
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROBUST HETEROGENEOUS GRAPH NEURAL NET-
WORK EXPLAINER WITH GRAPH INFORMATION BOT-
TLENECK

Anonymous authors
Paper under double-blind review

ABSTRACT

Explaining the prediction process of Graph Neural Network (GNN) is crucial for
enhancing network transparency. However, real-world networks are predomi-
nantly heterogeneous and often beset with noise. The presence of intricate re-
lationships in heterogeneous graphs necessitates a consideration of semantics dur-
ing the explanation process, while mitigating the impact of noise remains unex-
plored. For GNN explainers heavily reliant on graph structure and raw features,
erroneous predictions may lead to misguided explanations under the influence of
noise. To address these challenges, we propose a Robust Heterogeneous Graph
Neural Network Explainer with Graph Information Bottleneck, named RHGIB.
We theoretically analyze the power of different heterogeneous GNN architectures
on the propagation of noise information and exploit denoising variational infer-
ence. Specifically, we infer the latent distributions of both graph structure and
features to alleviate the influence of noise. Subsequently, we incorporate hetero-
geneous edge types into the generation process of explanatory subgraph and uti-
lize Graph Information Bottleneck framework for optimization, allowing the Ex-
plainer to learn heterogeneous semantics while enhancing robustness. Extensive
experiments on multiple real-world heterogeneous graph datasets demonstrate the
superior performance of RHGIB compared to state-of-the-art baselines.

1 INTRODUCTION

Graph Neural Network (GNN), as a powerful tool for learning from graph-structured data, finds
applications in various real-life scenarios, such as social networks (Zhang et al., 2023b), citation
networks (Li et al., 2022), and recommendation systems (Gao et al., 2022). GNN integrates node
features and graph structural information into message passing algorithms, achieving remarkable
performance in numerous tasks like graph classification (Liu et al., 2024), node classification (Luan
et al., 2024), and link prediction (Lu et al., 2023). Despite their advantages, the decision-making
process of GNN is opaque, lacking interpretable explanations for human understanding (Müller
et al., 2024). This opacity hampers their application in critical domains related to fairness, privacy,
and security (Wang et al., 2024). Hence, researching the explainability of GNN enables a better
understanding of their functioning and facilitates improvements toward beneficial outcomes.

GNN Explainers take the original graph and model as inputs, aiming to identify the critical subgraph
that significantly influences predictions. Existing GNN Explainers can be categorized into post-hoc
and built-in methods (Yuan et al., 2022; Zhang et al., 2024). Post-hoc methods (Vu & Thai, 2023;
Pereira et al., 2023; Huang et al., 2022) apply explanation techniques or build explanation models
on the base of well-trained models to measure the contributions of different components, thereby ex-
plaining the working mechanisms or decision rationales. Built-in methods (Seo et al., 2024; Zhang
et al., 2022b; Yuan et al., 2020) generate explanations during the model training process, where the
generated graphs serve as explanations for the target predictions and are expected to satisfy specific
task objectives. Since built-in methods are tailored for specific models and require separate train-
ing for different scenarios, they lack generalizability, whereas post-hoc explanation methods can be
applied to most scenarios. Therefore, in this paper, we focus on studying post-hoc methods. Specif-
ically, we aim to develop a superior GNN Explainer that can generate high-quality explanations
across different real-world scenarios.
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(a) A toy Heterogeneous Graph (b) A noisy Heterogeneous Graph

noise deleted edge

noise added edge

Figure 1: Illustration of a toy heterogeneous graph and the heterogeneous graph with structural
noise, where in (a) edges connecting to different types of nodes represent various complex relations
on the heterogeneous graph, and in (b) the dashed lines indicate spurious relations added under the
influence of noise, and the lines with crosses represent relations disrupted by noise.

Although current GNN explainers have shown excellent performance in certain graph explanation
tasks, challenges in real-world still limit their applications. First, real-world graphs are typically
heterogeneous, containing multiple types of nodes and edges (Wang et al., 2022; Yang et al., 2020),
such as the three node types and two relation types in Figure 1(a), naturally implying their structural
complexity. Second, real-world graph data is noisy (Fox & Rajamanickam, 2019; Dai et al., 2022).
Specifically, the graph structure may contain edges added or removed due to noise, as illustrated in
Figure 1(b). Simultaneously, node features can also be distorted by noise, rendering them unrealistic.
Noise poses a critical issue for heterogeneous graphs because the inherent heterogeneity across node
types causes noisy edges to carry erroneous heterogeneous relation information, which is further
propagated during the message passing process.

Due to the presence of noise, which adds extraneous and unrelated information to the data, the sta-
tistical characteristics and distribution of the data are disrupted. This prevents the explainer from
effectively learning and extracting the critical patterns in the data, significantly reducing its per-
formance and increasing the risk of generating erroneous explanations. However, no explanation
method has investigated noise in heterogeneous graphs. We theoretically demonstrate that the im-
pact of noisy information is amplified by partially heterogeneous graph neural network methods
(e.g., meta-paths), thereby interfering with the model decision-making process. Simultaneously,
noise intensifies the irregularity of graph structures and alters node importance, rendering conven-
tional explainable methods reliant on strict structural constraints (e.g., size, budget, connectivity) in-
applicable (Luo et al., 2020). These methods tend to include noisy edges and exclude correct edges
due to the skewed perception of node importance. Thus, adaptively exploring critical subgraphs
while managing the irregularities introduced by noisy scenarios presents a significant challenge for
explainability in graph neural network.

To address the aforementioned challenges, this paper proposes a Robust Heterogeneous Graph Neu-
ral Network Explainer with Graph Information Bottleneck, called RHGIB. We first theoretically
demonstrate the amplifying effect of noise information in heterogeneous scenarios. We then em-
ploy denoising variational inference to capture robust graph information in the latent variable space.
By incorporating the Graph Information Bottleneck principle, we transform the GNN explanation
problem into an optimization task, effectively handling irregularities induced by structural noise.
Additionally, we propose a relation-based explanation generator that fully considers the complex
semantics of heterogeneous graphs during the generation of explanatory subgraphs. To validate
RHGIB’s explanation capability and effectiveness in handling noise, we evaluate our method on
multiple datasets and compare its performance against state-of-the-art baselines.

The contributions of this paper are as follows:

• This is the first work studying the impact of noise on heterogeneous graph explainer,
proposing RHGIB to mitigate the performance degradation caused by noise.

• We theoretically prove the amplification effect of existing heterogeneous graph methods
on noise and incorporate denoising variational inference to alleviate noise-induced infor-
mation corruption.
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• We propose a novel graph explanation generator based on type attention that incorporates
heterogeneous relation learning, effectively capturing complex semantics in the process of
explanatory subgraph generation.

• Extensive experiments on three real-world datasets demonstrate RHGIB’s superiority and
enhanced robustness over state-of-the-art GNN explainers.

2 RELATED WORK

GNN Explainability. Recently, various approaches have been proposed to explain the predictions
of GNN, these approaches can be categorized into post-hoc and built-in method. Common post-
hoc methods include perturbation-based (Vu & Thai, 2023; Schlichtkrull et al., 2020) and surrogate
model-based (Pereira et al., 2023; Huang et al., 2022) approaches. MixupExplainer (Zhang et al.,
2023a) extends the existing GIB framework by introducing label-independent subgraphs during the
sampling of explanation subgraphs, thereby obtaining explanations while mitigating the distribution
shift phenomenon. GNNExplainer (Ying et al., 2019) learns masks for features and edges by op-
timizing the masks to obtain the optimal explanation. PGExplainer (Luo et al., 2020) employs a
parametric neural network approach to learn the importance of each edge and ultimately selects
edges with high importance scores to construct the explanatory subgraph. PGM-Explainer (Vu
& Thai, 2020) adopts a Bayesian network formulation, naturally expressing the dependencies be-
tween nodes in the form of conditional probabilities. Common built-in methods include prototype
learning-based (Seo et al., 2024; Zhang et al., 2022b) and graph generation-based (Yuan et al.,
2020) approaches. PGIB (Seo et al., 2024) integrates prototypes into the Graph Information Bottle-
neck framework, allowing it to learn prototypes based on key subgraphs in the input graph, thereby
providing a more accurate explanation of the prediction process. GOAt (Lu et al., 2024) generates
explanatory subgraphs by decomposing the model’s output into a series of scalar products involving
node and edge features, and calculating the contribution of each feature to these scalar products,
thereby highlighting the edges that are important for the prediction outcome.

3 PROBLEM DEFINITION

In this section, we expound upon the concept of heterogeneous graphs and formally establish the
definition of the explanation problem on heterogeneous graphs.

3.1 HETEROGENEOUS GRAPH

A heterogeneous graph (HG), denoted as G = (A,X,A,R,Φ), encompasses multiple types of
nodes V and edges E , where A is the corresponding adjacency matrix, X represents node features,
A denotes the set of node types, R signifies the set of edge types, and Φ represents the set of meta-
paths. A meta-path ϕ ∈ Φ is a path of edges connecting various types of nodes from node v1 to
node vl+1, such as A1

R1−→ A2
R2−→ . . .

Rl−→ Al+1, where l denotes the length of the meta-path.
The label set of G is denoted as Y, comprising C categories. Meanwhile, a heterogeneous graph
has two mapping functions ψ(v) : V → A and φ(e) : E → R that correspond to nodes and edges,
respectively.

3.2 HETEROGENEOUS GRAPH NEURAL NETWORK EXPLAINER

Given a trained GNN model f as the subject of explanation and a heterogeneous graph G, the
objective of the GNN explainer is to identify the most influential subgraph Gs = (As,X,As,Rs).
Here, As represents the adjacency matrix formed by nodes Vs and Es which significantly contribute
to prediction. For the original prediction of GNN model f , it can be formalized as follows:

ŷ = argmaxPf
c∈C

(c|A,X,A,R), (1)

where Pf (·) represents the prediction function of the GNN model f . Current research indicates
that graph structural information is crucial for classification tasks (Luo et al., 2020; Zügner et al.,
2018). Therefore, our RHGIB focuses on exploring structural noise when generating explanations.
The excellent explanation should contain the most critical information to approximate the predicted
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Figure 2: The architecture of our proposed RHGIB. First, the denoised node representations are
obtained from the noisy graph via denoising variational inference. Then, the Explainer Network em-
ploys the relation-based importance computation method to obtain the weights for different edges.
The top k percent of edges are selected as important edges to generate the explanatory subgraph.
Finally, the generated explanatory subgraph and the original graph are respectively input into het-
erogeneous GNN models to obtain predictions, which are used to compute the loss function.

labels and outcome changing when predicting the remaining part of the original graph, which is as
follows:

argmaxPf
c∈C

(c|As,X,As,Rs) = ŷ. (2)

4 METHODOLOGY

In this section, we formally introduce RHGIB. We first employ the Denoising Variational Inference
Graph Encoder to generate a robust representation of the input graph G, and the denoised node em-
beddings sampled from the latent graph distribution produce edge representations. Subsequently,
the Relation-based Explanation Generator incorporates the input edge representations into a het-
erogeneous relation-based attention learning paradigm to obtain the importance of each edge. The
explanation model generates the explanatory subgraph based on the importance scores. Finally, we
optimize the proposed method using the Graph Information Bottleneck (GIB) objective. Figure 2
illustrates the framework of RHGIB.

4.1 NOISE ANALYSIS AND DENOISING VARIATIONAL INFERENCE

We investigate the impact of noise on different approaches for heterogeneous graph neural network.
We categorize common heterogeneous graph neural network into two classes: meta-path-based and
neighborhood aggregation-based methods. Meta-path-based methods typically require defining a
meta-path ϕ, and then capturing information along different relations following the meta-path struc-
ture, aggregating this information, such as Paths2Pair (Hang et al., 2024) and MAGNET (Wen et al.,
2023). Neighborhood aggregation-based methods simultaneously consider the neighbor node types
and edge types for each node and use specific aggregation functions to combine information from
different types. Common neighborhood aggregation methods include MHGCN (Yu et al., 2022) and
Simple-HGN (Lv et al., 2021). However, these two categories of methods differ in their efficiency of
noise propagation (Zhang et al., 2022a), and we find that meta-path-based message passing methods
amplify the impact of noise.

Lemma 1 (Perturbation Enlargement Effect.) Given a node v from a heterogeneous graph G,
when the edges adjacent to v are perturbed, meta-path-based methods can enlarge the disruptive
effect of the perturbation.

4
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Theorem 1 (Noise Amplification Effect in HG.) In HG, compared to neighborhood aggregation-
based methods, meta-path-based methods can significantly amplify the effect of noisy edges. Specif-
ically, for a node vi and a newly added noisy edge eij , the factor by which its influence changes is
dvi

+k

dvi
+1 , where k is the degree of the new neighbor vj under the noise and dvi is the degree of vi.

When k > dvi , this factor is significantly greater than 1.

The complete proof of Theorem 1 is provided in Appendix B.

Based on Theorem 1, we employ a neighborhood aggregation method to encode heterogeneous
graph and mitigate noise. Given noisy graph data G̃, our objective is to obtain a denoised version of
the standard graph data G. The Variational Graph Auto-Encoder (VGAE) (Kipf & Welling, 2016b)
uses variational inference to derive statistical properties of the graph. In VGAE, the statistical data
of latent variables can be efficiently inferred from the latent space rather than the observation space,
which provides robust graph information. For the standard graph G, VGAE initially generates latent
variables Z from a prior distribution p(Z), such as a Gaussian distribution N (µ,σ2). Second, the
data G is generated using a conditional distribution p(G|Z). VGAE optimizes its parameters by
maximizing the likelihood of the observed data, which as follows:

KL(qΨ(Z|G)||pθ(Z|G)) + L(Ψ, θ;G), (3)

where Ψ is the encoder and θ represents the parameters to be optimized. Then, the evidence lower
bound L(Ψ, θ;G) can be expressed as follows:

L(Ψ, θ;G) = EqΨ(Z|G)[log
pθ(Z,G)
qΨ(Z|G)

] = EqΨ(Z|G)[log pθ(Z|G)]−KL(qΨ(Z|G)||p(Z)).

Variational inference enhances the model’s robustness and generalization capabilities (Fan et al.,
2021; Im Im et al., 2017). However, due to the differing distributions between noisy graph data and
standard graph data, the obtained distribution tends to align with the noisy distribution, potentially
misleading the GNN explainer into generating incorrect explanatory subgraphs. Therefore, we in-
troduce a denoising module during the process of variational inference. The original encoder part is
modified to:

q′Ψ(Z|G) =
∫
qΨ(G|G̃)q(G̃|G)dG̃, (4)

where Ψ is the encoder based on G̃. During this process, the evidence lower bound is expressed as:

Ld = Eq′Ψ(Z|G)[log
pθ(Z,G)
q′Ψ(Z|G)

]. (5)

As we need to derive the distribution of the noisy graph data G̃, this lower bound can be further
refined as:

Ld = Eq′Ψ(Z|G)[log
pθ(Z,G)
q′Ψ(Z|G)

] ≥ Eq′Ψ(Z|G)

[
log

pθ(G,Z)
qΨ(Z|G̃)

]
= Eq′Ψ(Z|G)[log pθ(G|Z)]− Eq(G̃|G)[KL(qΨ(Z|G̃))||p(Z)]. (6)

The detailed derivation is in the Appendix C. Compared to VGAE, the denoising variational in-
ference models the posterior probability p(Z|G) using a Gaussian Mixture Model, whereas VGAE
models p(Z|G) using a Gaussian distribution. Additionally, during the optimization process, there
is a constraint that forces qΨ(Z|G̃) to approximate the standard Gaussian distribution p(Z). Con-
sequently, our method can significantly improve the model’s robustness and produce high-quality
graph data. We further employ the Monte Carlo sampling method to approximate the objective,
which can be effectively optimized using gradient descent as follows:

Ld ≈ 1

K

K∑
k=1

log
pθ(G,Z)
qΨ(Z|G̃)

, (7)

where K is the number of samples sampled during the simulation.

After denoising variational inference, we input the sampled robust representations Z into the
Relation-based Explanation Generator, where the complex semantics on the heterogeneous graph
are learned. Before delving into that, we introduce the Graph Information Bottleneck.

5
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4.2 GRAPH INFORMATION BOTTLENECK

As mentioned in the introduction, noise exacerbates the irregularity of graph structures and alters
node importance. Therefore, previous methods imposing structural regularity constraints on ex-
planatory subgraphs are infeasible under noise influence. We exploit the Graph Information Bot-
tleneck (GIB) to enable the explainer network to adaptively handle structural irregularities. The
objective of GIB is to obtain the optimal explanatory subgraph Gs. From an information-theoretic
perspective, GIB limits the amount of information carried by the explanatory subgraph Gs, rather
than imposing simple structural constraints. Simultaneously, nodes may require scattered edges
across the graph to jointly explain their predictive function, rather than constraining connectedness.
For instance, in molecular graphs, a molecule may contain multiple functional groups scattered
throughout the graph, collectively determining its properties. Consequently, GIB adaptively ex-
plores the entire graph without imposing any potentially biased restrictions. GIB can be formulated
as:

min
Gs⊂G

− I(ŷ;Gs) + β I(G;Gs), (8)

where I(·; ·) denotes mutual information, and β is the Lagrangian multiplier controlling the trade-off
between the two terms. Since the information in Gs can be continually optimized, the explain task
can be characterized as an optimization task guided by GIB.

The GIB principle aims to obtain the minimum sufficient information about the graph G. The first
term maximizes the mutual information between the label and the explanatory subgraph, ensuring
Gs contains as much information about the label as possible. The second term minimizes the mu-
tual information between the input graph and the explanatory subgraph, ensuring Gs contains the
minimum information about the input graph. Next, we introduce the Relation-based Explanation
Generator, describing how each term is optimized during training under the GIB principle.

4.3 RELATION-BASED EXPLANATION GENERATOR

We first assume the explanatory subgraph is a Gilbert random graph (Gilbert, 1959), where edges
are conditionally independent. Following the literature (Luo et al., 2020), we define an adjacency
matrix-like edge matrix Es, where each element eij is a binary variable indicating whether the edge
is included in the subgraph. When there is an edge (i, j) from vi to vj , eij = 1, otherwise eij = 0.
Based on this, the random graph variable can be factorized as:

p(G) =
∏

(i,j)∈Es

p(eij), (9)

where eij is a binary variable following a Bernoulli distribution Bern(πij), and p(eij) denotes the
probability of the edge (i, j) existing. Since eij is discrete, we apply a reparameterization trick to
relax it into a continuous variable between 0 and 1 for ease of optimization, as follows:

eij = Sigmoid
( log ϵ− log(1− ϵ) + αij

τ

)
, ϵ ∼ Uniform(0, 1), (10)

where τ is a temperature coefficient to smooth the optimization, and αij is a heterogeneous attention
coefficient. When let αij = log

πij

1−πij
, we have limτ→0 p(eij = 1) =

exp(αij)
1+exp(αij)

, so we can obtain
the explanatory subgraph Gs since p(eij = 1) = πij .

To capture the rich semantics in heterogeneous graphs, merely considering pairwise relationships
between nodes is insufficient. Thus, we incorporate heterogeneous semantics learning into the ex-
planatory subgraph generation process. Inspired by (Lv et al., 2021), we extend the standard graph
attention mechanism by incorporating edge type information into the attention computation. Specif-
ically, we assign an edge type embedding rφ(e) for each edge type φ(e), and simultaneously utilize
the edge type embeddings and node embeddings to compute αij :

αij =
exp

(
ReLU

(
aT [Wzi∥Wzj∥Wrrφ(eij)]

))∑
k∈Ni

exp
(
ReLU

(
aT [Wzi∥Wzk∥Wrrφ(eik)]

)) , (11)

where Wr is a learnable weight matrix for type embeddings. Edge type embedding is a one-hot
encoding derived from each edge type. Based on Eq. 11, we obtain a probability matrix Mp. The

6
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(i, j)− th element of Mp represents the probability of the existence of eij . In order to generate the
explanation subgraph Gs, we can sample from Mp, as shown below:

Gs = (As = Mp ⊙A,X,As,Rs). (12)

However, as is well known, mutual information is challenging to compute, especially in continuous
and high-dimensional spaces. We derive an upper bound for GIB through the extension of Jensen’s
inequality and marginal distributions. Eq. 8 can be written as:

− I(ŷ;Gs) + β I(G;Gs) ≤ −Ep(Gs,ŷ)

[
log pf (ŷ|Gs)

]
+H(ŷ) + βEp(G)

[
KL(pα(Gs|G)||q(Gs))

]
,

where f is the GNN model and α is the explain model, see Appendix C for detailed derivation.
Since H(ŷ) is constant, the objective function can be expressed as follows:

LGIB = −Ep(Gs,ŷ)

[
log pf (ŷ|Gs)

]
+ βEp(G)

[
KL(pα(Gs|G)||q(Gs))

]
.

Finally, RHGIB jointly optimizes the objectives of VGAE and GIB, and the overall objective func-
tion is as follows:

L = Ld + LGIB . (13)

4.4 COMPLEXITY ANALYSIS.

The cost of each iteration comprises two parts: (1) the variational inference process and (2) the
explanation generation. The time complexity of the first step is O(N2 + E), and the space com-
plexity is O(N), as this step requires storing the new high-quality node representations. The time
complexity of the second step is O(E), and the space complexity is O(E). Therefore, the overall
time complexity of RHGIB is O(N2 + E), and the space complexity is O(N + E).

5 EXPERIMENT

In this section, we evaluate the performance of the proposed RHGIB and state-of-the-art baselines
on the node classification task. We then analyze the contributions of different components of RHGIB
and demonstrate why RHGIB is robust to noise and capable of generating explanations that incor-
porate heterogeneous information.

Table 1: The comparison of RHGIB and baselines under different ratios of random structural noise.
We use bold font to mark the best score. The second best score is marked with underline.

Dataset Noise Ratio
10% 20% 30% 40%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

DBLP

PGExplainer 1.2158 1.6775 1.2179 1.6815 1.2449 1.6999 1.2451 1.7060
GNNExplainer 0.8530 1.2968 0.9080 1.3072 1.2613 1.8470 1.3388 1.9043
PGM-Explainer 1.0704 1.3855 1.2046 1.5280 1.3313 1.6497 1.3401 1.6681

V-InfoR 1.1930 1.6481 1.1960 1.6511 1.2312 1.6781 1.2530 1.6885
PGE-Relation 0.8719 1.2814 0.8896 1.2859 1.1913 1.6532 0.9268 1.3100

RHGIB 0.8359 1.2416 0.8743 1.2750 0.8827 1.2792 0.9014 1.2889

ACM

PGExplainer 0.7624 1.0258 0.7751 1.0307 0.7867 1.0423 0.7913 1.0431
GNNExplainer 0.3449 0.6831 0.3951 0.7791 0.5087 0.9506 0.6496 1.1306
PGM-Explainer 0.2155 0.5121 0.3732 0.6893 0.5932 0.8793 0.7932 1.0766

V-InfoR 0.7639 1.0145 0.7913 1.0366 0.8064 1.0705 0.8154 1.0786
PGE-Relation 0.8091 1.0740 0.8183 1.0778 0.8220 1.0731 0.8310 1.0856

RHGIB 0.2129 0.5662 0.2483 0.6177 0.3140 0.6669 0.3163 0.6909

Freebase

PGExplainer 0.7189 1.0616 0.7237 1.0635 0.7285 1.0689 0.7370 1.0803
GNNExplainer 0.9012 1.2886 0.9108 1.2983 0.9126 1.2995 0.9378 1.3217
PGM-Explainer 0.9190 1.2432 0.9401 1.2549 0.9530 1.2747 0.9587 1.2838

V-InfoR 0.5957 1.0375 0.6822 1.1172 0.7249 1.1487 0.7894 1.1929
PGE-Relation 0.7760 1.1064 0.7812 1.1117 0.7908 1.1200 0.8030 1.1315

RHGIB 0.3885 0.8251 0.4441 0.8854 0.4694 0.9035 0.4880 0.9217
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5.1 EXPERIMENT SETTINGS

Datasets and Baselines. We evaluate the effectiveness of our RHGIB on three real-world datasets,
including two academic citation datasets (DBLP and ACM) and a knowledge graph dataset (Free-
base). Since there are no existing robust heterogeneous explainer, we select three types of baselines:
the surrogate method PGM-Explainer, the perturbation-based methods GNNExplainer and PGEx-
plainer, and the V-infor method studying robustness on homogeneous graphs. Additionally, we ex-
tend our Relation-based importance computation module to PGExplainer, denoted as PGE-Relation,
for comparison.

Evaluation. The evaluation of explainer performance is based on the generated explanatory sub-
graphs, assessing their contribution to the original prediction. We adopt two metrics: fidelity
and sparsity. Fidelity measures the decrease in prediction confidence after removing the expla-
nation from the input graph, while sparsity measures the ratio of remaining edges in the ex-
planatory subgraph Gs relative to the input graph. In our experiments, we use the Mean Ab-
solute Error (MAE, 1

N

∑N
i=1

∣∣∣I(ŷi = yi)− I(ŷGs
i = yi)

∣∣∣) and Root Mean Squared Error (RMSE,√
1
N

∑N
i=1(I(ŷi = yi)− I(ŷGs

i = yi))2) as proxy measures for fidelity, and compare the perfor-
mance of different baselines across varying sparsity levels, where N is the number of nodes or
graphs, ŷi is the original prediction result, and ŷGs

i is the prediction result obtained by the explana-
tory subgraph.

Implementation Details. We conduct experiments under different proportions of random noise
scenarios. Noise is added to both the training set and the test set to restore the real scene. For the
baselines, we select the best-performing parameters for heterogeneous datasets based on the original
settings. We chose the most basic HGNN architecture which only contains GCN (Kipf & Welling,
2016a) and relational learning modules as the base model. Each experiment is repeated 5 times, and
we report the mean and variance as the results. Descriptions of the variance, datasets, baselines,
base heterogeneous GNN model, and parameter settings are provided in the Appendix D.

5.2 OVERALL PERFORMANCE UNDER RANDOM NOISE

Table 1 shows the experimental results on the heterogeneous graphs with different ratios of random
structural noise. We randomly select and flip edges based on the noise ratio, thereby augmenting or
disrupting relations in the heterogeneous graph. We find that RHGIB outperforms other baselines in
most experimental results, achieving the best performance on the DBLP and Freebase datasets. Tak-
ing 30% noise ratio as an example, RHGIB shows 25.9% lower MAE and 22.4% lower RMSE than
the second-best method on the DBLP dataset, 38.2% lower MAE and 24.1% lower RMSE on the
ACM dataset, and 35.2% lower MAE and 15.4% lower RMSE on the Freebase dataset. We can ob-
serve that PGE-Relation achieves second best performance multiple times on the DBLP dataset and
outperforms many baselines on other datasets, demonstrating the effectiveness of our proposed het-
erogeneous semantic learning module in considering rich semantics on heterogeneous graphs. Due
to the similar edge type distribution in the DBLP dataset, the dataset exhibits higher heterogeneity,
which enhances the module’s ability to capture heterogeneous information. Simultaneously, as a
plug-and-play module, it can be conveniently extended to other parameterized explanation meth-
ods for generating explanations on heterogeneous graphs. On the medium and small-scale datasets
DBLP and ACM, explanation methods based on raw features (e.g., GNNExplainer) are more sus-
ceptible to noise, potentially because raw features are more easily affected in smaller graphs. Since
RHGIB generates latent variational graph representations, it can better mitigate the influence of
noise, which is also why the latent representation-based explainer V-InfoR performs well in mul-
tiple scenarios. Under the guidance of Graph Information Bottleneck, our method can adaptively
select important edges while excluding redundant and noisy edges, thereby generating the best ex-
planations for the prediction model.

5.3 FIDELITY-SPARSITY ANALYSIS

Next, we further investigate RHGIB’s performance at different sparsity levels. We provide the
Fidelity-Sparsity curve on the DBLP dataset as shown in Figure 3. It can be observed that RHGIB
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Figure 3: Fidelity-Sparsity Curve on the DBLP
dataset. The first row is the result without noise,
and the second row is the result with 20% random
noise added.
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Figure 4: Ablation study on three datasets and the
influence of hyperparameters τ and β on RHGIB.

consistently outperforms other baselines across all sparsity levels, indicating that our method can
generate the best explanations. As the sparsity increases from 0 to 1, the overall trend of all curves is
downward, i.e., decreasing error. When the sparsity is extremely low, e.g., 10%, our method signifi-
cantly outperforms other baselines, suggesting that RHGIB can identify the truly critical subgraphs.
We further find that although the overall performance improves as the sparsity level increases, there
are still some cases where the performance drops with increasing sparsity, such as PGExplainer. We
conjecture that this may be because in the subgraph generation process, when the sparsity increases
to a point where all edges with high importance scores have been selected, forcing higher sparsity
will begin to select unimportant edges, which can be viewed as noisy edges, leading to degraded
performance. As the sparsity continues to increase, this adverse effect is offset.

5.4 ABLATION STUDY

In this section, we investigate the contributions of different components in RHGIB. Specifically, we
study (a) the effectiveness of the denoising variational inference module, and (b) the effectiveness
of the relation-based importance module. We use ’w/o VI’ to denote the model without the de-
noising variational inference module, and ’w/o Re’ to denote the model without the relation-based
importance module. For the latter case, we replace it with the common concatenation operation, i.e.,
αij = MLP[(zi, zj ]). The experiments are conducted under 20% random noise, and the first row
of Figure 4 shows the results after ablation. We find that without the denoising variational inference
module, the model relies on the original features and graph structure for prediction, failing to mit-
igate the influence of noise, leading to performance degradation. When the model loses the ability
to learn heterogeneous relationships, the process of generating explanation subgraphs struggles to
recognize the complex semantics in heterogeneous graphs. All edges are treated as the same type,
and the model explains solely based on node interactions. This demonstrates the necessity of our
proposed relation importance module.

5.5 HYPERPARAMETER ANALYSIS

We further analyze the impact of two parameters τ and β on model performance. τ controls the
approximation degree of eij distribution to the Bernoulli distribution, ranging within [0.1, 0.5]. β
balances the information recovery strength (i.e., min − I(ŷ;Gs)) and information filtering strength
(i.e., min I(G;Gs)) in the optimization objective, and we select values from {0.3, 0.5, 1, 2, 3}. The
second row of Figure 4 shows the effects of these hyperparameters on RHGIB across three datasets.
We can observe that the optimal value of τ does not vary significantly across datasets, but the best
results all appear around 0.3. That is, when τ = 0.3, the continuity and approximation degree
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in Eq. 10 reach the best trade-off. Secondly, RHGIB is not very sensitive to β that controls the
constraint strength in Eq. 13, validating that our used GIB constraint can adapt to different data
scenarios and achieve superior performance.

Explain
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#20522 #15500
#20650
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(b)

Figure 5: Case study of RHGIB on the DBLP dataset. Purple edges represent noisy edges, blue
edges represent normal edges, and red nodes represent the target nodes.

5.6 CASE STUDY

We conducted two case studies to visualize the process of RHGIB, with Figure 5 displaying ex-
amples from the DBLP dataset. In both examples, normal edges (blue) are explained while retain-
ing only the important edges, and noisy edges (purple) are successfully excluded by the model.
As shown in Figure 5(a), when explaining the prediction result for the target node Author-1034,
RHGIB successfully identified the important edge <Author-1034, Paper-5558>. This step is note-
worthy because Author-1034 is only connected to Paper-5313 and Paper-5558. Due to their weights
in message passing, many explainers would mistakenly consider both edges in the explanation sub-
graph, while RHGIB only recognized the most important edge for the prediction. Additionally,
RHGIB successfully excluded all noisy edges. The noisy edges <Paper-5558, Term-21337> and
<Paper-5313, Term-20650> share the same relation type with existing edges, making them prone
to being mixed with the original heterogeneous semantics. However, they are successfully excluded
after the explanation by RHGIB. In Figure 5(b), when explaining the prediction result for the target
node Author-272, the explanation subgraph captured all key edges. For the noisy edge<Paper-4755,
Paper-12480>, which introduced new heterogeneous semantics that could interfere with the predic-
tions of the base model, this edge was successfully excluded following the RHGIB explanation.

6 CONCLUSION

In this work, we focus on the problem of explaining heterogeneous graph neural network under
noise. We are the first to study this problem, theoretically proving that heterogeneous graph neural
network have an amplifying effect on noise, and propose RHGIB to mitigate the influence of noise
and obtain explanatory subgraphs based on heterogeneous relations. Specifically, RHGIB employs
denoising variational inference to obtain robust graph representations and parameterizes the ex-
planatory subgraph generation process with neural networks. It integrates rich relation information
to capture the complexity of diverse node and edge types. Moreover, RHGIB can explain predic-
tions at the node, edge, and graph levels. Extensive experiments on real-world datasets demonstrate
RHGIB’s superiority over other state-of-the-art baselines. For future work, we plan to further extend
RHGIB to dynamic graphs by incorporating dynamic information into the explanation generation
process, further broadening RHGIB’s applicability.

7 REPRODUCIBILITY

We detail the model design in the paper, including denoising variational inference (Sec. 4.1), the
relation-based explanation generator (Sec. 4.3), and the optimization objective (Eq. 13). In Ap-
pendix B, we provide a detailed proof of Theorem 1, and in Appendix C, we derive Eq. 4, Eq. 6, and
Eq. 13. The experimental setup is explained in Sec. 5.1 and Appendix D. The code is available at:
https://anonymous.4open.science/r/RHGIB-EBD0.
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Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2847–2856, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORK ON HETEROGENEOUS GRAPH NEURAL NETWORKS

Heterogeneous Graph Neural Networks can be categorized into meta-path-based methods and neigh-
borhood aggregation-based methods. Meta-path-based methods typically decompose heteroge-
neous graphs into multiple homogeneous subgraphs using predefined meta-paths, thereby capturing
specific types of heterogeneous semantics. Message passing is then performed within each sub-
graph, and the messages are subsequently aggregated. Common methods in this category include
HAN (Wang et al., 2019), MAGNN (Fu et al., 2020), and SeHGNN (Yang et al., 2023). On the other
hand, neighborhood aggregation-based methods usually aggregate information directly from neigh-
bors and apply specific aggregation strategies based on node types. Examples of methods in this
category include RGCN (Schlichtkrull et al., 2018), NARS (Yu et al., 2020), and Simple-HGN (Lv
et al., 2021).

B PROOF OF THEOREM 1

In Graph Neural Network, a node representation is typically updated by aggregating information
from its neighboring nodes. This process can be described as a message passing mechanism, where
each node receives messages from neighboring nodes and updates its representation based on these
messages. To avoid cases where the influence is overly amplified during the aggregation process, the
messages from neighboring nodes are typically normalized. A common normalization approach is
to multiply each neighbor message by the inverse of its degree. Assuming that each node influence
on neighbors is equal, a higher-degree node will distribute its influence evenly among all neighbors.
Therefore, the influence received by each neighbor should be proportional to the inverse of the node
degree. In contrast, in random walk models, the transition probability between nodes is inversely
proportional to the node degree. That is, the probability of a node reaching a particular neighbor is
the inverse of its degree.

Given a heterogeneous graph G, let vi be a node with degree dvi . A noisy edge eij is added to the
graph, where vj is a new neighbor with degree dvj and k specific-type neighbors that match a given
meta-path ϕ.

For meta-path-based methods:

(a) Before adding the noisy edge, the influence of vi is assumed to be a combination of the
influences from its dvi existing neighbors v1, v2, ..., vdpi

in G. The influence of each neighbor vn on
vi can be represented as:

Iori1 =

dvi∑
n=1

1

dvi
(14)

(b) After adding the noisy edge (vi, vj), vi is directly connected to vj , and the influence of vj
will propagate to its k neighbors. The influence on each neighbor of vj changes in the following
manner vi:

Inew1 =

dvi∑
i=1

1

dvi + 1
+

k

dvi + 1
=

dvi
dvi + 1

+
k

dvi + 1
=
dvi + k

dvi + 1
(15)

For neighborhood aggregation-based methods:

(a) Before adding the noisy edge, the influence on the direct neighbors of vi is given by:

Iori2 =

dvi∑
n=1

1

dvi
(16)

(b) After adding the noisy edge (vi, vj), the neighbors of vi increase to dv1+1, and the influence
on each of its neighbors changes to:

Inew2 =

dvi
+1∑

n=1

1

dvi
+ 1

(17)
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The multiplicative relationship ξ of the influence propagation between the meta-path-based method
and the neighborhood aggregation method is:

ξ =

Inew1
Iori1

Inew2
Iori2

=

dvi
+k

dvi
+1

1
=
dvi + k

dvi + 1
(18)

Consequently, when k > dvi , the multiplicative factor ξ is significantly greater than 1. This indicates
that in general heterogeneous graphs, meta-path-based approaches are far more susceptible to the
influence of noisy edges compared to neighborhood aggregation-based approaches. This substan-
tiates that meta-path-based methods can significantly amplify the effect of noisy edges to a greater
extent than neighborhood aggregation methods.

C DETAILED DERIVATION

First, we give the detailed derivation of Eq. 4. We introduce the Kullback-Leibler (KL) divergence.
The KL divergence is a measure used to quantify the difference between two probability distribu-
tions. Let us consider two continuous random variables with probability distributions P and Q, and
their corresponding probability density functions denoted as p(x) and q(x), respectively. If we aim
to approximate p(x) using q(x), the KL divergence can be expressed as:

KL(P ||Q) =

∫
p(x) log

p(x)

q(x)
dx. (19)

Because the logarithmic function is convex, the value of KL divergence is nonnegative. Then, Eq. 4
can be written as:

L(Ψ, θ;G) = EqΨ(Z|G)[log
pθ(Z,G)
qΨ(Z|G)

]

= EqΨ(Z|G)[log pθ(Z|G) ·
p(Z)

qΨ(Z|G)
]

= EqΨ(Z|G)[log pθ(Z|G)]−KL(qΨ(Z|G)||p(Z)).

(20)

Second, the lower bound of denoising variational inference in Eq. 6 can be derived as:

Ld = Eq′Ψ(Z|G)[log
pθ(Z,G)
q′Ψ(Z|G)

] ≥ Eq′Ψ(Z|G)

[
log

pθ(G,Z)
qΨ(Z|G̃)

]
= Eq′Ψ(Z|G)[log pθ(G|Z) + log p(Z)− log qΨ(Z|G̃)]

= Eq′Ψ(Z|G)[log pθ(G|Z)]− Eq′Ψ(Z|G)

[
log

qΨ(Z|G̃)
p(Z)

]

= Eq′Ψ(Z|G)[log pθ(G|Z)]− Eq(G̃|G)EqΨ(Z|G)

[
log

qΨ(Z|G̃)
p(Z)

]
= Eq′Ψ(Z|G)[log pθ(G|Z)]− Eq(G̃|G)[KL(qΨ(Z|G̃))||p(Z)].

Third, we derive an upper bound for GIB in Eq. 13. We decompose the mutual information:

I(ŷ;Gs) = Ep(ŷ,Gs)

[
log

p(ŷ,Gs)

p(ŷ)p(Gs)

]
, I(G;Gs) = Ep(G,Gs)

[
log

p(G,Gs)

p(G)p(Gs)

]
. (21)
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The GIB objective can be written as:

− I(ŷ;Gs) + β I(G;Gs)

= −Ep(ŷ,Gs)

[
log

p(ŷ,Gs)

p(ŷ)p(Gs)

]
+ βEp(G,Gs)

[
log

p(G,Gs)

p(G)p(Gs)

]
= −Ep(ŷ,Gs)

[
log

p(ŷ|Gs)p(Gs)

p(ŷ)p(Gs)

]
+ βEp(G,Gs)

[
log

p(Gs|G)p(G)
p(G)p(Gs)

]
= −Ep(ŷ,Gs)

[
log

p(ŷ|Gs)

p(ŷ)

]
+ βEp(G,Gs)

[
log

p(Gs|G)
p(Gs)

]
= −Ep(Gs)Ep(ŷ|Gs)

[
log

p(ŷ|Gs)

p(ŷ)

]
+ βEp(G)Ep(Gs|G)

[
log

p(Gs|G)
p(Gs)

]
.

(22)

Using Jensen’s inequality and assuming that pf (ŷ|Gs) is an approximation of p(ŷ|Gs), we can get:

−Ep(Gs)Ep(ŷ|Gs)

[
log

p(ŷ|Gs)

p(ŷ)

]
≤ −Ep(Gs)Ep(ŷ|Gs)[log pf (ŷ|Gs)]− Ep(ŷ)[log p(ŷ)]

= −Ep(Gs,ŷ) [log pf (ŷ|Gs)] + H(ŷ).

(23)

We introduce explain models:

βEp(G)Ep(Gs|G)

[
log

p(Gs|G)
p(Gs)

]
= Ep(G)Ep(Gs|G)

[
log

pα(Gs|G)
p(Gs)

· p(Gs|G)
pα(Gs|G)

]
= Ep(G)Ep(Gs|G)

[
log

pα(Gs|G)
p(Gs)

]
+ Ep(G)Ep(Gs|G)

[
log

p(Gs|G)
pα(Gs|G)

]
.

(24)

The second term is the KL divergence:

Ep(G)Ep(Gs|G)

[
log

p(Gs|G)
pα(Gs|G)

]
= Ep(G) [KL(p(Gs|G)∥pα(Gs|G))] ≥ 0. (25)

Therefore,

I(G;Gs) ≤ Ep(G)Epα(Gs|G)

[
log

pα(Gs|G)
q(Gs)

]
= Ep(G) [KL(pα(Gs|G)∥q(Gs))] . (26)

Combined with our previous derivation of the first term, we can get:

− I(ŷ;Gs)+β I(G;Gs) ≤ −Ep(Gs,ŷ)

[
log pf (ŷ|Gs)

]
+H(ŷ)+βEp(G)

[
KL(pα(Gs|G)||q(Gs))

]
. (27)

D EXPERIMENT SUPPLEMENT

Table 2: Statistics of Datasets.
Dataset DBLP ACM Freebase

Nodes 26,128 10942 43,854
Edges 239,566 547872 151,034

Node Types 4 4 4
Edge Types 6 8 6

Classes 4 3 3

D.1 DATASETS

We conduct experiments on three real-world datasets. According to the Heterogeneous Graph
Benchmark (Lv et al., 2021) settings, we randomly split the nodes with proportions of 24%, 6%,
and 70% for training, validation, and testing, respectively. The statistics of the three datasets are
shown in Table 2.
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• DBLP1 is a computer science bibliography network that contains four types of nodes: Pa-
per (P), Author (A), Term (T), and Venue (V). The authors in this network are from four
research areas (Database, Data Mining, Artificial Intelligence, and Information Retrieval).

• ACM2 is a citation network that contains four types of nodes: Paper (P), Author (A), Term
(T), and Subject (S). The papers in this network are divided into three classes (Database,
Wireless Communication, and Data Mining).

• Freebase (Bollacker et al., 2008) is a knowledge graph that contains four types of nodes:
Movie (M), Actor (A), Director (D) and Writer (W).

D.2 BASELINES

Next, we provide details on the baselines used in our experiments.

• PGExpaliner (Luo et al., 2020) is a parameterized explainer that learns a mask for each
edge to obtain edge importance scores.

• GNNExplainer (Ying et al., 2019) maximizes the mutual information between the model’s
prediction on the original input and the masked input by masking features and edges.

• PGM-Explainer (Vu & Thai, 2020) employs a Bayesian network-based approach, treating
vertices in the input graph as random variables to fit the GNN model’s predicted label.

• V-InfoR (Wang et al., 2024) utilizes a parametric method, learning edge masks on the latent
representations to identify important edges.

• PGE-Relation is an extension of PGExplainer, where we replace the initial concatena-
tion with a relation-based attention learning module to enable learning of heterogeneous
semantics.

D.3 BASE HETEROGENEOUS GRAPH NEURAL NETWORK

Table 3: Node classification result using our heterogeneous Graph Neural Network.
Dataset DBLP ACM Freebase

Micro-F1 92.64±0.14 92.32±0.12 65.93±0.20
Macro-F1 92.16±0.19 92.40±0.11 61.94±0.36

In the experiment, we use a basic heterogeneous Graph Neural Network, which encodes the input
graph through 2 layers of GCN, and then used a layer of attention learning module to learn different
heterogeneous relations. For a heterogeneous graph, the feature spaces of different types of nodes are
usually different. We use a mapping function to map the features of different types into a common
feature space, as shown below:

zv = WmxA
v + bm, (28)

where A ∈ A is the node type of node v, Wm is a learnable weight, and bm is the bias. Then, in
the shared space, we use GCN to obtain the node embeddings:

Z(l) = GCN(Z(l−1),A),Z(0) = Zv. (29)
To learn the heterogeneous semantics of the heterogeneous graph, we introduce a type vector γv and
learn relation information through an attention module:

γq
i = Wq

rγi,γ
k
j = Wk

rγj ,

scoreγij = γq
i γ

k
j ,

(30)

where Wq
r and Wk

r are learnable weights. The attention of the nodes can be computed as follows:
qi = Wz

qzi, kj = Wz
kzj ,

α̂ij =
exp(LeakyReLU(aT [qi ∥ kj ]))∑

j′∈Ni
exp(LeakyReLU(aT [qi ∥ kj′ ]))

.
(31)

1https://dblp.uni-trier.de
2http://dl.acm.org/
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where Wz
q and Wz

k are learnable weights. The final prediction can be expressed as:

scoreij = α̂ij + βscoreγij ,

Z
(l)
H = LayerNorm(Z

(l−1)
H + scoreij · Z(l−1)

H ),

ŷ = Pf (Z
(l)
H ; θp).

(32)

where θp is the parameter of the predictor. The basic prediction results are shown in Table 3.

The experiments are conducted on an L20 GPU with 48GB of memory. Our CPU is an Intel(R)
Xeon(R) Platinum 8457C. We utilized PyTorch version 1.13.1 and DGL version 1.1.1.

D.4 VARIANCE

In this section, we report the variance results for the comparison of RHGIB and baselines under
different ratios of random structural noise, which serves as a supplement to Table 1. Table 4 presents
the variance of the results under different noise ratios.

Table 4: The variance of the results under different noise ratios.

Dataset Noise Ratio
10% 20% 30% 40%

MAE-Var RMSE-Var MAE-Var RMSE-Var MAE-Var RMSE-Var MAE-Var RMSE-Var

DBLP

PGExplainer 0.0062 0.0054 0.0089 0.0666 0.0059 0.0024 0.0068 0.0042
GNNExplainer 0.0009 0.0006 0.0007 0.0004 0.0011 0.0007 0.0008 0.0004
PGM-Explainer 0.0007 0.0005 0.0006 0.0003 0.0002 0.0001 0.0005 0.0001

V-InfoR 0.0030 0.0027 0.0025 0.0020 0.0026 0.0020 0.0010 0.0008
PGE-Relation 0.0008 0.0004 0.0005 0.0002 0.0006 0.0003 0.0006 0.0004

RHGIB 0.0029 0.0017 0.0018 0.0013 0.0034 0.0022 0.0015 0.0008

ACM

PGExplainer 0.0080 0.0037 0.0162 0.0069 0.0152 0.0127 0.0181 0.0124
GNNExplainer 0.0003 0.0005 0.0001 0.0002 0.0003 0.0001 0.0002 0.0002
PGM-Explainer 0.0009 0.0004 0.0003 0.0002 0.0006 0.0004 0.0007 0.0004

V-InfoR 0.0001 0.0002 0.0004 0.0004 0.0003 0.0007 0.0005 0.0003
PGE-Relation 0.0003 0.0001 0.0005 0.0004 0.0002 0.0001 0.0001 0.0001

RHGIB 0.0009 0.0012 0.0010 0.0008 0.0019 0.0013 0.0015 0.0008

Freebase

PGExplainer 0.0096 0.0071 0.0078 0.0051 0.0041 0.0039 0.0019 0.0018
GNNExplainer 0.0002 0.0001 0.0003 0.0002 0.0003 0.0002 0.0007 0.0005
PGM-Explainer 0.0003 0.0001 0.0001 0.0001 0.0004 0.0002 0.0009 0.0004

V-InfoR 0.0322 0.0233 0.0527 0.0566 0.0329 0.0277 0.0111 0.0054
PGE-Relation 0.0007 0.0003 0.0005 0.0004 0.0003 0.0002 0.0001 0.0001

RHGIB 0.0010 0.0018 0.0012 0.0010 0.0021 0.0012 0.0014 0.0007

D.5 PARAMETER SETTING

For the base heterogeneous Graph Neural Network, we use Adam (Kingma & Ba, 2014) as the
optimizer, LeakyReLU with a negative slope s = 0.2 as the activation function, a learning rate of
1e-4, and a dropout rate of 0 for Freebase and 0.5 for other datasets. The hidden dimension is set
to 256. For RHGIB, we use Adam as the optimizer with a learning rate of 1e-4. We set the hidden
dimension for variational inference to 64, the output dimension to 32, and the edge weight output
dimension to 32. Our training is performed for 100 epochs.
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