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Abstract

Recent advances in graph machine learning have shifted to data-centric paradigms,
driven by two emerging research fields: (1) Federated graph learning (FGL) fa-
cilitates multi-client collaboration but struggles with data and task heterogeneity,
resulting in limited practicality; (2) Graph foundation model (GFM) enables de-
sirable domain generalization but is typically confined to single-machine training,
neglecting the potential of cross-silo data and computational resources. It is ev-
ident that these two paradigms are complementary, and their integration offers
substantial advantages. Motivated by this, we present a pioneering study about the
federated graph foundation model (FedGFM), a novel decentralized GFM training
paradigm. Despite the promising vision of FedGFM, knowledge entanglement
has emerged as a critical challenge, where multi-domain knowledge is encoded
into indistinguishable representations, thereby limiting downstream adaptation.

To this end, we propose FedGFM+, an effective FedGFM framework with two
key modules to mitigate knowledge entanglement in a dual-pronged manner. (1)
AncDAI: From a global perspective, we introduce a novel anchor-based domain-
aware initialization strategy. Before pre-training, each client encodes its local
graph into a domain-specific prototypes, which serve as semantic anchors in the
representation space. Around each anchor, we construct synthetic embeddings
to initialize the global model. We theoretically show that these prototypes are
distinguishable across domains, and the initialization provides a strong inductive
bias that facilitates disentanglement of domain-specific knowledge. (2) AdaDPP:
From a local perspective, during pre-training, each client independently learns a
lightweight graph prompt that captures domain semantic preferences. During fine-
tuning, prompts from all clients are aggregated into an adaptive domain-sensitive
prompt pool, from which the GFM selects relevant prompts to augment the target
graphs attributes, thereby improving the downstream adaptation. FedGFM+ is
extensively evaluated on 8 diverse benchmarks spanning multiple domains and
tasks, outperforming 20 baselines from isolated supervised learning, FGL, and
federated variants of centralized GFM paradigms.
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Figure 1: Comparison of the FGL, GFM, and naive FedGFM paradigm. (a) Limitations of FGL ap-
proaches; (b) Limitations of GFM approaches; (c) A naive FedGFM paradigm organically combines
the complementary strengths of FGL and GFM to overcome their respective limitations.

1 Introduction

Recent advances in computational capabilities have sparked a data-centric paradigm shift in deep
learning. Moving beyond an exclusive reliance on architectural innovations, the AI community now
prioritizes large-scale data utilization, as evidenced by the success of GPT-4 [1] in language pro-
cessing and Sora [30] in vision tasks. This data-centric scaling trend also extends to graph machine
learning, where two learning paradigms are gaining prominence (1) Federated graph learning (FGL)
enables cross-silo graph collaboration; (2) Graph foundation models (GFM) promote multi-domain
graph generalization. However, both of them face practical deployment limitations.

Two limitations hinder FGL from achieving cross-domain and cross-task collaboration, as illustrated
in Fig. 1 (a): (1) Data Heterogeneity. Due to diverse data sources and processing methods, client
graphs often differ in feature dimension, label space, and topology pattern. As a result, most FGL
methods are confined to collaboration across subsets of a single dataset [62, 26, 20]. While GCFL+
[53] and FedStar [36] enable limited cross-domain collaboration via domain-aware client clustering
or feature-agnostic parameter sharing, they are only applicable to graph-level tasks and lack the
ability to capture cross-domain general knowledge at the feature level. (2) Task Heterogeneity.
Existing FGL assumes uniform graph granularity and downstream tasks across clients, enforcing
one of three settings: node-level (ego-networks for node classification/link prediction), subgraph-
level (induced subgraphs from a global graph for node classification/link prediction), or graph-level
(graph sets for classification/regression) [16]. As a result, existing FGL approaches often adopt task-
specific designs in both model architectures and training algorithms, which significantly limits their
ability to support collaboration across multi-task graph data.

Meanwhile, existing GFM studies face the following two limitations, as illustrated in Fig. 1 (b):
(1) Multi-Domain Data Isolation. Training generalizable GFMs requires diverse graph data span-
ning multiple domains, like social networks, molecular structures, etc. Although a number of public
graph datasets are available, they remain limited in both scale and diversity. In contrast, real-world
graph data is expected to continuously grow in volume and variety, yet it is often distributed across
institutions and isolated in data silos due to privacy regulations or commercial competition. This
renders existing centralized GFM approaches increasingly infeasible. (2) Cross-Silo Storage and
Computation Neglect. Although current GFMs require significantly fewer storage and computa-
tion resources than their NLP or vision counterparts, which makes them feasible within a single
institution, centralized training frameworks inherently fail to leverage the vast yet fragmented stor-
age and computation capacities distributed across multiple silos in real-world deployments. This
under-utilization results in non-trivial opportunity costs, such as redundant resource provisioning
and sub-optimal training efficiency.

Fortunately, FGL and GFM exhibit a naturally complementary relationship. Specifically, FGL
equips GFM with a decentralized training paradigm that supports learning across distributed silos
while efficiently utilizing cross-silo storage and computational resources. In contrast, GFM enhances
FGL by offering unified feature encoding and a pre-training followed by fine-tuning framework,
thereby facilitating generalized collaboration across diverse graph domains and task types. To this
end, we introduce Federated Graph Foundation Model (FedGFM), a novel and practical paradigm
designed for training GFM over decentralized, cross-domain, and cross-task graphs. As illustrated in
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Fig. 1 (c), the FedGFM paradigm follows a pipeline that begins with federated pre-training and pro-
ceeds with fine-tuning. During the federated pre-training phase, each client performs self-supervised
learning on its private graph to acquire domain-specific representations. The server then aggregates
these local models to construct a global model that captures generalizable topological and seman-
tic patterns. The global model is subsequently broadcast to clients as the initialization for the next
round of federated pre-training. This iterative process continues across multiple rounds of federated
communication. In the fine-tuning phase, the global model is treated as a graph foundation model
and is further adapted to specific downstream tasks through supervised learning.

To establish an effective FedGFM framework, our work begins with an empirical investigation
(Sec. 3), assessing its feasibility and revealing a non-trivial challenge. Specifically, (1) From a feasi-
bility perspective, FedGFM faces stringent communication constraints, as frequent transmission of
large-scale model parameters or gradients is often impractical in real-world federated deployments.
This limitation calls for a lightweight yet expressive model architecture. Fortunately, the graph
vector quantization-variational auto-encoder (gVQ-VAE), which is widely used as the backbone in
centralized GFM, presents a promising solution. It has been extensively validated for its ability to
jointly encode graph structures and text attributes into discrete, semantically meaningful represen-
tations [41, 43], making it well-suited for multi-domain pre-training. Meanwhile, its lightweight
design naturally aligns with the communication-efficiency requirements of FedGFM. (2) However,
naively distributing the pre-training of gVQ-VAE across local clients in a federated setting intro-
duces a critical challenge we term knowledge entanglement. Unlike centralized training, federated
pre-training operates on multiple isolated, domain-specific graphs, each with distinct data distribu-
tions. Each client’s local trained model tend to overfit their domain-specific data without alignment
across clients. Consequently, the aggregated global GFM encodes multi-domain graphs into indis-
tinguishable representations and further limits its downstream generalization.

Building upon these insights, we present an effective FedGFM framework named FedGFM+, which
involves two key modules to mitigate knowledge entanglement in a dual-pronged manner: (1) An-
cDAI: From a global perspective, we introduce a novel anchor-based domain-aware initialization
strategy. Before pre-training, each client encodes its local graph into a domain-specific prototype,
which serve as semantic anchors in the representation space. Around each anchor, we construct syn-
thetic embeddings to initialize the global model. We theoretically show that these domain prototypes
are distinguishable across domains, and the initialization provides a strong inductive bias that natu-
rally facilitates encourages separation among knowledge representations from different domains. (2)
AdaDPP: From a local perspective, during the pre-training stage, each client independently learns
and retains a lightweight, domain-sensitive prompt that captures its local semantic preferences, with-
out participating in federated aggregation. In the fine-tuning stage, these prompts are assembled into
an adaptive domain-sensitive prompt pool. For a given target graph, the model selects and incorpo-
rates the most relevant prompts from the pool based on its semantic characteristics. These prompts
serve as domain-specific priors that condition the GFMs representations, thereby enabling adaptive
exploitation of domain knowledge and facilitating improved adaption to downstream tasks.

Our Contributions. (1) Problem Identification. To the best of our knowledge, this is the first
exploration of the FedGFM paradigm, which organically combines FGL and GFM to offer a prac-
tical solution for training graph foundation model across silos with diverse graph domain and tasks.
(2) In-depth Investigation. (Sec. 3) We conduct an in-depth empirical investigation for FedGFM,
assessing its feasibility and revealing a non-trivial challenges named knowledge entanglement, pro-
viding valuable insights for its development. (3) Novel Framework. (Sec. 4) We propose a novel
and effective FedGFM framework named FedGFM+, which employs two key modules to address
the knowledge entanglement challenge, including AncDAI from the global perspective and AdaDPP
from the local perspective. (4) State-of-the-art Performance. (Sec. 5) Extensive experimental re-
sults on graph learning with 8 cross-task and cross-domain datasets demonstrate the superiority of
FedGFM+ compared with 20 baselines, including 5 isolated supervised learning methods, 10 FGL
techniques, and 5 federated variants of centralized GFM training strategies.

2 Preliminaries and Problem Formalization

Text-Attributed Graph. Consider a text-attributed graph G = (V, E), where V is the set of nodes
and E is the set of edges. Each node vi ∈ V and edge ei ∈ E may be associated with a textual
description, which is encoded into a semantic vector using a specific embedding technique (e.g.,
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bag-of-words, pre-trained language models). Depending on the downstream task, the graph may be
equipped with supervision signals at different levels: node-level labels (for node classification), edge-
level labels (for edge classification or link prediction), or graph-level labels (for graph classification).

Graph Vector Quantization-Variational Auto-Encoder as GFM Backbone. Most recent GFMs
adopt gVQ-VAEs as the trainable GNN. This backbone enables the joint encoding of topology and
textual attributes into a discrete embedding space with clear semantic boundaries, making it particu-
larly suitable for multi-domain GFM pre-training. Specifically, (1) G′ = (V, E ,X )→ Encoder→
Embeddings: To ensure generality in arbitrary inputs, the Encoder can be instantiated as any reason-
able GNN capable of incorporating both node and edge features to generate informative embeddings
z ∈ Rd. (2) Embeddings→ Codebook→ Quan. Emb.: To establish clear semantic boundaries, the
Codebook C transforms continuous embeddings z into discrete embeddings e ∈ Rd (Quan. Emb.
zq ∈ Rd) via similarity retrieval-based vector quantization:

zq ← ej , j = argmin
ei∈C
∥z − ei∥2, C = {e1, e2, . . . , eK}. (1)

(3) Quan. Emb. → Decoder → G′r = (V, Er,Xr): To enable the self-supervised training, gVQ-
VAEs follow an autoencoder framework, where gradients are computed by the discrepancy between
the reconstructed graph G′r and the original input graph G′, thereby updating the Encoder and Code-
book. Notably, the trainable components of the Encoder and the Codebook are the weighted matrix
and the discrete embeddings {e1, . . . , eK}, which together constitute the trainable GFM embed-
ding function parameterized by fθ. Meanwhile, to construct end-to-end gradient flow, the straight-
through estimator (STE) [4] is used to approximate gradients by bypassing the non-differentiable
quantization step. Formally, the gVQ-VAE is pre-trained via optimizing loss function as follows:

Lpretrain = Lfeat + Ltopo +
1

n

n∑
i=1

∥∥sg[zi]− zqi
∥∥2
2
+ · 1

n

n∑
i=1

∥∥zi − sg[zqi ]
∥∥2
2
,

Lfeat =
1

n

n∑
i=1

(1− xT
i x̂i

||xi|| · ||x̂i||
)γ , Ltopo = ||A− σ(X̂X̂T )||22,

(2)

where sg[·] represents the stop-gradient operator, n denotes the number of nodes, zi represents the i-
th node embedding produced by the GNN encoder, zqi denotes its quantized embedding obtained by
retrieving the codebook, and x̂i denotes the reconstructed node attributes projected via MLP-based
decoders, i.e., x̂i = δ(zqi), γ is the scaling factor. More details and related works about gVQ-VAE
are presented in Appendix A.

Problem Formalization of FedGFM. For FedGFM, there is a trusted central server and K clients.
The subgraphs or graph collections of the client present a relationship such as subgraph-level decen-
tralization or graph-level decentralization (see Appendix. C.2 for more details about data settings).
To unify the representation, we regard the graph data held by k-th client as Sk, where |Sk| = 1 for
subgraph-level decentralization. The proposed FedGFM paradigm follows a federated pre-training-
fine-tuning process. For the Federated Pre-Training phase, each client conducts self-supervised
training to optimize its local model based on its local graph, and the server aggregates multiple local
models to obtain a global graph foundation model. Consider adapting the widely-used FedAvg [32]
aggregation strategy in federated learning for vision tasks within the FedGFM framework, the fed-
erated pre-training process unfolds as follows: (1) Initialization: At the first communication round
(r=1), the central server sets the local model parameters of K clients to the global parameters, i.e.,
Θk ← Θg ∀k. (2) Local Updates: Each local model performs training on the current local data Gk to
minimize the self-supervised loss L(Gk;Θk), and then updating the parameters: Θk ← Θk−η∇L.
(3) Global Aggregation: After local training, the server aggregates the local knowledge with respect
to the number of training instances, i.e., Θg ← Nk

N

∑K
k=1 Θ

k with N =
∑

k Nk, and distributes
the global parameters Θg to local clients selected at the next round. This process iterates between
steps 2 and 3 until reaching the final round R. This iterative cycle continues until the completion
of the last round (r=R), facilitating collaborative GFM training by parameter sharing without the
exchange of private local data. For the Fine-Tuning phase, FedGFM first loads and freezes the pre-
trained global model from the central server as GFM, then uses available graph supervision signals
to fine-tune the task heads to adapt to specific downstream graph tasks.
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3 Empirical Investigation

In this section, we present an in-depth empirical study of the FedGFM paradigm, organized around
two key questions from different perspectives. Q1: From the perspective of Feasibility, is FedGFM
practical for real-world deployment? Q2: From the perspective of Effectiveness, what are the main
bottlenecks that limit the effectiveness of a naive FedGFM implementation?

Table 1: Comparison of parameter sizes between graph foundation models and those in the language
and vision fields. Parameter counts are shown above each method name. ‘*’ indicates an upper
bound. Graph, Language and vision models are highlighted in red, yellow and blue, respectively.

16.8M
AnyGraph [49]

20M
GFSE [9]
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SwapGT [10]
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OpenGraph [51]
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180M
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GFT [43]

10M
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GraphCLIP [67]

31.64M∗
UniGraph2 [18]
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Figure 2: Empirical analysis on three graph datasets:
Cora, WN18RR, and HIV. (a) Comparison of topologi-
cal patterns in terms of degree distribution. (b) Average
cosine similarity of original node features and node em-
beddings encoded by GFT and GFT∗, respectively.

To address Q1, we survey several repre-
sentative foundation models to quantify
their parameter scales, and summarize the
results in Table 1. Notably, compared
with foundation models in language and
vision domains, graph foundation models
(GFMs) are significantly more lightweight
in terms of parameter size. This sug-
gests that federated pre-training of GFMs
is communication-efficient and practically
feasible. Among all surveyed GFMs, we
further observe that two gVQ-VAE-based
methods, GFT [43] and GQT [41], exhibit
the smallest parameter scales. This high-
lights the advantage of the gVQ-VAE ar-
chitecture in achieving a lightweight yet
expressive design, making it particularly suitable for FedGFM settings. More related works about
GFM are presented in Appendix A.

To address Q2, we conduct a simple yet illustrative visualization experiment, aiming to reveal the
bottlenecks that limit the effectiveness of naive FedGFM. Building on the insight of Q1, we imple-
ment naive federated variants of GFT [43] (denoted as GFT∗), and evaluate GFT and GFT∗ on three
datasets: Cora [56], WN18RR [12], and HIV [47], covering different domains (citation networks,
knowledge graphs, and molecular graphs).

The empirical results are presented in Fig. 2. Specifically, panel (a) illustrates the node degree distri-
butions of the Cora, WN18RR, and HIV datasets (restricted to the first 30 degrees starting from 1 for
visual clarity), while panel (b) reports the inter-domain cosine similarity among the three datasets,
computed in three different representation spaces: (1) the average initial node features, (2) the av-
erage node embeddings learned by GFT, and (3) those learned by GFT∗. This comparison reveals
how well each model distinguishes multi-domain knowledge during representation learning. As
observed, the three datasets differ markedly in both topological structure and initial feature distribu-
tions. Despite such heterogeneity, centralized GFT pretraining produces a graph foundation model
that generates embeddings with clear domain-specific distinctions. This indicates effective preserva-
tion of inter-domain variability through joint optimization. In contrast, the embeddings learned by
GFT∗ under decentralized federated pretraining show near-unity inter-domain similarity, reflecting
a collapse of domain specificity caused by the absence of coordinated global optimization. We term
this the knowledge entanglement, a non-trivial challenge to resolve for effective FedGFM design.
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4 Methods

In this section, we introduce the proposed FedGFM+ framework. We first provide an overview of
FedGFM+ in Fig. 3. At its core, FedGFM+ adopts a federated pre-training and fine-tuning paradigm.
During each communication round of pre-training, clients leverage a local gVQ-VAE encoder to
perform self-supervised graph reconstruction, capturing domain-specific semantics. The resulting
local models are uploaded to the server for aggregation, yielding an updated global model. The
global model is subsequently broadcast to clients as the initialization for the next round of federated
pre-training. In the fine-tuning stage, this global model serves as a general-purpose GFM encoder,
while a task-specific prediction head is optimized for downstream tasks. Moreover, FedGFM+ in-
troduces two key modules to mitigate the knowledge entanglement challenges: (1) AncDAI: Before
pre-training, FedGFM+ employs a novel anchor-based domain-aware initialization strategy to ini-
tialize the global codebook, providing a strong inductive bias that facilitates disentanglement of
domain-specific knowledge. (2) AdaDPP: During pre-training, each client independently learns a
lightweight graph prompt that imbues the GFM with its own domain semantic preferences. Dur-
ing fine-tuning, prompts from all clients are aggregated into an adaptive domain-sensitive prompt
pool, from which the GFM selects relevant prompts to augment the target graph attributes, thereby
improving the downstream adaptation. Below we introduce these two modules in detail.

4.1 Anchor-Based Domain-Aware Initialization

As discussed in Section 3, naive FedGFM suffers from knowledge entanglement, where represen-
tations from different domains collapse into indistinguishable embeddings. To mitigate this, from
a global perspective, we aim to endow the global model with a strong inductive bias that explicitly
encourages the separation of domain-specific semantics.

Before federated pre-training, to capture domain-specific knowledge, we introduce a domain proto-
type extraction mechanism, which models intrinsic patterns in the graph topology and node attributes
of the local graph and summarizes them into a compact, unified-dimensional vector representation.
Specifically, for the k-th client with a local graph Gk = (Vk, Ek), node features Xk and adjancency
matrix Ak, we first compute the node embeddings Zk as follows:

Zk = fθglb(Xk,Ak) (3)

where θglb denotes the initialized global model parameter broadcast to all clients. The domain pro-
totype pk is then obtained by mean-pooling over node embeddings:

pk =
1

|Vk|
∑
i∈Vk

zki (4)

We theoretically demonstrate that, even under a randomly initialized model with shared parameters,
the domain prototypesobtained via averaging the encoded node representationsremain distinguish-
able across clients. This separability stems from intrinsic discrepancies in node features and graph
topologies among domains, and can be formally bounded (Appendix B Theorem. B.1).

Each client subsequently uploads its prototype to the central server. To steer the global model
toward learning domain-aware representations, we treat these prototypes as semantic anchors and
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synthesize local neighborhoods in the embedding space via controlled perturbations. Specifically,
for each anchor pk, a set of perturbed embeddings {p̃k

i }Hi=1 is generated as:

p̃k
i = pk + σϵi, ϵi ∼ N (0,1), i = 1, . . . , H, (5)

where ϵi is sampled from a standard Gaussian distribution, and σ is a noise scaling factor that ensures
numerical stability. Notably, the number of synthetic embeddings H is uniformly allocated across
prototypes, depending on the number of the learnable codebook tokens in the global model.

Finally, the synthetic embeddings aggregated from all domains are used to initialize the codebook
C of the global model, i.e., C ← Init(∪k{p̃k

i }Hi=1). We further provide a theoretical analysis (Ap-
pendix B Theorem. B.2) to demonstrate that this initialization introduces a structured inductive bias,
which not only facilitates disentangled representation learning across diverse domains but also sta-
bilizes optimization during the early stages of federated pretraining.

4.2 Adaptive Domain-Sensitive Prompt Pool

Moreover, to address knowledge entanglement from the local perspective, we introduce a novel
prompt learning-based mechanism. During the pre-training stage, each client independently learns
and retains domain-specific prompts and is excluded from federated aggregation. During the fine-
tuning stage, these prompts serve as semantic priors that condition the GFM’s representations, facil-
itating improved adaptation to diverse downstream tasks.

Concretely, during federated pre-training, each client maintains a set of learnable prompt tokens
embedded in its local graphs feature space. For the k-th client, this prompt set is denoted as Φk =
{ϕk

i }λi=1, where λ is the number of prompts and F the feature dimensionality. Given the local graph
Gk = (Vk, Ek) and node features {xk

i }vi∈Vk , node representations are enhanced by a weighted
combination of prompts, with attention weights computed via λ learnable linear projections:

x̃k
i = xk

i +

λ∑
j=1

αk
jϕ

k
j , αk

j =
e(wjk)T xk

i∑λ
t=1 e

(wk
t )

T xk
i

, (6)

where αk
j reflects the relevance of the j-th prompt to node vi, and wk

j is the corresponding learnable
projection vector. These prompts and projection weights are optimized together with the local GNN
backbone through a self-supervised graph reconstruction task, as described in Eq. 2.

During the fine-tuning stage, we downloads the global model as GFM, which encodes generalizable
cross-domain knowledge. In parallel, it collects all locally learned prompts and associated projection
weights to construct a adaptive domain-aware prompt pool, denoted as ρ = {ϕj

i}
λ,K
i=1,j=1 and w =

[w1, . . . ,wK ]. Given a target graph Gtgt = (V tgt, E tgt), node features are augmented using this
prompt pool. For each node vi ∈ V tgt with feature xtgt

i , the enhanced representation is computed as:

x̃tgt
i = xtgt

i +

K∑
p=1

λ∑
j=1

αp
jϕ

p
j , αp

j =
e(wjp)T xtgt

i∑K
t=1

∑λ
l=1 e

(wt
l )

T xtgt
i

. (7)

As a result, FedGFM+ effectively capitalizes on domain-specific prompts acquired during pre-
training, substantially improving its adaptability to heterogeneous domains and diverse downstream
tasks in the fine-tuning phase.

5 Experiments

In this section, we present a comprehensive evaluation of FedGFM+. We begin by introducing the
experimental setup (Sec.5.1), and then seek to answer the following research questions: Q1: After
task-specific fine-tuning, does the GFM trained by FedGFM+ consistently outperform (1) isolated
supervised learning techniques, (2) state-of-the-art FGL baselines, and (3) naive federated variants
of centralized GFM strategies across node-, edge-, and graph-level prediction tasks (Sec.5.2)? Q2:
How does each individual module contribute to the overall performance of FedGFM+ (Sec.5.3)?
Q3: Is FedGFM+ robust to changes in hyperparameter configurations (Sec.5.4)? In addition to the
main evaluation, we further investigate the few-shot generalization ability (Q4) in Appendix D.
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Table 2: Performance comparison of FedGFM+ and baselines. Best results of each baseline category
are in underline. ‘*’ denotes federated variants of centralized GFM. ‘N/A’ denotes task inapplicabil-
ity. Node, edge, and graph classification datasets are marked in red, yellow, and blue, respectively.

Method

Dataset
Cora PubMed OGB-arxiv WikiCS FB15K237 WN18RR HIV PCBA

Linear 73.44
± 0.13

85.11
± 0.15

67.55
± 0.08

74.38
± 0.16

72.05
± 0.14

84.33
± 0.20

65.48
± 0.23

57.71
± 0.22

GCN [22] 80.17
± 0.35

84.70
± 0.22

72.50
± 0.24

77.24
± 0.16

71.24
± 0.30

82.27
± 0.18

65.37
± 0.51

63.41
± 0.20

GAT [39] 81.09
± 0.33

84.47
± 0.11

71.34
± 0.29

77.59
± 0.42

73.07
± 0.19

85.52
± 0.12

65.02
± 0.28

64.83
± 0.26

GraphSAGE [15] 80.52
± 0.28

85.20
± 0.24

72.78
± 0.31

77.63
± 0.21

72.10
± 0.38

82.98
± 0.22

65.19
± 0.27

66.42
± 0.14

GIN [54] 78.45
± 0.23

83.61
± 0.44

70.74
± 0.37

69.24
± 0.25

70.06
± 0.14

80.25
± 0.28

66.30
± 0.18

68.83
± 0.30

FedAvg [32] 81.45
± 0.27

85.22
± 0.18

71.53
± 0.29

77.67
± 0.13

73.14
± 0.11

83.55
± 0.20

66.05
± 0.15

68.52
± 0.28

MOON [24] 81.72
± 0.38

85.84
± 0.21

72.50
± 0.41

77.54
± 0.24

73.20
± 0.15

83.64
± 0.45

67.10
± 0.26

69.81
± 0.30

FedSage+ [62] 82.15
± 0.28

86.37
± 0.15

72.80
± 0.11

78.64
± 0.34

73.17
± 0.22

82.95
± 0.16 N/A N/A

Fed-PUB [3] 81.98
± 0.20

86.51
± 0.32

73.15
± 0.29

78.32
± 0.43

72.84
± 0.13

83.79
± 0.25 N/A N/A

FedGTA [26] 82.41
± 0.33

87.10
± 0.25

73.28
± 0.14

78.60
± 0.24 N/A N/A N/A N/A

FedTAD [66] 82.24
± 0.18

86.95
± 0.30

72.50
± 0.17

78.22
± 0.27 N/A N/A N/A N/A

FGSSL [20] 81.55
± 0.42

85.60
± 0.21

73.33
± 0.15

76.25
± 0.24 N/A N/A N/A N/A

FGGP [40] 82.03
± 0.13

85.10
± 0.37

74.19
± 0.05

76.44
± 0.18 N/A N/A N/A N/A

GCFL+ [53] N/A N/A N/A N/A N/A N/A 67.51
± 0.14

71.95
± 0.28

FedStar [36] N/A N/A N/A N/A N/A N/A 67.82
± 0.21

71.27
± 0.39

OFA∗ [29] 80.04
± 0.33

85.30
± 0.29

73.12
± 0.25

78.55
± 0.37

72.88
± 0.26

84.28
± 0.49

67.00
± 0.19

71.05
± 0.28

GFT∗ [43] 81.07
± 0.24

84.24
± 0.38

73.19
± 0.25

78.81
± 0.19

73.52
± 0.14

86.30
± 0.22

66.32
± 0.27

72.81
± 0.34

UniGraph∗ [17] 81.53
± 0.18

86.07
± 0.20

72.94
± 0.33

78.47
± 0.22

73.80
± 0.48

86.44
± 0.29

67.24
± 0.31

73.51
± 0.24

GQT∗ [41] 81.92
± 0.26

85.59
± 0.37

74.07
± 0.47

77.52
± 0.28

73.40
± 0.11

85.66
± 0.29

67.93
± 0.24

73.22
± 0.30

GraphCLIP∗ [67] 82.33
± 0.27

84.95
± 0.18

73.55
± 0.20

78.14
± 0.31

72.95
± 0.17

84.92
± 0.35

67.31
± 0.51

73.40
± 0.29

FedGFM+ (Ours) 83.79
± 0.27

88.52
± 0.31

76.31
± 0.18

80.70
± 0.28

75.25
± 0.24

89.25
± 0.13

69.39
± 0.44

77.68
± 0.22

5.1 Experimental Setup

To evaluate the effectiveness of FedGFM+, we conduct experiments on 8 benchmark graph datasets
spanning a range of domains and covering three key tasks: node classification (Citation Networks:
Cora, PubMed [56], and OGB-Arxiv [19]; Hyper-Link Networks: WikiCS [33]), edge classifica-
tion (Knowledge Graphs: FB15K237 [37] and WN18RR [12]), and graph classification (Molecule
Graphs: HIV, PCBA [47]). Each dataset is partitioned into 3 clients to simulate decentralized sce-
narios, and we report the average test performance (accuracy or AUC) across clients. We compare
FedGFM+ against three baseline categories: (1) Isolated Supervised Models, trained independently
on each client, including a linear layer, GCN, GAT, GraphSAGE, and GIN; (2) FL/FGL Approaches,
including general-purpose methods like FedAvg and MOON, and task-specific methods such as
FedSage+, Fed-PUB, FedGTA, FedTAD, FGSSL, FGGP, GCFL+, and FedStar; and (3) Federated
Variants of centralized GFM training strategies (OFA, GFT, UniGraph, GQT, GraphCLIP). More
experimental details are provided in Appendix C.
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5.2 Performance Comparison (Answers for Q1)

To answer Q1, we compare FedGFM+ with a range of competitive baselines, evaluating each con-
figuration over 3 independent runs without fixed seeds. As summarized in Table 2, FedGFM+ con-
sistently achieves superior performance across all datasets and downstream tasks.

Comparison with Isolated Supervised Learning. FedGFM+ consistently outperforms supervised
backbones, confirming its strong cross-domain and cross-task generalization. Specifically, it im-
proves over the best baselines by at least 2.70% in node classification, 2.18% in edge classification,
and 3.09% in graph classification, demonstrating superior transferability and robustness.

Comparison with FL/FGL Methods. As discussed in Section 1, existing FL/FGL methods are
limited by data/task heterogeneity and reliance on task-specific information, restricting its training
and evaluation scenarios. In contrast, as observed, FedGFM+ consistently outperforms by enabling
broad cross- domain and task collaboration that captures general structural and semantic knowledge.

Comparison with Federated Variants of Centralized GFM. As observed, naive federated GFM
models often suffer from knowledge entanglement, leading to them even below isolated supervised
baselines (i.e., negative transfer). In contrast, FedGFM+ effectively addresses these issues via its
design (i.e., AncDAI and AdaDPP), enabling efficient downstream adaptation.

5.3 Ablation Study (Answer for Q2)

To address Q2, we analyze FedGFM+s two key modules. AncDAI guides the initialization of learn-
able tokens in the global gVQ-VAE codebook, while AdaDPP is applied during fine-tuning to im-
prove adaptability to domain- and task-specific variations. An ablation study on 8 datasets (Table 3)
shows that removing both modules degrades performance. Notably, excluding AncDAI causes a
larger drop than excluding AdaDPP, highlighting AncDAIs crucial role in reducing knowledge en-
tanglement and boosting generalization. In summary, both are vital for FedGFM+s effectiveness.

Table 3: Ablation study results for FedGFM+. Node, edge, and graph classification datasets are
marked in red, yellow, and blue, respectively.

Method

Dataset
Cora PubMed OGB-arxiv WikiCS FB15K237 WN18RR HIV PCBA

FedGFM+ w/o. AncDAI 81.55
± 0.22

85.56
± 0.28

75.19
± 0.19

78.05
± 0.15

73.08
± 0.31

87.61
± 0.21

67.52
± 0.11

74.81
± 0.26

FedGFM+ w/o. AdaDPP 83.17
± 0.18

87.42
± 0.26

75.83
± 0.27

77.64
± 0.14

74.59
± 0.26

88.19
± 0.20

67.84
± 0.29

76.72
± 0.10

FedGFM+ 83.79
± 0.27

88.52
± 0.31

76.31
± 0.18

80.70
± 0.28

75.25
± 0.24

89.25
± 0.13

69.39
± 0.44

77.68
± 0.22

5.4 Sensitivity Analysis (Answer for Q3)
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Figure 4: Sensitivity analysis results for FedGFM+.

To address Q3, we perform a
sensitivity analysis on key hy-
perparameters in FedGFM+. As
a pre-trainingfine-tuning frame-
work, it involves many hyper-
parameters; here we focus on
those in our core modules. For
AncDAI, we vary the num-
ber of learnable tokens in the
global gVQ-VAE codebook. For
AdaDPP, we vary the number of
learnable prompts per client. Re-
sults are shown in Fig. 4: (a)
AncDAI maintains stable perfor-
mance under different codebook sizes, indicating robust domain initialization; (b) AdaDPP performs
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well with few prompts, and is insensitive to prompt number. Overall, FedGFM+ shows strong ro-
bustness to key hyperparameters.

6 Limitation

While FedGFM+ adopts randomly initialized encoders and decentralized optimization to mitigate
privacy leakage, we acknowledge that the exchange of high-level representations (e.g., prototypes
and prompts) may still expose partial semantic information. A thorough privacy analysis, including
the investigation of potential leakage pathways and the development of a threat model, remains
an important direction for future work. Incorporating formal privacy guarantees would further
strengthen the robustness of our approach in practical federated settings.

7 Conclusion

This paper initiates the study of Federated Graph Foundation Models (FedGFM), aiming to train
a unified graph model with domain and task generalization under decentralized settings. By inte-
grating the complementary strengths of Federated Graph Learning (FGL) and centralized Graph
Foundation Models (GFM) training strategies, FedGFM alleviates the limitations of both paradigms.
Empirical analysis reveals a key challenge, knowledge entanglement, which limits the effectiveness
of naive federated adaptations of centralized GFM training. To address this, we propose FedGFM+, a
dual-perspective framework incorporating AncDAI and AdaDPP. Experimental results demonstrate
the superior performance and generalization ability of FedGFM+.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The brief descriptions of our proposed method and main contributions are
provided at the end of the introduction, along with the motivations and overall performance
analysis discussed in both the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of the proposed FedGFM+ framework in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide proofs for each introduced theorem in the paper and clearly
present the assumptions, which can be found in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided detailed experimental implementation details in the Ap-
pendix regarding how we fine-tuned each dataset or method to achieve its optimal perfor-
mance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we have included the source code in the supplementary materials to
enable interested researchers to reproduce the experimental results presented in our paper
with sufficient guidance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training details can be found in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide all our performances with error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Appendix C for details regarding to our computing resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are hereby comply to the guidelines illustrated in the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no social impact associated with the work we performed and pre-
sented in this paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not pose such risks for being misused for malicious intents.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For all existing works mentioned in our paper, whether for illustrative pur-
poses or as baselines for performance comparison, we have provided proper citations and
references to acknowledge their contributions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: For the purpose of evaluating our methods, we have developed new code and
included it in the supplementary materials when submitting our work to OpenReview. This
work does not introduce any new assets such as datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: We do not include such research or experiments in our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is not an important, original, or non-standard component of the core
methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Related Works

Graph Neural Networks. Earlier research on deep graph learning extends convolution to handle
graphs [7] but comes with notable parameter counts. To this end, GCN [22] simplifies graph convo-
lution by utilizing a 1-order Chebyshev filter to capture local neighborhood information. Moreover,
GAT [39] adopts graph attention, allowing weighted aggregation. GraphSAGE [15] introduces a
variety of learnable aggregation functions for performing message aggregation. Moreover, GIN [54]
aims to preserve structural information maximally and theoretically proves its discriminative power
matches the Weisfeiler-Lehman graph isomorphism test. Further details on GNN research can be
found in surveys [48, 64].

Federated Graph Learning. Motivated by the success of federated learning in computer vision
and natural language processing [55] and the demand for distributed graph learning, FGL has gained
increasing attention. From the data and task perspectives, FGL studies are categorized into three set-
tings: (1) Graph-level FGL, where each client collects multiple graphs for graph-level tasks, like
graph classification. The main challenge is avoiding interference between clients’ graph datasets,
especially in multi-domain settings. For example, GCFL+ [53] introduces a GNN gradient pattern-
aware technique for dynamic client clustering to reduce conflicts from structural and feature het-
erogeneity. (2) Subgraph-level FGL, where each client holds a subgraph of a global graph for
node-level tasks like node classification. The key challenges are subgraph heterogeneity and miss-
ing edges. Fed-PUB [3] addresses heterogeneity by enhancing local GNNs with random graph
embeddings and personalized sparse masks for selective aggregation. FedGTA [26] encodes topol-
ogy into smoothing confidence and graph moments to improve model aggregation. Other stud-
ies [25, 20, 40, 66] also achieve strong results on this challenge. To address missing edges, Fed-
Sage+ [62] integrates node representations, topology, and labels across subgraphs, training a neigh-
bor generator to restore missing links and achieve robust subgraph-FL. Other works [8, 57, 61] also
excel in this area. (3) Node-level FGL, where each client collects one or multiple ego-networks for
node- and edge-level tasks. From the perspective of data format and task, Node-level FGL can be
seen as a special case of Subgraph-level FGL. Notably, the application scenarios of Node-level FGL
usually involve strict privacy constraints, and representative methods include FedEgo [63]. Detailed
insights into FGL research are available in surveys [14, 60, 13] and benchmark studies [16, 45, 27].

Language-Oriented GFMs [28, 65, 17, 23]. These approaches transform graph structures into
linearized textual sequences by encoding nodes and edges using syntactically structured templates.
The resulting representations can then be processed by token-based encoderstypically LLMsthat are
pre-trained on vast corpora of natural language. This approach allows for seamless integration with
existing LLM infrastructure and leverages the powerful contextual understanding capabilities de-
veloped through natural language processing (NLP). In more detail, during the pre-training phase,
these models optimize the parameters of the embedding functionoften realized as an LLMthrough
conventional NLP objectives such as next-token prediction or masked language modeling. These
objectives encourage the model to learn coherent semantic representations from the flattened graph
text, effectively transferring linguistic inductive biases to graph representation learning. However,
despite their ability to inherit the expressive power of LLMs, language-oriented GFMs face intrinsic
limitations. The transformation from graph to text inevitably introduces information loss, especially
concerning structural properties such as node connectivity and subgraph patterns. Moreover, this
flattening process may distort the original graph topology in ways that are not easily reversible,
thereby affecting downstream tasks that rely on accurate structural reasoning. Additionally, scala-
bility becomes a concern due to the growing length of textual sequences with increasing graph size,
which may lead to inefficiencies in both computation and memory usage.

Graph-Oriented GFMs [50, 59, 31, 9, 52, 29, 44, 42, 43, 46, 67, 35, 58]. These approaches aim to
preserve both the semantic richness of textual attributes and the integrity of graph topology through
purpose-built architectures. These models typically adopt a hybrid design, wherein a frozen LLM is
used to extract high-quality textual embeddings from node and edge features, while a trainable GNN
component handles the aggregation and propagation of information across the graph structure. This
dual-component architecture enables the model to benefit from the strong language understanding
capabilities of LLMs without compromising the fidelity of graph structure. The GNN backbone
ensures that topological relationships are explicitly modeled, allowing for effective message passing
and relational reasoning. During the pre-training stage, graph-oriented GFMs often incorporate self-
supervised learning strategies, such as graph reconstruction or contrastive learning objectives, which
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help the model capture invariant and transferable representations across diverse domains. These
tasks encourage the model to learn a unified representation space where both textual and structural
semantics are coherently aligned, leading to better generalization on downstream tasks involving
heterogeneous graph data. By preserving the native structure of graphs and leveraging the repre-
sentational power of modern neural architectures, graph-oriented GFMs offer a promising direction
toward building robust and scalable foundation models for graph-centric machine learning.

B Theoretical Proof

In this section, we provide theoretical analysis for the distinguishability of domain prototypes under
random initialization (Theorem. B.1) and the semantic separability of gVQ-VAE codebooks initial-
ized via AncDAI (Theorem. B.2).
Theorem B.1 (Domain Prototype Distinguishability). Let Ga = (Va, Ea) and Gb = (Vb, Eb) de-
note local graphs from two clients belonging to different domains, with node features Xa,Xb ∈
Rn×d and adjacency matrices Aa,Ab ∈ Rn×n. Let f glb

θ be the parameters of a randomly initial-
ized L-layer global GNN-Encoder, which is broadcast to all clients for local initialization. The
domain prototype is computed with Eqs. (3) and (4):

pa =
1

n

n∑
i=1

f glb
θ (Aa,Xa)i, pb =

1

n

n∑
i=1

f glb
θ (Ab,Xb)i. (8)

Then, there exists a constant α > 0, whose value depends on the architecture and depth L of GNN-
Encoder), such that:

Eθ

[∥∥pa − pb
∥∥2
2

]
≥ α ·

(∥∥Xa −Xb
∥∥2
F
+
∥∥Aa −Ab

∥∥2
F

)
. (9)

Proof. Let zai = fglb
θ (Aa,Xa)i and zbi = fglb

θ (Ab,Xb)i denote the representations of node i ob-
tained from a frozen GNN applied to graphs a and b, respectively. Here, the GNN parameters θ
are randomly initialized and held fixed. Under this setting, the GNN’s computations can be inter-
preted as performing random but deterministic linear transformations and message passing opera-
tions. Leveraging the linearity of expectation and the independence of random initialization, the
expected squared Euclidean distance between the resulting node prototypes can be expressed as:

Eθ

[∥∥pa − pb
∥∥2
2

]
= Eθ

∥∥∥∥∥ 1n
n∑

i=1

(
zai − zbi

)∥∥∥∥∥
2

2

 (10)

≥ 1

n2

n∑
i=1

Eθ

[∥∥zai − zbi
∥∥2
2

]
(11)

≥ α ·
(∥∥Xa −Xb

∥∥2
F
+
∥∥Aa −Ab

∥∥2
F

)
. (12)

Theorem B.2 (Semantic Separability of AncDAI-Initialized Codebook). Let {pk}Kk=1 be the set of
domain prototypes uploaded from K clients. For each prototype pk, we generate a set of perturbed
vectors via Eq. 5:

p̃k
i = pk + σϵi, ϵi ∼ N (0, I), i = 1, . . . .H. (13)

Let Cperturb and Crand be codebooks constructed respectively from perturbed prototypes and from
standard Gaussian initialization. Then for any two domains a ̸= b and respective node embeddings
za, zb (drawn from fθ(A,X)), we have:

P
[
code(za; Cperturb) ̸= code(zb; Cperturb)

]
≥ P

[
code(za; Crand) ̸= code(zb; Crand)

]
, (14)

i.e., the perturbation-initialized codebook yields higher domain-level separability.

Proof. We adopt a quantization function based on cosine similarity:

code(z; C) = argmax
c∈C

z⊤c

∥z∥2∥c∥2
,
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which assigns each embedding to the codebook vector with the smallest angular distance.

Assume that the domain prototypes {pk}Kk=1 satisfy a minimal angular separation:

min
a≠b

arccos

(
(pa)⊤pb

∥pa∥2∥pb∥2

)
≥ δ > 0.

The perturbed codebook Cperturb is formed by adding isotropic Gaussian noise σϵ to each prototype,
with ϵ ∼ N (0,1). For sufficiently small σ, the perturbations preserve the cluster structure, yielding
distinct codebook clusters separated by angles close to δ.

Node embeddings za and zb sampled from different domains concentrate in neighborhoods around
their respective prototypes. Formally, with high probability,

arccos

(
(za)⊤pa

∥za∥2∥pa∥2

)
≤ ϵ, arccos

(
(zb)⊤pb

∥zb∥2∥pb∥2

)
≤ ϵ,

for some small ϵ > 0. Then. by the triangle inequality on the unit sphere,

arccos

(
(za)⊤zb

∥za∥2∥zb∥2

)
≥ δ − 2ϵ,

which implies that embeddings from distinct domains remain well-separated.

Therefore, the probability that za and zb are assigned to the same codeword under Cperturb is
bounded above by the probability that perturbations cause cluster overlap, which is small for suf-
ficiently small σ. In contrast, a random codebook Crand sampled isotropically from a standard
Gaussian lacks such separation, and embeddings from different domains have a higher probability
of being assigned the same codeword. Thus, we combines these observations and proof that:

P
[
code(za; Cperturb) ̸= code(zb; Cperturb)

]
≥ P

[
code(za; Crand) ̸= code(zb; Crand)

]
.

C More Detailed Experimental Setup

C.1 Dataset

Table 4: The statistics of evaluated datasets in our experiments.

Dataset Domain Task # Graphs Avg. #Nodes Avg. #Edges # Classes

Cora Citation Node 1 2,708 10,556 7
PubMed Citation Node 1 19,717 44,338 3
Arxiv Citation Node 1 169,343 1,166,243 40
WikiCS Hyper link Node 1 11,701 216,123 10
FB15K237 Knowledge Link 1 14,541 310,116 237
WN18RR Knowledge Link 1 40,943 93,003 11
PCBA Molecule Graph 437,929 26.0 28.1 128
HIV Molecule Graph 41,127 25.5 27.5 2

We utilize 8 datasets from various domains and tasks, as detailed in Table 4.

C.2 Data Processing

Our data processing process can be illustrated as Fig. 5, consisting of two steps: Step 1: Language
Encoding. We use Sentence-Bert [34] to uniformly encode text attribute graph datasets in differ-
ent fields to uniformly convert node and edge text into 768-dimensional vectorized representations;
and Step 2: Data Decentralization Simulation. Real-world graph data is inherently collected by
multiple institutions, resulting in naturally decentralized data distributions. Prior studies in FGL
categorize such decentralization into three canonical levels [16]: (1) node-level, where each client
maintains ego-networks extracted from a global graph; (2) subgraph-level, where each client collects
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Figure 5: Data processing pipeline to simulate decentralized multi-domain and task graphs.

a local subgraph induced from a broader graph topology; and (3) graph-level, where each client in-
dependently gathers a set of graphs from a larger collection. Notably, the node-level setting can be
regarded as a special case of subgraph-level decentralization. Hence, we focus on the latter two in
this work. Specifically, under the subgraph-level setting, the implicit global graph G = (V, E) has
multiple substructures independently collected by different clients. The k-th client locally collects
a subgraph Gk = (Vk, Ek) such that Vk ⊊ V and Ek ⊊ E ; Under the graph-level setting, the k-th
client independently collects a subset of graphs Sk from an implicit broader collection S = {Gi}Mi=1,
i.e., Sk ⊊ S . To simulate these decentralized scenarios in our experiments, we adopt two partition-
ing strategies: the Louvain algorithm [5] for simulating subgraph-level decentralization, and random
allocation for graph-level decentralization, both of which is widely used in various FGL studies [27].

Finally, the default train/validation/test splits used in the fine-tuning stage are summarized in Table. 5.
Notably, due to the distributed nature of federated settings, the training set proportion is typically
much higher than in centralized graph learning paradigms. This splitting strategy has been widely
adopted in prior works [27].

Table 5: Train/Validation/Test splits for different datasets
Dataset Train Split Validation Split Test Split
Cora 5% 20% 40%
PubMed 60% 20% 20%
WikiCS 80% 10% 10%
Arxiv 80% 10% 10%
WN18RR 80% 10% 10%
FB15k237 80% 10% 10%
ChemHIV 80% 10% 10%
ChemPCBA 80% 10% 10%

C.3 Baselines

Since this paper is the first to explore FedGFM, we transfer baselines from adjacent fields. Specifi-
cally, in our experiments, we evaluate 20 baselines, which can be summarized into 3 categories. The
detailed descriptions of these baselines are as follows:

(1) Isolated Supervised Learning. These methods train individual supervised models on each
client without federated communication. They serve as a reference for evaluating negative transfer
and the benefits of federated learning. The models in this category include a linear layer, GCN [22],
GAT [39], GraphSAGE [15], and GIN [54];

GCN [22] is a classical model in graph neural networks, which captures graph structure through
spectral convolutions based on the normalized graph Laplacian. By aggregating information from
neighboring nodes, it enables efficient node classification and handles graph data in a computation-
ally effective manner. The use of the Laplacian matrix simplifies the convolution operation, making
it a foundational approach in graph representation learning.
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GAT [39] draws inspiration from the success of attention mechanisms in natural language process-
ing, introducing a novel graph attention mechanism that allows nodes to dynamically focus on the
most relevant neighbors. This attention-based aggregation enables more adaptive learning.

GraphSAGE [15] extends graph neural networks by introducing a sampling-based message passing
mechanism, which allows for scalable neighborhood aggregation. This approach is particularly well-
suited for inductive learning, as it can efficiently generalize to unseen nodes by sampling a fixed-size
neighborhood during training. The use of different learnable aggregation functions further enhances
scalability, enabling the model to handle large graphs effectively.

GIN [54] is designed to preserve graph structural information and has been shown to be as expressive
as the Weisfeiler-Lehman graph isomorphism test in distinguishing graph structures. Notably, GIN
is usually more suitable for graph-level tasks.

(2) FGL Approaches. We evaluate various representatives FL/FGL baselines, including two FL
methods desinged for FL with vision tasks (FedAvg [32], MOON [24]), and subgraph-level FGL
techniques (FedSage+ [62], Fed-PUB [3], FedGTA [26], FedTAD [66], FGSLL [20], FGGP [40])
and graph-level FGL methods (GCFL [53] and FedStar [36]). The detailed descriptions of these
baselines are as follows:

FedAvg [32] is a simple yet effective method in FL for the vision and language field, enabling
decentralized model training while preserving data privacy. A central server distributes the global
model to clients for local updates. The server then aggregates the clients’ local models to form a
new global model, which is broadcast to all clients to update their local models in the next round.

MOON [24] is a representative FL method originally developed for the vision domain. It leverages
contrastive learning at the model level to align local and global representations, thereby mitigating
performance degradation caused by data heterogeneity across clients.

FedSage+ [62] integrates node features, link structures, and labels using a GraphSAGE [15] model
with FedAvg [32] for FGL over local subgraphs (i.e., subgraph-level FGL). It also introduces a
neighbor generator to handle cross-client missing links, improving robustness and ensuring a more
comprehensive graph representation.

Fed-PUB [3] is a personalized subgraph-level FGL framework that improves local GNNs without
relying on a global model. It measures inter-client similarity using functional embeddings derived
from random graph inputs, enabling weighted aggregation at the server. A client-specific sparse
mask further guides personalized parameter updates, facilitating subgraph-aware local adaptation.

FedGTA [26] integrates large-scale graph learning into FGL by having clients encode topology
and node attributes, compute local smoothing confidence and mixed feature moments, and share
them with the server. The server aggregates personalized models using smoothing confidence as
aggregation weights.

FedTAD [66] is a subgraph-level FGL method that computes topology-aware node embeddings to
estimate class-wise knowledge reliability. This guidance enables the server to perform data-free
knowledge distillation, transferring reliable knowledge from local clients to the global model.

FGSSL [20] is a subgraph-level FGL technique, which addresses client drift by aligning node-level
semantics and preserving graph-level structures. It employs contrastive objectives to align nodes of
the same class while separating different classes, and distills global relational knowledge into local
models via similarity distributions.

FGGP [40] is a subgraph-level FGL approach, which decomposes the global model into two tiers
connected via prototypes. At the classifier level, class prototypes replace traditional classifiers for
better discriminability; at the feature level, contrastive learning injects global knowledge into proto-
types to enhance generalization.

GCFL+ [53] is a graph-level FGL framework that clusters clients based on GNN gradient patterns to
address structural and feature heterogeneity. It further improves stability through gradient sequence-
based clustering using dynamic time warping, enhancing both clustering quality and robustness.

FedStar [36] enables graph-level FGL by decoupling structure and feature learning. Clients share
domain-invariant structural embeddings via an independent encoder, while learning personalized
features locally, reducing feature misalignment and improving transferability.
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(3) Federated Variants of Centralized GFM Approaches. These baselines adapt state-of-the-art
centralized GFM training strategies to the federated setting. Specifically, we include OFA [29],
GFT [43], UniGraph [17], GQT [41], and GraphCLIP [67]. In their original centralized versions,
these methods perform pre-training on all available data at a central learning system using self-
supervised objectives. Their federated counterparts distribute this pre-training process across clients.
Specifically, for our experiments, in each communication round of the pre-training phase, each lo-
cal client deploys the corresponding framework based on its own local data and performs 2 epoch
optimization. Subsequently, all trainable parameters will be uploaded to the server, and the parame-
ters will be averaged to obtain the global model, which will be broadcast to all clients as the starting
point for the next round of local optimization.

OFA∗ [29] is a representative training paradigm for GFM, aiming to learn generalizable represen-
tations over cross-domain and cross-task textual attributed graphs. It first standardizes the descrip-
tion of nodes and edges via carefully designed language model prompts, transforming any textual
attributed graph into a unified vectorized representation. Additionally, OFA introduces NODES-OF-
INTEREST prompts to unify various graph tasks within a single modeling framework.

GFT∗ [43] treats computation trees derived from message passing as transferable patterns over
graphs. Based on this insight, it adopts a gVQ-VAE architecture to map computation trees into
discrete codebook representations. Through self-supervised reconstruction on cross-domain graphs
during pre-training, it learns a generalizable GFM with strong cross-graph transferability.

UniGraph∗ [17] is a GFM training framework that encodes heterogeneous graphs, including those
without inherent textual features, into unified textual representations to support cross-domain trans-
ferability. It adopts a cascaded architecture of language models and GNNs to jointly capture seman-
tic and structural information. UniGraph further introduces a Masked Graph Modeling objective for
large-scale self-supervised pre-training and applies graph instruction tuning with LLMs to enhance
zero-shot and few-shot generalization.

GQT∗ [41] introduces a novel graph quantized tokenizer that decouples tokenizer training from
Transformer training, leveraging multi-task graph self-supervised learning to produce robust and
generalizable graph tokens. By using the residual Vector Quantization technique, GQT learns hier-
archical discrete tokens, reducing memory requirements and enhancing generalization.

GraphCLIP∗ [67] addresses key challenges in text-attributed graphs, including heavy reliance on la-
bel information and limited cross-domain transferability. It introduces a self-supervised contrastive
pretraining method using graph-summary pairs curated with the help of LLMs. By leveraging in-
variant learning, GraphCLIP enhances zero-shot transferability and proposes a graph prompt tuning
technique for few-shot learning, mitigating catastrophic forgetting.

C.4 Model Architecture

For Isolated Supervised Learning Methods, we adopt a two-layer architecture with 64 hidden
units. For FL/FGL Methods, if a method does not specify a custom architecture, we select the
backbone based on the downstream task: GraphSAGE is used for node and edge classification,
while GIN is employed for graph classification. For Federated Variants of Centralized GFM
Methods, we follow the backbone choices reported in the original papers. For FedGFM+, we
employ a gVQ-VAE as the backbone for both client-side local models and the server-side global
model. The encoder is a 2-layer GraphSAGE-based graph convolutional network that jointly en-
codes node and edge features from the input graph G = (V,E). All layersincluding input, hidden,
and outputare set to 768 dimensions, matching the Sentence-BERT [34] representations of node and
edge attributes. The encoder outputs node embeddings Z ∈ RN×768, where N is the number of
nodes. These embeddings are then quantized via a multi-head gVQ-VAE codebook using cosine
similarity for nearest-neighbor retrieval. The codebook comprises 4 heads, each containing 128
learnable tokens. A shared linear projection is applied to aggregate the multi-head outputs into the
final quantized representation. In addition to the backbone network, FedGFM+ also introduces mul-
tiple light-weight learnable graph hints for each client. By default, we learn 3 local graph prompts
for each client. Finally, for task-specific heads used during GFM fine-tuning, we follow the orig-
inal design if specified in the corresponding dataset paper. Otherwise, for node classification, we
apply a single-layer MLP to predict node labels from node embeddings; for edge classification, we
average the embeddings of the two nodes to form the edge representation and apply a single-layer
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Figure 6: Illustration of the pipeline about the traing and evaluation stage for isolated supervised
learning, FGL approaches, FedGFM+, and federated variants of centralized GFM approaches.

MLP; for multi-task graph classification, we perform mean pooling over node embeddings to obtain
a graph-level representation, which is fed into a MLP to predict binary labels for each tasks.

C.5 Training and Evaluation Illustration

We illustrate the training and evaluation processes for all baselines and FedGFM+ in Fig. 6, with
detailed descriptions as follows:

Training / Pretraining Stage. For the Isolated Supervised Learning Baselines, each client trains
a model independently from scratch, using only its own local graph(s), without any collaboration
or information exchange. For the FL/FGL Baselines, we run a FL/FGL algorithm among every
3 clients from the same global dataset. For example, the Cora dataset is split using the Louvain
algorithm into clients 1, 2, and 3, and subgraph-level FGL algorithms such as FedGTA are then
applied among these clients. Notably, as mentioned in Sec. 1, due to the heterogeneity of data and
tasks, most FL/FGL algorithms can only be simulated among different shards of the same dataset.
Moreover, existing FGL algorithms cannot be applied simultaneously to the three tasks of node
classification, edge classification, and graph classification. For FedGFM+ and Federated Variants
of Centralized GFM Baselines, all clients participate in federated pre-training together, which
enables extensive collaboration among graph datasets from multiple fields.

Evaluation / Fine-Tuning + Evaluation Stage. For each dataset, we evaluate the performance on
the test sets of the three clients associated with it, and report the mean and variance of the resulting
metrics. For node and edge classification tasks, we use Accuracy (ACC) as the evaluation metric,
while for graph classification tasks, we adopt the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC). To assess the performance of each individual client under different settings,
we follow distinct evaluation protocols. For Isolated Supervised Learning baselines, we directly
evaluate each clients local model without any collaboration. For FL and FGL baselines, we evaluate
each clients model after training the global model for two communication rounds. For FedGFM+
and the federated variants of centralized GFM baselines, we first attach a task-specific header and
then fine-tune the model using each clients local graph before evaluation.

C.6 Hyperparameters

For Isolated Supervised Learning Baselines, we perform 1,000 epochs of local training with early
stopping based on validation performance. For FL/FGL Baselines, we conduct 100 communication
rounds, where each round includes 2 local training epochs. We use the Adam optimizer with a learn-
ing rate of 1× 10−2, weight decay of 5× 10−4, and dropout rate of 0.5. For federated variants of
centralized GFM Baselines, we adopt the hyperparameter configurations reported in their original
papers whenever available. When unspecified, we employ automated hyperparameter optimization
using the Optuna framework [2]. Federated pre-training is carried out for 50 communication rounds,
each consisting of 2 local pre-training epochs. For our proposed FedGFM+ framework, we fix the
learning rate for pre-training to 1×10−4. During fine-tuning, we perform a grid search over learning
rates in {10−5, 10−4, 10−3, 10−2, 10−1} for each dataset. The weight decay is fixed to 5 × 10−4,
and the batch size is set to 1,024. Federated pre-training is conducted for 25 communication rounds,
with 2 local epochs per round.
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C.7 Experimental Environment

The experimental machine is an Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz and NVIDIA A100
with 80GB memory and CUDA 12.4. The operating system is Ubuntu 22.04.5 with 251GB memory.

D Few-shot Learning Results

We perform a few-shot evaluation across a range of downstream tasks. Specifically, for node and
edge classification tasks, we constrain the number of labeled samples per class to at most 2. For
graph classification tasks, however, we do not report few-shot performance, as each graph instance is
associated with multi-dimensional labels, making few-shot evaluation non-trivial. The experimental
results are summarized as Table. 6

Table 6: 2-shot Performance comparison of FedGFM+ and baselines. ‘*’ denotes federated variants
of centralized GFM. ‘N/A’ denotes task inapplicability. Node and edge classification datasets are
marked in red and yellow, respectively.

Method

Dataset
Cora PubMed OGB-arxiv WikiCS FB15K237 WN18RR

OFA∗ [29] 54.31
± 0.18

45.29
± 0.26

20.56
± 0.42

40.05
± 0.10

19.72
± 0.33

31.28
± 0.20

GFT∗ [43] 52.16
± 0.39

44.71
± 0.10

18.31
± 0.22

37.42
± 0.56

17.49
± 0.24

29.55
± 0.41

UniGraph∗ [17] 54.22
± 0.27

46.41
± 0.50

19.88
± 0.15

39.46
± 0.17

18.45
± 0.36

31.53
± 0.20

GQT∗ [41] 52.45
± 0.18

45.28
± 0.26

20.10
± 0.31

39.25
± 0.42

20.40
± 0.18

30.08
± 0.14

GraphCLIP∗ [67] 55.31
± 0.12

44.25
± 0.36

20.39
± 0.17

38.58
± 0.16

20.58
± 0.28

31.42
± 0.45

FedGFM+ (Ours) 58.33
± 0.42

50.19
± 0.23

21.34
± 0.15

43.35
± 0.39

21.94
± 0.17

33.64
± 0.42

As observed, FedGFM+ consistently outperforms naive federated adaptations of centralized GFM
training strategies across all evaluated settings. By integrating the AncDAI and AdaDPP modules,
FedGFM+ effectively constructs domain-aware semantic priors that enhance generalization to down-
stream tasks in heterogeneous domains, even with limited fine-tuning labels. Despite these gains,
it is important to note that FedGFM+ still falls short of its own performance under scenarios with
abundant labeled data.
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