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Abstract

This paper conducts a comprehensive study of the learning curves of kernel ridge
regression (KRR) under minimal assumptions. Our contributions are three-fold: 1)
we analyze the role of key properties of the kernel, such as its spectral eigen-decay,
the characteristics of the eigenfunctions, and the smoothness of the kernel; 2) we
demonstrate the validity of the Gaussian Equivalent Property (GEP), which states
that the generalization performance of KRR remains the same when the whitened
features are replaced by standard Gaussian vectors, thereby shedding light on the
success of previous analyzes under the Gaussian Design Assumption; 3) we derive
novel bounds that improve over existing bounds across a broad range of setting
such as (in)dependent feature vectors and various combinations of eigen-decay
rates in the over/underparameterized regimes.

1 Introduction

Kernel ridge regression (KRR) is a central tool in machine learning due to its ability to provide
a flexible and efficient framework for capturing intricate patterns within data. Additionally, it
stands as one of the earliest endeavors in statistical machine learning, with ongoing research into its
generalization properties [12, 45]. Over the past few years, kernels have experienced a resurgence in
importance in the field of deep learning theory [49, 8, 6], partly because many deep neural networks
(DNNs) can be interpreted as approaching specific kernel limits as they converge [25, 1, 9].

One central topic in machine learning theory is the learning curve of the regressor in the fixed
input dimensional setting as the sample size grows to infinity. Formally: let n be the sample size,
λ = λ(n) be the ridge regularization parameter depending on n and Rn be the test error/excess risk
of the ridge regression. For large n, the test error Rn should decay with n as Rn = On,P (g(n)) for
some function g : R → R such that g(n) n→∞−−−−→ 0. The decay of g with respect to n provides an
upper bound on the learning curve of the ridge regressor and will be the main focus of this paper. To
conduct our analysis, we concentrate on several crucial properties of the kernel, including its spectral
eigen-decay and the characteristics of the eigenfunctions, which we will elaborate on next.

Properties of the eigenfunctions In a series of studies [10, 16, 34], the feature vectors are sub-
stituted by random Gaussian vectors following the Gaussian Design (GD) Assumption, and the
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learning curve is derived using the Replica method. In a separate body of research [29, 30, 31], it is
demonstrated that similar learning curves occur for Hölder continuous kernels under an assumption
called the Embedding Condition (EC) (see Section A for more details). Consequently, there is a
fundamental mismatch between the distribution of the feature vector and the Gaussian random vectors
used in [10, 16, 34]: in the former case, each coordinate is highly dependent on the others, whereas
in the Gaussian Design case, each coordinate operates independently from the others. Astonish-
ingly, however, both settings share similar learning curves. This phenomenon, initially identified by
[21, 3, 42, 20], is termed the Gaussian Equivalence Property. This prompts the question:

Q1: When and why does the Gaussian Equivalence Property exist?

Spectral eigen-decay Many recent papers [10, 35, 44, 36] have attempted to characterize the test
error solely by the (kernel) eigenspectrum decay. It is for instance common to differentiate between
different eigenspectrum decays: [29, 30, 31] assumes the embedding condition (EC) and Hölder
continuity to kernel with polynomial eigen-decay; [33] assumes either polynomial or exponential
eigen-decay (with noiseless labels) under the Maximum Degree-of-Freedom (MaxDof) Assumption;
[36] assumes some concentration and the so-called hypercontractivity on eigenfunctions.

However, [14] pointed out that the characterization of generalization performance solely by the
spectral eigen-decay might oversimplify the generalization performance of ridge regression. In
relation to the second question, we further ask:

Q2: Under what conditions is the generalization error fully determined by the eigen-decay?

Additional assumptions and settings In addition to the two properties above, other hyperparam-
eters or settings, including capacity of the kernels/feature vectors, the ridge regularization decay,
the source condition of the target function, the noise level in the output label, and the amount of
over-parameterization, play an important role in the analysis of the learning curve of ridge regression.
Within the present body of research, various papers establish bounds on the test error of KRR across
diverse assumptions and settings (we refer the reader to Section A for further elaboration). It is
therefore of significant interest to ask:

Q3: Is there a unifying theory explaining the generalization under minimal assumptions?

Contributions We address questions Q1-3 through the following contributions:

(i) Unified theory: We provide a unifying theory of the test error of KRR across a wide variety
of settings (see Subsection 2.2 and Table 1 in Section 3).

(ii) Validation and GEP: We show that the generalization performance with independent
(Gaussian) features and dependent (kernel) features coincides asymptotically and it solely
depends on the eigen-decay under strong ridge regularization, hence validating the Gaussian
Equivalent Property (GEP) (see Subsection 3.2) .

(iii) New and sharpened bounds: We provide novel bounds of the KRR test error that improve
over prior work across various settings (see Subsections 3.2).

(iv) Smoothness and generalization: We relate the spectral eigen-decay to kernel smoothness
(see Appendix B.2) and hence to the kernel’s generalization performance.

2 Setting

In this section, we introduce the basic notation for ridge regression, which includes high-dimensional
linear regression and kernel ridge regression as special cases.

2.1 Notations

Suppose p ∈ N ∪ {∞}. Let x = (xk)
p
k=1 ∈ Rp be a random (feature) vector sampled from some

distribution µ on Rp. Let n ∈ N be an integer and denote by x1, ...,xn n i.i.d. draw of x. Denote the
input matrix X ∈ Rn×p to be a matrix with rows x⊤

i . By fixing an orthonormal basis, we assume
that the covariance matrix is diagonal:

Σ
def.
= Eµ

[
xx⊤] = diag(λ1, λ2, ..., λp) ∈ Rp×p,
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where the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp > 0 is a decreasing sequence of positive numbers. 1

We also assume that y ∈ Rn is an output vector such that

y = Xθ∗ + ϵ (1)

where θ∗ ∈ Rp is a deterministic vector, ϵ ∈ Rn is a random vector whose entries are i.i.d. drawn
from a centered random variable ϵ with variance E

[
ϵ2
]
= σ2 <∞ and independent to X.

Then the linear regressor
θ̂(y)

def.
= X⊤(XX⊤ + nλIn)

−1y (2)

is the minimizer of the empirical mean square loss (MSE) problem:

min
θ∈Rp

1

n
∥Xθ − y∥22 + λ∥θ∥22, (3)

where λ ≥ 0 is the ridge2. This paper focuses on bounding the test error, with which we can
analyse the learning curve of the regressor. To do so, we use the following well-known bias-variance
decomposition.

Definition 2.1 (Bias-variance decomposition). Consider input-output pairs (X,y) of sample size
n and a ridge λ ≥ 0. Define the test error R to be the population mean squared error between the
regressor and the true label averaged over noise.

R def.
= Ex,ϵ

[(
x⊤θ̂(y)− x⊤θ∗

)2]
(4)

Note that R is a random variable depending on the samples (X,y) and the ridge λ ≥ 0. Hence,
we can also view R = Rn as a random variable indexed in n, where the samples (X,y) are n i.i.d.
drawn input-output pairs and λ is chosen to depend on n.

We decompose the test error into a bias B and variance V , which is typical for most KRR literature
[32, 23, 6, 46, 29, 30, 31, 13, 14]:

R = B + V (5)

where B def.
= Ex

[(
x⊤θ̂(Xθ∗)− x⊤θ∗

)2]
, V def.

= Ex,ϵ

[(
x⊤θ̂(ϵ)

)2]
.

Remark 2.2 (Noiseless labels). If there is no noise in the label, that is, ϵ = 0, the test error R is
simply the bias B. Hence, the analysis of the bias term B in this paper is directly applicable to the
noiseless labels setting.

We now summarize the combinations of assumptions and settings made in this paper.

2.2 Assumptions and Settings

Polynomial/exponential eigen-decay We consider two types of spectral decay rates, namely,
polynomial and exponential decay rates, because: 1) polynomial eigen-decay is, roughly speaking ,
equivalent to the case where the RKHS is comprised of at most finitely many continuous derivatives;
2) the exponential eigen-decay is, possibly up to a canonical change in the relevant function space,
equivalent to the case where the RKHS consists of smooth (infinitely differentiable) functions. For
the formal definition of the eigen-decay, see Assumptions (PE) and (EE). For further details and
explanation on the relationship between eigen-decay and smoothness, we refer the reader to Section B.

Source condition Many previous works [6, 16, 7, 30] include the so-called source condition as
assumptions on the target. If the task is proper, that is, θ∗ ∈ H = H1, we have s ≥ 1. More generally,
a larger source coefficient s implies a smoother target θ∗ in the RKHS H.

1For p = ∞, we regard x as a vector of an infinite dimensional Hilbert space and Σ as a Hilbert Schmidt
operator, meaning Tr[Σ] < ∞. With abuse of notation, we write x as vector and Σ as matrix throughout the
paper. In some proofs, we would apply some linear algebraic results on some Rp×p matrices. When dealing
with p = ∞, replace those results with their Hilbert space counterparts.

2For λ without subscript, we mean the ridge regularization coefficient; for λk with subscript k, we mean the
eigenvalues of the covariance Σ = E

[
xx⊤].
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Definition 2.3 (Interpolation space). Let s ≥ 0 be a real number. Define the interpolation space

Hs def.
= {θ ∈ Rp : ∥θ∥Σ1−s <∞}.

Assumption (SC) (Source Condition). The source coefficient of a target coefficient θ∗ is defined as

s = inf{t > 0 : θ∗ ∈ Ht}.

See Subsection A.5 for more elaborations for the source coefficient s in polynomial or in exponential
decay.

Strong/weak ridge We set the ridge λ = λ(n) ≥ 0 to depend on the sample size n. The ridge is
considered strong (relative to the eigen-decay) if λ ≽ λmin{n,p}, that is, if λ/λmin{n,p}

n→∞−−−−→ 0;
otherwise, it is considered weak. Intuitively, the ridge is weak when it is negligible compared to the
entries in the kernel matrix, effectively making it ridgeless.

To summarize the assumptions discussed previously, let (λk)
p
k=1 be the eigenvalues of the kernel K,

and θ∗ def.
= (θ∗k)

p
k=1 the coefficients of the target function being learned in the eigen-basis defined by

K. Then we assume either of the following assumptions:

Assumption (PE) (Polynomial Eigen-decay). Assume that λk = Θk
(
k−1−a), |θ∗k| = Θk (k

−r),
λ = Θn

(
n−b

)
for some constants a, b, r > 0, where a + 2 ̸= 2r unless specified. 3 Hence, if

Assumption (SC) holds, the source coefficient is s = 2r+a
1+a . We call the ridge λ strong if b ∈ (0, 1+ a],

and weak if b ∈ (1 + a,∞], under the convention that b = ∞ implies λ = 0.

Assumption (EE) (Exponential Eigen-decay). Assume that λk = Θk
(
e−ak

)
, θ∗k = Θk

(
e−rk

)
,

λ = Θn
(
e−bn

)
for some constants a, b, r > 0, where a ̸= 2r unless specified. 4 Hence, if

Assumption (SC) holds, the source coefficient is s = 2r+a
a = 2r

a + 1. We call the ridge λ strong if
b ∈ (0, a], and weak if b ∈ (a,∞], under the convention that b = ∞ implies λ = 0.

Generic/independent features Our analysis centers on the assumptions regarding feature vectors,
with a focus on the dependencies between coordinates, particularly exploring two cases:

1. Generic features (GF): include the cases where the feature vectors are dependent on each
other, for example, the feature vectors from the following kernels:

• dot-product kernels on hyperspheres;
• kernels with bounded eigenfunctions;
• radial base function (RBF) and shift-invariant kernels;
• kernels on hypercubes,

satisfy Assumption (GF). Most previous literature [30, 33, 36, 19] have assumptions that
only a proper subset of the above kernels satisfies. Therefore, we believe that we are
operating under the minimal assumptions that exist in the field.

2. Independent features (IF): replace the feature vector with sub-Gaussian random vector with
independent coordinates. A special case is the Gaussian Design assumption (GD) used in
literature [44, 35, 16].

For further explanations regarding the assumptions, we refer the reader to Section A.

3 Main result

We first present an overview of the test error bounds across various properties, assumptions,
and regimes. Our main results, summarized in Table 1, describe the learning curve in the over-
parameterized regime, in terms of the bias B and variance V decomposition (see Equation (5)). Then,
we will discuss the implications of our results in depth.

3The condition a+ 2 ̸= 2r is purely technical and aims to simplify the results.
4Similar as above.
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3.1 Overview

Table 1 summarizes many of our results in the over-parameterized regime under various combinations
of the assumptions described in subsection 2.2. The bounds are expressed in terms of the sample size
n as On (·) or Õn (·) (ignoring logarithmic terms). Whenever we can also prove a matching lower
bound, we replace On (·) with Θn (·). We write (·)+

def.
= max{·, 0}.

Ridge strong weak
Feature (IF) (GF) (IF) (GF)

Poly (PE) B Θ
(
n−bs̃

)
O
(
n−bs̃

)
Θ
(
n−(1+a)s̃

) {
O
(
n−(1+a)s̃

)
, s > 1

Õ
(
n−(min{2(r−a),2−a})+

)
, s ≤ 1

V Θ
(
σ2n−1+ b

a+1

)
O
(
σ2n−1+ b

a+1

)
Θ
(
σ2
)

Õ
(
σ2n2a

)
Exp (EE) B Θ

(
e−bs̃n

)
O
(
e−bs̃n

)
O
(
e−as̃n

)
, s > 1 O

(
e−as̃n

)
, s > 1

V Θ
(
σ2n−1+ b

a

)
O
(
σ2n−1+ b

a

)
catastrophic overfitting

Table 1: Learning curve in the over-parameterized regime (p > n): n is the sample size, a, r > 0
define the eigen-decay rates of the kernel and target function, b > 0 controls the decay rate of the
ridge regularization parameter (Assumptions (PE) and (EE)), σ2 def.

= E
[
ϵ2
]

is the noise level, and
s > 0 is a technical parameter often determined by a and r (e.g. under Assumption (SC)). Here
s̃

def.
= min{s, 2}.

Results in blue indicate either previously unstudied regimes or improvements in available rates in a
studied regime. See Table 6 for more comparisons and Subsection 2.2 for details on various settings.

Before delving into the detailed discussion of our comprehensive results in Subsection 3.2, let us
highlight some important observations from Table 1.

Asymptotic bounds The upper bound illustrates the asymptotic relationship between the test error
and sample size n as well as the following constants: a related to the eigen-decay, b related to the
ridge, r related to the target function and σ2 related to the label noise.

Independent feature (IF) versus generic features (GF) The bounds in both cases coincide under
strong ridge (see the left columns of Table 1); meanwhile, under weak ridge (see the right columns
of Table 1), the bounds with generic features are looser than those with independent features. In
Subsection 3.2, we will explain the necessity of this difference and hence showcase the previous
limitations in the literature, which has widely adopted the Gaussian Design Assumption (GD) under
the weak ridge/interpolation regime.

Novel bound of bias under weak ridge A notably sophisticated bound (on the upper right corner
of Table 1)

B =

{
O
(
n−(1+a)s̃

)
, s > 1

Õ
(
n−(min{2(r−a),2−a})+

)
, s ≤ 1

(6)

is novel to the best of our knowledge. Our improvement compared to previous literature [7] under
various eigen-decay (in terms of a) and target coefficients’ decay (in terms of r) is shown in Figure 1.
By comparison, we can see that the decay of our novel bound in Equation 6 is faster than previous
results. Also, we prove that the upper bound in the middle green region ,where s ∈ (1, 2), is sharp.

Experimental validations of the results in Table 1 are given in Section 6.

In the under-parameterized regime, the bias B and variance V terms can be bounded similarly as in
over-parameterized regime. We postpone the details of these results to Section F.

3.2 Detailed discussion

In this subsection, we elaborate more on the details of our results shown in Table 1.

Independent and generic features Table 1 indicates that the test error exhibits the same up-
per bound with either independent or generic features under strong ridge conditions in the over-
parameterized regime. This similarity arises from the bounds in both cases being derived from the
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Figure 1: Phase diagram of the bound (Equation( 6)) of the bias term B under weak ridge and
polynomial eigen-decay. λk = Θk

(
k−1−a), |θ∗k| = Θk (k

−r), for some a, r > 0. Our result
(Propositions D.5+D.6+E.1) is on the left, which improves over previous result from [7] (Proposition
D.6) on the right. On the left plot, the range of the source coefficient s = 2r+a

1+a in Assumption (SC)
is shown in gray font in each colored region.

same Master inequalities that we will introduce later (see Section 4). However, under weak ridge
conditions, the empirical kernel spectrum displays qualitative differences, as reported in [7, 14]. From
Figure 2, we can see that V = O (1) with Laplacian kernel in the left plot and V diverges with the
neural tangent kernel (with 1 hidden layer) in the right plot. Hence under weak ridge and polynomial
eigen-decay, the case distinction of the bound

V =

{
Θ
(
σ2
)
, Assumption (IF) holds,

O
(
σ2n2a

)
, Assumption (GF) holds

(7)

in Table 1 is necessary, as Assumption (GF) includes the cases of Gaussian Design (GD) (or more
generally independent features (IF)) and Laplacian kernel which yields V = Θ (1), the so-called
tempered overfitting from [35]; as well as the case of neural tangent kernel (NTK) which yields
V n→∞−−−−→ ∞, the so-called catastrophic overfitting. In particular, our proof shows that the Gaussian
Equivalent Property (GEP) does not hold under weak ridge.
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n

0.40

0.41

0.42

0.43

0.44

0.45

Va
ria

nc
e

Overfitting of Laplacian kernel
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n

0

500

1000

1500

2000

Va
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Overfitting of NTK with L=1

Figure 2: Variance V against sample size n for the Laplacian kernel (left) and the neural tangent
kernel with 1 hidden-layer (right) defined on the unit 2-disk, validating Equation (7) where the
variance with generic features (GF) can be as good as with independent features (IF) (V = Θn (1))
or qualitatively different (V n→∞−−−−→ ∞). See Section 6 for more details.

We are now prepared to address the first question posed in Section 1:

Q1: When and why does the Gaussian Equivalence Property (GEP) exist?
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The Master inequalities provide the same non-asymptotic bounds for both cases under a strong
ridge. However, GEP does not hold under weak ridge! 5

In particular, our work implies that previous works [10, 16, 34, 44, 35] under the Gaussian Design
assumption (GD) can be applied only when the ridge is strong.

Upon finalizing the preparation for this paper, we became aware of concurrent research conducted by
[19], which also concerns the Gaussian Equivalence Property (GEP) in the non-asymptotic setting.
For more comparison between their assumptions and ours, we refer the reader to Section A.

Importance of ridge To address the second question posed in Section 1, it is evident that in either
the under-parameterized setting with any ridge (see Section F) or the over-parameterized regime
with a strong ridge (see Table 1), the bounds for both B and V remain the same, irrespective of the
features:

Q2: Under what conditions is the generalization error fully determined by the eigen-decay?
Either (i) in the under-parameterized setting; or (ii) with a strong ridge in the

over-parameterized regime.

Several results [39, 33, 36] have suggested that the test error bound can be characterized by the
covariance spectrum Σ, but they implicitly require the ridge λ > 0 to be larger than some threshold.
This paper clearly demonstrates the necessity of the presence of a strong ridge in such analyses.

From Table 1, we can see that the eigen-decay also affects the test error qualitatively. As mentioned
in [33], the bias term B decays polynomially (or, respectively, exponentially) when the eigen-decay
is polynomial (or, respectively, exponential). However, we prove that V decays only polynomially
at a rate at most O

(
1
n

)
, regardless of the eigen-decay. Hence, in a noisy setting with polynomial

eigen-decay, one can find an optimal ridge λ = Θn

(
n−

1+a
(1+a)s̃+1

)
to balance both terms B and V as

in [16, 31]. In contrast, in noisy settings with exponential eigen-decay, V dominates the test error.

The bound of the variance term V with exponential eigen-decay under weak ridge is omitted in Table
1 due to the so-called catastrophic overfitting phenomenon observed in [35, 14].

Improved upper bound During our research, we discovered that we can improve the upper
bound of B (Equation 6) in the over-parameterized regime with polynomial decay, weak ridge, and
Assumption (GF) by adapting the result from [31] and integrating it with the insights from [7] (see
the upper right corner in Table 1 or 6, and Figure 1 for visualization).
Theorem 3.1 (Improved upper bound). Suppose Assumption (GF) holds. Assume the eigen-spectrum
and the target coefficient both have polynomial decay, that is, λk = Θk

(
k−1−a) and |θ∗k| =

Θk (k
−r). Let s = 2r+a

1+a be the source coefficient defined in Definition (SC). Then the kernel ridgeless
regression has the following learning rate for the bias term B:

B =


On

(
n−(r−a)+

)
for s < 1;

Θn
(
n−(2r+a)

)
for 1 ≤ s ≤ 2;

On

(
n−2(1+a)

)
for s > 2.

where n is the sample size and (·)+
def.
= max(·, 0).

For a detailed explanation of our improvements, refer to our novel Proposition D.5 and the known
Proposition D.6 from [7] in Section D.

Lower bound of test error It is of theoretical interest to provide lower bounds as well. For indepen-
dent features, we can prove that the upper bound is tight using the result from [46], generalizing the
result from [16], which only showed upper bounds in Gaussian Design Assumption (GD). However,
for generic features, we can only provide lower bounds in some but not all settings, using the result
from [31]. We summarize our results in Table 2.

5Here we only concern the upper bound of the asymptotic learning rate for GEP. As far as we know, there is
no other literature also concerning the lower bound. For readers interested in whether a matching lower bound
for GEP exists, please refer to the paragraph “ Lower bound of the test error” and Table 2 below.
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Ridge strong weak
Feature (IF) (GF) (IF) (GF)

Poly (PE) or Exp (EE) B ✓ ✓ ✓ ✓ (when 1 ≤ s ≤ 2)
V ✓ unknown ✓ × because of Figure 2

Table 2: The table shows whether the lower bound is matching the upper bound deduced in this paper.

See Section E for details on our proof of matching lower bounds. We note that there is some KRR
literature, such as [31, 36, 19], that discusses matching upper and lower bounds of test error under
more assumptions, which is beyond the scope of this paper. For a comparison of assumptions in
different papers, see Section A.

Finally, we summarize the above discussion by answering the third question we raised in Section 1:

Q3: Is there a unifying theory on the generalization performance under minimal assumptions?
Yes, this paper considers assumptions (IF) and (GF) which cover a wide range of kernel settings

under any regularization and source conditions.

4 Proof sketch

All the above results in Table 1 can be derived using the following proof strategy:

1. We prove a concentration result on the whitened features z under Assumptions (GF) or (IF)
(see Section G).

2. Using the above result, we bound the condition number of the (truncated) kernel matrix (see
Section G) as in [7, 14], which will be used to bound the test error in the next step.

3. Combining the bound of the condition number with the result from [6, 46], which we
call the Master inequalities (see the paragraph below for details), we can compute the
non-asymptotic test error bound for various settings (see Section D).

4. In the over-parameterized regime, we derive the asymptotic behavior of the learning curves
by plugging in the eigen-decay and the choice of the target function and ridge in the above
non-asymptotic bound (see Section D).

5. Using the results from [46], we are able to show that the asymptotic upper bound for
independent features (IF) is tight (see section E).

6. For generic features (GF), we only provide tight bound results in limited settings (see section
E). As shown in Figure 2 in Section 3, the generic feature Assumption (GF) includes a broad
variety of features where a universal matching lower bound does not exist.

7. In the under-parameterized regime, the Master inequalities also give upper bounds for B and
V , which might not be tight if the ridge λ is strong. However, we present another way to
obtain tight bounds without the Master inequalities (see Section F for more details).

We summarize the proof techniques with a flowchart in Figure 4.

Master Inequalities We will now briefly introduce the key inequality used in our analysis (further
details can be found in the Appendix). We will use the subscript > k or ≤ k to refer to the submatrix
of a matrix consisting of columns with index > k or ≤ k (see definition C.3). The analysis relies on
two crucial matrices: Ak = X>kX

⊤
>k + nλIn ∈ Rn×n, defined for any k ∈ N, which is employed

to partition the spectrum, and a whitened input matrix Z
def.
= XΣ−1/2 ∈ Rn×p. Additionally, we

require the following definitions.

Definition 4.1 (Concentration coefficients [7]). Define the quantities:

ρ
def.
=
n ∥Σ>k∥op + s1(Ak)

sn(Ak)
; ζ

def.
=
s1(Z

⊤
≤kZ≤k)

sk(Z⊤
≤kZ≤k)

; ξ
def.
=
s1(Z

⊤
≤kZ≤k)

n
,

where si(·) denotes the i-th largest singular value of the matrix.
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Definition 4.2 (Effective ranks [6]). Let k ∈ N. Define two quantities:

rk
def.
=

Tr[Σ>k]

∥Σ>k∥op
=

∑p
l=k+1 λl

λk+1
, Rk

def.
=

Tr[Σ>k]
2

Tr[Σ2
>k]

=

(∑p
l=k+1 λl

)2∑p
l=k+1 λ

2
l

.

The Master inequalities provide upper bounds on the bias and the (scaled) variance term of the test
error in the following form:

B ≤
(
1 + ρ2ζ2ξ−1 + ρ

δ

)
∥θ∗>k∥2Σ>k

+ (ζ2ξ−2 + ρζ2ξ−1)
s1(Ak)

2

n2
∥∥θ∗≤k∥∥2Σ−1

≤k

;

V/σ2 ≤ ρ2
(
ζ2ξ−1 k

n
+

Tr[Z>kΣ
2
>kZ

⊤
>k]

nTr[Σ2
>k]

rk(Σ)2

nRk(Σ)

)
.

The term appearing in the above bound can be categorized into two distinct components: the "probably
constant" part (highlighted in blue) and the "decay" part (highlighted in gray). The "probably constant"
part consists of terms that, with high probability, are bounded both below and above by positive
constants—these bounds represent a primary contribution of this paper. On the other hand, the
"decay" part can be approximated using basic calculus, once a specific constant k ∈ N, smaller than
the sample size n, is selected. Together, these two parts allow us to derive the KRR learning rate for
all combinations of eigen-spectra, features, and ridge parameters discussed in the preceding sections.
Furthermore, [46] provides a corresponding lower bound under certain assumptions, demonstrating
that the decay of the upper bound matches that of the lower bound. Establishing that Assumption (IF)
satisfies these assumptions is another key contribution of this work. For the formal definitions of the
terms in the above inequalities, we refer the reader to Propositions C.6 and C.7 in the appendix.

5 Related work

We briefly discuss related previous works and compare them with our results in the over-parameterized
regime: (see Table 6 for more visual illustration)

1. [16] considered the upper bound of B and V in polynomial eigen-decay under any ridge and
under the Gaussian Design Assumption. Our result proves both the matching upper and lower
bound with the same decay rate under a weaker assumption (IF). This implies that we validate the
Gaussian Equivalence Property for Sub-Gaussian Design.

2. [30, 31] proved tight upper bounds of B and V for Hölder continuous kernels under polynomial
eigen-decay, strong ridge and the so-called Embedding condition (EC). [7] recovered the upper
bounds under Assumption (GF).

3. For polynomial decay under weak ridge, [31] provided a tight upper bound of B when the source
condition s > 1; while [7] provided a loose bound regardless of s. Hence we modify the proof in
[31] under Assumption (GF) instead and combine it with [7] to obtain a novel upper bound on the
bias.

4. [7] also provided an upper bound of V under polynomial decay, weak ridge and Assumption (GF).

5. [14] showed that V is bounded above and below by positive constants under polynomial eigen-
decay, weak ridge and Assumption (IF), and it exhibits the so-called tempered overfitting from
[35].

6. [33] provided tight upper bounds of B for both polynomial and exponential eigen-decay for
kernels under the so-called Maximal Degree-of-Freedom (MaxDoF) Assumption. We recover
their result under Assumption (GF) instead of Assumption (MaxDoF).

7. We apply the result from [46] and [31] to obtain a matching lower bound in some settings and
strengthen our result from On (·) to Θn (·).

6 Experiments

Due to page constraints, this section focuses solely on experiments validating the Gaussian Equivalent
Property (GEP). For detailed experiments on other contributions, refer to Section I.
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We consider a simple example: let λk = ( 2k−1
2 π)−1−a and ψk(·) =

√
2 sin

(
2k−1

2 π·
)

such that
∥ψk∥L2

µ
= 1 for µ = unif[0, 1]; let θ∗k = ( 2k−1

2 π)−r. For p = ∞ and a = 1, the regression
coincides with kernel ridge regression with kernel k(x, x′) = min{x, x′} defined on the interval
[0, 1] [48]. Similar experiments have been conducted on this kernel k by [30, 33]. However, to
simulate regression for independent features (IF), the feature rank p must be finite. In the following
experiment, we choose p = 2000, and the sample size n ranges from 100 to 1000, with ridge
parameter λ = ( 2n−1

2 π)−b where b ∈ [0, 1 + a].

In Figure 3, our experiment demonstrates the GEP, as the learning curves with kernel features
(Sine features) and independent features (Gaussian features z ∼ N (0, Ip) or Rademacher features
z ∼ (unif{±1})p) coincide and match the theoretical decay.

10
2

10
32 × 10

2
3 × 10

2
4 × 10

2
6 × 10

2

n (log scale)

10
10

10
9

10
8

10
7

Te
st

 E
rr

or
 (l

og
 s

ca
le

)

Bias, a=1, b=2, r=1

Sine feature
Rademacher feature
Gaussian feature
Slope=-3.11

10
2

10
32 × 10

2
3 × 10

2
4 × 10

2
6 × 10

2

n (log scale)

10
9

10
8

10
7

10
6

Te
st

 E
rr

or
 (l

og
 s

ca
le

)

Bias, a=0.5, b=1.5, r=1.5

Sine feature
Rademacher feature
Gaussian feature
Slope=-3.22

10
2

10
32 × 10

2
3 × 10

2
4 × 10

2
6 × 10

2

n (log scale)

10
4

10
3

Te
st

 E
rr

or
 (l

og
 s

ca
le

)

Variance, a=1, b=0

Sine feature
Rademacher feature
Gaussian feature
Slope=-1.00

10
2

10
32 × 10

2
3 × 10

2
4 × 10

2
6 × 10

2

n (log scale)

2 × 10
2

3 × 10
2

4 × 10
2

Te
st

 E
rr

or
 (l

og
 s

ca
le

)

Variance, a=1, b=1

Sine feature
Rademacher feature
Gaussian feature
Slope=-0.51

Figure 3: Decay of the bias term B and the variance term V under different ridge decays and
target coefficient decays. All features demonstrate the same theoretical decay, validating the GEP for
independent features.

7 Conclusion

In this paper, we present a unifying theory and a comprehensive analysis of the learning curve of
kernel ridge regression under various settings. We elucidate the coincidence of learning curves
between the Gaussian Design (GD) setting (or more generally, independent features (IF)) and the
kernel setting (or more generally, generic features (GF)), and validate the Gaussian Equivalence
Property under strong ridge. In addition to recovering previous results, we also improve test error
bounds under specific circumstances, thus filling a gap in the existing literature.

Future potential work Our results also raise several theoretical questions. For instance: i) The
upper bound in several regions of the phase diagram in Figure 1 is not known to be sharp. It would
be of interest to either improve it or find matching lower bounds in those regions; ii) Why is there a
qualitative difference in overfitting with the Laplacian kernel and the neural tangent kernel, as shown
in Figure 2? Can one further distinguish different cases in the generic feature Assumption (GF) to
explain such differences? Additionally, how tight would the bound V = O

(
σ2n2a

)
in Eq. (7) be?

Addressing these questions could provide deeper insights into the behavior of kernel ridge regression
under various conditions and contribute to further advancing our understanding in machine learning.
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Appendix

The appendix will be organized in the following way:

• The detailed discussion of the assumptions used in this paper and the comparison to previous
literature is presented in Section A;

• an extended discussion of the eigen-decay assumptions is presented in Section B;
• the main tool of this paper, the Master inequalities, is presented in Section C;
• the details of the proof on the asymptotic in over-parameterized regime in Table 1 is presented

in Section D;
• the proof for a matching lower bound is presented in Section E;
• the details of the proof on the non-asymptotic bound in under-parameterized regime is

presented in Section F;
• the concentration result on the whitened feature z and the conditioning of the kernel matrix

are presented in Section G;
• related technical results from previous literature are collected in Section H;
• experimental results are shown in Section I;
• extra tables of summary can be found in Section J.

The summary of our proof can be found in the flowchart in Figure 4.

Concentration (Section G) Master inequalities (Section C)

Conditioning (Section G)

Test error upper bound (Section D)

Θn (·) bound On (·) bound

matching lower bound
(Section E)

unknown

under-param.
(Section E)

Figure 4: A flowchart about the proof techniques in this paper

Big-O Notation We use the standard Big-O notations O· (·) , o· (·) ,Ω· (·) ,Θ· (·) to represents the
asymptotic behaviours of the bounds in this paper, where the subscript indicates that the constant in
the bound is independent to the variables in the subscript. We use ·̃ to suppress logarithmic terms.
With abuse of notation, we use the same notations for their probability versions, when the context is
clear.
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A Assumptions in details

The primary assumptions made in this paper concern the whitened feature vectors z ∈ Rp:
Assumption (GF) (Generic features [7]). Let p ∈ N ∪ {∞}. Assume the isotropic feature vector
z

def.
= Σ−1/2x ∈ Rp and the covariance matrix Σ ∈ Rp×p are such that: 7

αk
def.
= ess inf

z

∥z>k∥2Σ>k

Tr[Σ>k]
= Θk (1) ,

βk
def.
= ess sup

z
max

∥z≤k∥22
k

,
∥z>k∥2Σ>k

Tr[Σ>k]
,
∥z>k∥2Σ2

>k

Tr[Σ2
>k]

 = Θk (1) ,

Remark A.1 (k = 0). For k = 0, we take the convention that β0
def.
= ess supz max

{
∥z∥2

Σ

Tr[Σ] ,
∥z∥2

Σ2

Tr[Σ2]

}
.

Remark A.2 (Intuition). The intuition is that the three fractions above have expected values of 1:

Ez

[
∥z≤k∥2

2

k

]
= Ez

[
∥z>k∥2

Σ>k

Tr[Σ>k]

]
= Ez

[
∥z>k∥2

Σ2
>k

Tr[Σ2
>k]

]
= 1. Hence, Assumption (GF) imposes strong

concentration on z at each truncation point k ∈ N.
Remark A.3 (Weaken Assumption (GF)). One can further replace the essential supremum and infinum
by a high probability guarantee. The argument on the test error bounds would follow analogously
with a weaker probability. For simplicity reasons, we only consider the assumption in the above
formulation.

Assumption (GF) encompasses both cases of dependent and independent features zk, which can have
qualitatively different effects on the test error.

To compare the realistic kernel setting with the Gaussian Design setting (GD) used in previous
literature [10, 34, 16, 44, 35], which replaces the feature vectors with Gaussian random vectors (with
independent entries), we consider a weaker version of the Gaussian Design assumption commonly
required in KRR literature [6, 13, 5, 36, 19]:
Assumption (IF) (Independent sub-Gaussian features). Suppose p ∈ N. Assume that the features
zk’s in the isotropic feature vector z are independent to each other and there exists a constant G > 0
such that the sub-Gaussian norm ∥zk∥ψ2

of any feature zk is bounded by G. In over-parameterized
regime, we also assume that there exists some constant η > 1 independent to n such that p > ηn.
Remark A.4 (Infinite rank). With Assumption (GF), the feature dimension p can be taken as ∞;
with Assumption (IF), however, if no further boundedness assumption is imposed, the norm ∥x∥2 =√∑p

k=1 λkz
2
k can be undefined if p = ∞. However, if the sub-Gaussian variables zk’s are all

bounded in the sense of Assumption (GF), then p can be chosen to be infinity as well.
Remark A.5 (Special case). If the features zk are additionally bounded, then Assumption (IF) becomes
a special case of Assumption (GF). The former assumes independence of the features, while the latter
does not.

Both assumptions (GF) and (IF) are much weaker than those in most KRR literature in the sense that:
i) there is no explicit assumption on the input space X ; ii) the distribution of the feature vector need
not even be continuous! It is surprising that even with such minimal assumptions, one can derive
tight bounds on the test error.

For a more detailed comparison between the assumptions in this paper and those in previous literature,
see Section A.

We next compare the assumptions (IF), (GF) with the assumptions in previous literature.

A.1 Among assumptions with independent features

The Gaussian Design Assumption, often employed in various literature such as [10, 16, 34, 20, 35, 44],
can be considered a special case of Assumption (IF):

7We write ∥v∥M
def.
=

√
v⊤Mv for PDS matrix M and any vector v. See Definition C.1 Section C for more

details.
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Assumption (GD) (Gaussian Design). The feature vector z ∼ N (0, Ip) is distributed as isotropic
Gaussian.

Note that Assumption (IF) is much weaker than Assumption (GD) in the sense that: i) the distribution
of the feature vector z is no longer rotational invariant or enjoys anti-concentration property; 8 ii) the
distribution of each feature zk needs not be continuous; iii) the features zk’s needs not be identical.

Meanwhile, Assumption (IF) appear commonly in KRR literature, for example [6, 46, 23, 5, 13, 14].

A.2 Among assumptions with dependent features

Examples that satisfy Assumption (GF), which is first introduced by [7], includes:

1. dot-product kernels on hyperspheres;

2. kernels with bounded eigenfunctions;

3. radial base function (RBF) and shift-invariant kernels;

4. kernels on hypercubes.

In particular, the features from Assumption (IF) also satisfies the weakened version of Assumption
(GF). See Remark A.3 for details.

Before comparing our assumptions with previous literature, we first define the ∞-norm in the ridge
regression setting analog to its kernel counterpart:

Definition A.6 (∞-norm). Fix a distribution µ on Rp and let v ∈ Rp. Define

∥v∥∞
def.
= ess sup

x∼µ
|x⊤v| = sup{a ∈ R|a ≤ |x⊤v| a.s. for all x ∼ µ}

Remark A.7. Note that ∥·∥∞ is indeed a semi-norm and for all v ∈ Rp, we have

∥v∥Σ ≤ ∥v∥∞ .

Choose k = 0 and Assumption (GF) and Remark A.1 imply:

∥x∥2∞ = ess sup
x

∥x∥22 = ess sup
z

∥z∥2Σ ≤ β0
def.
= ess sup

z
max

{
∥z∥2Σ
Tr[Σ]

,
∥z∥2Σ2

Tr[Σ2]

}
<∞,

as we assume that Tr[Σ] <∞.

Embedding condition [29, 50, 30, 31] used the Embedding Condition to show tight bounds of
learning curve with polynomial eigen-decay:

Assumption (EC) (Embedding Condition). Given a random vector x ∈ Rp with covariance Σ =
E[xx⊤], let z = Σ−1/2x be the isotropic random vector. Define the embedding coefficient:

η0 = inf
η
{ess sup

x
∥x∥2Ση−1 <∞} = inf

η
{ess sup

z
∥z∥2Ση <∞}.

Suppose the eigen-decay is polynomial: λk = Θk
(
k−1−a) for some a > 0. Assume the embedding

coefficient η0 = 1
1+a .

Remark A.8 (General range of η0). Rewrite the expression:

∥x∥2Ση−1 = x⊤Ση−1x =

p∑
k=1

λη−1
k x2k =

p∑
k=1

ληkz
2
k = Θk

(
p∑
k=1

k−η(1+a)z2k

)
where we write x = (xk)

p
k=1 ∈ Rp and z = (zk)

p
k=1 ∈ Rp. In the kernel case, it is obvious that

η0 ≤ 1: for all inputs x ∈ X with embedding x = K(x, ·) in the feature space H, supx k(x, x) =

8Rotational invariant, and respectively anti-concentration property, are crucial in some literature using
Gaussian Design Assumption, for example [44], and respectively [14].
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∥x∥22 < ∞. Since the eigenvalues have polynomial decay, we have η0 ≥ 1
1+a , or otherwise there

were some η ∈ (η0,
1

1+a ) such that:

Ex

[
∥x∥2Ση−1

]
= Ω

(
Ez

[
p∑
k=1

k−η(1+a)z2k

])
= Ω

(
p∑
k=1

k−η(1+a)

)
= ∞,

contradicting Assumption (EC). Thus one have η0 ∈ [ 1
1+a , 1] in general.

Hence Assumption (GF) is a much weaker assumption than Assumption (EC) in the sense that the
former one only requires η0 ≤ 1, which holds in general; while the latter one requires η0 = 1

1+a ,
which is the smallest possible size of η0. Hence, many examples mentioned in [50], that satisfy
Assumption (EC) also satisfy Assumption (GF). For instance, the examples include:

1. dot-product kernels on hyperspheres;

2. kernels with bounded eigenfunctions;

3. shift-invariant periodic kernels.

Nevertheless, [29, 50, 30, 31] also require Hölder continuity of the kernel K while Assumption (GF)
requires no continuity assumption.

Maximal degree of freedom We rewrite and simplify the assumption used in [33] with our notation:

Assumption (MaxDoF) (Maximal Degree-of-Freedom). For any λ > 0 and s ≥ 1, define:

F s(λ)
def.
= ess sup

x

∥∥∥(Σ+ λIp)
−s/2x

∥∥∥2
Σs−1

.

Assume: there exists n ∈ N such that

n ≥ 5F s(λn)max{1, log(14F s(λn))/δ}

for some constant δ ∈ (0, 1).

Usually, the constant s is chosen as the source coefficient in Assumption (SC). Again, Assumption
(MaxDoF) requires some extra boundedness condition on the norm of x. Examples that satisfy
Assumption (MaxDoF) include:

1. dot-product kernels on hyperspheres;

2. kernels with bounded eigenfunctions;

3. periodic kernels on hypercubes,

which also satify Assumption (GF).

Low/High-degree feature concentration [36] proved the convergence of the test error to its “de-
terministic equivalent” using a list of assumptions for each fixed sample size n. To avoid introducing
extra notations, we list their assumption here in a semi-rigorous way:

Assumption (LH) (Low/High-degree feature concentration). Fix n ∈ N and λ ≥ 0. Suppose there
exists an integer k ≤ p such that:

1. rλk
def.
= λ+Tr[Σ>k]

λk+1
≥ 2n;

2. the low-degree feature vector x≤k ∈ Rk is highly concentrated;

3. with high probability, the high-degree feature vector x>k ∈ Rp−k satisfies:∥∥X>kX
⊤
>k − Tr[Σ>k]In

∥∥
op ≤ C

√
n

rλk
· (λ+Tr[Σ>k])

where C > 1 is a constant depending on n, k.
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Point 3 in Assumption (LH) is closely related to Assumption (GF) since:

1

n

n∑
i=1

∥z>k∥2Σ>k
−Tr[Σ>k] =

1

n
Tr[X>kX

⊤
>k−Tr[Σ>k]In] ≤

∥∥Tr[X>kX
⊤
>k − Tr[Σ>k]In]

∥∥
op ,

if ess supx
∥z>k∥2

Σ>k

Tr[Σ>k]
= Θk (1), then 1

n

∑n
i=1 ∥z>k∥

2
Σ>k

− Tr[Σ>k] = Ωk (1).

According to [36], examples that satisfy Assumption (LH) include:

1. kernel satisfying Assumption (IF);
2. dot-product kernel on hyperspheres.

Moment-equivalent assumption [19] use a geometric argument with Dvoretzky-Milman Theorem
to bound the test error from above under the assumptions:
Assumption (ME) (L2+ϵ-L2 Moment-Equivalent Assumption). Fix a sample (xi)

n
i=1. Suppose

there exists some ϵ, κ > 0 such that:

1. for any k ∈ N and any function f ∈ H>k in the high-degree feature space, we have
∥f∥L2+ϵ ≤ κ ∥f∥L2 .

(a) if ϵ > 2, then no extra assumption is required;

(b) if ϵ ∈ (0, 2], then κn
2−ϵ

2ϵ+ϵ2 log n

(√
nTr[Σ2

>k]

Tr[Σ>k]

)
is small.

2. with high probability, maxi=1,...,n

∥(zi)>k∥2
Σ>k

Tr[Σ>k]
≈ 1;

3. with high probability, maxi=1,...,n

∥(zi)>k∥2

Σ2
>k

Tr[Σ2
>k]

≈ 1;

4. with high probability, maxi=1,...,n
∥(zi)≤k∥2

2

k = Ok (1).

While points 2-4 are implied by the weakened version of Assumption (GF), point 1 is a strong
geometric assumption on the RKHS H. According to [19], the addition of point 1 can drop the
logarithmic terms in the upper bound of test error under weak ridge, and thus strengthening some
results in Table 1 from Θ̃ (·) to Θ (·). Examples satisfying Assumption (ME) includes:

1. rotational invariant kernel.

A.3 Between independent and dependent features: random features

A random feature setting can be considered as a midpoint between independent and dependent
features: Let W ∈ Rp×d be a random matrix, typically with i.i.d. random entries, and z ∈ Rd be
the input vector, usually comprising independent entries. We define the random feature x ∈ Rp as a
one-hidden-layer neural network: x def.

= φ(Wz), where φ : R → R represents an activation function
acting entry-wise on Wz. Thus, the coordinates of the pre-activation are independent, while those of
the post-activation are not.

However, it is worth noting the Gaussian Equivalent Property highlighted in [20], which asserts
that in wide neural networks, the distribution of the feature vector x is approximately Gaussian.
Consequently, it reduces to the case of independent features previously discussed.

A.4 Interpolation space

Many KRR literature [29, 30, 31, 33] introduced the notation of interpolation space and the source
condition on the L2-integrable target function f∗. This can be easily translated to the notion of
generalized vector norm.
Definition A.9 (Interpolation space). Let s ≥ 0 be a real number. Define the interpolation space

Hs def.
= {θ ∈ Rp : ∥θ∥Σ1−s <∞}.
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Evidently, if s1 ≤ s2, then ∥θ∥Σ1−s2 ≤ ∥θ∥Σ1−s1 and hence Hs1 ⊃ Hs2 . The intuition is that, in the
KRR setting, the space Hs interpolates between the L2-space L2

µ(X ) ⊃ H0 and the RKHS H = H1.

A.5 Source condition

Given the asymptotic of the eigen-decay λk and the target coefficient θ∗, we can find the largest
possible source coefficient s. For instance, if λk = Θk

(
k−1−a) for some a > 0 and |θ∗k| = Θk (k

−r),
then we can choose s to be 2r+a

1+a :

θ∗ ∈ Ht ⇔ ∥θ∗∥2Σ1−t <∞

⇔
p∑
k=1

(θ∗)2λ1−tk <∞

⇔
p∑
k=1

k−2rk(1−t)(−1−a) <∞

⇔
p∑
k=1

k−1−a+t+ta−2r <∞

⇔ −1− a+ t+ ta− 2r < −1

⇔ t <
2r + a

1 + a
.

Suppose λk = Θk
(
e−ak

)
, |θ∗k| = Θk

(
e−rk

)
for a, r > 0. Then we can choose s to be 2r

a + 1:

θ∗ ∈ Ht ⇔ ∥θ∗∥2Σ1−t <∞

⇔
p∑
k=1

(θ∗)2λ1−tk <∞

⇔
p∑
k=1

e−2rk(e−ak)1−t <∞

⇔
p∑
k=1

e−k(2r+a−at) <∞

⇔ 2r + a− at > 0

⇔ t <
2r

a
+ 1.

A.6 Kernel ridge regression

KRR can be regarded as ridge regression on the feature space, where the positive definite symmetric
(PDS) kernelK sends each input x ∈ X to a vector/functionK(x, ·) in the corresponding reproducing
kernel Hilbert space (RKHS) H, and the kernel regressor is simply a linear regressor in the RKHS H.
Here we briefly explain how to translate the notations above in the kernel ridge regression (KRR)
setting.

With abuse of notation, let µ be a (data-generating) distribution on an input space X . Let K :
X × X → R be a positive definite symmetric kernel with corresponding reproducing kernel Hilbert
space (RKHS) H. By Mercer decomposition, we have for all x, x′ ∈ supp(µ) ⊂ X :

K(x, x′) =

p∑
k=1

λkψk(x)ψk(x
′),

where λk’s are the eigenvalues ofK indexed in decreasing order andψk : X → R’s are eigenfunctions
of K forming an orthonormal basis on L2

µ(X ): Ex∼µ [ψk(x)ψl(x)] = δkl for all k, l ∈ N. Hence for
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each x ∈ supp(µ) ⊂ X , K(x, ·) is a feature vector in the RKHS H, which has an orthonormal basis{
ϕk = 1√

λk
ψk

}p
k=1

.

Let y = f∗(x) + ϵ be the labels where f∗ ∈ L2
µ(X ) and ϵ is a centered random variable with finite

variance independent to x. Let (xi, yi)ni=1 be a set of i.i.d. drawn input-output pairs. The kernel ridge
regression is in the form:

f̂
def.
= min

f∈H

1

n

n∑
i=1

(f(xi)− yi)
2 + λ ∥f∥2H .

which minimum admits the form:

f̂(x) = K⊤
x (K+ nλIn)

−1y, ∀x ∈ X ,

where Kx = (K(x, xi))
n
i=1 ∈ Rn, K = [K(xi, xj)]

n
i,j=1 ∈ Rn×n and y = (yi)

n
i=1. Note that if

we write ψx = (ψk(x))
p
k=1 ∈ Rp, Ψ = [ψk(xi)]ik ∈ Rn×p and Λ = diag{λk}pk=1 ∈ Rp×p, by

Mercer decomposition, we have Kx = ΨΛψx, K = ΨΛΨ⊤. We are ready to translate our linear
ridge regression to the KRR setting. See Table 5 for details.
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B Smoothness and spectral decay rate

In this section, we will explain the reason to assume the eigen-decay to be either polynomial or
exponential in the paper.

Concretely, the "polynomial decay regime" arises as the Neural Tangent Kernel (NTK) limit of Multi-
Layer Perceptrons (MLPs) with an activation function of the form σs(t)

def.
= max 0, ts, where s ≥ 1,

as studied in [4]. In cases where s is an integer, σs represents the (s− 1)-th iterated anti-derivative of
the ReLU function, making it exactly s times weakly differentiable.

Suppose X is the d-dimensional sphere Sd def.
= {u ∈ Rd : |u| = 1} (with its usual Riemannian metric).

In this scenario, every neural network function f : Sd → R belongs to the Sobolev space Hs(Sd)
(see Proposition B.7 in Appendix B.2), characterized by having s continuous and integrable (weak)
partial derivatives on Sd. Additionally, the NTK limit manifests as a "radially symmetric kernel",
specifically of the form k(x, y) = κ(x⊤y) for some suitable function κ : [−1, 1] → R.

It is worth noting that the choice of the smoothness level, and hence the decay rate, naturally emerges
when approximately solving Partial Differential Equations (PDEs), as demonstrated in works such
as [26, 15]. In these scenarios, it is desired that the kernel regressor exhibits the correct level of
smoothness matching that of the theoretical solution to the PDE, with its higher-order derivatives
also converging. It is emphasized that the solution to several PDEs only possesses finitely many
derivatives, as seen in (viscosity) solutions to PDEs arising in stochastic control [37, 38].

In the remainder of this section, we justify the use of Assumptions (PE) and (EE) by establishing a
connection between the spectral eigen-decay and the smoothness of the Reproducing Kernel Hilbert
Space (RKHS), which is independent of the rest of the paper. Readers primarily interested in the
proofs presented in Table 1 may opt to skip this section and proceed to Section C during their initial
reading.

B.1 Notations

Fix a positive integer d ∈ N and let X be a non-empty subset of Rd. We equip X with a regular Borel
probability measure µ, which we specify shortly. We denote the space of (equivalence classes of)
µ-square-integrable on Rd by L2

µ(Rd), equipped with its usual L2
µ-norm ∥ · ∥L2

µ
.

Consider a kernel κ : X × X → R with its associated to the RKHS (H, ⟨·, ·⟩κ) (abbreviated by
H). We denote the induced norm on H by ∥ · ∥κ. By the Mercer decomposition theorem, see [40,
Theorem 2.30], there is some M ∈ N ∪ {∞} such that we may write

κ(x, y) =

M∑
i=0

λi ψi(x)ψi(y) (8)

where (ψi)
M
i=0 are normalized eigenfunctions of the linear operator Tκ(f)(x) =∫

x∈X κ(x, u)f(u) du on L2
µ(X ) and each eigenvalue (λi)

∞
i=0 is non-negative; which, form

an orthonormal basis of H.

We motivate our analysis, by the following connection between the spectral decay of dot-product
kernels on spheres and the smoothness of functions in their RKHS.
Example B.1 (Radial Kernels and Sobolev Spaces on Spheres). In the setting of Examples B.3
and (B.5), suppose that there is a function k : [−1, 1] → R such that

κ(x, y)
def.
= k(⟨x, y⟩) (9)

for each x, y ∈ Sd. As shown in [41], κ is a kernel if and only if there is a summable sequence of
non-negative real numbers (αi)∞i=0 satisfying k(t) =

∑∞
i=0 αi t

i for each t ∈ [−1, 1]. Kernels of the
form (9) are called radial. The RKHS H associated to κ consists of all functions f : Sd → R with

f =

∞∑
j=0

√
µj

Ij∑
i=1

αj,i ψ̄j,i (10)

for a square-summable real sequence (αj,i)
∞,Ji
j,i=1; i.e.

∑∞
i=0

∑Ji
j=1 α

2
j,i < ∞ (where (αi,j)

∞,Ji
i,j=1

depends only on the radial function k, and thus only on the radial kernel κ; and (ψ̄j,i)
∞,Ji
j,i=1 are the
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spherical harmonics described in Example B.3. As discussed in [24, Chapter 4], for any k > 0
u ∈ H belongs to the Sobolev space Hk

0 (Sd) if and only if: for each f ∈ H the coefficients (µj)∞j=0
in the representation (10) satisfy

µj ∈ Θ((j + 1)−2s).

As discussed in [22, Lemma B.1] in this case the norms of H and on Hs(Sd) are equivalent9.

B.2 Preliminaries: regular domains and Sobolev spaces

We consider the case where X is a sufficiently regular open subset of the d-dimensional Euclidean
space so that we may comfortably describe the smoothness of functions on X using classical notions
of tools. We therefore assume the following.
Assumption (DR) (Domain Regularity). Either one of the following holds:

(i) Compact manifold: (X , g) is a d-dimensional compact Riemannian manifold, with d ≥ 2,
and µ = Vg(X )−1 Vg is the uniform law on (X , g) and Vg is its volume measure,

(ii) Bounded Euclidean domain: X is a non-empty bounded open domain in Rd with Lipschitz
boundary and µ is the normalized Lebesgue measure.

In cases (i)-(ii), X can be viewed as a Riemannian manifold (possibly with boundary).

In what follows, we let ∆ denote either of the following Laplacian, depending on which of assump-
tion (DR) we have assumed. If (i) or (ii) holds then ∆ will denote the usual Laplacian-Beltrami
operator on X , note that when (iii) holds then ∆ =

∑d
i=1

∂2

∂x2
i

. We denote the eigenfunctions of ∆

by (ψ̄i)i∈N whose respective eigenvalues λ1 ≤ λ2 ≤ . . . are arranged in a non-decreasing order. If
(iii) holds, then ∆ will denote the Dirichlet Laplacian (see [11, Section 6.1.2]) on X (with its usual
Euclidean Riemannian metric) which acts on the spaces of functions vanishing on the boundary ∂X
of X ; namely on the homogeneous Sobolev space H1

0 (X ).

Example B.2. Under assumption (i), the eigenfunctions of ∆ are the Hermite polynomials on L2
µ(Rd)

ψ̄i(x) = (−1)i ex
2/2 ∂i

∂xi
(e−x

2/2) for each i ∈ N+.

For concreteness, the size, in L1
µ-norm, of the Hermite polynomials is computed in [28, Theorem 2.1]

where it it shown that ∥ψ̄i∥L1
µ
≲ (i!)1/2

i1/2 (1 +O(1/i)).

Example B.3. Suppose that X is the d-dimensional sphere Sd def.
= {x ∈ Rd+1 : ∥x∥2 = 1}

equipped with the (usual) Riemannian metric induced by inclusion into the d + 1-dimensional
Euclidean space Rd+1. Let µ be the normalized (uniform) Riemannian (volume) measure on Rd.
Then, (ψ̄i,j(x))

∞,Ji
i=1,j=1 are an orthogonrmal basis of L2

µ consisting of spherical Harmonics (counting
multiplicities Ji ∈ N+ for each eigenvalue i ∈ N+); that is the restriction of a homogeneous
polynomial f : Rd+1 → R satisfying ∆f = 0 to there sphere Sd. Spherical harmonics are not
very large (in uniform norm) [17, Theorem 1.6] and one can show that ∥ψ̄i,j∥ ≲ λ

(d−1)/4
i , for each

i ∈ N+. See [2, Chapter 2] for further details on spherical harmonics.

B.2.1 Sobolev spaces on Riemannian manifolds

Let (X , g) be a compact (smooth) Riemannian manifold, possibly with a boundary ∂X . For any
k ∈ N+, we define C2

k(M) be the set of smooth functions f on X satisfying∫
M

|∇if |2g dµ <∞︸ ︷︷ ︸
Square-Integrable Partial Derivatives

and f(x) = 0 (∀x ∈ ∂X )︸ ︷︷ ︸
Homogeneous Boundary Conditions

(11)

where µ is the Riemannian volume measure on (X , g), ∇ is the covariant derivative thereon. Then,
the Sobolev space Hk

0 (X , g) is the Hilbert space obtained as the completion of Cpk(X ) with respect

9Meaning that, there exist constants 0 < c ≤ C such that: for each u ∈ Hs(Sd) we have c∥u∥H ≤
∥ · ∥Hs(Sd) ≤ C∥ · ∥H.
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to the norm

∥f∥Hk(X )
def.
=

k∑
i=1

∥∇if∥L2
µ
.

Remark B.4 (The Sobolev Spaces Hk
0 (X , g) and Hk(X , g)). Observe that when X is a compact

Riemannian manifold without boundary, i.e. when ∂X = ∅; then the condition f(x) = 0 for all x
in the boundary set ∂X holds vacuously. In this case, this condition can be ignored, and the spaces
Hk

0 (X , g) coincide with the usual Sobolev spaces Hk(X , g) for Riemannian manifolds without
boundary; where Hk(X , g) is defined much the same way as Hk

0 (X , g) but without requiring the
homogeneous boundary condition in (11).

A more convenient expression for the norm of Sobolev spaces on spheres can be arrived at by
manipulating the definition of the Laplacian. We summarize this norm in the next example.

Example B.5 (Sobolev spaces on spheres). Fix k ∈ N+. Following the discussion on [2, page
120-121], the f ∈ Hk

0 (Sd, g) if and only if the following norm

∥f∥2k
def.
=

∞∑
j=0

Ji∑
i=1

(j + cd)
2k︸ ︷︷ ︸

spectral decay

∣∣∣∣∣
∫
x∈Sd

f(x)ψ̄i,j(x)µ(dx)

∣∣∣∣∣
2

︸ ︷︷ ︸
projection onto (j, i)th spherical harmonic

(12)

is finite; where cd
def.
= (d− 2)/2. That is, the norms ∥ · ∥k and ∥ · ∥Hk(X ) are equivalent.

The key takeaway of Example B.5, is that the smoothness of a function on there sphere (Sd, g), i.e.
the largest k for which f ∈ Hk

0 (Sd, g), can be expressed in terms of the decay rate of its projection
onto the basis of spherical harmonics. Indeed, this expression (12) implies that f ∈ Hk

0 (Sd, g) only
if
∣∣ ∫
x∈Sd f(x)ψ̄i,j(x)µ(dx)

∣∣2 ∈ O
(
(j + cd)

−2k−ϵ) for all ε > 0.

This observation was used in [24, Chapter 4] and circa [22, Lemma B.1] to characterize the
smoothness of functions in the RKHS associated to certain radial kernels, e.g. certain NTK limits.
We now generalize this argument, and use it to relate the spectral decay rate of a kernel to the
smoothnes/regularity of the functions in its associated RKHS.

B.3 Standardization operator

We require that the L2
µ(X ) norm of the eigenfunctions are non-vanishing and non-exploding.

Assumption (ND) (Non-degenerate L2-Norm). Suppose that:

(i) Non-vanishing: 0 < infi∈[M ] ∥ψ̄i∥L2
µ(X ),

(ii) Non-exploding: supi∈[M ] ∥ψ̄i∥L2
µ(X ) <∞.

Again, if (ψ̄i)∞i=0 is orthonormal then (i) and (ii) necessarily hold and this is a non-assumption.

To generalize the discussion in Example B.1, we first define the linear standardization operator

A : H → L2
µ(X )

f =

M∑
i=0

⟨f, ψi⟩κψi 7→
M∑
i=0

⟨f, ψi⟩κ ∥ψi∥κ
∥ψ̄i∥L2

µ(X )

ψ̄i.
(13)

Example B.6 (Standardization Is Inclusion for Radial Kernels on Spheres). In the setting of Exam-
ple B.1, we have that (up to reordering) ψi,j = ψ̄i,j . Since, in that case, for k large enough on has
H = Hk

0 (Sd, g) then A is simply the inclusion operator of Hk
0 (Sd, g) into L2

µ(Sd).

In what follows, when we assume Assumption (DR) (iii), we will use C∞(X ) to denote the set of
smooth functions on the closure X of X in the norm topology on Rd. Under Assumption (DR) (i)-(ii),
we use C∞(X ) to denote C∞(X ); that is, the set of smooth functions on the smooth manifold X .
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Proposition B.7 (Identification: Spectral Decay and Standardized Regularity). Suppose that Assump-
tion (DR) holds and that (ψi)Mi=0 are orthonormal in H.

Then, the linear operatorA, defined in (13), is an isometric embedding whenM ≤ ∞ (resp. isometric
isomorphism when M = ∞). Moreover, it characterizes the “regularity” of functions in H via:

1. Sub-Exponential Decay: If κ has infinite-rank (M = ∞) and there exists an r > 0 such
that |⟨f, ψi⟩κ| ≲ i−r and inf

ε>0
lim
i→∞

|⟨f, ψi⟩κ| i−r+ε = ∞ then

A(f) ∈ H
(1+r)d

2
0 (X ) \

⋂
ε>0

H
(1+r)d

2 +ε
0 (X )︸ ︷︷ ︸

Sobolev Space Characterization

and A(f) ∈
⋂

rd/2>k

Ck(X )

︸ ︷︷ ︸
Ck−Space Description

.

2. Exponential Decay: If κ has infinite-rank (M = ∞) and there exists some r > 0 such that
|⟨f, ψi⟩κ| ≲ e−r i, then

A(f) ∈ C∞(X ).

3. Finite-Rank:

(ii) If Assumption (DR) (ii) holds then: κ has finite rank (M <∞) then A(f) is smooth.
(iii) If Assumption (DR) (iii) holds then: κ has finite rank (M < ∞) then A(f) is real-

analytic.

A direct corollary of the first statement in Proposition B.7 guarantees that A preserves convergence.
Consequentially, any finite-rank truncation or any sequence of learners converging to a limiting
function in the RKHS do so if and only if their standardized versions do; moreover, both sequences
converge at the same speed due to A being an isometric embedding.
Corollary B.8 (Preservation of Convergence Rates). If (fN )N∈N is a sequence in H converging to
some f ∈ H then: for each N ∈ N on has ∥fN − f∥κ = ∥A(fN )−A(f)∥L2

µ(Rd).

We now are now prepared to prove Proposition B.7.

Proof of Proposition B.7. We first show that A is a linear isometric embedding (resp. linear iso-
morphism). This allows us to relay the spectral decay rate of any function f in H to that of its
“standardization” A(f) in L2

µ(X ). We then use this identification, together with results from spectral
theory (see [11] for references) to obtain our conclusion.
Step 1 - A is a Linear Isometric Embedding (Resp. Linear Isomorphism):
Observe that A admits a linear left-inverse given by

B : L2
µ(X ) → H

f =

∞∑
i=0

⟨f, ψ̄i⟩L2
µ(X ) ψ̄i 7→

M∑
i=0

⟨f, ψi⟩L2
µ(X ) ∥ψ̄i∥L2

µ(X ) ψi.

In particular, A is a linear isomorphism if and only if M = ∞; since otherwise B is not a two-sided
(linear) inverse. Furthermore, A is an isometric embedding (resp. isometric isomorphism when
M = ∞) since due to the following. For each f ∈ H we have that

∥A(f)∥2L2
µ(X ) =

M∑
i=0

|⟨f, ψi⟩κ|2 ∥ψi∥2κ
∥ψ̄i∥2L2

µ(X )

∥ψ̄i∥2L2
µ(X ) (14)

=

M∑
i=0

|⟨f, ψi⟩κ|2 · 1
∥ψ̄i∥2L2

µ(X )

∥ψ̄i∥2L2
µ(X ) (15)

=

M∑
i=0

|⟨f, ψi⟩κ|2

∥ψ̄i∥2L2
µ(X )

∥ψ̄i∥2L2
µ(X )

=

M∑
i=0

|⟨f, ψi⟩κ|2 1
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=

M∑
i=0

|⟨f, ψi⟩κ|2 ∥ψi∥2κ (16)

=∥f∥2κ, (17)

where (14) and (16) held by virtue of (ψi)Mi=0 being an orthonormal basis of H. From (14)- (17) we
conclude that for each f ∈ H we have ∥A(f)∥L2

µ(X ) = ∥f∥κ. Thus, A is an isometric embedding.

Finite Rank Kernel:
Suppose that M <∞. We consider two cases in Assumption (DR) separately.

Under Assumption (DR) (ii), [11, Corollary 9.28] guarantees that each ψ̄0, . . . , ψ̄M is smooth. Since
any finite sum of real analytic functions is again smooth then, in this case, A(f) is smooth.

Under Assumption (DR) (iii), [11, Theorem 6.8] each ψ̄0, . . . , ψ̄M is real-analytic. Since any finite
sum of real analytic functions is again real-analytic then A(f) is real-analytic.

Infinite-Finite Rank Kernel:
Suppose that M = ∞ and fix s > 0. By definition of (ψi)∞i=0 and of the Sobolev space Hs(X ) we
have that: for each f ∈ L2

µ(X )

∥f∥2Hs(X ) =

∞∑
i=0

|⟨f, ψ̄i⟩L2
µ(X )|2 ⟨(1−∆)sψ̄i, ψ̄i⟩L2

µ(X )

=

∞∑
i=0

|⟨f, ψ̄i⟩L2
µ(X )|2(1− λ̄i)

s.

(18)

Since f ∈ L2
µ(X ) if and only if ∥f∥Hs(X ) is well-defined and finite. Consequentially, the elements

of the Sobolev space Hs(X ) are characterized by the summability of the right-hand side of (18).
That is, for each f ∈ L2

µ(X ) one has

f ∈ Hs(X ) ⇔
∞∑
i=0

|⟨f, ψ̄i⟩L2
µ(X )|2(1− λ̄i)

s <∞. (19)

By Assumption (ND), both 0 < C
def.
= infi∈[M ] ∥ψ̄i∥L2

µ(X ) and C̄ def.
= supi∈[M ] ∥ψ̄i∥L2

µ(X ) <∞ are
well-defined, non-negative real numbers. Therefore, for every i ∈ N

0 <
|⟨f, ψi⟩κ|2

C̄
≤ |⟨f, ψi⟩κ|2

∥ψ̄i∥L2
µ(X )

≤ |⟨f, ψi⟩κ|2

C
<∞. (20)

From (20) we deduce that: for each f ∈ L2
µ(X ) and every s > 0

1

C

∞∑
i=0

|⟨f, ψi⟩κ|2 (1− λ̄i)
s ≤

∞∑
i=0

|⟨f, ψi⟩κ|2

∥ψ̄i∥L2
µ(X )

(1− λ̄i)
s ≤ 1

C

∞∑
i=0

|⟨f, ψi⟩κ|2 (1− λ̄i)
s.

Consequentially, (18) implies that

A(f) ∈ Hs(X ) ⇔
∞∑
i=0

|⟨f, ψi⟩κ|2 (1− λ̄i)
s <∞. (21)

Step 2 - Asymptotics of Laplacian Eigenspectrum Under Assumption (DR) (ii), Weyl’s law for
compact Riemannian manifolds (see e.g. [11, Corollary 9.35]) implies that there are dimensional
(depending on d, X , and on g) constants 0 < CgW :1 ≤ CgW :2 <∞ such that: for each i ∈ N

0 < CgW :1

(
i

vd Vg(X )

)2/d

≤ λ̄i ≤ CgW :2

(
i

vd Vg(X )

)2/d

<∞, (22)

where vd
def.
= V ({x ∈ Rd : ∥x∥2 ≤ 1}) = πd/2

Γ(1+d/2) and where V is the d-dimensional Lebesgue
measure on Rd.
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Under Assumption (DR) (iii), Weyl’s law (see e.g. [11, Theorem 6.27]) implies that: there are
dimensional (depending on d and on X ) constants 0 < C̃W :1 ≤ C̃W :2 <∞ such that: for each i ∈ N

0 < C̃W :1

(
i

vd V (X )

)2/d

≤ λ̄i ≤ C̃W :2

(
i

vd V (X )

)2/d

<∞. (23)

With some abuse of notation, for i = 1, 2, we write CW :i for CgW :i or C̃W :i depending on which
of Assumptions (DR) (ii) or (iii) are being used. We therefore, wild a mild abuse of notation, we
collect (22) and (23) into the following single expression:

0 < C̃W :1

(
c i

1

vd V (X )

)2/d
≤ λ̄i ≤ C̃W :2

(
c i
)2/d

<∞, (24)

where the constant c > 0 is defined by

c
def.
=

{
πd/2

Γ(1+d/2)Vg(X ) : if Assumptions (DR) (ii) holds
πd/2

Γ(1+d/2)V (X ) : if Assumptions (DR) (iii) holds
.

Combining (21) with (24), we find that

A(f) ∈ Hs(X ) ⇔
∞∑
i=0

|⟨f, ψi⟩κ|2 (c i)2s/d <∞. (25)

Pulling out the common c2s/d factor in all summands on the right-hand side of (25) we find that: for
any s > 0 any f ∈ L2

µ(X ) belongs to Hs(X ) if and only if

A(f) ∈ Hs(X ) ⇔
∞∑
i=0

|⟨f, ψi⟩κ|2 i2s/d <∞. (26)

1. Sub-Exponential Decay: Suppose that there exists an r > 0 such that |⟨f, ψi⟩κ| ≲ i−r and
for every ε > 0 we have lim

i→∞
|⟨f, ψi⟩κ| i−r+ε = ∞ then (26) implies that

A(f) ∈ H
(1+r)d

2
0 (X ) \

⋂
ε>0

H
(1+r)d

2 +ε
0 (X ).

If Assumption (DR) (ii) or (iii) holds the Sobolev embedding theorem for Riemannian
manifolds with boundary, as formulated in [11, Theorem 9.26], implies that Hsr

0 (X ) ⊆
Ckr (X ) where sr − d/2 > kr for some kr ≥ 0 to be determined shortly; where for us
sr

def.
= (1 + r)d/2. Therefore, dr/2 > kr. Consequentially, for each f ∈ H we have that

A(f) ∈
⋂

rd/2>k

Ck(X ).

2. Exponential Decay: Suppose that there exists some r > 0 such that |⟨f, ψi⟩κ| ≲ e−r i.
Then, then (26) implies that A(f) ∈ ∩s>0H

s
0(X ). By the Sobolev Embedding Theorem, in

the bounded case ([11, Theorem 9.2.6])

A(f) ∈ C∞(X ).
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C Master inequalities

In this section, we will present and proof the Master inequalities, which is crucial in our argument.

Our approach bounds each term in the bias-variance decomposition in line (5):

R = Eϵ

[
∥θ̂(Xθ∗ + ϵ)− θ∗∥2Σ

]
= B + V,

under minimal assumptions.

C.1 More notations

We first introduce some more notations. We define the empirical covariance matrix:

Σ̂
def.
=

1

n
X⊤X =

1

n

n∑
i=1

xix
⊤
i ∈ Rp×p,

and denote by
z

def.
= Σ−1/2x ∈ Rp

the whitened/isotropic feature vector where Eµ
[
zz⊤

]
= Ip ∈ Rp×p. Denote the whitened input

matrix by Z
def.
= XΣ−1/2 ∈ Rn×p, then the rows of Z are isotropic centered i.i.d. random vectors.

We introduce the notation of a generalized vector norm, which will be frequently used in this paper:

Definition C.1 (Generalized vector norm). We denote ∥v∥M
def.
=

√
v⊤Mv for any positive definite

matrix M and vector v.
Remark C.2 (Examples). Let v ∈ Rp and we have ∥v∥22 = v⊤Ipv = ∥v∥2Ip , where Ip is the identity
matrix. Another example is that the euclidean norm of x equals to the Σ-norm of its whitened
counterpart z:

∥x∥22 = x⊤x = z⊤Σz = ∥z∥2Σ .
Furthermore, if M1 ≼ M2, we have ∥v∥M1

≤ ∥v∥M2
. In particular, since Σ ≼ λ1Ip, we have

∥v∥Σ ≤
√
λ1 ∥v∥2 .

Lastly, it is convenient to write the expected values in a generalized vector norm: fix a distribution µ,
an input block X ∈ Rn×p, where its rows are drawn i.i.d. by µ, and denote by µ̂ = 1

n

∑n
i=1 δxi the

empirical distribution of µ, then for any v ∈ Rp, we have

Ex∼µ
[
(x⊤v)2

]
= ∥v∥2Σ ; Ex∼µ̂

[
(x⊤v)2

]
= ∥v∥2Σ̂ .

Definition C.3 (Truncated Terms). For any vector v ∈ RM , write v = v≤k ⊕ v>k ∈ Rk ⊕

RM−k. For any square matrix M ∈ RM×M , write M =

(
M≤k ∗
∗ M>k

)
with M≤k ∈ Rk×k

and M>k ∈ R(M−k)×(M−k). Analogously, for any non-square matrix M ∈ RN×M , we write
M = M≤k ⊕M>k ∈ RN×k ⊕ RN×(M−k). Also write M−k

def.
= M≤k−1 ⊕M>k ∈ RN×(M−1)

and Ml:j = [Mi,k]
j
k=l+1 ∈ RN×(j−l).

Denote A
def.
= XX⊤ + nλIn ∈ Rn×n. For any k ∈ N, denote

Ak = X>kX
⊤
>k + nλIn ∈ Rn×n.

The symmetric matrix Ak plays an important role in the analysis. Intuitively, when k is chosen
appropriately, Ak is approximately equal to a scaled identity, with spectrum bounded by some
constants from below and from above.

We introduce a few more definitions that have been used in the previous literature.
Definition C.4 (Effective ranks [6]). Let k ∈ N. Define two quantities:

rk
def.
=

Tr[Σ>k]

∥Σ>k∥op
=

∑p
l=k+1 λl

λk+1
, Rk

def.
=

Tr[Σ>k]
2

Tr[Σ2
>k]

=

(∑p
l=k+1 λl

)2∑p
l=k+1 λ

2
l

.

Note that we have rk ≤ Rk ≤ r2k. 10

10See [6] for details.
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Definition C.5 (Concentration coefficients [7]). Define the quantities: 11

ρn,k
def.
=
n ∥Σ>k∥op + s1(Ak)

sn(Ak)
; ζn,k

def.
=
s1(Z

⊤
≤kZ≤k)

sk(Z⊤
≤kZ≤k)

; ξn,k
def.
=
s1(Z

⊤
≤kZ≤k)

n
.

where si(·) denotes the i-th largest singular value of the matrix.

To enhance readability, we will omit the subscript ·n,k when the context is clear. The intuition of the
concentration coefficients is that for fixed k ∈ N and n large enough, ζ and ξ concentrate around
some constants; when k is smaller but scales with n, ρ converges to a constant, as it essentially
represents the condition number of Ak. As mentioned earlier, the spectrum of Ak is bounded.
Therefore, selecting an appropriate k ensures that all three concentration coefficients converge to
certain constants.

C.2 Statements and proofs

Now we are ready to present the Master inequalities, which are proved in [46, 7]:
Proposition C.6 (Master inequality for B, [46, 7]). Let k ∈ N be an integer. For any δ ∈ (0, 1), with
probability at least 1− δ,

B ≤
(
1 + ρ2ζ2ξ−1 + ρ

δ

)
∥θ∗>k∥2Σ>k

+ (ζ2ξ−2 + ρζ2ξ−1)
s1(Ak)

2

n2
∥∥θ∗≤k∥∥2Σ−1

≤k

.

Proof. We begin by bounding the terms that appear in Lemma H.8: plug in Definition C.5 of ρ, ζ, ξ,
since
s1(A

−1
k )2

sn(A
−1
k )2

s1(Z
⊤
≤kZ≤k)

sk(Z⊤
≤kZ≤k)2

=
s1(Ak)

2

sn(Ak)2
s1(Z

⊤
≤kZ≤k)

2

sk(Z⊤
≤kZ≤k)2

n

s1(Z⊤
≤kZ≤k)

1

n
≤ ρ2ζ2ξ−1 · 1

n

1

sn(A
−1
k )2sk(Z⊤

≤kZ≤k)2
=

s1(Ak)
2

sk(Z⊤
≤kZ≤k)2

=
s1(Ak)

2

n2
s1(Z

⊤
≤kZ≤k)

2

sk(Z⊤
≤kZ≤k)2

n2

s1(Z⊤
≤kZ≤k)2

=
s1(Ak)

2

n2
· ζ2ξ−2

∥Σ>k∥op s1(A
−1
k ) =

∥Σ>k∥op

sn(Ak)
=
n ∥Σ>k∥op

sn(Ak)

1

n
≤ ρ · 1

n

∥Σ>k∥op
s1(A

−1
k )

sn(A
−1
k )2

s1(Z
⊤
≤kZ≤k)

sk(Z⊤
≤kZ≤k)2

=
n ∥Σ>k∥op

sn(Ak)

s1(Ak)
2

n2
s1(Z

⊤
≤kZ≤k)

2

sk(Z⊤
≤kZ≤k)2

n

s1(Z⊤
≤kZ≤k)

≤ ρζ2ξ−1 s1(Ak)
2

n2
,

we have

B ≤ ∥θ∗>k∥2Σ>k
+ ρ2ζ2ξ−1

∥∥X>kθ
∗
>k

∥∥2
2

n

+ ζ2ξ−2 s1(Ak)
2

n2
∥∥θ∗≤k∥∥2Σ−1

≤k

+ ρ

∥∥X>kθ
∗
>k

∥∥2
2

n

+ ρζ2ξ−1 s1(Ak)
2

n2
∥∥θ∗≤k∥∥2Σ−1

≤k

.

(27)

We regroup the terms into:

B ≤ ∥θ∗>k∥2Σ>k
+ (ρ2ζ2ξ−1 + ρ)

∥∥X>kθ
∗
>k

∥∥2
2

n
+ (ζ2ξ−2 + ρζ2ξ−1)

s1(Ak)
2

n2
∥∥θ∗≤k∥∥2Σ−1

≤k

. (28)

By Lemma G.6, we can further simplify the expression into a high probability bound: for any
δ ∈ (0, 1), with a probability at least 1− δ, it holds that

B ≤
(
1 +

ρ2ζ2ξ−1 + ρ

δ

)
∥θ∗>k∥2Σ>k

+ (ζ2ξ−2 + ρζ2ξ−1)
s1(Ak)

2

n2
∥∥θ∗≤k∥∥2Σ−1

≤k

. (29)

Note that 1/δ > 1 and we obtain the result.

11Alternatively, one can define a smaller ρn,k
def.
=

max{n∥Σ>k∥op
,s1(Ak)}

sn(Ak)
≤

n∥Σ>k∥op
+s1(Ak)

sn(Ak)
. If s1(Ak) =

Θ(nλk) = Θ(n ∥Σ>k∥op), the two definitions differs only by a constant.
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Proposition C.7 (Master inequality for V , [46, 7]). Let k ∈ N be an integer. Then the variance is
bounded by:

V/σ2 ≤ ρ2
(
ζ2ξ−1 k

n
+

Tr[Z>kΣ
2
>kZ

⊤
>k]

nTr[Σ2
>k]

rk(Σ)2

nRk(Σ)

)
,

where σ2 def.
= E

[
ϵ2
]
≥ 0 is the noise level.

Proof. We start from Lemma H.9:

V/σ2 ≤
s1(A

−1
k )2 Tr[X≤kΣ

−1
≤kX

⊤
≤k]

sn(A
−1
k )2sk(Σ

−1/2
≤k X⊤

≤kX≤kΣ
−1/2
≤k )2

+ s1(A
−1
k )2 Tr[X>kΣ>kX

⊤
>k]

=
s1(Ak)

2

sn(Ak)2
Tr[Z≤kZ

⊤
≤k]

sk(Z⊤
≤kZ≤k)2

+
n2 ∥Σ>k∥2op

sn(Ak)2
Tr[X>kΣ>kX

⊤
>k]

n2 ∥Σ>k∥2op

≤ ρ2

(
Tr[Z≤kZ

⊤
≤k]

sk(Z⊤
≤kZ≤k)2

+
Tr[X>kΣ>kX

⊤
>k]

n2 ∥Σ>k∥2op

)

≤ ρ2

(
ks1(Z

⊤
≤kZ≤k)

sk(Z⊤
≤kZ≤k)2

+
Tr[X>kΣ>kX

⊤
>k]

nTr[Σ2
>k]

Tr[Σ>k]
2

n ∥Σ>k∥2op

Tr[Σ2
>k]

Tr[Σ>k]2

)

≤ ρ2
(
ζ2ξ−1 k

n
+

Tr[X>kΣ>kX
⊤
>k]

nTr[Σ2
>k]

rk(Σ)2

nRk(Σ)

)
= ρ2

(
ζ2ξ−1 k

n
+

Tr[Z>kΣ
2
>kZ

⊤
>k]

nTr[Σ2
>k]

rk(Σ)2

nRk(Σ)

)

where ξn,k
def.
=

s1(Z
⊤
≤kZ≤k)

n , ζn,k
def.
=

s1(Z
⊤
≤kZ≤k)

sk(Z⊤
≤k

Z≤k)
, ρn,k

def.
=

n∥Σ>k∥op+s1(Ak)

sn(Ak)
, rk

def.
= Tr[Σ>k]

∥Σ>k∥op
, Rk

def.
=

Tr[Σ>k]
2

Tr[Σ2
>k]

.

C.3 Sanity check

Recall that B def.
= ∥θ̂(Xθ∗)− θ∗∥2Σ. Let k ∈ N be an integer. For any δ ∈ (0, 1), with probability at

least 1− δ, we have

B ≤
(
1 + ρ2ζ2ξ−1 + ρ

δ

)
︸ ︷︷ ︸

constant

target’s tail︷ ︸︸ ︷
∥θ∗>k∥2Σ>k

+(ζ2ξ−2 + ρζ2ξ−1)︸ ︷︷ ︸
constant

≈(λk+λ)
2︷ ︸︸ ︷

s1(Ak)
2

n2
∥∥θ∗≤k∥∥2Σ−1

≤k︸ ︷︷ ︸
target’s head

. (30)

We see that:

1. the regressor barely learns the tail of the target (the eigenfunctions with small eigenvalues),
thus the first term ∥θ∗>k∥2Σ>k

in the upper bound is just a multiple of the Σ-norm square (or
L2
µ-norm square in KRR setting) of the target’s tail;

2. the second term indicates that the regressor learns well if the ridge λ is small, showing the
trad-off between (noiseless) interpolation and regularization;

3. the term
∥∥θ∗≤k∥∥2Σ−1

≤k

corresponds to norm square of the target’s head in the interpolation

space H2. This term will explain the so-called saturation effect reported in [29] where
the bias ceases to improve once the source coefficient s in Assumption (SC) surpasses 2.
Consequently, the bias term B bound in Table 1 is closely related to the constant min s, 2.
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[46, 7] also derived a non-asymptotic bound of V . Recall that V def.
= Eϵ

[
∥θ̂(ϵ)∥2Σ

]
. Let k ∈ N be an

integer. Then

V ≤ σ2︸︷︷︸
noise level

ρ2

ζ2ξ−1︸ ︷︷ ︸
constant

k

n
+

Tr[Z>kΣ
2
>kZ

⊤
>k]

nTr[Σ2
>k]

rk(Σ)2

nRk(Σ)︸ ︷︷ ︸
=O( k

n )

 . (31)

We see that:

1. the upper bound is proportional to noise level σ2 = E
[
ϵ2
]
≥ 0;

2. we will show later that for n large enough, the second term is approximately k
n , hence the

decay rate of V is at most On,k

(
n−1

)
.

The derivation of Eq (30) and (31), which we refer to as the Master inequalities in this paper, is
purely algebraic, and the statement holds regardless of the assumptions on the eigen-decay and the
features. One can optimally choose the integer k ∈ N to achieve a tight upper bound, as we will
demonstrate later in this paper. Surprisingly, the Master inequalities alone are sufficient to establish
tight bounds for most cases under various settings.
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D Over-parameterized regime

In this section, we provide the proof for the upper bounds presented in Table 1. For all the statements
in this section, the big O notation Õ (·) can be replaced by O (·) if a+ 2 ̸= 2r.

A brief summary of the propositions can be found in Table 3.

Ridge strong weak
Feature (IF) (GF) (IF) (GF)

Poly (PE) B Proposition D.2 Proposition D.6 Proposition D.5+D.6
V Proposition D.7 Proposition D.8

Exp (EE) B Proposition D.3 Proposition D.5
V Proposition D.9 -

Table 3: Brief summary of propositions derived in Section D used for proving the upper bounds on
Table 1.

D.1 Bias under strong ridge

Proposition D.1 (Asymptotic upper bound of the bias term with polynomial decay). Suppose:
λk = Θk

(
k−1−a), |θ∗k| = Ok (k

−r) and λ = Θk
(
k−b
)

for some a, b, r > 0. Furthermore, suppose
Assumption (GF) (or resp. (IF)) holds, and δ, ξ, ζ = Θn,k (1) with probability at least 1− φ. Then,
for any t ∈ (0, 1], with probability at least 1− δ−φ (or resp. 1− δ−φ− e−n), the bias is bounded
by:

B = Õn

(
ρ3n−C

)
for some constant

C
def.
= min{t(2r + a), 2min{b, 1 + ta} − t(2 + a− 2r)+} > 0 (32)

with with following lower bound:

C ≥
{
min{t(2r + a)− 2(ta+ 1− b), 2(b− 1 + t)} , b < 1 + ta;

min{t(2r + a), 2t(1 + a)} , b ≥ 1 + ta.
(33)

Proof. For simplicity, we only prove the statement for all a, r except when a+ 2 = 2r. In such case,
the argument follows similarly with O (·) replaced by Õ (·).

For any k, n ∈ N, pick k = Θ̃n,k (n
t) for some t ∈ (0, 1]. Suppose the event δ, ξ, ζ = Θn,k (1)

happens, then:
B

= On,k

((
1 + ρ2ζ2ξ−1 + ρ

δ

)
∥θ∗>k∥

2
Σ>k

+ (ρ2ζ2ξ−2 + ρ3ζ2ξ−1)

(
n−b +

c2 Tr[Σ>k]

n

)2 ∥∥θ∗≤k∥∥2Σ−1
≤k

)
(34)

= On,k

(
ρ3

(
k−(2r+a) +

(
n−b +

k−a

n

)2

k(2+a−2r)+

))
(35)

= On,k

(
ρ3
(
n−t(2r+a) +

(
n−b + n−(1+at)

)2
nt(2+a−2r)+

))
(36)

= On,k

(
ρ3
(
n−t(2r+a) + n−2min{b,1+ta}nt(2+a−2r)+

))
= On,k

(
ρ3
(
n−t(2r+a) + n−2min{b,1+ta}+t(2+a−2r)+

))
= On,k

(
ρ3
(
n−min{t(2r+a),2min{b,1+ta}−t(2+a−2r)+}

))
where we apply Proposition C.6, Lemma G.8 in line (34); we apply Lemma H.10:

∥∥θ∗≤k∥∥2Σ−1
≤k

=

Θk
(
k(2+a−2r)+

)
where x+

def.
= max{x, 0}, as well as plug in Tr[Σ>k] = Θk (k

−a) in line (35); we
plug in k = Θ̃n,k (n

t) for some t ∈ (0, 1] in line (36).
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Hence the bias B has a decay in form of On

(
ρ3n−C

)
where

C
def.
= min{t(2r + a), 2min{b, 1 + ta} − t(2 + a− 2r)+} ≥ 0

is a constant defined in nested minima and maxima. To bound C from below, we make two case
distinctions: b < 1 + ta or b ≥ 1 + ta.

For b < 1 + ta, we have

C = min{t(2r + a), 2b− t(2 + a− 2r)+}

=

{
min{t(2r + a), 2b− t(2 + a− 2r)} , 2 + a ≥ 2r

min{t(2r + a), 2b} , 2 + a < 2r

=

min{t(2r + a), t(2r + a) + 2(

≥0︷ ︸︸ ︷
1− t)− 2(ta+ 1− b)} , 2 + a ≥ 2r

min{t(2r + a), 2b} , 2 + a < 2r

≥

min{t(2r + a), t(2r + a)− 2(

≥0︷ ︸︸ ︷
ta+ 1− b)} , 2 + a ≥ 2r

min{t(2 + a+ a), 2b} , 2 + a < 2r

=

{
t(2r + a)− 2(ta+ 1− b) , 2 + a ≥ 2r

2min{ta+ t, b} , 2 + a < 2r

≥
{
t(2r + a)− 2(ta+ 1− b) , 2 + a ≥ 2r

2min{b− 1 + t, b} , 2 + a < 2r

=

{
t(2r + a)− 2(ta+ 1− b) , 2 + a ≥ 2r

2(b− 1 + t) , 2 + a < 2r

≥ min{t(2r + a)− 2(ta+ 1− b), 2(b− 1 + t)}.

For b ≥ 1 + ta, we have

C = min{t(2r + a), 2(1 + ta)− t(2 + a− 2r)+}

=

{
min{t(2r + a), 2(1 + ta)− t(2 + a− 2r)} , 2 + a ≥ 2r

min{t(2r + a), 2(1 + ta)} , 2 + a < 2r

≥
{
min{t(2r + a), t(2r + a) + 2(1− t)} , 2 + a ≥ 2r

min{t(2 + a+ a), 2(1 + ta)} , 2 + a < 2r

=

{
t(2r + a) , 2 + a ≥ 2r

min{2(t+ ta), 2(1 + ta)} , 2 + a < 2r

=

{
t(2r + a) , 2 + a ≥ 2r

2(t+ ta) , 2 + a < 2r

≥ min{t(2r + a), 2t(1 + a)}.

Replacing C by its lower bound, we obtain the claimed decay.

Proposition D.2 (Asymptotic upper bound of bias under strong ridge and polynomial eigen-decay).
Suppose: λk = Θk

(
k−1−a), |θ∗k| = Ok (k

−r) and λ = Θk
(
k−b
)

for some a, r > 0 and b ∈
(0, 1 + a]. Fix a constant δ ∈ (0, 1). If, additionally, Assumption (GF) (or resp. (IF)) holds, then,
with probability at least 1− δ − o

(
n−1

)
(or resp. 1− δ − 3e−c1n), the bias is bounded by:

B = Õn

(
n−min{sb,2b}

)
with s def.

= 2r+a
1+a .

Proof. Use Proposition D.1 as the backbone, and use Propositions G.1 and G.2 to obtain the high
probability guarantee for ξ, ζ = Θn,k (1). Then for different value of b, we plug different values
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of t ∈ (0, 1] and set k = Θn,k (n
t), such that ρ = ρn,k = Õn,k (1) by Proposition G.3, in order to

obtain different decay rates of bias.

Assume b ∈ [0, a+ 1). Pick k = Θk,n (n
t) with t = b

1+a . As above, it holds that ρ = Θ̃n,k (1) with
high probability. This time, we plug in t = b

1+a in the definition of C. By the choice of b, we have
b < 1 + ta and hence

C
def.
= min{t(2r + a), 2min{b, 1 + ta} − t(2 + a− 2r)+}
= min {t(2r + a), 2b− t(2 + a− 2r)+}

=

{
min{t(2r + a), 2b− t(2 + a− 2r)} , 2 + a ≥ 2r

min{t(2r + a), 2b} , 2 + a < 2r

=

min{t(2r + a), t(2r + a) + 2(

≥0︷ ︸︸ ︷
b− t(1 + a))} , 2 + a ≥ 2r

min{t(2r + a), 2b} , 2 + a < 2r

≥
{
min{t(2r + a), t(2r + a)} , 2 + a ≥ 2r

min{t(2r + a), 2b} , 2 + a < 2r

≥ min{t(2r + a), 2b}.

Finally, assume b = a+ 1. Pick k = Θk,n (n
t) with t = b

1+a = 1. But this time, since b ≥ 1 + ta,
we plug in t = b

1+a = 1 into the second lower bound of C in line (33):

C ≥ min{t(2r + a), 2t(1 + a)} = min

{
b(2r + a)

1 + a
,
2b(1 + a)

1 + a

}
= min{sb, 2b}. (37)

The argument for exponential decay follows analogously as above. Recall Assumption (EE): λk =
Θk
(
e−ak

)
for some a > 0. Suppose |θ∗k| = Θk

(
e−rk

)
and λ = Θn

(
1
ne

−bn) 12 for some b, r > 0.
Then the asymptotic bounds follows similarly to the polynomial case. For sake of completeness, in
this section, we list out some propositions for illustration.
Proposition D.3 (Asymptotic upper bound of bias under strong ridge and exponential eigen-decay).
Suppose λk = Θk

(
e−ak

)
, |θ∗k| = Θk

(
e−rk

)
and λ = Θn

(
e−bn

)
for some a, r > 0 and b ∈ (0, a).

If Assumption (GF) (or resp. (IF)) holds, then with probability at least 1 − δ − on
(
1
n

)
(or resp.

1− δ − 3e−c1n), the bias is bounded by:

B =

{
On,k

(
e−min{s,2}bn) , a ̸= 2r

On,k

(
e−sbn + ne−2bn

)
, a = 2r.

(38)

for some constants c1 > 0, where s = 2r
a + 1 > 0 is the source coefficient.

Remark D.4. Note that the factor n in the case of a = 2r does not play a big role asymptotically: by
taking a slightly smaller b̃ < b, the decay is exponential in b̃n.

Proof. By Proposition C.6, with probability at least 1− δ (or resp. 1− δ− e−n), the bias is bounded
by:

B ≤
(
1 + ρ2ζ2ξ−1 + ρ

δ

)
∥θ∗>k∥2Σ>k

+ c(ζ2ξ−2 + ρζ2ξ−1)

(
s1(Ak)

n

)2 ∥∥θ∗≤k∥∥2Σ−1
≤k

. (39)

By Proposition G.1 and G.2, there exists some c > 1 such that, if cβkk log k ≤ n (or resp. k/c ≤ n),
then with probability at least 1− 2 exp

(
− c
βk

n
k

)
(or resp. 1− 2 exp (−c1n)), it holds that

ξk,n ≥ 1

2
; ζk,n ≤ c2.

12The extra 1
n

factor serves only for simplification purpose and has no effect on the choice of b.
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Fix a δ ∈ (0, 1). With probability at least 1− δ − 2 exp
(
− c
βk

n
k

)
(or resp. 1− δ − e−n − 2e−c1n),

it holds that:

B = On,k

(
ρ

(
∥θ∗>k∥2Σ>k

+

(
s1(Ak)

n

)2 ∥∥θ∗≤k∥∥2Σ−1
≤k

))

= On,k

(
ρ

(
k−(2r+a) + n−2

(
e−bn

)2 ∥∥θ∗≤k∥∥2Σ−1
≤k

))
.

where the last inequality comes from Proposition G.4. For b < a, set t def.
= b

a < 1.By Proposition G.4

again, we have ρ = Θk,n (1) with probability at least 1− on
(
1
n

)
(or resp. 1− e−n). Set s def.

= 2r+a
a

be the source coefficient and we write:

B = On,k

(
e−

b
a (2r+a)n +

(
e−bn

)2 k∑
l=1

e(a−2r)l

)

= On,k

e−sbn + e−2bn

b
an∑
l=1

e(a−2r)l


=


On,k

(
e−sbn + e−2bn · e(a−2r) b

an
)

, a > 2r

On,k

(
e−sbn + e−2bn · ban

)
, a = 2r

On,k

(
e−sbn + e−2bn

)
, a < 2r

=


On,k

(
e−sbn + e−sbn

)
, a > 2r

On,k

(
e−sbn + ne−2bn

)
, a = 2r

On,k

(
e−sbn + e−2bn

)
, a < 2r

=

{
On,k

(
e−min{s,2}bn) , a ̸= 2r

On,k

(
e−sbn + ne−2bn

)
, a = 2r.

D.2 Bias under weak ridge

Proposition D.5 (Asymptotic upper bound of bias under weak/effectively no ridge for s > 1).
Suppose Assumption (GF) (or resp. (IF)) holds, and the source coefficient s > 1. Then with high
probability, the bias has decay:

B = Õn

(
λmin{s,2}
n

)
, for λ = Ωn (λn) .

Proof. By definition, rewrite the bias into:

B =
∥∥∥θ∗ − θ̂(Xθ∗)∥∥∥2

Σ

=
∥∥θ∗ −X⊤(XX⊤ + nλIn)

−1(Xθ∗)
∥∥2
Σ

=

∥∥∥∥∥∥
Ip −X⊤(XX⊤ + nλIn)

−1X︸ ︷︷ ︸
Pλ

θ∗
∥∥∥∥∥∥
2

Σ

. (40)

Denote Pλ
def.
= X⊤(XX⊤ + nλIn)

−1X ∈ Rp×p. By Sherman-Morrison-Woodbury formula,

Ip−Pλ = Ip−(nλ)−1X⊤ (In + (nλ)−1XX⊤)−1
X = λ

(
λIp +

1

n
X⊤X

)−1

= λ
(
λIp + Σ̂

)−1

is a positive definite matrix such that the matrix Ip −Pλ is monotonic increasing in λ, that is:

0 ≼ Ip −Pλ ≼ Ip −Pλ̃ ≼ Ip, (41)
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for all λ̃ ≥ λ > 0, since the map λ 7→ λ
λ+x is monotone. Hence, for t ∈ [1,min{2, s}) 13,

B = ∥(Ip −Pλ)θ
∗∥2Σ (42)

=
∥∥∥Σ1/2(Ip −Pλ)θ

∗
∥∥∥2
2

≤
∥∥∥Σ1/2(Ip −Pλ)Σ

(t−1)/2
∥∥∥2

op
·
∥∥∥Σ−(t−1)/2θ∗

∥∥∥2
2

=
∥∥∥Σ1/2(Ip −Pλ)

1/2(Ip −Pλ)
(2−t)/2(Ip −Pλ)

(t−1)/2Σ(t−1)/2
∥∥∥2

op
· ∥θ∗∥2Σ1−t

≤
∥∥∥Σ1/2(Ip −Pλ)

1/2
∥∥∥2

op
·
∥∥∥(Ip −Pλ)

(2−t)/2
∥∥∥2

op
·
∥∥∥(Ip −Pλ)

(t−1)/2Σ(t−1)/2
∥∥∥2

op
· ∥θ∗∥2Σ1−t

≤
∥∥∥Σ1/2(Ip −Pλ)

1/2
∥∥∥2

op
·
∥∥∥I(2−t)/2p

∥∥∥2
op
·
∥∥∥(Ip −Pλ)

(t−1)/2Σ(t−1)/2
∥∥∥2

op
· ∥θ∗∥2Σ1−t (43)

≤
∥∥∥Σ1/2(Ip −Pλ)

1/2
∥∥∥2

op
·
∥∥∥Σ(t−1)/2(Ip −Pλ)

(t−1)/2
∥∥∥2

op
· ∥θ∗∥2Σ1−t (44)

≤
∥∥∥Σ1/2(Ip −Pλ)

1/2
∥∥∥2

op
·
∥∥∥Σ1/2(Ip −Pλ)

1/2
∥∥∥2(t−1)

op
· ∥θ∗∥2Σ1−t (45)

=
∥∥∥Σ1/2(Ip −Pλ)

1/2
∥∥∥2t

op
· ∥θ∗∥2Σ1−t

=
∥∥∥Σ1/2(Ip −Pλ)Σ

1/2
∥∥∥t

op
· ∥θ∗∥2Σ1−t (46)

≤
∥∥∥Σ1/2(Ip −Pλ̃)Σ

1/2
∥∥∥t

op
· ∥θ∗∥2Σ1−t , (47)

where we rewrite line (40) in line (42); we apply the monotonicity from line (41) in line (43); we use
the fact that ∥M1M2∥op = ∥M2M1∥op for symmetric matrices M1,M2 in line (44); we use Lemma
H.17 to pull out the power (t−1) from the matrix to its operator norm in line (45); we use the fact that∥∥∥M1/2

1 M
1/2
2

∥∥∥2
op

=
∥∥∥M1/2

1 M
1/2
2 (M

1/2
1 M

1/2
2 )⊤

∥∥∥
op

=
∥∥∥M1/2

1 M2M
1/2
1

∥∥∥
op

for any positive definite

symmetric matrices 14 M1,M2 in line (46); by the monotonicity from line (41) again and the fact that
Σ1/2 is positive definite, we choose λ̃ ≥ λ ≽ λn to be strong in the sense of polynomial/exponential
eigen-decay in line (47): λ̃ = Θn

(
n−1−a) for polynomial case and λ̃ = Θn (e

−an) for exponential
case.

Let v ∈ Sp−1 ⊂ Rp be a unit vector such that
∥∥Σ1/2(Ip −Pλ̃)Σ

1/2
∥∥2

op =∥∥Σ1/2(Ip −Pλ̃)Σ
1/2v

∥∥2
2
. By definition, we have∥∥∥Σ1/2v

∥∥∥2
Σ−1

= ∥v∥22 = 1 <∞,

hence the vector Σ1/2v lies on the interpolation space H2. Note that the expression∥∥∥Σ1/2(Ip −Pλ̃)Σ
1/2
∥∥∥2

op
=
∥∥∥Σ1/2(Ip −Pλ̃)Σ

1/2v
∥∥∥2
2
=
∥∥∥(Ip −Pλ̃)

(
Σ1/2v

)∥∥∥2
Σ

is just the bias term of another task Σ1/2v with source coefficient 2 and ridge λ̃ = Ωn (λn) on the
same dataset X. Apply Proposition D.2 with polynomial decay and Proposition D.3 with exponential
decay on that new task with strong ridge λ̃, with high probability, the above term has a decay rate:∥∥∥Σ1/2(Ip −Pλ̃)Σ

1/2
∥∥∥2

op
=
∥∥∥(Ip −Pλ̃)

(
Σ1/2v

)∥∥∥2
Σ
= Õn

(
λ2n
)
. (48)

13Recall that s def.
=

{
2r+a
1+a

, Assumption (PE) holds
2r
a
+ 1 , Assumption (EE) holds

is the source coefficient.

14Same as above.
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Plug in line (48) into line (47) to obtain the decay rate of the original bias: with high probability:

B = On

((∥∥∥Σ1/2(Ip −Pλ̃)Σ
1/2
∥∥∥2

op

)t/2)
= Õn

((
λ2n
)t/2)

= Õn

(
λtn
)
.

This holds for any t ∈ [1,min{s, 2}), hence we conclude that

B = Õn

(
λmin{s,2}
n

)
.

For polynomial eigen-decay, we can still apply the Master inequality for B to obtain another upper
bound:

Proposition D.6 (Asymptotic upper bound of bias under weak/no ridge for any s > 0). Suppose:
λk = Θk

(
k−1−a), |θ∗k| = Ok (k

−r) and λ = Θk
(
k−b
)

for some a, b, r > 0. Fix a constant
δ ∈ (0, 1). If, additionally, Assumption (GF) (or resp. (IF)) holds, then, with probability at least

1− δ −On

(
1

logn

)
(or resp. 1− δ − 3e−c1n), the bias is bounded by:

B = Õn

(
n−C

)
where

C = (min{2(r − a), 2− a})+ , b ∈ [1 + a,∞] (49)

(or resp.
C = min{2r + a, 2(1 + a)}, b ∈ [1 + a,∞].) (50)

Proof. The proof is similar to Proposition D.2. Take k = Θk,n

(
n

logn

)
(or resp. k = n/c for

some constant c > 1) and control ξ, ζ by Propositions G.1 and G.2. Now, by Proposition G.3, with
probability at least 1− c1

logn , since b ≥ 1 + a,

ρ = Õn,k (n
a) .

(or resp. ρ = On,k (1).) Now by Proposition D.1, since b ∈ [1 + a,∞] and we choose t = 1, with
high probability,

B = Õn,k

(
ρ3n−min{t(2r+a),2(1+at)}

)
. (51)

Plug in ρ = Õn,k (n
a) and t = 1 to obtain:

B = Õn,k

(
n−min{2(r−a),2−a}

)
. (52)

The index in the above bound can be negative, causing the upper bound vacuous. By line (41), since
B = ∥(Ip −Pλ)θ

∗∥2Σ ≤ ∥θ∗∥2Σ, there is a trivial bound that B = On (1). Combining both results,
we have

B = Õn,k

(
n−(min{2(r−a),2−a})+

)
. (53)

D.3 Variance with polynomial eigen-decay

Proposition D.7 (Asymptotic upper bound of the variance term with strong ridge). Suppose
λk = Θk

(
k−1−a), |θ∗k| = Θk (k

−r), and λ = Θn
(
n−b

)
for some a, r > 0 and b ∈ (0, a + 1).

Furthermore, suppose Assumption (GF) (or resp. (IF)) holds. With probability at least 1− on
(
1
n

)
(or resp. 1− 3e−c1n), the variance term is bounded:

V = On

(
n

b
(1+a)

−1
)

for n ∈ N large enough.
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Proof. We divide the case where Assumption (GF) or (IF) holds.

Suppose Assumption (GF) holds. By Proposition G.2, there exists constants c > 1, c1 > 0 such that,
for k ≤ n

c logn , with probability at least 1− 8e−c1n/k, it holds that

ξn,k, ζn,k = Θn,k (1) .

Also, by definition, it always holds that

Tr[X>kΣ>kX
⊤
>k]

nTr[Σ2
>k]

=
1
n

∑n
i=1

∥∥Σ1/2xi
∥∥2
2

Tr[Σ2
>k]

≤ sup
x

∥∥Σ1/2x
∥∥2
2

Tr[Σ2
>k]

= βk = Θn,k (1) .

By Proposition C.7,

V/σ2 = On,k

(
ρ2
(
k

n
+

rk(Σ)2

nRk(Σ)

))
Let c > 1 be the constant in Proposition G.3. Choose k = ⌊ b

1+an⌋ ≤
n

c logn for n ∈ N large enough.
By Proposition G.3, with probability at least 1− on

(
1
n

)
,

ρ
def.
=
n ∥Σ>k∥op + s1(Ak)

sn(Ak)
= On,k

(
nλk + nλ

nλ

)
= On,k (1)

by the choice of b ∈ (0, 1 + a). Combine the result with Lemma H.12, with probability at least
1− on

(
1
n

)
, we have

V = On,k

(
k

n
+
k2

kn

)
= On,k

(
n

b
1+a

n

)
= On,k

(
n

b
1+a−1

)
to conclude the claim.

Suppose Assumption (IF) holds. The argument follows analogously. As in Proposition G.2, choose
k = ⌊ b

1+a⌋ < n/c for n ∈ N large enough. With probability at least 1− 2e−c1n, we have

ξn,k, ζn,k = Θn,k (1) .

By Proposition G.3, with probability at least 1− e−n,

ρ = Θn,k (1)

by the choice of b ∈ (0, a+1). By possibly choosing a new constant c1 > 0, with probability at least
1− 3e−c1n, we have ξ, ζ, ρ bounded. The rest of the argument follows similarly.

Proposition D.8 (Asymptotic upper bound of variance term with weak/no ridge). Suppose λk =
Θk
(
k−1−a), |θ∗k| = Θk (k

−r), and λ = Θn
(
n−b

)
for some a, r > 0 and b ∈ [a+ 1,∞]. Further-

more, suppose Assumption (GF) (or resp. (IF)) holds. With probability at least 1− on

(
1

logn

)
(or

resp. 1− 3e−c1n), the variance term is bounded:

V = On

(
n2a
)
. (or resp. V = On (1) .)

Proof. We divide the case where Assumption (GF) or (IF) holds.

Suppose Assumption (GF) holds. By Proposition G.2, there exists constants c > 1, c1 > 0 such that,
for k ≤ n

c logn , with probability at least 1− 8e−c1n/k, it holds that

ξn,k, ζn,k = Θn,k (1) .

Choose k = ⌊ n
c logn⌋. Then by Proposition G.3, with probability at least 1− on

(
1

logn

)
, it holds that

ρ = Õn,k

(
n−a + n−a + n−b+1

n−2a + n−b+1

)
= Õn,k (n

a)

by the choice of b. Moreover, since k = n
c logn , by Proposition C.7, we have

V/σ2 = On,k

(
ρ2
(
k

n
+

rk(Σ)2

nRk(Σ)

))
= Õn,k

(
n2a

k

n

)
= Õn,k

(
n2a
)
.
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Suppose Assumption (IF) holds, choose k = ⌊n/c⌋ for some constant c > 1 as in Propositions G.3.
with probability at least 1− 3e−c1n, it holds that

ξ, ζ, ρ = Θn,k (1) .

Then by Proposition C.7, we have

V/σ2 = On,k

(
ρ2
(
k

n
+

rk(Σ)2

nRk(Σ)

))
= Õn,k

(
k

n

)
= Õn,k (1) .

D.4 Variance with exponential decay

Proposition D.9 (Asymptotic upper bound of the variance term with strong ridge). Suppose λk =
Θk
(
e−ak

)
, |θ∗k| = Θk

(
e−rk

)
, and λ = Θn

(
1
ne

−bn) for some a, r > 0 and b ∈ (0, a). Furthermore,
suppose Assumption (GF) (or resp. (IF)) holds. With probability at least 1 − on

(
1
n

)
(or resp.

1− 3e−c1n), the variance term is bounded:

V = On

(
n

b
a−1
)

for n ∈ N large enough.

Proof. The argument is similar to Proposition D.7. The difference is the bound of ρ and the second
term in Proposition C.7: if ξ, ζ = Θn,k (1), by Lemma H.12,

V/σ2 ≤ ρ2
(
ζ2ξ−1 k

n
+

Tr[Z>kΣ
2
>kZ

⊤
>k]

nTr[Σ2
>k]

rk(Σ)2

nRk(Σ)

)
= On,k

(
ρ2
(
k

n
+

1

n2

))
= On,k

(
ρ2
k

n

)
.

Choose k = ⌊ ba⌋ < 1. Combine Proposition G.4 and the above inequality to obtain the result.
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E Matching lower bound

In this section, we provide the proof for the matching lower bounds presented on Table 1. A quick
summary of propositions can be found in Table 4.

Ridge strong weak
Feature (IF) (GF) (IF) (GF)

Poly (PE) B Proposition E.3 - Proposition E.3 Proposition E.1 for s ∈ [1, 2]
V Proposition E.5 - Proposition E.5 -

Exp (EE) B Proposition E.4 - Proposition E.1 for s ∈ [1, 2]
V Proposition E.6 - -

Table 4: Quick summary of propositions used for proving the matching lower bounds on Table 1.

E.1 Bias under weak ridge and source coefficient between 1 and 2

Proposition E.1 (Asymptotic lower bound of bias, Proposition 4.4 in [31], Theorem 3.4 in [33]).
Suppose Assumption (PE)/(EE) holds. Then

sup
∥θ∗∥Σ1−s≤1

B = Ωn (λ
s
n) .

where s is the source coefficient.
Remark E.2. Note that for both polynomial (with 2r ̸= 2 + a) and exponential decays (with 2r ̸= a),
by Proposition D.5, we have B = O

(
λ
max{s,2}
n

)
for source coefficient s ≥ 1. Hence when s ∈ [1, 2],

the upper and lower bound matches.

Proof. Recall the expression of the bias in line (40):

B =
∥∥∥θ̂(Xθ∗)− θ∗∥∥∥2

Σ
= ∥(Ip −Pλ)θ

∗∥2Σ ,

where P
def.
= X⊤(XX⊤ + nλIp)

−1X. Recall the source coefficient s satisfies: ∥θ∗∥Σ1−s <∞. By
definition of operator norm, we have:

sup
∥θ∗∥Σ1−s≤1

B = sup
∥θ∗∥Σ1−s≤1

∥(Ip −Pλ)θ
∗∥2Σ

= sup
∥θ∗∥Σ1−s≤1

∥∥∥Σ1/2(Ip −Pλ)Σ
(s−1)/2Σ(1−s)/2θ∗

∥∥∥2
2

=
∥∥∥Σ1/2(Ip −Pλ)Σ

(s−1)/2
∥∥∥2

op

=
∥∥∥Σs/2 −Σ1/2PλΣ

(s−1)/2
∥∥∥2

op
.

By [43], ∥M1 −M2∥op ≥ sn+1(M1) for any operator M2 with rank at most n. Note that Pλ ∈
Rp×p is of rank n, hence

sup
∥θ∗∥Σ1−s≤1

B =
∥∥∥Σs/2 −Σ1/2PλΣ

(s−1)/2
∥∥∥2

op
≥
(
λ
s/2
n+1

)2
= Ωn (λ

s
n) .

E.2 Independent features and prior signs

Instead of bounding the bias from below in the worst case scenario, we can also bound it in an average
sense. In this case, we need to pose an assumption on the target coefficient θ∗.
Assumption (PS) (Prior Signs). Assume target coefficient θ∗ ∈ Rp is drawn from a distribution ϑ
where its entries θ∗k’s are drawn independently of each other and have the same distributions as the
random variables −θ∗k’s.
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Proposition E.3 (Asymptotic lower bound of bias with polynomial decay and independent fea-
tures). Suppose Assumption (PS) holds and λk = Θk

(
k−1−a), Eθ∗

[
(θ∗k)

2
]
= Ok

(
k−2r

)
and

λ = Θn
(
n−b

)
for some a, b, r > 0. Fix a constant δ ∈ (0, 1). If, additionally, Assumption (IF)

holds, then, with probability at least 1− δ − 11e−c1n, the bias is bounded by:

Eθ∗ [B] = Ω̃n

(
n−bmin{s,2}

)
for s def.

= 2r+a
1+a .

Proof. By Lemma H.14, it holds that:

Eθ∗ [B] ≥
p∑
l=1

λlEθ∗
[
(θ∗l )

2
](

1 + λlsn(A−l)−1
∥∥z(l)∥∥2

2

)2 .
Hence, we want to bound the term sn(A−l)

−1 and
∥∥z(l)∥∥2

2
from above.

If Assumption (IF) holds, then apply Lemma G.7 on A−l instead of A, l = 1, ..., p, with probability
at least 1− 2e−n,

sn(A−l) =

{
Ωn (nλn) , if l > n

Ωn (nλn+1) , if l ≤ n
= Ωn (nλn) = Ωn (Tr[Σ>n]) .

By Lemma H.7, with probability at least 1− 2e−n, we have,

∥zl∥22 ≤ c1n, ∀l = 1, ..., p.

Plug in the above two inequalities, by union bound, with probability at least 1− 4e−n,

λlE
[
(θ∗l )

2
]

(1 + λlsn(A−l)−1 ∥zl∥22)2
= Ωn

 λlE
[
(θ∗l )

2
](

1 + nλl

λn+1rn

)2


where rk = Tr[Σ>k]
∥Σ>k∥op

for any k. If we choose k = n/c for some constant c > 1 such that Ak =

Θn (nλn), then Tr[Σ>k] = Θn (Tr[Σ>n]). Hence

λlE
[
(θ∗l )

2
]

(1 + λlsn(A−l)−1 ∥zl∥22)2
= Ωn

 λlE
[
(θ∗l )

2
](

1 + nλl

λk+1rk

)2


By Lemma H.15, with probability at least 1− 8e−n,

Eθ∗ [B] = Ωn


p∑
l=1

λlE
[
(θ∗l )

2
](

1 + nλl

λk+1rk

)2
︸ ︷︷ ︸

B

 ,

where B is defined as in Theorem H.16. since rk = Tr[Σ>k]
∥Σ>k∥op

= Θk

(
kλk

λk

)
= Θk (k), hence the

fraction rk
n = Θn,k (1) and rk satisfies the condition of Theorem H.16. By Theorem H.16, we have

upper bound B matching the lower bound B:

B = Θn

∥θ∗>k∥
2
Σ>k

+

(
nλ+Tr[Σ>k]

n

)2 ∥∥θ∗≤k∥∥2Σ−1
≤k︸ ︷︷ ︸

B

 .
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By Propositions C.6, D.2 and D.6, we have, with probability at least 1− δ − 3ec1n,

B = On

(
B
)
= On

(
n−bmin{s,2}

)
.

All together, with probability at least 1− δ − 3e−c1n − 8e−n,

Eθ∗ [B] = Ωn
(
B
)
= Ωn

(
n−bmin{s,2}

)
.

Proposition E.4 (Asymptotic lower bound of bias with exponential decay and independent features un-
der strong ridge). Suppose Assumption (PS) holds and λk = Θk

(
e−ak

)
, Eθ∗

[
(θ∗k)

2
]
= Ok

(
e−2rk

)
and λ = Θn

(
e−bn

)
for some a, r > 0 and b ∈ (0, a). Fix a constant δ ∈ (0, 1). If, additionally,

Assumption (IF) holds, then, with probability at least 1− δ − 7e−c1n, the bias is bounded by:

Eθ∗ [B] = Ω̃n

(
e−bnmin{s,2}

)
for s def.

= 2r
a + 1.

Proof. The proof is similar to Proposition E.3. By Lemma H.14, it holds that:

Eθ∗ [B] ≥
p∑
l=1

λlEθ∗
[
(θ∗l )

2
](

1 + λlsn(A−l)−1
∥∥z(l)∥∥2

2

)2 .
By Lemma H.7, with probability at least 1− 2e−n, we have,

∥zl∥22 ≤ c1n, ∀l = 1, ..., p.

By the choice of b ∈ (0, a):

sn(A−l) = Ωn (nλ) = Ωn
(
ne−bn

)
= Ωn (nλn+1) .

Plug in the above two inequalities, with probability at least 1− 2e−n,

λlE
[
(θ∗l )

2
]

(1 + λlsn(A−l)−1 ∥zl∥22)2
= Ωn

 λlE
[
(θ∗l )

2
](

1 + λl

λn+1

)2
 = Ωn

 λlE
[
(θ∗l )

2
](

1 + nλl

λn+1rn

)2


where rk = Tr[Σ>k]
∥Σ>k∥op

= Θk (1). By Lemma H.15, with probability at least 1− 4e−n,

Eθ∗ [B] = Ωn


p∑
l=1

λlE
[
(θ∗l )

2
](

1 + nλl

λk+1rk

)2
︸ ︷︷ ︸

B

 ,

where B is defined as in Theorem H.16. since rk = Tr[Σ>k]
∥Σ>k∥op

= Θk (1), pick k such that rk > 1. This

satisfies the condition of Theorem H.16. By Theorem H.16, we have upper bound B matching the
lower bound B:

B = Θn

∥θ∗>k∥
2
Σ>k

+

(
nλ+Tr[Σ>k]

n

)2 ∥∥θ∗≤k∥∥2Σ−1
≤k︸ ︷︷ ︸

B

 .
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By Propositions C.6, and D.3, we have, with probability at least 1− δ − 3ec1n,

B = On

(
B
)
= On

(
e−bnmin{s,2}

)
.

All together, with probability at least 1− δ − 3e−c1n − 4e−n,

Eθ∗ [B] = Ωn
(
B
)
= Ωn

(
e−bnmin{s,2}

)
.

Lemma E.5 (Asymptotic lower bound of variance with polynomial eigen-decay and independent
features). Suppose λk = Θk

(
k−1−a), λ = Θn

(
n−b

)
. Additionally, suppose Assumption (IF) holds.

Then with probability at least 1− ce−n/c, it holds that

V =

{
Ωn

(
n−1+ b

1+a

)
, λ strong

Ωn (1) , λ weak

Proof. This is a consequence of Propositions C.7, D.7 Lemma H.13 and Theorem H.16: with

probability at least 1− 3e−c1n, by choosing k =

{
⌈n

b
1+a ⌉ , λ strong

n/c , λ weak
, we have

V =

{
On

(
n−1+ b

1+a

)
, λ strong

On (1) , λ weak
= On

(
V
)
,

where V def.
= k

n +
nTr[Σ2

>k]

(nλ+Tr[Σ>k])2
is defined as in Theorem H.16. Since the polynomial eigen-decay λk

satisfies the condition in Theorem H.16, we have

V = Θn,k
(
V
)
.

By Lemma H.13, V =

{
Ωn

(
n−1+ b

1+a

)
, λ strong

Ωn (1) , λ weak
. By taking a larger constant c > 0, the above

events hold with probability at least 1− ce−n/c.

Lemma E.6 (Asymptotic lower bound of variance with exponential eigen-decay and independent
features). Suppose λk = Θk

(
e−ak

)
, λ = Θn

(
e−bn

)
. Additionally, suppose Assumption (IF) holds.

Then with probability at least 1− ce−n/c, it holds that

V =

{
On

(
n−1+ b

1+a

)
, λ strong

On (1) , λ weak

Proof. The proof follows a similar pattern to that of Proposition E.5. Ensure that the exponential
eigen-decay also meets the condition outlined in Theorem H.16. Consequently, V = Θn,k

(
V
)
, and

the remaining argument proceeds accordingly.
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F Under-parameterized regime

For the under-parameterized regime, one can clearly use the Master inequalities in Section C to
bound the test error from above by setting k = p < n. However, one can even prove an asymptotic
convergence in the following way.

we first prove the convergence of the empirical covariance matrix.

Lemma F.1 (Convergence of Σ̂). Suppose Assumption (GF) (or resp. (IF)) holds. Fix an ϵ ∈ (0, 1).
Then there exists a constant c > 1 such that, for p < n1−ϵ

c logn (or resp. p < n1−ϵ/c), with probability
at least 1− on (n

−ϵ), it holds that∥∥∥∥Ip − 1

n
Z⊤Z

∥∥∥∥
op

=
∥∥∥Σ− Σ̂

∥∥∥
op

= on,p

(
n−ϵ/2

)
,

where Σ
def.
= E

[
xx⊤] ∈ Rp×p and Σ̂

def.
= 1

n

∑n
i=1 xix

⊤
i ∈ Rp×p.

Proof. We argue similarly as in Proposition G.2. Fix an ϵ ∈ (0, 1).

Suppose Assumption (GF) holds. We have ∥z∥22 ≤ βpp by definition of βk. Apply Theorem H.3 on
the whitened input block Z ∈ Rn× p: there exists some constant c1 > 0 such that, with probability
at least 1− 2pe−c1t

2

, we have:
√
n− t

√
βpp ≤ sp(Z) ≤ s1(Z) ≤

√
n+ t

√
βpp.

By setting t =
√

logn
c1

and the choice of p < n1−ϵ

c logn , with probability at least 1− 2
cnϵ logn , we have

√
n

(
1−

√
βp
2c1

n−ϵ

)
≤ sp(Z) ≤ s1(Z) ≤

√
n

(
1 +

√
βp
2c1

n−ϵ

)
.

Hence, for n large enough, with probability at least 1− 2
cnϵ logn , it holds that:∥∥∥∥Ip − 1

n
Z⊤Z

∥∥∥∥
op

≤ 2βp
2c1

n−ϵ = on

(
n−ϵ/2

)
.

and hence: ∥∥∥Σ− Σ̂
∥∥∥

op
≤
∥∥∥Σ1/2

∥∥∥
op

∥∥∥∥Ip − 1

n
Z⊤Z

∥∥∥∥
op

∥∥∥Σ1/2
∥∥∥

op

≤
∥∥∥Σ1/2

∥∥∥
op
· 2βp
2c1

n−ϵ ·
∥∥∥Σ1/2

∥∥∥
op

=
λ1βp
c1

n−ϵ

= on

(
n−ϵ/2

)
.

Suppose Assumption (GF) holds. By Lemma H.7 and union bound, we have ∥zi∥22 ≤ 2p for all
i = 1, ..., n with probability 1 − 2ne−c1n. When this event happens, apply Theorem H.3 on the
whitened input block Z ∈ Rn×p, the rest of the argument follows similarly.

Proposition F.2 (Convergence of the bias and variance terms). Suppose Assumption (GF) (or resp.
(IF)) holds. Then there exists an ϵ ∈ (0, 1) and a constant c > 1 such that, for p < n1−ϵ

c logn (or resp.
p < n1−ϵ/c), with probability at least 1− on (n

−ϵ), it holds that

B = Θn,p

(
λ2

p∑
k=1

λk(θ
∗
k)

2

(λk + λ)2

)
, V = Θn,p

(
σ2

n

p∑
k=1

λ2k
(λk + λ)2

)
.
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Proof. We begin with B. By line (40) and the formula M−1
1 − M−1

2 = M−1
1 (M1 − M2)M

−1
2 ,

rewrite the bias term B as:

B = ∥(Ip −Pλ)θ
∗∥2Σ

=
∥∥∥λ(λIp + Σ̂)−1θ∗

∥∥∥2
Σ

=
∥∥∥λ((λIp +Σ)−1 + (λIp + Σ̂)−1(Σ̂−Σ)(λIp +Σ)−1

)
θ∗
∥∥∥2
Σ
.

Denote ∆ = (Σ̂−Σ)(λIp +Σ)−1. Note that

∥∆∥op =

∥∥∥∥Σ1/2

(
1

n
Z⊤Z− Ip

)
Σ1/2Σ−1/2(λΣ−1 + Ip)

−1Σ−1/2

∥∥∥∥
op

≤
∥∥∥∥ 1nZ⊤Z− Ip

∥∥∥∥
op
·
∥∥(λΣ−1 + Ip)

−1
∥∥

op ·
∥∥∥Σ1/2Σ1/2Σ−1/2Σ−1/2

∥∥∥
op

= on

(
n−ϵ/2

)
.

We apply the matrix difference formula iteratively:

(Σ̂+ λIp)
−1 = (Σ+ λIp)

−1 + (Σ̂+ λIp)
−1(Σ̂−Σ)(Σ+ λIp)

−1

= (Σ+ λIp)
−1 + (Σ̂+ λIp)

−1∆

= (Σ+ λIp)
−1 +

(
(Σ+ λIp)

−1 + (Σ̂+ λIp)
−1∆

)
∆

= ...

= (Σ+ λIp)
−1

∞∑
t=0

∆t,

we write:

B =
∥∥∥λ(Σ̂+ λIp)

−1θ∗
∥∥∥2
Σ

=
∥∥∥λ((λIp +Σ)−1 + (λIp + Σ̂)−1(Σ̂−Σ)(λIp +Σ)−1

)
θ∗
∥∥∥2
Σ

=
∥∥∥λ(λIp +Σ)−1θ∗ + λ(Σ̂+ λIp)

−1∆θ∗
∥∥∥2
Σ

=

∥∥∥∥∥λ(λIp +Σ)−1

( ∞∑
t=0

∆t

)
θ∗

∥∥∥∥∥
2

Σ

= Θn,p

(∥∥λ(λIp +Σ)−1θ∗
∥∥2
Σ

)
.

Finally, write

∥∥λ(λIp +Σ)−1θ∗
∥∥2
Σ
= λ2

p∑
k=1

λk(θ
∗
k)

2

(λk + λ)2
.
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Now we argue similarly for V . By Lemma H.19:

V =
σ2

n
Ex∼µ

[∥∥∥∥(Σ̂+ λIp

)−1

x

∥∥∥∥2
Σ̂

]

=
σ2

n
Ex∼µ

∥∥∥∥∥(Σ+ λIp)
−1

∞∑
t=0

∆tx

∥∥∥∥∥
2

Σ̂


=
σ2

n
Ex

x⊤

( ∞∑
t=0

∆t

)⊤

(Σ+ λIp)
−1Σ̂(Σ+ λIp)

−1
∞∑
t=0

∆tx


=
σ2

n
Ex

x⊤

( ∞∑
t=0

∆t

)⊤

(Σ+ λIp)
−1
(
∆+Σ(Σ+ λIp)

−1
) ∞∑
t=0

∆tx


=
σ2

n
Tr[Σ2(Σ+ λIp)

−2]
(
1 +On

(
∥∆∥op

))
.

We argue similarly as in Proposition F.2: with probability at least 1− on (n
−ϵ), we have

V = Θn,p

(
σ2

n

p∑
k=1

λ2k
(λk + λ)2

)
.

Plugging in the values of n, p and other metrics a, b, r in Proposition F.2, we can obtain the

45



G Concentration of features

In the following, we shall give sufficient conditions to control the concentration coefficients ζn,k, ξn,k
and ρn,k. Note that ρn,k, and ξn,k depends on the whitened/isotropic features z but not on the
spectrum Σ. We start from the easiest to the most difficult.

Proposition G.1 (Control on ξn,k). Let k ∈ N be an integer. Recall that ξn,k
def.
=

s1(Z
⊤
≤kZ≤k)

n . If

Assumption (GF) (or resp. (IF)) holds, then with probability at least 1− 2 exp
(
− 1

2β2
k
n
)

(or resp.

1− 2 exp (−c1kn)), it holds that

ξn,k ≥ 1

2
.

Proof. Since the largest singular value is larger than the average of the singular values,

ξn,k
def.
=
s1(Z

⊤
≤kZ≤k)

n
≥

1
k Tr[Z

⊤
≤kZ≤k]

n
=

Tr[Z⊤
≤kZ≤k]

kn
.

By Lemma G.5, with respective probability,

ξn,k ≥ 1

2
.

Proposition G.2 (Control on ζn,k). Let k ≤ n be an integer. Recall that ζn,k
def.
=

s1(Z
⊤
≤kZ≤k)

sn(Z⊤
≤k

Z≤k)
. If

Assumption (GF) (or resp. (IF)) holds, then there exists some c > 1 such that, if cβkk log k ≤ n (or
resp. k/c ≤ n), then with probability at least 1 − 2 exp

(
− c
βk

n
k

)
(or resp. 1 − 2 exp (−c1n)), it

holds that
ζn,k ≤ c2.

Proof. For the case where Assumption (GF) holds, see Lemma 2 in [7]. Suppose Assumption (IF)
holds, then by Theorem H.2, there exists constants C1, C2 > 0, such that, with probability at least
1− 2 exp

(
−C1t

2
)
, the spectrum of random matrix Z≤k ∈ Rn×k is bounded:

√
n−

√
C2k − t ≤ sk(Z≤k) ≤ s1(Z≤k) ≤

√
n+

√
C2k + t.

Set t =
√
n/4 and c = 1

16C2
so that if k/c ≤ n, the bound becomes:

1

4

√
n ≤ sk(Z≤k) ≤ s1(Z≤k) ≤

3

2

√
n,

and hence ζn,k ≤ ( 32
√
n)/( 14

√
n) = 6 with a probability at least 1 − 2 exp

(
−C1

16 n
)
. Set c1 = C1

16
and c2 = 6 to conclude the statement.

Proposition G.3 (Control on ρn,k). Let k ≤ n be an integer. Recall that ρn,k
def.
=

n∥Σ>k∥op+s1(Ak)

sn(Ak)
.

If Assumption (PE) holds and Assumption (GF) (or resp. (IF)) holds, then there exists some c > 1

such that, if k = n
c logn (or resp. k = n/c), then with probability at least 1−On

(
1

logn

)
(or resp.

1− 3e−n), it holds that

ρn,k = Õn (n
a) . (or resp. ρn,k = On (1) .)

If λ = Θn
(
n−b

)
with b ∈ (0, 1 + a] and Assumption (GF) holds. If k = ⌈n

b
1+a ⌉, with probability at

least 1−On

(
1
n

)
, it holds that

ρn,k = On (1) .
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Proof. The statement where Assumption (GF) holds is proved in Theorems 4 and 5 in [7]. The
statement where Assumption (IF) holds can be proved proved via Lemma G.7: since:

ρ =
n ∥Σ>k∥op + s1(Ak)

sn(Ak)

= Ok,n

(
nλk + nλ

nλn+k + nλ

)
= Ok,n

(
nλk
nλn+k

)
= Ok,n

(
k−1−a

(n+ k)−1−a

)
= Ok,n

(
(1 + n/k)1+a

)
= Ok,n

(
(1 + c)1+a

)
= Ok,n (1) .

with a probability of at least 1− 3e−n.

Proposition G.4 (Control on ρn,k under exponential eigen-decay). Let k ≤ n be an integer. If
λk = Θk

(
e−ak

)
, λ = Θn

(
e−bn

)
for some a > 0 and b ∈ (0, a), and Assumption (GF) (or resp.

(IF)) holds, choose k = ⌈ ban⌉, then with probability at least 1− on
(
1
n

)
(or resp. 1− exp (−n)), it

holds that
s1(Ak) = On

(
ne−bn

)
, ρn,k = On (1) .

Proof. For the case where Assumption (GF) holds, by Corollary 1 in [7], with probability at least
1− on

(
1
n

)
, it holds that

s1(Ak) = On,k

(
n

(
λk+1 +

log kTr[Σ>k]

n
+ λ

))
= On,k

(
n
(
e−ak + e−bn

))
= On,k

(
n
(
e−a·

b
an + e−bn

))
= On

(
ne−bn

)
.

For the case where Assumption (IF) holds, the upper bound of s1(Ak) is proven in Lemma G.7. In
both cases, the derivation of bounding ρ is the same:

ρ =
n ∥Σ>k∥op + s1(Ak)

sn(Ak)
≤
n ∥Σ>k∥op + s1(Ak)

nλ
= On,k

(
ne−bn

ne−bn

)
= On,k (1) .

Lemma G.5 (Lemma 1 in [7]). Let k be an integer. Suppose Assumption (GF) (or resp. (IF)) holds.
Then with probability at least 1− 2 exp

(
− 1

2βk
n
)

(or. resp. 1− 2 exp (−c1kn)), it holds that

1

2
kn ≤ Tr[Z⊤

≤kZ≤k] ≤
3

2
kn.

Proof. If Assumption (GF) holds, then

Tr[Z⊤
≤kZ≤k] = Tr[Z≤kZ

⊤
≤k] =

n∑
i=1

∥(zi)≤k∥22 ≤ βkkn.

Set M = βkk and by Hoeffding’s inequality, the above trace concentrates:

P
{∣∣Tr[Z≤kZ

⊤
≤k]− kn

∣∣ ≥ t
}
≤ 2 exp

(
− 2t2

nM2

)
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Set t = nk/2 to conclude the statement.
Analogously, if Assumption (IF) holds, for i = 1, ..., n and l = 1, ..., k, (z(l)i )2 − 1 is centered

sub-exponential variable with sub-exponential norm
∥∥∥(z(l)i )2 − 1

∥∥∥
ψ1

≲ G2. By Lemma H.7, with

probability at least 1− 2 exp (−c1kn),∣∣Tr[Z⊤
≤kZ≤k]− kn

∣∣ = ∣∣∣∣∣
n∑
i=1

k∑
l=1

(z
(l)
i )2 − kn

∣∣∣∣∣ ≤ 1

2
kn.

Lemma G.6 (Lemma 3 in [7]). For any k ≤ n and δ ∈ (0, 1), with probability at least 1− δ, it holds
that

1

n
∥X>kθ

∗
>k∥

2
2
≤ 1

δ
∥θ∗>k∥

2
Σ>k

.

Proof. Since E
[
1
n

∥∥X>kθ
∗
>k

∥∥2
2

]
=
∥∥θ∗>k∥∥2Σ>k

, we use Markov’s inequality to obtain the result.

Lemma G.7. Suppose Assumption (IF) hold. Then for any integer k ≤ n,

1. If Assumption (PE)/(EE) holds, then with probability at least 1− e−n, it holds that

s1(Ak) = On,k (nλk + nλ) .

2. If Assumption (PE) holds, then with probability at least 1− 2e−n, it holds that

sn(Ak) = Ωn,k (nλn+k + nλ) ,

for p large enough.

Proof. First we prove statement 1. For any k ∈ N,

rk
def.
=

Tr[Σ>k]

∥Σ>k∥op
=


Θk

(∑p
l=k+1 l

−1−a

(k+1)−1−a

)
Θk

(∑p
l=k+1 e

−al

e−ak

) =

Θk

(
k−a

k−1−a

)
Θk

(
e−ak

e−ak

) =

{
Θk (k) Assumption (PE) holds
Θk (1) Assumption (EE) holds

.

Hence, set t = n in Theorem H.5, with probability at least 1− e−n, it holds that∥∥∥∥ 1nX⊤
>kX>k −Σ>k

∥∥∥∥
op

= On,k

(
∥Σ>k∥op max

{
rk
n
,

√
rk
n
,
t

n
,

√
t

n

})
= On,k (λk)

By triangle inequality,
∥∥X⊤

>kX>k

∥∥
op ≤ n

∥∥ 1
nX

⊤
>kX>k −Σ>k

∥∥
op + n ∥Σ>k∥op = On,k (nλk).

Hence, with the same probability,

s1(Ak) = s1(X>kX
⊤
>k + nλIn) = s1(X

⊤
>kX>k) + nλ = On,k (nλk + nλ) .

Now we prove statement 2. Note that the smallest singular value of a matrix does not increase after
discarding a column: for some constant η > 1 to be determined, it holds that

sn(X>kX
⊤
>k) = sn(Z>kΣ

1/2
>k )

2 ≥ sn(Zk:ηnΣ
1/2
k:ηn)

2 ≥ ληnsn(Zk:ηn)
2.

By Assumption (IF), the columns of Zk:ηn are independent to each other. By Theorem H.2, with
probability at least 1− 2e−c1t

2

, it holds that
smin(Zk:ηn) = smin{n,ηn−k}(Zk:ηn) ≥

√
ηn−

√
c2n− t.

Choose t =
√
n/c1 and η >

(
2 + 1

c1
+ c2

)2
(given that p > ηn large enough), then with probability

at least 1− 2e−n, it holds that
sn(Zk:ηn) = smin(Zk:ηn) ≥

√
n.

Hence with the same probability, by Assumption (PE),

sn(Ak) = sn(X>kX
⊤
>k + nλIn) ≥ nληn + nλ = Ωn,k (nλn + nλ) .
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Lemma G.8 (Theorem 2 in [7]). Suppose Assumption (GF) (or resp. (IF)) holds, then with probability
at least 1 (or resp. 1− 2pe−c1n), it holds that

s1(Ak)
2

n2
≤ ρ2n,k

(
λ+

c2 Tr[Σ>k]

n

)2

.

Suppose Assumptions (IF) holds. Furthermore, if Assumptions (PE) or (EE) holds, then one obtains
a probability bound which allows arbitrary large p: with probability at least 1− e−n, it holds that

s1(Ak)
2

n2
≤ c1

(
λ+

Tr[Σ>k]

n

)2

.

Proof. Since the trace of a matrix is the sum of its eigenvalues, we obtain:

s1(Ak)
2

n2
=
s1(Ak)

2

sn(Ak)2
sn(Ak)

2

n2

≤ ρ2n,k

(
1

n
Tr

[
1

n
Ak

])2

≤ ρ2n,k

(
1

n

(
Tr [λIn] + Tr

[
1

n

n∑
i=1

(xi)>k(xi)
⊤
>k

]))2

≤ ρ2n,k

(
1

n

(
nλ+

1

n

n∑
i=1

∥(xi)>k∥22

))2

By Assumption (GF), since ess supx
∥x>k∥2

2

Tr[Σ>k]
≤ βk, we have

s1(Ak)
2

n2
≤ ρ2n,k

(
1

n

(
nλ+ sup

x
∥x>k∥22

))2

≤ ρ2n,k

(
λ+

βk Tr[Σ>k]

n

)2

.

If Assumption (IF) holds, then for each l > k, the random variable (z(l))2 − 1 is centered sub-
exponential, hence with probability at least 1− 2 exp (−c1n), it holds that∣∣∣∣∣

n∑
i=1

(z
(l)
i )2 − n

∣∣∣∣∣ ≤ 1

2
n. (54)

By union bound, with probability at least 1− 2(p− k) exp (−c1n), it holds that

1

n

n∑
i=1

∥(xi)>k∥22 =
∑
l>k

λl
1

n

n∑
i=1

(z
(l)
i )2 ≤

∑
l>k

λl ·
3

2
=

3

2
Tr[Σ>k]. (55)

If Assumptions (IF) and (PE)/(EE) hold, then by Lemma G.7: with probability at least 1− e−n, it
holds that

s1(Ak) = On,k (nλn + nλ)

for any k ∈ N. Hence with the same probability,

s1(Ak)
2

n2
= On

((
nλ+ nλn

n

)2
)

= On

((
λ+

Tr[Σk]

n

)2
)
.
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H Technical lemmata

Theorem H.1 (Theorem 1 and Example 1 in [51]). Assume that M1,M2, ..,Mn are independent
copies of a d×d positive semi-definite symmetric random matrix M with E [M] = Σ, which satisfies:

∥v⊤Mv∥ψ1 ≤ κ2v⊤Mv (56)

for some constant κ ≥ 1 and for any v ∈ Rd. Then, for any t > 0, with probability at least 1− e−t,
the inequality holds: ∥∥∥∥∥ 1n∑

i=1

Mi −Σ

∥∥∥∥∥
op

≤ 20κ2 ∥Σ∥op

√
4r + t

n

whenever n ≥ 4r + t, and r def.
= Tr[Σ]

∥Σ∥op
is the effective rank.

Theorem H.2 (Theorem 5.39 and Remark 5.40 in [47]). Let A be an N ×n matrix with independent
rows Ai of sub-Gaussian random vector with covariance Σ

def.
= E

[
AiAi

⊤
]
∈ Rn×n. Then there

exists constants C5, C6 > 0 15 (depending only on the sub-Gaussian norm of entries of A), such that
for any t ≥ 0, with probability at least 1− 2e−C5t

2

, we have∥∥∥∥ 1

N
A⊤A−Σ

∥∥∥∥
op

≤ max{δ, δ2} ∥Σ∥op .

where δ = C6

√
n
N + t

N . In particular, if Σ = In, we have
√
N −

√
C6n− t ≤ smin(A) ≤ smax(A) ≤

√
N +

√
C6n+ t.

Theorem H.3 (Theorem 5.41 in [47]). Let A be an N × n matrix whose rows Ai are independent
isotropic random vectors in Rn. Let m > 0 be a number such that ∥Ai∥2 ≤

√
m a.s. for all i. Then

for every t ≥ 0, it holds that:
√
N − t

√
m ≤ smin(A) ≤ smax(A) ≤

√
N + t

√
m.

Theorem H.4 (Theorem 5.58 in [47]). Let A be anN×n matrix (N ≥ n) with independent columns
Ai ∈ RN of sub-Gaussian isotropic random vector with with ∥Ai∥2 =

√
N almost surely. Then

there exists constants C8, C9 > 0 (depending only on the sub-Gaussian norm of entries of A), such
that for any t ≥ 0, with probability at least 1− 2e−C8t

2

, we have
√
N − C9

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N + C9

√
n+ t.

Theorem H.5 (Theorem 9 in [27]). Let A be an N × n matrix with i.i.d. columns Ci ∈ RN

of sub-Gaussian random vector with covariance Σ
def.
= E

[
CiC

⊤
i

]
∈ RN×N . Then there exists a

constant c1 > 0, such that for any t ≥ 0, with probability at least 1− e−t, we have∥∥∥∥ 1nAA⊤ −Σ

∥∥∥∥
op

≤ c1 ∥Σ∥op max

{
r

n
,

√
r

n
,
t

n
,

√
t

n

}
,

where r = Tr[Σ]
∥Σ∥op

is the effective rank of the covariance Σ.

Remark H.6. Theorem H.5 is different from Theorem H.2 in a few ways: first, the upper bound in
the former one contains the term n

N , which requires n < N in order to obtain a good concentration,

while that in the latter one contains the term r
n =

∑N
k=1 Σkk

n , which can still be bounded if N > n
and the decay of Σkk is fast enough; second, former one requires i.i.d. columns while the latter one
requires only independent rows.
Lemma H.7 (Sub-Exponential Deviation, see Corollary 5.17 in [47]). Let N ∈ N. Let X1, ..., XN

be independent centered random variables with sub-exponential norms bounded by B. Then for any
δ > 0,

P

{
|
N∑
i=1

Xi| > δN

}
≤ 2 exp

(
−C7 min

{
δ2

B2
,
δ

B

}
N

)
,

15To be precise, we set C5 = (8e2)−1 ·G−4 and C6 = 2e
√
2 log 9 ·G2.
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where C7 > 0 is an absolute constant.

In particular, if X ∼ χ(N) is the Chi-square distribution, then P
{
|XN − 1| > t

}
≤ 2e−Nt

2/8, ∀t ∈
(0, 1).
Lemma H.8 (Lemma 28 in [46]; Lemma 14 in [7]). Suppose that for some k < N , the matrix Ak is
positive definite, then the following inequality holds:

B ≤ ∥θ∗>k∥2Σ>k
+
s1(A

−1
k )2

sn(A
−1
k )2

s1(Z
⊤
≤kZ≤k)

sk(Z⊤
≤kZ≤k)2

∥X>kθ
∗
>k∥

2
2

+

∥∥θ∗≤k∥∥2Σ−1
≤k

sn(A
−1
k )2sk(Z⊤

≤kZ≤k)2

+ ∥Σ>k∥op s1(A
−1
k ) ∥X>kθ

∗
>k∥

2
2

+ ∥Σ>k∥op
s1(A

−1
k )

sn(A
−1
k )2

s1(Z
⊤
≤kZ≤k)

sk(Z⊤
≤kZ≤k)2

∥∥θ∗≤k∥∥2Σ−1
≤k

.

(57)

Lemma H.9 (Lemma 27 in [46]; Lemma 13 in [7]). For any k ∈ N, we have

V/σ2 ≤
s1(A

−1
k )2 Tr[X≤kΣ

−1
≤kX

⊤
≤k]

sn(A
−1
k )2sk(Σ

−1/2
≤k X⊤

≤kX≤kΣ
−1/2
≤k )2

+ s1(A
−1
k )2 Tr[X>kΣ>kX

⊤
>k]

, where σ2 def.
= E

[
ϵ2
]
≥ 0.

Lemma H.10 (Lemma 18 in [7]). Assume λk = Θk
(
k−1−a) and |θ∗k| = Ok (k

−r) for some a, r > 0.

Then the square norms
∥∥θ∗>k∥∥2Σ>k

and
∥∥θ∗≤k∥∥2Σ−1

≤k

have bounds:

∥θ∗>k∥
2
Σ>k

= Θk
(
k−2r−a) , ∥∥θ∗≤k∥∥2Σ−1

≤k

=


Θk
(
k2−2r+a

)
, 2r < 2 + a

Θk (log k) , 2r = 2 + a

Θk (1) , 2r > 2 + a

= Θ̃k

(
k(2+a−2r)+

)
,

where (x)+
def.
= max{x, 0}.

Lemma H.11. Assume λk = Θk
(
e−ak

)
and |θ∗k| = Ok

(
e−rk

)
for some a, r > 0. Then the square

norms
∥∥θ∗>k∥∥2Σ>k

and
∥∥θ∗≤k∥∥2Σ−1

≤k

have bounds:

∥θ∗>k∥
2
Σ>k

= Θk
(
k−2r−a) , ∥∥θ∗≤k∥∥2Σ−1

≤k

≤


Θk
(
k(a−2r)

)
, 2r < a

Θk (k) , 2r = a

Θk (1) , 2r > a

= kΘ̃k((a−2r)+).

Lemma H.12. Recall that

rk
def.
=

Tr[Σ>k]

∥Σ>k∥op
, Rk

def.
=

Tr[Σ>k]
2

Tr[Σ2
>k]

.

If λk = Θk
(
k−1−a) for some a > 0, then

rk = Θk (k) , Rk = Θk (k) .

If λk = Θk
(
e−ak

)
for some a > 0, then

rk = Θk (1) , Rk = Θk (1) .

Proof. By simple calculus,
∑p
l=k+1 k

−1−a = Θk
(∫∞
k
t−1−adt

)
= Θk (t

−a), similarly,∑p
l=k+1 k

−2−2a = Θk
(∫∞
k
t−2−2adt

)
= Θk

(
t−1−2a

)
. If λk = Θk

(
k−1−a) for some a > 0,

then

rk = Θk

(
k−a

λk+1

)
= Θk (k) , Rk = Θk

(
k−2a

k−1−2a

)
= Θk (k) .
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If λk = Θk
(
e−ak

)
, then

∑p
l=k+1 λl = Θk

(∫∞
k
e−atdt

)
= Θk

(
e−ak

)
. Hence,

rk = Θk

(
e−ak

e−a(k+1)

)
= Θk (1) , Rk = Θk

(
e−2ak

e−2ak

)
= Θk (1) .

Lemma H.13 (Lemma 7 in [46]). Suppose Assumption (IF) holds. Then there exists some constant
c > 0 such that, for any k < n/c, with probability at least 1− ce−n/c, its holds that

V ≥ 1

cn

∑
l=1

min

{
1,

λ2l
λ2k+1(1 + rk/n)2

}
Lemma H.14 (Lemma 8 in [46]). Suppose Assumption (PS) holds. Furthermore, if Assumption (GF)
(or resp. (IF)) holds, then with probability 1− 1, the following inequality holds:

Eθ∗∼ϑ [B] ≥
p∑
l=1

λlEθ∗
[
(θ∗l )

2
](

1 + λlsn(A−l)−1
∥∥z(l)∥∥2

2

)2 . (58)

where the expectation is taken as described in Assumption (PS), and A−l
def.
=
∑
l′ ̸=l λl′z

(l′)(z(l
′))⊤ +

nλIn ∈ Rn×n where z(l) ∈ Rn denotes the l-th column of the whitened feature block Z def.
= XΣ−1/2.

Proof. By Assumption (PS), the expected value over θ∗ on the bias admits the following expression
as in line (40):

Eθ∗ [B] = Eθ∗

[
∥(Ip −Pλ)θ

∗∥2Σ
]
=

p∑
l=1

[(Ip −Pλ)Σ(Ip −Pλ)]ll · Eθ∗
[
(θ∗l )

2
]

where Pλ
def.
= X⊤(XX⊤ + nλIp)

−1X. Denote z(l) ∈ Rn be the l-th column of the whitened feature
block Z

def.
= XΣ−1/2 ∈ Rn×p. Then the l-th diagonal element of the matrix (Ip −Pλ)Σ(Ip −Pλ)

can be written as

[(Ip −Pλ)Σ(Ip −Pλ)]ll =

p∑
l′=1

λl

(
1− λl(z

(l))⊤A−1z(l)
)2

+
∑
l′ ̸=l

λlλ
2
l′

(
(z(i))⊤A−1z(l

′)
)2

where A def.
= XX⊤ + nλIp. If we write A−l

def.
= A− λlz

(l)(z(l))⊤, by Sherman-Morrison-Woodbury
formula, we have

1− λl(z
(l))⊤A−1z(l) =

1

1 + λl(z(l))⊤A
−1
−l z

(l)
,

and hence the averaged bias is bounded by:

Eθ∗ [B] ≥
p∑
l=1

λlEθ∗
[
(θ∗l )

2
]

(1 + λl(z(l))⊤A
−1
−l z

(l))2

≥
p∑
l=1

λlEθ∗
[
(θ∗l )

2
](

1 + λls1(A
−1
−l )

∥∥z(l)∥∥2
2

)2
=

p∑
l=1

λlEθ∗
[
(θ∗l )

2
](

1 + λlsn(A−l)−1
∥∥z(l)∥∥2

2

)2 .

Lemma H.15 (Lemma 9 in [6]). Suppose that {Xk}pk=1 is a sequence of non-negative random
variables, and that {tk}pk=1 is sequence of non-negative real numbers (with at least one of which
strictly positive), such that for some δ ∈ (0, 1), with a probability at least 1 − δ, ηk > tk for all
k = 1, ..., p. Theb with probability at least 1− 2δ,

p∑
k=1

ηk ≥ 1

2

p∑
k=1

tk.
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Lemma H.16 (Theorem 10 in [46]). Let k ∈ N be an integer. Denote

B
def.
=

p∑
l=1

λl|θ∗l |2

(1 + nλl

λk+1rk
)2
,

B
def.
= ∥θ∗>k∥

2
Σ>k

+

(
nλ+Tr[Σ>k]

n

)2 ∥∥θ∗≤k∥∥2Σ−1
≤k

,

V
def.
=

1

n

p∑
l=1

min

{
1,

λ2l
λ2k+1(1 + rk/n)2

}
,

V
def.
=
k

n
+

nTr[Σ2
>k]

(nλ+Tr[Σ>k])2
.

Fix constants a > 0 and b > 1
n . There exists a constant c > 0 that only depends on a, b such that: if

either rk
n ∈ (a, b) or k = min{κ : rκ > bn}, then

c−1 ≤B/B ≤ 1,

c−1 ≤V /V ≤ 1.

Lemma H.17 (Corde’s inequality, [18]). For any positive definite symmetric matrices 16 M1,M2

and positive number m ∈ [0, 1], it holds that ∥Mm
1 Mm

2 ∥op ≤ ∥M1M2∥mop.

Proposition H.18. Let λ > 0. The bias term B def.
= Ex

[(
x⊤θ̂(Xθ∗)− x⊤θ∗

)2]
has the following

expression:

B = λ2
∥∥∥(λIp + Σ̂)−1θ∗

∥∥∥2
Σ
.

where Σ̂
def.
= 1

nX
⊤X.

Proof. By definition, rewrite the bias into:

B =
∥∥∥θ∗ − θ̂(Xθ∗)∥∥∥2

Σ

=
∥∥θ∗ −X⊤(XX⊤ + nλIn)

−1(Xθ∗)
∥∥2
Σ

=

∥∥∥∥∥∥
Ip −X⊤(XX⊤ + nλIn)

−1X︸ ︷︷ ︸
Pλ

θ∗
∥∥∥∥∥∥
2

Σ

. (59)

Denote Pλ
def.
= X⊤(XX⊤ + nλIn)

−1X ∈ Rp×p. By Sherman-Morrison-Woodbury formula,

Ip−Pλ = Ip−(nλ)−1X⊤ (In + (nλ)−1XX⊤)−1
X = λ

(
λIp +

1

n
X⊤X

)−1

= λ
(
λIp + Σ̂

)−1

.

Hence B = λ2
∥∥∥(λIp + Σ̂)−1θ∗

∥∥∥2
Σ

.

Proposition H.19 (Variance expression). The variance term V def.
= Ex,ϵ

[(
x⊤θ̂∗(ϵ)

)2]
has the

following expression:

V =
σ2

n
Tr

[(
Σ̂+ λIp

)−1

Σ
(
Σ̂+ λIp

)−1

Σ̂

]
=
σ2

n
Ex∼µ

[∥∥∥∥(Σ̂+ λIp

)−1

x

∥∥∥∥2
Σ̂

]
.

16Or equivalently positive definite self-adjoint operator in a Hilbert space.
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Proof. By definition,

V = Eϵ

[∥∥∥θ̂(ϵ)∥∥∥2
Σ

]
= Eϵ

[
ϵ⊤(XX⊤ + nλIn)

−1XΣX⊤(XX⊤ + nλIn)
−1ϵ
]

= Eϵ

[
Tr[(XX⊤ + nλIn)

−1XΣX⊤(XX⊤ + nλIn)
−1ϵϵ⊤]

]
= Tr[(XX⊤ + nλIn)

−1XΣX⊤(XX⊤ + nλIn)
−1Eϵ

[
ϵϵ⊤

]
]

= σ2 Tr[(XX⊤ + nλIn)
−1XΣX⊤(XX⊤ + nλIn)

−1]

= σ2 Tr[X(X⊤X+ nλIp)
−1Σ(X⊤X+ nλIp)

−1X⊤]

=
σ2

n
Tr

[(
1

n
X⊤X+ λIp

)−1

Σ

(
1

n
X⊤X+ λIp

)−1
1

n
X⊤X

]

=
σ2

n
Tr

[(
Σ̂+ λIp

)−1

Ex∼µ
[
xx⊤] (Σ̂+ λIp

)−1

Σ̂

]
=
σ2

n
Ex∼µ

[
Tr

[(
Σ̂+ λIp

)−1

xx⊤
(
Σ̂+ λIp

)−1

Σ̂

]]
=
σ2

n
Ex∼µ

[
x⊤
(
Σ̂+ λIp

)−1

Σ̂
(
Σ̂+ λIp

)−1

x

]
=
σ2

n
Ex∼µ

[∥∥∥∥(Σ̂+ λIp

)−1

x

∥∥∥∥2
Σ̂

]
.
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I Experiments in details

Some of the results in Table 1 have already been validated by experiments in previous literature.
Hence, this section will focus on the novel result of this paper:

1. Same decay rate for independent (IF)/generic (GF) features under strong ridge;

2. Decay of B for s < 1 under weak ridge;

3. Decay of V under weak ridge (tempered vs catastrophic overfitting).

All experiments were conducted on a computer with a 2.3 GHz Quad-Core Intel Core i7 processor.
The code for the experiments is available in the supplementary materials.

I.1 Bias under strong ridge

we first consider a simple example: let λk = ( 2k−1
2 π)−1−a, ψk(·) =

√
2 sin

(
2k−1

2 π·
)

such that
∥ψk∥L2

µ
= 1 for µ = unif[0, 1]; let θ∗k = ( 2k−1

2 π)−r. For p = ∞ and a = 1, the regression
coincides with the kernel ridge regression with kernel k(x, x′) = min{x, x′} defined on the interval
[0, 1] by [48]. [30, 33] have conducted similar experiments on this kernel k. However, to simulate the
regression for independent features (IF), the feature rank p has to be finite. In the following experiment,
we choose p = 2000, the sample size n ranges from 100 to 1000, ridge λ = λn = ( 2n−1

2 π)−1−a.

The first thing to check is whether both independent features ((IF)) and generic features ((GF)) satisfy

B = O
(
n−bs̃

)
under strong ridge, where s̃ def.

= min s, 2 and s = 2a+r
1+a . To accurately obtain the bias term B, we

compute the exact formula:

B = λ2
∥∥∥(λIp + Σ̂)−1θ∗

∥∥∥2
Σ
,

as shown in Proposition H.18, rather than computing the squared difference
(
f̂(x)− f∗(x)

)2
by

evaluating on test points as done in [31], or by using an integral function as in [33]. To demonstrate
the Gaussian Equivalent Property (GEP), we also compute B after replacing the Sine feature vector
ψ = ψk(x)

p
k=1 with a random Gaussian vector z ∼ N (0, 1) or a random Rademacher vector

z ∼ (unif{±1})p. It is worth noting that the random Rademacher vector z ∼ (unif{±1})p satisfies
Assumption (IF). This shows that our statement holds more generally than under the Gaussian Design
Assumption ((GD)). From Figure 5, we observe that for different choices of a and r (and hence s),
the bias decays at its theoretical rate for all three different features.
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Figure 5: Decay of the bias term B under strong ridge λ = λn = Θ
(
n−1−a). λk = ( 2k−1

2 π)−1−a,
θ∗k = ( 2k−1

2 π)−r. Theoretical decay B = O
(
n−(1+a)s̃

)
= O

(
n−(1+a)s̃

)
, where s̃ = min{s, 2},

source coefficient s = 2a+r
1+a . (Left): s = 1.5 and B = O

(
n−(1+1)min{1.5,2}) = O

(
n−3

)
; (right):

s = 2.33 > 2 and B = O
(
n−(1+0.5)min{2.33,2}) = O

(
n−3

)
, showing the saturation effect

mentioned in [29]. All features demonstrate the same theoretical decay, validating the GEP.
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I.2 Bias under weak ridge

For weak ridge, we find that the decay rate is better than this theoretical rate (see Figure 6). One
explanation for this is the estimation error of replacing the kernel K(x, x′) = min{x, x′} by its
finite rank approximation; another reason is that the decay flattens for large sample sizes n≫ 1000.
However, the learning curve of independent features (Gaussian or Rademacher) behaves similarly to
the dependent one (Sine). The left plot in Figure 6 fits our theoretical result, as s > 1, while the right
plot shows that our theoretical bound is too pessimistic. However, we suspect this is due to the fact
that the eigenfunctions on the one-dimensional input space are simply sines, which are uniformly
bounded.
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Figure 6: Decay of the bias term B under weak ridge. λ = Θ
(
n−b

)
. λk = ( 2k−1

2 π)−1−a,
θ∗k = ( 2k−1

2 π)−r. Theoretical decay B = O
(
n−(1+a)s̃

)
= O

(
n−(1+a)s̃

)
, where s̃ =

min{s, 2}, source coefficient s = 2a+r
1+a . (Left): s = 1.5 > 1 with theoretical bound B =

O
(
n−(1+0.5)min{2.33,2}) = O

(
n−3

)
for all features; (right): s = 0.8 < 1 with theoretical bound

B = O
(
n−(1+0.25)min{0.8,2}) = O

(
n−1

)
for Gaussian and Rademacher (independent) features, the

empirical result for Sine features is better than its theoretical bound B = O
(
n−(r−a)) = O

(
n−0.25

)
.

I.3 Variance under strong ridge

Analogous to B, we want to check whether both independent features ((IF)) and generic features
((GF)) satisfy

V = O
(
σ2n−1+ b

1+a

)
,

under strong ridge, where σ2 = E
[
ϵ2
]

is the noise level. To ease the computation, instead of
computing the expression of V directly from Proposition H.19:

V =
σ2

n
Tr
[
(Σ̂+ λIp)

−1Σ(Σ̂+ λIp)
−1Σ̂

]
=
σ2

n
Tr
[
Σ(Σ̂+ λIp)

−1Σ̂(Σ̂+ λIp)
−1
]

=
σ2

n
Tr
[
ΣUD2(D+ λIp)

−2U⊤]
where Σ̂ = UDU⊤ is the singular value decomposition of Σ̂. Figure 7 confirms the Gaussian
Equivalent Property (GEP) under strong ridge.

All dotted lines in Figures 5, 6 and 7 are regression of the learning curve with Gaussian features.

I.4 Variance under weak ridge

As reported in [7, 14], by setting λ = 0, f̂ is indeed the norm minimum interpolant, which may
demonstrates tempered or catastrophic overfitting as n→ ∞. For this example, we focus on another
setting where we take samples uniformly from a unit 2-disk and approximate V by evaluating the
regressor of the zero function on the test point. We set λ = 0 and compute the kernel ridgeless
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Figure 7: Decay of the variance term V under strong ridge. λ = Θ
(
n−b

)
. λk = ( 2k−1

2 π)−1−a.

Theoretical decay V = O
(
n−1+ b

1+a

)
. (Left): Theoretical decay V = O

(
n−1

)
for all features;

(right): Theoretical decay V = O
(
n−1/2

)
for all features.
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Figure 8: The variance against the sample size n under no ridge. (Left): Tempered overfitting with
Laplacian kernel. (Right): Catastrophic overfitting with NTK.

regression with the Laplacian kernel K(x, z) = e−∥x−z∥2 and the neural tangent kernel K(x, z) =

x⊤zκ0(x
⊤z)+κ1(x

⊤z) where κ0(t)
def.
= 1− 1

π arccos(t), κ1(t)
def.
= 1

π

(
t(π − arccos(t)) +

√
1− t2

)
.

In Figure 8, we can see that although having polynomial eigen-decay, the Laplacian kernel exhibits
tempered overfitting, as termed by [35], while the NTK catastrophic overfitting.
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J Tables

Linear Kernel
x K(x, ·)
z ψx
Σ Λ
Z Ψ

XX⊤ K
∥·∥2 = ∥·∥Ip ∥·∥H
∥·∥Σ1−s ∥·∥Hs

∥·∥Σ ∥·∥L2
µ(X )

∥·∥∞ ∥·∥∞ on supp(µ)
θ∗ f∗

Table 5: The translation of ridge regression setting in KRR setting (see Subsection A.6 for the
elaboration.)

Ridge strong weak
Feature (IF) (GF) (IF) (GF)

Poly (PE) B [16] [31, 7] [16] [31, 7]
V [16] [30, 7] [16, 14] [7]

Exp (EE) B this paper [33] this paper [33]
V this paper this paper - -

Ridge strong weak
Feature (IF) (GF) (IF) (GF)

Poly (PE) B - O
(
n−bs̃

)
- O

(
n−(min{2(r−a),2−a})+

)
V - Õ

(
σ2n−1+ b

a+1

)
Θ
(
σ2
)

Õ
(
σ2n2a

)
Exp (EE) B - - - -

V - - catastrophic overfitting
Ridge strong weak

Feature (IF) (GF) (IF) (GF)

Poly (PE) B O
(
n−bs̃

)
- O

(
n−(1+a)s̃

)
O
(
n−(1+a)s̃

)
, s > 1

V O
(
σ2n−1+ b

a+1

)
- - -

Exp (EE) B - O
(
e−bs̃n

)
- O

(
e−as̃n

)
, s > 1

V - - catastrophic overfitting
Ridge strong weak

Feature (IF) (GF) (IF) (GF)

Poly (PE) B Θ
(
n−bs̃

)
Θ
(
n−bs̃

)
Θ
(
n−(1+a)s̃

) {
O
(
n−(1+a)s̃

)
, s > 1

Õ
(
n−(min{2(r−a),2−a})+

)
, s ≤ 1

V Θ
(
σ2n−1+ b

a+1

)
Θ
(
σ2n−1+ b

a+1

)
Θ
(
σ2
)

Õ
(
σ2n2a

)
, Ω
(
σ2
)

Exp (EE) B Θ
(
e−bs̃n

)
O
(
e−bs̃n

)
O
(
e−as̃n

)
, s > 1 O

(
e−as̃n

)
, s > 1

V Θ
(
σ2n−1+ b

a

)
O
(
σ2n−1+ b

a

)
catastrophic overfitting

Table 6: Various filters for Table 1. (top): Recovered (in black), improved (in blue) and novel (denoted
by “this paper”) results over previous literature. (top 2): Recovered results under same assumptions.
(top 3): Recovered results under weaker assumptions. (bottom): State-of-the-Art (SOTA) result.
Black indicates results recovered results under our assumptions, blue indicates improved results over
previous literature, orange indicates SOTA results from [31] under extra assumptions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims asserted in Abstract and the questions raised in the introduction
section 1 are directly addressed in the main section of our paper; namely in section 3 and
the additional material in the appendix section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This is a theoretical paper where assumptions are clearly stated. We admit
that verifying the conditions of the assumptions (e.g., eigen-decay rate or eigen-functions of
kernels in realistic datasets) can be challenging, and we limit our experiments to relatively
simple examples. Further investigation into the generalization performance of kernel ridge
regression on realistic datasets is left for future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All mathematical objects are clearly stated, and further explain, in section §2.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiment is done on some synthetic settings, which details are clearly
stated in I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code for the experiments is uploaded as supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Error bars are displayed in the figures in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were conducted on a computer with a 2.3 GHz Quad-Core
Intel Core i7 processor.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Since our paper is purely theoretical, it does not involve human subjects or
participants, data-related concerns, nor are there any negative societal implications. Rather,
by elucidating the theoretical foundations of some kernel ridge regression models, we help
verify the reliability of commonly used machine learning models.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper focuses on enhancing the theoretical underpinnings of machine
learning, leading to predominantly positive societal impacts. By emphasizing the importance
of principled machine learning and furthering our understanding of AI capabilities, it
contributes to the advancement of technology in a constructive manner.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As our contributions are theoretical justifications of commonly used AI models,
this does not apply here.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not use new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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