gaussian Process; using these, we can sample from a single GP any arbitrary
number of points independently and quickly. Computing the maximum of a GP that uses a Random
Fourier Features approximation is not straightforward, because the GP may have many local max-
ima. To that end, we perform a quite extensive search with random restarts with an ensemble of
optimizers. First, we describe the optimizer and its hyperparameters, and afterward we describe the
ensemble construction.

B.2 GP MAXIMIZER

We use either SGD or Adam and we optimize a batch of size num_samples points over
the GP in parallel. The initialization is done either uniformly at random over the domain
[0, 1]d (resample_init is False) or by trying a large number of points (num_repeats
times num_samples points are tried), computing their function values, and keeping the best
num_samples (if resample_init is True). We always use the noiseless GP values. We op-
timize for n_iterations_max iterations using SGD or Adam. During the optimization, we
monitor the current best seen GP value so far and store it. If the current best point does not improve
(compared with a tolerance tol), we increase a counter indicating the patience, and otherwise
the patience counter is reset. After the patience counter reaches a value of patience, we de-
cay the learning rate by a factor of decay_factor. If the learning rate is decayed more than
max_decays times, we stop the optimization early. One should take care with points that move
outside the domain during optimization, as optima are often located at the edge, especially for higher
length scales / dimensions. If clamp is active, we always move the points back inside the domain

11



Published at ICLR 2025 Workshop on Frontiers in Probabilistic Inference.

Table 2: Hyperparameter grid values for building the GP Maximizer Ensemble.
hyperparameter grid values hyperparameter grid values

adam [True, False] max decays [1, 5, 10, 15]
init lr [0.001, 0.01, 0.1, 1] tol [1e-1, 1e-3, 1e-6]
resample init [True, False] decay factor [0.1, 0.5, 0.99, 1]
num samples [50,200,1000] clamp [True, False]
n iterations max [10, 100, 1000] patience [1, 5, 10, 20]
num repeats [10, 100, 1000]

by clamping. If clamp is not true, we randomly initialize these points. If not specified, we use the
default values for the optimizers as specified in Pytorch version 2.3.1.

B.3 MAXIMIZER ENSEMBLE CONSTRUCTION

We use the first 1000 RFF GPs to build the optimizer ensemble. We build an candidate set of a 1000
optimizers with hyperparameters sampled from the grid as defined in Table 2. Because we want to
determine the maxima for a large number of RFF GPs, we need to design a small ensemble with a
low runtime yet good performance. We measure performance in terms of the regret of the ensemble,
that is, the performance of the ensemble compared to the performance of the best optimizer in the
candidate set. To reliably estimate the ensemble performance, we use 5-fold cross validation, where
a train fold is used for the ensemble building, and the test fold is used for ensemble evaluation. The
ensemble is constructed greedily by forward selection, where only candidates are considered that
have an average runtime of less than 10 seconds per GP optimization. We keep adding ensemble
members until the regret indicates we find the optimum with an approximate precision of 1e-6. We
merge the ensembles together over the different training folds to come to a final ensemble. Note that
the ensemble is build separately for each prior of Table 1.

C BASE PFN TRAINING DETAILS

We trained three base PFN models, one per setting considered. We closely follow the original PFN
architecture and training pipeline, used in previous works (Müller et al., 2021; 2023). We use a small
(<15M parameter) decoder-only transformer, with 12 layers, each using an embedding size of 512,
4 attention heads, and 1024 units in the hidden expansion layer. We use the PFN regression head
proposed by Müller et al. (2021) to model the output distribution, treating Bayesian regression as a
classification problem, dividing the output range in discrete ranges (bins) and minimize the cross-
entropy loss. We apply a linear transformation norm(y) = y

16
√
10

+ 0.5 which effectively projects
our GP output range in [0,1], which we divide in 1000 equal-sized bins. Note that, with very high
likelihood, e.g., all 3M max-values in our precomputed data fall in this range after normalization. At
test time, we clip hypothetical values outside this range. We minimize the cross-entropy loss, using
AdamW with a batch size of 100 datasets, a cosine decay learning rate schedule with maximum
0.0001, and linear warmup over the first 25% iterations of the training run. The models for higher
dimensions, were trained on fewer, but larger datasets. More specifically, the base models for 2D,
4D and 6D, were trained on 60M, 30M, and 20M datasets of size 75d respectively. The GP sample
used for a dataset is selected randomly from the 999K pregenerated samples, and reused multiple
times. To counteract overfitting, and to encourage symmetry, we perform mirror and reflection
augmentations on the domain A. The context size C (train split) is fixed per batch and selected
C ∼ U(0, 50 · D). This choice keeps the expected total number of queries (points in test split)
invariant (6 Billion) and wall-clock training time under 1 GPU day on a single L40S GPU. The
context and query points are chosen as described in Appendix F. To achieve the conditioning, we
add a special conditioning (x∗?,f∗?) token in the context. During training, we randomly sample
the conditioning to train the base model: (1) no conditioning, (2) condition on x∗, (3) condition
on f∗, (4) condition on both. If optimum location or value (or both) are not given, a placeholder
vector/value of 0.5 is used. This conditioning token is encoded as any other, except for adding one
of four independently learned embeddings to its encoding to allow the PFN to discriminate between
the four cases.
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D α-PFN TRAINING DETAILS

The PFN model directly predicting the (expected) information gain closely follows the architecture
and training of the base model. The only differences are that we trained all 9 models (one for each
setting and ES variant) on 10M datasets, no conditioning tokens were used, and that the prediction
targets for queries are not f(x), but the oracle information gain from equation 5. We again use
1000 bins, but these are not equal-sized, and rather determined such that roughly equally many of
the training targets fall in each bin. Furthermore, we use the full-support output head (Müller et al.,
2021), where the outmost “bins” are modeled as half-normals.

E BAYESIAN OPTIMIZATION EXPERIMENT DETAILS

For all settings considered, we run Bayesian Optimization with 50d iterations and d uniform points
as the initial design. At each BO iteration, the acquisition function is optimized by sampling 1024
uniform points and then optimizing them with gradient-based optimization with 20 restarts. Since
the acquisition for PES in BoTorch is not be differentiable, we use finite differences for optimizing
PES instead. We follow a similar optimization procedure to compute the maximizer of predictive
posterior distribution, required for computing the inference regret. Each BO run was conducted
on a single CPU (AMD EPYC 7763 64-Core Processor) with a 12GB memory budget, except for
sampling-based PES in the 2D case, which required 48GB.

F SYNTHETIC OPTIMIZATION TRACE GENERATION

F.1 MOTIVATION

Previous work (Müller et al., 2021; 2023; Rakotoarison et al., 2024) considered context and query
points sampled uniformly. However, in real Bayesian Optimization (BO) traces, the context points
follow a structured search pattern, dynamically balancing global and local search and often forming
clusters around local optima. Likewise, uniform query points, in high dimensions, are unlikely to
be near any of the context points, limiting the opportunity to learn to exploit the information they
provide. Ideally, we would use actual optimization traces from the Entropy Search BO procedures.
However, this would introduce a dependency on our surrogate model, leading to a chicken-and-egg
problem. Alternatively, using BoTorch traces would restrict ourselves to the GP priors it supports.
Instead, we propose a simple and efficient synthetic procedure that generates context and query
points in a manner that mimics real BO traces.

F.2 PROCEDURE

Our synthetic optimization trace generation procedure, detailed in Algorithm 1, aims to replicate the
characteristics of real BO traces by blending global and local search. The key components are:

• Global search: Points are sampled uniformly at random within the search space, with an
additional probability ϵ of selecting a point exactly on the edge. This helps in exploring
boundary effects which are important in higher dimensions as the optimizer increasingly
often lies exactly on the edge.

• Local search: The next context points are drawn from a Gaussian distribution centered on
the best observed context point so far. For query points, we select an arbitrary context point
as the center. If the optimizer x∗ is provided, it is sometimes chosen as the center, which
facilitates learning the effect of conditioning on x∗.

• Dynamic search adaptation: BO dynamically transitions from global to local search over
time. To model this, we define a local search probability αi that linearly decreases over L
steps. This ensures that earlier points explore the space globally, while later points refine
the search locally.

• Avoiding duplicate points: Though not explicitly shown in the pseudocode, we ensure
that no duplicate points occur in the trace. This frequently happens in corner regions. If a
newly generated point coincides with an existing corner point, it is resampled.
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This procedure effectively balances exploration and exploitation, producing synthetic traces that
resemble real BO optimization trajectories while remaining computationally efficient.

F.3 ABLATION EXPERIMENT

To evaluate the importance of our synthetic trace procedure, we conduct an ablation study compar-
ing it to uniform sampling. Our results demonstrate that this structured trace generation significantly
outperforms uniform sampling, especially in higher dimensions, achieving performance levels com-
parable to that obtained using sampling-based approximations. Interestingly, the procedure is also
essential for EI, which only uses the unconditional base PFN model in a setup that closely resem-
bles the one by Müller et al. (2023). One explanation could be the fact that our base model is
trained on less data, considers larger context sizes / four conditioning cases, and greater resilience to
domain-shift may be attained with additional training. Future work should investigate this discrep-
ancy, further refine the procedure, perform a more fine-grained ablation, and explore alternatives for
synthetic trace generation.

Figure 4: Ablating the BO traces used in training the α-PFN.
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Algorithm 1 Generate Optimization Trace
1: Inputs:
2: L: length of the trace
3: C: number of context points (i.e., we have L− C query points)
4: d: dimension of search space
5: GP sample: function to evaluate GP values
6: x∗: The optimizer of the GP (False in the unconditional / α-PFN case)
7: Outputs:
8: trace: matrix of shape (L, d) with context/query points in the trace
9: y: vector of length C with function values for context points

10: Procedure:
11: Initialize trace← zero matrix of size (L, d)
12: Initialize y ← zero vector of size C

13: ϵ = (1− u
d
6 ) with u ∼ U(0, 1) ▷ Sample edge probability

14: σ ∼ LogNormal(−3, 0.5) ▷ Sample local search step size
15: Sample initial / final local search probability:
16: α0 = min(v1, v2, v3)
17: αL = max(v1, v2, v3)
18: with v1, v2, v3 ∼ U(0, 1)
19: Start trace from a random point in search space:
20: best point = trace[0]← clip(w, 0, 1) with w ∼ Ud(− ϵ

2 , 1 +
ϵ
2 )

21: ybest = y[0]← GP sample(trace[0])
22: for i = 1 to L− 1 do
23: αi ← α0 + (αL − α0) · (i/L) ▷ Determine local search probability
24: local← Bernoulli(α) ▷ Determine local or global search
25: if local then
26: if i < C then
27: inc← best point ▷ Sample near the best point thus far
28: else
29: z ∼ U(0, 1)
30: if x∗ ∧ z < 5d

(L−cutoff) then
31: inc← x∗ ▷ Sample near the true optimizer
32: else
33: Choose inc randomly from context points (trace[: C])
34: end if
35: end if
36: trace[i]← clip(x, 0, 1) with x ∼ N d(inc, σ2)
37: else
38: trace[i]← clip(x, 0, 1) with x ∼ Ud(− ϵ

2 , 1 +
ϵ
2 ) ▷ Global search

39: end if
40: if i < C then ▷ For context point, sample value and update best
41: y[i]← GP sample(trace[i])
42: if y[i] > ybest then
43: best point← trace[i]
44: ybest ← y[i]
45: end if
46: end if
47: end for
48: return trace, y
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G COMPARISON WITH EXPECTED IMPROVEMENT (EI)

In Figure 5 we also include a comparison with Expected Improvement (EI). We evaluate EI both
when used in closed form with the Gaussian Process (normal line) and when derived from the base
PFN model (following the approach of Müller et al. (2023)). Interestingly, EI-PFN is faster than
α-PFN, possibly because optimizing the EI acquisition function is inherently easier and requires
fewer iterations compared to the ES acquisition functions. The regret obtained by EI for both the
PFN and closed form case match well, which validates that our base PFN is well-trained.

Figure 5: Average log inference regret (top) and runtime per iteration (bottom) for the different
settings. Shaded region indicates standard error. In contrast with the main body, here we also
include Expected Improvement (EI) to further place our results in context.
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