
Under review as a conference paper at ICLR 2024

TAMING MODE COLLAPSE IN SCORE DISTILLATION
FOR TEXT-TO-3D GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the remarkable performance of score distillation in text-to-3D generation,
such techniques notoriously suffer from view inconsistency issues, also known
as “Janus” artifact, where the generated objects fake each view with multiple
front faces. Although empirically effective methods have approached this problem
via time re-scheduling or prompt engineering, a statistical view to explain and
tackle this problem remains elusive. In this paper, we reveal that the existing
score distillation-based text-to-3D generation frameworks degenerate to maximal
likelihood seeking on each view independently and thus suffer from the mode
collapse problem, manifesting as the Janus artifact in practice. To tame mode
collapse, we improve score distillation by re-establishing the entropy term in the
correponding variational objective and derive a new update rule for 3D score
distillation, dubbed Entropic Score Distillation (ESD). The entropy is applied to
the distribution of rendered images. Maximizing the entropy encourages diversity
among different views in generated 3D assets, thereby alleviating the Janus problem.
We conduct experiments with our proposed ESD, and validate that ESD can be an
effective treatment for Janus artifacts in score distillation.

1 INTRODUCTION

Recent advancements in text-to-3D technology have attracted considerable attention, particularly for
its pivotal role in automating high-quality 3D content. This is especially crucial in fields such as virtual
reality and gaming, where 3D content forms the bedrock. While numerous techniques are available,
the prevailing text-to-3D approach is based on score distillation, popularized by DreamFusion (Poole
et al., 2022) and Wang et al. (2023a); Lin et al. (2023); Chen et al. (2023a); Tsalicoglou et al. (2023);
Metzer et al. (2023); Wang et al. (2023b); Huang et al. (2023).

Score distillation involves parameterizing the 3D objective as a learnable representation, such as
neural radiance fields (NeRF) (Mildenhall et al., 2020). Additionally, a 2D prior, usually a diffusion
model trained on large scale 2D dataset, is utilized to optimize the fidelity of each random view
of the 3D scene. Despite the notable progress achieved with score distillation-based approaches,
exemplified in Poole et al. (2022); Wang et al. (2023a); Chen et al. (2023a); Lin et al. (2023); Wang
et al. (2023b), it is widely observed that 3D content generated using score distillation suffers from a
Janus effect.

To understand this drawback of score distillation, we first uncover that the optimization of existing
score distillation-based text-to-3D generation degenerates to a maximum likelihood objective, making
it susceptible to mode collapse. This happens because the primary goal of this objective is to solely
maximize the likelihood of each view independently, without considering the diversity between
different views. This oversight leads to the Janus artifact in practical applications. For example,
biases in the training data may result in a frontal view of a cat having a higher likelihood than the
back view, as characterized by existing diffusion models.

To address the aforementioned issue, we propose Entropic Score Distillation (ESD). ESD introduces
entropy regularization to maximize the entropy of the distribution of the rendered images, thereby
enhancing the diversity of views in generated 3D assets and alleviating the Janus problem. Our
derived ESD update has a simple form. In contrast to the score distillation sampling (SDS) update
proposed in DreamFusion (Poole et al., 2022), our ESD updates involve the score of the rendered
image distribution, serving to maximize the entropy of the rendered image distribution. Unlike the

1



Under review as a conference paper at ICLR 2024

variational score distillation (VSD) update introduced in ProlificDreamer (Wang et al., 2023b), our
update differs in that it does not depend on the camera pose in the learned score function of the
rendered image distribution. This subtle difference has a more profound impact, as the score function
term in ProlificDreamer has a zero mean, thereby not influencing diversity. In contrast, it is non-zero
in our method, leading to an effect that enhances diversity among different views.

In practice, we find it challenging to optimize the score of the rendered image distribution without
conditioning on the camera pose. To facilitate training, we discover that the gradient from the entropy
can be decomposed into a combination of scores: one depends on the camera pose, and the other
independent of it, with a coefficient interacting between these two terms. Such a computational
paradigm can be easily implemented by classifier guidance trick where conditional and unconditional
scores are trained alternatively and mixed during inference.

Through extensive experiments with our proposed ESD, we demonstrate its efficacy in alleviating the
Janus problem and its significant advantages in improving 3D generation quality when compared to
the baseline methods (Poole et al., 2022; Wang et al., 2023b). Since our approach is orthogonal to
other approaches to relieving Janus problem (Hong et al., 2023; Armandpour et al., 2023; Huang
et al., 2023), we also verify the effectiveness of our method cooperating with time scheduling prior.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models, as demonstrated by various works (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
& Ermon, 2019; Song et al., 2020c), have proven to be highly effective in text-to-image generation.
Technically, a diffusion model learns to gradually transform a prior distribution N (0, I) to the target
distribution pdata(x|y) where y denotes the text prompt embeddings. The sampling trajectory is
determined by a forward process with the conditional probability pt(xt|x0) = N (xt|αtx0, σ

2
t I),

where xt ∈ RD represents the sample at time t ∈ [0, T ], and αt, σt > 0 are time-dependent
diffusion coefficients. Consequently, the distribution at time t can be formulated as pt(xt|y) =∫
pdata(x0|y)N (xt|αtx0, σ

2
t I)dx0. Diffusion models generate samples through a reverse process

starting from Gaussian noises, which can be described by the ODE: dxt/dt = −∇x log pt(xt) with
the boundary condition xT ∼ N (0, I) (Song et al., 2020c;a; Liu et al., 2023b). Such a process
requires the computation of score function∇x log pt(xt) which is often obtained by fitting a time-
conditioned noise estimator ϵϕ : RD → RD using score matching loss (Hyvärinen & Dayan, 2005;
Vincent, 2011; Song et al., 2020b).

2.2 TEXT-TO-3D SCORE DISTILLATION

Score distillation based 3D asset generation requires representing 3D scenes as learnable parameters
θ ∈ RN equipped with a differentiable renderer g(θ, c) : RN → RD that projects 3D scene θ into
images with respect to the camera pose c. Here N,D are the dimensions of the 3D parameter space
and rendered images, respectively. Neural radiance fields (NeRF) (Mildenhall et al., 2020) are often
employed as the underlying 3D representation for its capability of modeling complex scenes.

Recent works by (Poole et al., 2022; Wang et al., 2023a; Lin et al., 2023; Chen et al., 2023a;
Tsalicoglou et al., 2023; Metzer et al., 2023; Wang et al., 2023b; Huang et al., 2023) demonstrate
the feasibility of using a pretrained 2D diffusion model to guide 3D object creation. Below, we
elaborate on two score distillation schemes, Score Distillation Sampling (SDS) (Poole et al., 2022)
and Variational Score Distillation (VSD) (Wang et al., 2023b), which are widely adopted.

Score Distillation Sampling (SDS) SDS updates the 3D parameter θ as follows:

∇SDS
θ = Et,c,ϵ∼N (0,I)

[
ω(t)

∂g(θ, c)

∂θ
(σt∇ log pt(xt|y)− ϵ)

]
. (1)

Here is ∇ log p is a pretrained diffusion model and xt is a noisy version for the rendered given by
camera pose c, with xt = αtg(θ, c) + σtϵ. Time step t is sampled from a uniform distribution
U [0, T ]. In practice, ∇ log pt is often estimated with a noise estimator ϵϕ∗(x, t,y) trained with
denoising score matching. Meanwhile, updating θ as in Eq. equation 1 has been shown to minimize
the evidence lower bound (ELBO) for the rendered images, see Wang et al. (2023a); Xu et al. (2022).
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Figure 1: Illustration of the effect of entropy regularization., Pure maximal likelihood seeking is opt to
mode collapse. Adding entropy regularization can expand the support of fitted distribution with mode-covering
behaviour.

Variational Score Distillation (VSD) VSD is introduced in ProlificDreamer (Wang et al., 2023b),
VSD improves upon SDS by deriving the following Wasserstein gradient flow Villani et al. (2009):

∇V SD
θ = Et,c,ϵ∼N (0,I)

[
ω(t)

∂g(θ, c)

∂θ
(σt∇ log pt(x|y)− σt∇ log qt(x|c))

]
. (2)

Similarly, x = αtg(θ, c) + σtϵ is the noisy observation of the rendered image. In contrast to SDS,
VSD introduces a new score function of the noisy rendered images conditioned on the camera pose c.
To obtain this score, Wang et al. (2023b) fine-tunes a diffusion model using images rendered from the
3D scene as follows:

min
ψ

Et,c,ϵ∼N (0,I)

[
ω(t)∥ϵψ(αtg(θ, c) + σtϵ, t, c,y)− ϵ∥22

]
, (3)

where ϵψ(x, t, c,y) is the noise estimator of∇ log qt(x|c) as in diffusion models. As proposed in
ProlificDreamer, ψ is parameterized by LoRA (Hu et al., 2021) and initialized from a pre-trained
diffusion model same as p.

3 MODE COLLAPSE IN TEXT-TO-3D SCORE DISTILLATION

Despite the remarkable performance of SDS and VSD in 3D asset generation, it is widely observed
that the synthesized objects suffer from janus artifacts. Janus artifacts refer to the generated 3D scene
containing multiple canonical views (the most representative perspective of the object such as the
front face). In earlier works, Hong et al. (2023) and Huang et al. (2023) attribute this problem to
unimodality of the learned 2D image distribution since the training corpus for the diffusion models
are naturally biased to their canonical views per each category. In this section, we examine extant
distillation schemes from a statistical view, which has been overlooked in previous literature.

In principle, natural 2D images can be seen as random projections of 3D scenes. Matching the image
distribution generated by randomly sampling views from a 3D representation with a text-conditioned
image distribution can recover the underlying 3D distribution. This idea got formalized by Poole et al.
(2022); Wang et al. (2023b). SDS and VSD essentially correspond to the gradient of the following
Kullback-Leibler (KL) divergence, i.e., JSDS(θ) = JV SD(θ) = JKL(θ):

JKL(θ) = Et,c

[
ω(t)DKL(q

θ
t (xt|c,y)∥pt(xt|y))

]
, (4)

where the expectation of t is taken over U [0, T ], c is taken over some pre-defined camera distribution
pc defined on SO(3)× R3. Here pt(xt|y) =

∫
p0(x0|y)N (xt|αtx0, σ

2
t I)dx0 is the image distri-

bution perturbed by Gaussian noises, while qθt (xt|c,y) =
∫
qθ0 (x0|c)N (xt|αtx0, σ

2
t I)dx0 models

the image distribution generated by 3D parameter θ with respect to camera pose c and diffused by
Gaussian distribution. As shown by Wang et al. (2023b), JKL(θ) = 0 implies qθ0 (x0|c) = p(x0|y),
i.e., the distribution of each view satisfies the text-conditioned image distribution.

However, it has not escaped from our notice that qθ0 (x0|c) = δ(x0 − g(θ, c)) is a Dirac distribution
for both SDS and VSD. This causes that the original KL divergence minimization (Eq. 4) degenerates
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to a maximal likelihood problem:

JKL(θ) = Et,c

[
ω(t)

(
Ext∼qθt (xt|c,y) log qt(xt|c,y)− Ext∼qθt (xt|c,y) log pt(xt|y)

)]
, (5)

= −Et,c

[
ω(t)Ext∼qθt (xt|c,y) log pt(xt|y)

]
︸ ︷︷ ︸

JMLE(θ)

−Et,c

[
ω(t)H[qθt (xt|c,y)]

]︸ ︷︷ ︸
const.

, (6)

where the entropy term H[qθt (xt|y)] turns out to be a constant because qθt (xt|c,y) =
N (xt|αtg(θ, c), σ

2
t I) which has fixed entropy once t, θ and c have been specified.

Eq. 6 signifies that JKL(θ) = JMLE(θ) up to a constant, hence JKL(θ) shares all the minimum with
JMLE(θ). It is known that likelihood maximization is more prone to mode collapse, a phenomenon
where a generative distribution fails to characterize the data diversity and concentrates on a single
type of output (Goodfellow et al., 2014; Salimans et al., 2016; Metz et al., 2016; Arjovsky et al.,
2017; Srivastava et al., 2017). Intuitively, minimizing JMLE(θ) seeks each view independently
to have the maximum log-likelihood on the image distribution p(x0|y). Since p(x0|y) is usually
unimodal and peaks at the canonical view, each view of the scene will collapse to the same local
minimum, resulting in janus artifact (Fig. 1). We postulate that the existing distillation strategies may
be inherently limited by their log-likelihood seeking behaviors, which are more susceptible to biased
image distributions.

4 SCORE DISTILLATION WITH ENTROPY REGLUARIZATION

4.1 ENTROPIC SCORE DISTILLATION

In this section, we highlight the importance of the entropy in score distillation. It is known that higher
entropy can reflect the corresponding distribution could cover a larger support of the ambient space
and thus increase the sample diversity. In Eq. 6, the entropy term is shown to diminish in the training
objective, which causes each generated view to lack diversity and collapse to a single image with the
highest likelihood.

To this end, we propose to bring in an entropy regularization to JMLE(θ) for boosting the
view diversity. Since qθt (xt|c,y) has constant entropy, we regularize entropy for the distribution
qθt (xt|y) =

∫
qθt (xt|c,y)pc(c)dc. Consider the following objective:

JEnt(θ, λ) = −Et,c

[
ω(t)Ext∼qθt (xt|c,y) log pt(xt|y)

]
− λEt

[
ω(t)H[qθt (xt|y)]

]
, (7)

where λ is a hyper-parameter controling the regularization strength. Intuitively, JEnt(θ, λ) =
JMLE(θ) + λE[H[qθt (xt|y)]] seeks the maximal log-likelihood for each view while simultaneously
enlarging the span and encouraging the diversity for the distribution qθt (xt|y) generated by randomly
sampling views from the 3D parameter θ. To gain more insights, we present the following results:

Theorem 1. For any λ ∈ R and θ ∈ RD, JEnt(θ, λ) = λEt[DKL(q
θ
t (xt|y)∥p(xt|y))] + (1 −

λ)Et,c[DKL(q
θ
t (xt|c,y)∥p(xt|y))] + const.

We prove Theorem 1 in Appendix A. Theorem 1 implies that JEnt(θ, λ) essentially amounts to
a combination of two types of KL divergences, where the former one minimize the distribution
discrepancy between qθt (xt|y) and pθt (xt|y) which marginalizes the camera pose within qθt , while
the latter is the original KL divergence JKL(θ) adopted by SDS and VSD which takes expectation
over c out of KL divergence.

Next, we derive the gradient of JEnt(θ, λ) as the update to the 3D representation:

∇θJEnt(θ, λ) = Et,ϵ,c

[
ω(t)

∂g(θ, c)

∂θ

(
σt∇x log pt(xt|y)− λσt∇x log qθt (xt|y)

)]
, (8)

which can be obtained by path derivative and reparameterization trick. The full derivation is deferred
to Appendix A. We name this update rule as Entropic Score Distillation (ESD). Note that ESD differs
from VSD as its second score function does not depend on the camera pose.
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Algorithm 1 ESD: Entropic score distillation for text-to-3D generation

Input: A diffusion model ϵϕ(x, t,y); learnable 3D parameter θ; coefficient λ; text prompt y
Initialize ψ for another diffusion model ϵψ(x, t,y) with the parameter ϕ specified in diffusion
model ϵϕ(x, t,y), parameterize with LoRA
while not converged do

Randomly sample a camera pose c ∼ pc and render a view x0 = g(θ, c) from θ.
Sample a t ∼ U [0, T ] and add Gaussian noise ϵ ∼ N (0, I): xt = αtx0 + σtϵ.
θ ← θ − η E

[
ω(t)∂g(θ,c)∂θ (ϵϕ(xt, t,y)− λϵψ(xt, t,∅,y)− (1− λ)ϵψ(xt, t, c,y)

]
With probability 1− p∅, minψ Et,c,ϵ∼N (0,I)

[
ω(t)∥ϵψ(xt, t, c,y)− ϵ∥22

]
Otherwise, minψ Et,c,ϵ∼N (0,I)

[
ω(t)∥ϵψ(xt, t,∅,y)− ϵ∥22

]
.

end while
Return θ

4.2 CLASSIFIER-FREE GUIDANCE TRICK

Similar to SDS and VSD, we can approximate ∇x log pt(xt|y) via a pre-trained diffusion model
ϵϕ(xt, t,y). However, ∇x log qθt (x|y) is not readily available. We found that directly fine-tuning a
pre-trained diffusion model using rendered images to approximate∇x log qθt (x|y), akin to Prolific-
Dreamer (Wang et al., 2023b), does not yield robust performance. We conjecture this difficulty arises
from the removal of the camera condition, increasing the complexity of the distribution to be fitted.

To tackle this problem, we recall the result in Theorem 1 that JEnt(θ, λ) can be written in terms of
two KL divergence losses. Therefore, its gradient can be decomposed as a (convex) combination of
their gradients, which correspond to unconditional and conditional score functions in terms of the
camera pose c, respectively:

∇θJEnt(θ, λ) = E
[
ω(t)

∂g(θ, c)

∂θ
(σt∇x log pt(xt|y)− λσt∇x log qθt (xt|y) (9)

− (1− λ)σt∇x log qθt (xt|c,y))
]
.

With the above formulation, ESD can be implemented via the classifier-free guidance (CFG) trick,
which was initially proposed to balance the variety and quality of text-conditionally generated images
from diffusion models (Ho & Salimans, 2022). To be more specific, we plug in pre-trained and
fine-tuned diffusion models to surrogate score functions in Eq. 10:

∇θJEnt(θ, λ) = −E
[
ω(t)

∂g(θ, c)

∂θ
(ϵϕ(xt, t,y)− λϵψ(xt, t,∅,y)− (1− λ)ϵψ(xt, t, c,y)

]
,

where ∅ denotes the placeholder embedding to indicate unconditional score estimation, and ϵψ is
the fine-tuned diffusion model using rendered images similar to Wang et al. (2023b). We follow the
training strategy suggested by classifier-free guidance which takes random turns with a probability p∅
to balance the training of conditional and unconditional score functions. See Algorithm 1.

4.3 DISCUSSION

In VSD, the camera condition score plays a significant role in facilitating visual quality. Intuitively,
such conditioning can equip the tuned diffusion model with multi-view priors (Liu et al., 2023a).
Also, Hertz et al. (2023) suggests such a method can be useful to stabilize the update of the implicit
parameters. However, ESD initiates a counter-argument that the camera condition may not be always
advantageous as the resultant KL divergence leads to a likelihood maximization algorithm that is
prone to mode collapse. ESD differs from VSD in that it introduces entropy regularization to enhance
diversity across views, a feature absent in VSD. And the update of ESD has a simple form similar to
VSD, allowing for a straightforward implementation based on VSD.

We also note that by Theorem 1, ESD also optimizes for a mode-seeking KL divergence. This suggests
that ESD may still lead to mode collapse especially when the target image distribution is overly
concentrated on one peak (Salimans et al., 2016). Careful tuning of λ is also necessary to balance

5



Under review as a conference paper at ICLR 2024

Michelangelo style statue of dog reading news on a cellphone
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Figure 2: Qualitative Results. Our proposed outperforms SDS and VSD in terms of better geometry and
well-constructed texture details. Our results deliver photo-realistic and diverse rendered views, while baseline
methods more or less suffer from the Janus problem.

the sharpness and details for each view and diversity across views. It also remains open whether ESD
can further benefit multi-particle based VSD or amortized text-to-3D training (Lorraine et al., 2023).

5 OTHER RELATED WORKS

5.1 TEXT-TO-IMAGE DIFFUSION MODEL

The denoising diffusion model (Sohl-Dickstein et al., 2015) learns to generate data through an iterative
denoising process. The forward process adds Gaussian noise to clean images, while a learnable
reverse process is adopted to denoise. Equipped with large-scale image-text paired datasets, many
works (Rombach et al., 2022; Nichol et al., 2021; Ramesh et al., 2022; Saharia et al., 2022) scale up
to tackle text-to-image generation. Among them, Stable Diffusion (Rombach et al., 2022) attracted
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Figure 3: Qualitative Results. We combine our proposed ESD with timestep scheduling in DreamTime (Huang
et al., 2023) and compare it against baseline methods.

great interest among the open-source community since it reduced the computation cost by diffusing
in the low-resolution latent space instead of directly in the pixel space. In addition, text-to-image
diffusion models have also found applications in various computer vision tasks, including text-to-
3D (Poole et al., 2022; Singer et al., 2023), image-to-3D (Xu et al., 2022), text-to-svg (Jain et al.,
2023), text-to-video (Singer et al., 2022; Khachatryan et al., 2023), etc.

5.2 3D GENERATION WITH 2D PRIORS

Well-annotated 3D data requires great effort to collect. Instead, numerous researchers study how
to learn 3D generative models using 2D supervision. DreamField leverages CLIP to guide the
generated images. Early attempts, including pi-GAN (Ranftl et al., 2021), EG3D (Chan et al., 2022),
GRAF (Schwarz et al., 2020), GIRAFFE (Niemeyer & Geiger, 2021), adopt adversarial loss between
the rendered images and natural images. More recently, with the rapid development of text-to-image
diffusion models, diffusion-based image priors have attracted great interest. DreamFusion (Poole
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et al., 2022) proposes score distillation sampling that effectively distills prior knowledge from
Imagen (Saharia et al., 2022). SJC (Wang et al., 2023a) derives Perturb and Average Scoring from
another theoretical viewpoint. ProlificDreamer (Wang et al., 2023b) proposes variational score
distillation that effectively enhances the generation quality.

5.3 TECHNIQUES TO IMPROVE SCORE DISTILLATION

There are various approaches improving score distillation. Magic3D and Fantasia3D utilize mesh
and DMTet to disentangle the optimization of geometry and texture. TextMesh and 3DFuse use
depth-conditioned text-to-image diffusion priors that support geometry-aware texturing. Prompt
debiasing(Hong et al., 2023) and Perp-neg (Armandpour et al., 2023) study to refine the text prompts
for a better 3D generation. DreamTime (Huang et al., 2023) and RED-Diff (Mardani et al., 2023)
investigate the timestep scheduling in the score distillation process. HIFA (Zhu & Zhuang, 2023)
adopts multiple diffusion steps for distillation. Score distillation also works with auxiliary losses,
including CLIP loss (Xu et al., 2022) and adversarial loss (Shao et al., 2023; Chen et al., 2023b).

6 EVALUATION METRICS

In our experiments, we consider the following metrics to numerically evaluate the generated 3D
results, which can effectively quantify the similarity with the text prompts, distribution fitness,
rendering quality, and view diversity.

CLIP Distance. We compute the average distance between rendered images and the text embedding
to reflect the relevance between generated results and the specified text prompt. Specifically, we
render 120 views from the generated 3D representations, and for each view, we obtain an embedding
vector through the image encoder of a CLIP model (Wang et al., 2022). In the meantime, we compute
the text embedding utilizing the text encoder. The CLIP distance is computed as the cosine similarity
between the image embeddings and text embeddings averaged over 120 views.

Fréchet inception distance (FID). As shown in Sec. 3 and 4.1, score distillation essentially
matches distributions via KL divergence. Hence, it is reasonable to employ FID to measure the
distance between two matched distributions to quantify the effectiveness of the algorithms. Our
goal is to measure the distance between generated image distribution via randomly rendering 3D
parameters qθ(x0|y) and the text-conditioned image distribution p(x0|y) represented by a diffusion
model. Therefore, we sample 1k images with pre-trained latent diffusion model (Rombach et al.,
2022) given text prompts as the ground truth image dataset, and render 120 views from the optimized
3D parameters as the generated image dataset. Then standard FID (Heusel et al., 2017) is computed
between these two image corpus.

Inception Quality and Variety. We also utilize entropy to reflect the generated image quality and
diversity inspired by Inception Score (IS) (Salimans et al., 2016). We propose Inception Quality (IQ)
and Inception Variety (IV), formulated as below:

IQ(θ) = Ec [H[p(y|g(θ, c))]] , IV (θ) = H[Ec[p(y|g(θ, c)]], (10)

where p(y|x) is a pre-trained classifier. IQ computes the average entropy of the label logits predicted
for all rendered views, while IV computes the entropy of the averaged label logits of all rendered
views. Intuitively, the entropy of the predicted logits suggests the confidence of the classifier, which
also indicates the quality of an image. Therefore, the smaller IQ means the generated 3D assets have
better visual quality. In the meanwhile, entropy also characterizes the uniformness of the distribution.
The higher IV signifies that each rendered view has a distinct label prediction, meaning the 3D creation
has higher view diversity. We compute IQ and IV over 120 renderings like the other two metrics.

7 RESULTS AND ANALYSIS

Quantitative Comparison With the help of the aforementioned metrics, we conduct extensive
quantitative comparisons against existing methods. We present the results in Tab. 1 for four different
test cases. It can be observed that in all four metrics, our proposed ESD performs as well as baseline
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Figure 4: Ablation studies. We investigate the choice of different classifier-free guidance weights.
Prompt: Michelangelo style statue of dog reading news on a cellphone.

Table 1: Quantitative comparisons against SDS and VSD.

Prompt: A rabbit, animated movie character, high
detail 3d model

CLIP (↓) FID (↓) IQ (↓) IV (↑)
SDS 0.712 200.084 4.365 4.970
VSD 0.720 150.120 1.083 1.173
Ours 0.725 149.763 1.567 1.567

Prompt: Michelangelo style statue of dog reading
news on a cellphone

CLIP (↓) FID (↓) IQ (↓) IV (↑)
SDS 0.694 365.304 4.469 5.119
VSD 0.758 296.168 2.514 3.041
Ours 0.685 292.716 2.523 4.080

Prompt: A plush dragon toy

CLIP (↓) FID (↓) IQ (↓) IV (↑)
SDS 0.889 243.984 4.622 4.208
VSD 0.821 273.495 4.382 4.240
Ours 0.815 237.518 4.436 4.971

Prompt: A rotary telephone carved out of wood

CLIP (↓) FID (↓) IQ (↓) IV (↑)
SDS 0.853 309.929 3.478 4.179
VSD 0.855 305.920 3.469 4.214
Ours 0.846 299.578 3.332 4.439

methods, if not superior to them. Our ESD achieves the best performance in terms of CLIP and FID.
Not only do our generated results achieve the best alignment with the input text prompt, but they also
reach the best distribution matching image quality. Our models’ competitive IQ and IV results further
suggest that our delivered 3D assets attain better view diversity and view quality.

Qualitative Comparison We present qualitative comparisons in Fig. 2 and Fig. 3. Specifically, we
first conduct extensive experiments using the vanilla timestep scheduling strategy in Fig. 2. Then, we
combine our proposed ESD with the time-prioritized mechanism in DreamTime (Huang et al., 2023)
and showcase its ability in Fig. 3. It is clearly shown that our proposed ESD delivers better geometry
with the Janus problem alleviated. In comparison, the results presented by SDS and VSD all contain
more or less corrupted geometry with multi-face structures. The entropy term introduced in our ESD
applies to the distribution of rendered images and encourages diversity across views. We provide
additional comparisons in Fig. 5 and in video supplementary file.

Ablation Studies As shown in Fig. 4, we conduct ablation studies on the choice of different
classifier-free guidance weights. We observe that when setting the weight to zero, the produced 3D
asset contains blurry geometry and smoothed textures with fewer details. If the weight is set to one,
on the other hand, the generated results will suffer from the Janus problem with multiple faces being
presented. We empirically find that when setting the weight to the middle ground (e.g. 0.5), the final
3D asset will benefit from better details and well-constructed geometry with less Janus problem.

8 CONCLUSIONS

In this paper, we reveal that existing score distillation methods degenerate to maximal likelihood
seeking on each view independently, leading to the mode collapse problem. We identify that re-
establishing the entropy term in the corresponding variational objective brings a new update rule for
better score distillation. With the help of the entropy term applied to the distribution of rendered
images, our proposed Entropic Score Distillation (ESD) encourages diversity across views, mitigating
the Janus problem.
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A DEFERRED DERIVATION

Let us consider another KL divergence objective below.

min
θ

Et [DKL(qt(x|θ)∥pt(x|y))] , (11)

which, compared with Eq. 4, we move the expectation of c inside the KL divergence. Now we
compute the gradient of objective Eq. 11:

∇θ Et [DKL(qt(x|θ)∥pt(x|y))] = Et [∇θDKL(qt(x|θ)∥pt(x|y))] (12)

= Et

[
∇θ Ex∼qt(x|θ) log

qt(x|θ)
pt(x|y)

]
(13)

= Et

[
∇θ Eϵ,c log

qt(g(θ, c) + ϵ)|θ)
pt(g(θ, c) + ϵ)|y)

]
(14)

= Et,ϵ,c [∇θ log qt(g(θ, c) + ϵ)|θ)−∇θ log pt(g(θ, c) + ϵ)|y)] (15)

= Et,ϵ,c

∇θ log qt(g(θ, c) + ϵ)|θ)︸ ︷︷ ︸
(a)

−∂g(θ, c)

∂θ
∇x log pt(g(θ, c) + ϵ)|y)

 (16)

where the parameterization trick x = g(θ, c) + ϵ is applied. Below we examine that the expectation
of (a) by path derivative:

Et,ϵ,c [∇θ log qt(g(θ, c) + ϵ)|θ)] = Et,ϵ,c

[
∇θ log qt(x|θ) +

∂g(θ, c)

∂θ
∇x log qt(x|θ)

]∣∣∣∣
x=g(θ,c)+ϵ

(17)

= Et,x∼qt(x|θ)∇θ log qt(x|θ)︸ ︷︷ ︸
=0

+Et,ϵ,c

[
∂g(θ, c)

∂θ
∇x log qt(g(θ, c) + ϵ|θ)

]
(18)

= Et,ϵ,c

[
∂g(θ, c)

∂θ
∇x log qt(g(θ, c) + ϵ|θ)

]
(19)

And in all,

Et,ϵ,c

[
∂g(θ, c)

∂θ
(∇x log pt(g(θ, c) + ϵ)|y)−∇x log qt(g(θ, c) + ϵ|θ))

]
(20)

B ADDITIONAL RESULTS

We place the deferred qualitative results in Fig. 5.

13



Under review as a conference paper at ICLR 2024

A rotary telephone carved out of wood

D
re

am
Fu

si
on

Pr
ol

ifi
cD

re
am

er
O

ur
s

A plush dragon toy

D
re

am
Fu

si
on

Pr
ol

ifi
cD

re
am

er
O

ur
s

Figure 5: Qualitative Results. ESD outperforms SDS and VSD.
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