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Abstract

We study bilevel optimization problems where the lower-level problems are strongly
convex and have coupled linear constraints. To overcome the potential non-
smoothness of the hyper-objective and the computational challenges associated
with the Hessian matrix, we utilize penalty and augmented Lagrangian meth-
ods to reformulate the original problem as a single-level one. Especially, we
establish a strong theoretical connection between the reformulated function and
the original hyper-objective by characterizing the closeness of their values and
derivatives. Based on this reformulation, we propose a single-loop, first-order
algorithm for linearly constrained bilevel optimization (SFLCB). We provide
rigorous analyses of its non-asymptotic convergence rates, showing an improve-
ment over prior double-loop algorithms – form O(ϵ−3 log(ϵ−1)) to O(ϵ−3). The
experiments corroborate our theoretical findings and demonstrate the practical
efficiency of the proposed SFLCB algorithm. Simulation code is provided at
https://github.com/ShenGroup/SFLCB.

1 Introduction

In recent years, bilevel optimization (BLO) has gained significant popularity for addressing a wide
range of modern machine learning problems, such as hyperparameter optimization [35, 7, 32], data
hypercleaning [37], meta learning [36, 13], reinforcement learning [40, 11] and neural architecture
search [26, 23]; see survey papers [51, 27, 39] for additional discussions. While numerous works
for unconstrained BLO problems have been proposed [9, 30, 15, 5, 11, 22], studies focusing on
constrained BLO problems are relatively limited.

In this paper, we consider the following BLO problem where the lower-level (LL) problem has
coupled constraints:

min
x∈X

Φ(x) ≜ f(x, y∗(x)) (1)

s.t. y∗(x) ∈ arg min
y∈Y(x)

g(x, y).

The upper-level (UL) objective function f : Rdx × Rdy → R and the lower-level objective function
g : Rdx × Rdy → R are continuously differentiable. Moreover, we assume that g(x, y) is strongly
convex with respect to y. The feasible sets are defined as X = Rdx ,Y(x) = { y ∈ Rdy | h(x, y) ≤
0 } where h : Rdx × Rdy → Rdh .
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For this setting, we develop a single loop algorithm for the special case h(x, y) = Bx + Ay − b,
where B ∈ Rdh×dx and A ∈ Rdh×dy . This special class of constrained BLO problems covers a
wide class of applications, including distributed optimization [47], hyperparameter optimization
of constrained learning problems [45] and adversarial training [52] and draw significant attentions
[41, 18, 20].

A popular approach for solving unconstrained BLO is implicit gradient descent [9, 15, 14, 4, 19]. For
constrained BLO, several studies have extended this approach to accommodate different constraint
settings [41, 18, 45, 44]. However, these implicit gradient-based methods in constrained BLO
necessitate computing the Hessian matrix of the lower-level problem [41, 18, 45, 44]. The potential
computational challenges associated with the Hessian matrix limit their practical applicability for
large-scale problems.

Recently, some first-order methods [21, 49, 48, 16, 20] have been proposed for addressing constrained
BLO problems. Most of those works considered transforming the original problem (1) into a single-
level one and trying to find the stationary points of the reformulated problem. For example, [49, 48]
reformulated the original problem into some approximated functions and proposed single-loop
algorithms for finding the stationary point of the approximated problem. However, neither [49] nor
[48] establishes clear relationships between the stationary points of their approximated problems and
the original one.

Works most closely related to ours are those by [21] and [16], both of which reformulated the problem
(1) as

min
x∈X ,y∈Y(x)

f(x, y) s.t. g(x, y)− min
z∈Y(x)

g(x, z) ≤ 0, (2)

and considered optimizing the following function with a penalty parameter δ:

min
x∈X

[Φδ(x) ≜ min
y∈Y(x)

max
z∈Y(x)

Φδ(x, y, z)] (3)

where Φδ(x, y, z) = f(x, y) + 1
δ [g(x, y) − g(x, z)]. Based on this reformulation, [21] proposed

algorithms for solving BLO with LL constraints y ∈ Y and [16] proposed algorithms for solving
coupled LL constraints Y(x) = {y ∈ Rdy |h(x, y) ≤ 0}. However, [21] only considered the
LL constraints Y that are independent of x and their methods require projection oracle to Y at
each iteration. Algorithms in [16] require complex double or triple loops, resulting in sub-optimal
convergence rates and difficult implementation. Moreover, the connection between the stationary
point of the reformulated function Φδ and the original hyper-objective Φ is not discussed in [21, 16]
for coupled constraints Y(x).

To address these limitations, in this paper, we establish a rigorous theoretical justification for this
reformulation (3) and propose a single-loop Hessian-free algorithm for the linearly constrained cases.
Our main contributions can be summarized as follows.

• We establish a rigorous theoretical connection between the reformulated function Φδ and the
original hyper-objective Φ by proving the closeness of their values and derivatives under coupled
constraints Y(x) = {y ∈ Rdy |h(x, y) ≤ 0} with certain assumptions, which provides strong
justifications for the reformulation (3).

• Based on this reformulation and equipped with augmented Lagrangian methods, we proposed
SFLCB, a single-loop, first-order algorithm for linearly constrained bilevel optimization problem.
and provide rigorous analyses of its non-asymptotic convergence rates, achieving an improvement
in the convergence rate from O(ϵ−3 log(ϵ−1)) to O(ϵ−3) compared to prior works (See Table 1 for
a more comprehensive comparison of our work with previous studies). The simple single-loop
structure also makes our algorithm easier to implement in practice compared to [16].

• Our experiments on hyperparameter optimization in the support vector machine (SVM) and
transportation network design problems validate the practical effectiveness and efficiency of the
proposed SFLCB algorithm.

2 Related works

BLO without constraints. One popular approach for solving unconstrained BLO is to use implicit
gradient descent methods [35]. It is well established that when the LL problem is strongly convex
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Table 1: Comparison of our paper with [21, 16, 20]. More detailed introductions and discussions of
other related works can be found in Section 2. Here, the “Complexity” for [21, 16] and SFLCB means
the complexity needed to achieve the ϵ-stationary point of Φδ; for [20], it means the complexity
needed to achieve the (δ, ϵ)-Goldstein stationarity defined in [20].

Methods LL Constraint Complexity Loops

[21] y ∈ Y , Y is a convex and compact set O(ϵ−3 log(ϵ−1)) single/double
[16] h(x, y) ≤ 0, LICQ holds O(ϵ−5 log(ϵ−1)) triple
[16] B(x) +A(x)y ≤ 0, A(x) is full row rank O(ϵ−3 log(ϵ−1)) double
[20] Bx+Ay − b ≤ 0, LICQ holds Õ(dδ−1ϵ−3) double
[20] Bx+Ay − b ≤ 0, LICQ holds Õ(δ−1ϵ−4) double
SFLCB (ours) Bx+Ay − b ≤ 0, A is full row rank O(ϵ−3) single
SFLCB (ours) Ay ≤ 0, LICQ holds at the initial points O(ϵ−3) single
SFLCB (ours) Ay ≤ 0 O(ϵ−4) single

and unconstrained, y∗(x) = argminy g(x, y) exists and is differentiable, and the gradient of the
hyper-objective can be calculated by ∇Φ(x) = ∇xf(x, y) + (∇y∗(x))⊤∇yf(x, y

∗(x)) [9]. Later
works improved the convergence rates and studied the gradient descent methods under various settings
[15, 14, 4, 19, 46]. Another popular approach is based on iterative differentiation, which iteratively
solves the LL problems and computes ∇y∗(x) to approximate the hypergradient [33, 10, 29, 2].
Recently, penalty-based methods have gained traction as a promising approach for solving BLO.
Those works usually reformulate the original BLO as the single-level one and use the first-order
methods to find the stationary point of the reformulated problems [28, 34, 25, 22, 38, 8, 31].

BLO with constraints. There are two primary types of methods for solving constrained bilevel
optimization problems. One is based on the implicit gradient method. Generally, when the LL problem
has constraints, the differentiabilities of y∗(x) and Φ(x) are not guaranteed [18]. [41] proved the
existence of ∇Φ(x) under additional assumptions for linearly constraint Ay ≤ b and proposed
an implicit gradient-type double-loop algorithm. [18] proposed a perturbation-based smoothing
technique to compute the approximate implicit gradient for linearly constraint Ay ≤ b. [45] used
Clarke subdifferential to approximate the non-differentiable implicit function Φ. However, they only
provided an asymptotic convergence analysis of their algorithm. [44] proved the existence of ∇ϕ
where the LL has equality constraints Ay +H(x) = c, and introduced an alternating projected SGD
approach to solve this problem. However, these implicit gradient-type algorithms [41, 18, 45, 44]
require the computations for the Hessian matrix of the LL problems, which potentially limit their
practical applicability for large-scale problems.

Another commonly used approach for solving constrained BLO problems is based on penalty
reformulation. For example, [49] reformulated the original problem into a proximal Lagrangian value
function and proposed a single-loop, first-order method to find the stationary points of the reformulated
value function. However, their algorithm requires the implementation of the projection operator
on C = {x, y|h(x, y) ≤ 0} at each iteration, which can be potentially costly. [48] reformulated
the original problem into a doubly regularized gap function and proposed a single-loop, first-order
algorithm. Compared to [49], [48] did not need the projection operator to the coupled constraint
set. However, both [49] and [48] did not establish very clear relationships between the stationary
points of their approximated problems and the original one. For example, [48] only provided an
asymptotic relationship between the original problem and their reformulated one, i.e., as their penalty
parameter approaches infinite, their reformulated problem is equivalent to the original one. Recently,
[42, 17] proposed algorithms based on barrier approximation approach for constrained BLO problems.
However, their algorithms also require the computations for the Hessian matrix.

[21] and [16] considered the same reformulation as ours. [21] studied the case where the LL variables
y ∈ Y are independent of x and characterized the conditions under which the values and derivatives
of Φ and Φδ can be O(δ)-close for y ∈ Y constraints. Compared with [21], we prove similar results
under coupled constraints Y(x) = {y ∈ Rdy |h(x, y) ≤ 0}. Moreover, the algorithms in [21] require
the implementation of the projection operator to Y at each iteration, which can be costly. [16] studied
the coupled constraints Y(x) = {y ∈ Rdy |h(x, y) ≤ 0}. While [16] considered more general
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constraints than ours, however, it did not characterize the gap between the stationary point of the
reformulated function Φδ and the original hyper-objective Φ. Our Theorem 4.9 provides further
justifications for their reformulation in coupled constraints. Moreover, compared with the double- and
triple-loop algorithms in [21], we propose a single-loop algorithm SFLCB and prove an improvement
in the convergence rate from O(ϵ−3 log(ϵ−1)) to O(ϵ−3).

Recently, [20] also proposed first-order methods for linearly constrained BLO. Especially, they proved
a nearly optimal convergence rate Õ(ϵ−2) for linear equality constraints and proposed algorithms that
can attain (δ, ϵ)-Goldstein stationarity for linear inequality constraints. However, their convergence
rates for linear inequality constraints either have additional dependence on dimension d (such as
Õ(dδ−1ϵ−3)) or need additional assumptions to access the exact optimal dual variable (such as
Õ(δ−1ϵ−4)), while we do not require the exact optimal dual variable assumption. Compared with
the double-loop algorithms in [20], our proposed single-loop one is easier to implement in practice.
Moreover, our techniques are also different from theirs under linear inequality constraints, thereby
highlighting the distinct contributions and independent interests of our work.

3 Preliminaries

Notation. For vectors a, b ∈ Rd, we denote a ≤ b if for all i ∈ [d], ai ≤ bi. We use ∥ · ∥ to denote
the l2 norm of a vector and the spectral norm of a matrix. We define the projection operator that
project x to a set P as ΠP(x) = argminx′∈P

1
2∥x − x′∥2. We denote the projection operator that

projects a x ∈ Rd to the set Rd
− as Π−(x).

We state the following assumptions for problem (1), which are commonly used in the theoretical
studies of BLO.
Assumption 3.1. For any x ∈ X , Y(x) is nonempty, closed, and convex and Φ(x) is lower bounded
by a finite, Φ∗ = infx∈X Φ(x) ≥ −∞.
Assumption 3.2. f,∇f,∇g are Lipschitz continuous with lf,0, lf,1, lg,1 respectively, jointly over
X × Y(x).
Assumption 3.3. For any fixed x ∈ X , g(x, y) is µg-strongly convex with respect to y ∈ Y(x).

We introduce the standard definition of the ϵ-stationary point for a differentiable function.
Definition 3.4. We say x̂ is an ϵ-stationary point of a differentiable function f if ∥∇f(x̂)∥ ≤ ϵ.

4 Reformulation

In this section, we provide a theoretical justification for our reformulation (3) and establish the
conditions under which the function values and gradients of the reformulated function Φδ and the
original hyper-objective Φ become sufficiently close. Note that in this section, we considered general
coupled constraints Y(x) = {y ∈ Rdy |h(x, y) ≤ 0} which include, but are not limited to, the linear
constraint case. The complete proofs for the lemmas and theorems in this section can be found in
Appendix C.

First, we assume δ ≤ µg

2lf,1
and introduce the following notations:

y∗δ (x) = argmin
y∈Y(x)

δf(x, y) + g(x, y)

y∗(x) = z∗(x) = argmin
y∈Y(x)

g(x, y)

ϕδ(x, y, z) = δΦδ(x, y, z)

ϕδ(x) = ϕδ(x, y
∗
δ (x), z

∗(x)).

Similar to Theorem 3.8 in [21], we have the following theorem to bound the difference between Φ
and Φδ , as well as y∗(x) and y∗δ (x) in the coupled constraints.
Theorem 4.1. When Assumption 3.1, 3.2 and 3.3 hold, we have

0 ≤ Φ(x)− Φδ(x) ≤
δl2f,0
2µg

, ∥y∗δ (x)− y∗(x)∥ ≤ 2δlf,0
µg

.
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Theorem 4.1 characterizes how the difference in function values and the optimal LL variables
between the reformulated problem and the original one are controlled by the penalty parameter δ.
Therefore, by choosing a sufficiently small δ, i.e., δ = O(ϵ), we can treat the reformulated problem
minx∈X Φδ(x) as an approximation of the original problem and solve this approximated problem
instead. In the following lemmas, we will provide the conditions under which the reformulated
function Φδ(x) is differentiable. Before that, we first introduce the well-known and commonly used
Linear Independence Constraint Qualification (LICQ) condition.
Definition 4.2 (Active set). We denote Iy ⊆ [dh] as the active set of y, i.e. Iy = {i ∈ [dh] |
hi(x, y) = 0}.
Definition 4.3 (LICQ). We say a point y satisfy the LICQ condition if, for all i ∈ Iy , ∇yhi(x, y) are
linearly independent.

Then, similar to Lemmas 2 and 3 in [16], we have the following lemma.
Lemma 4.4. When Assumption 3.1, 3.2, 3.3 hold and δ ≤ µg/(2lf,1), if, for all x ∈ X , the LICQ
condition (Definition 4.3) holds for y∗(x) and y∗δ (x), then there exist the corresponding unique
Lagrangian multipliers λ∗(x) ∈ Rdh and λ∗δ(x) ∈ Rdh such that

λ∗(x) = argmax
λ∈R+

min
y∈Y(x)

g(x, y) + λ⊤h(x, y) (4)

λ∗δ(x) = argmax
λ∈R+

min
y∈Y(x)

δf(x, y) + g(x, y) + λ⊤h(x, y). (5)

Furthermore, we have

∇Φδ(x) = ∇xf(x, y
∗
δ (x)) +

1

δ
[∇xg(x, y

∗
δ (x)) +∇xh(x, y

∗
δ (x))λ

∗
δ(x)

−∇xg(x, y
∗(x))−∇xh(x, y

∗(x))λ∗(x)].

While the gradients of Φδ(x) exists under LICQ conditions, for general problem (1), Φ(x) is not
guaranteed to be differentiable. For example, [18] provides an example where the LICQ condition
holds, Φ(x) is non-differentiable at some points. However, if a given x satisfies the following
conditions, then ∇Φ(x) exists at x.
Assumption 4.5 (Strict Complementarity). Let λ∗(x) be the Lagrange multipliers for y∗(x) (4). For
any i ∈ Iy∗(x), [λ∗(x)]i > 0.

Assumption 4.6. ∇2f,∇2g are Lipschitz continuous with lf,2, lg,2 respectively, jointly over X ×
Y(x). For i ∈ [dh], hi(x, y) is convex with respect to y, hi,∇hi,∇2hi are respectively Lipschitz
continuous with lh,0, lh,1, lh,2 jointly over X × Y(x).

Note that Assumption 4.5, 4.6 are commonly used in constrained BLO literature [41, 18, 45, 17, 21]
to ensure the existence of ∇Φ(x).
Lemma 4.7 (Theorem 2 in [45]). When Assumption 3.1, 3.2, 3.3, 4.6 hold, if, for a given x,
Assumption 4.5 and LICQ (Definition 4.3) condition hold for y∗(x), then ∇Φ(x) exists at x.

Moreover, with additional assumptions, we can establish a non-asymptotic bound for ∥∇Φ(x) −
∇Φδ(x)∥.
Assumption 4.8. For any t ∈ [0, δ],

(1) y∗t (x) satisfies the LICQ condition (Definition 4.3) with the same active set as y∗(x). Denote
this active set as I. Let λ∗t (x) be the Lagrange multiplier for y∗t (x) in (5). For any i ∈ I,
[λ∗t (x)]i > 0 (Strict Complementarity). We assume ∥λ∗t (x)∥ ≤ Λ, where Λ is an O(1)
constant.

(2) Denote ∇yh̄(x, y
∗
t (x)) = ∇y[h(x, y

∗
t (x))]I . The singular values of ∇yh̄(x, y

∗
t (x)) satisfy

σmax([∇yh̄(x, y
∗
t (x))) ≤ smax, σmin(∇yh̄(x, y

∗
t (x))) ≥ smin > 0, where smax, smin are

O(1) constants.

Assumption 4.8 is made for t ∈ [0, δ]. When δ is sufficiently small, i.e., δ = O(ϵ), y∗(x) and y∗t (x)
are very close according to Theorem 4.1. Thus, we expect that for t ∈ [0, δ], y∗t (x) will have similar
properties as y∗(x). Similar assumptions have also been used in [21] to establish the non-asymptotic
bound for ∥∇Φ(x)−∇Φδ(x)∥.
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Theorem 4.9. When Assumption 3.1, 3.2, 3.3, 4.6 hold and δ ≤ µg/(2lf,1), if Assumption 4.8 holds
for a given x, we have

∥∇Φ(x)−∇Φδ(x)∥ ≤ O(δ).

Similar non-asymptotic bound for ∥∇Φ(x)−∇Φδ(x)∥ has been established in [21]; however, their
bound is established only for the LL constraints Y that do not depend on x. Our Theorem 4.9 provides
a more general theoretical justification for the validity of the reformulation (3) for coupled constraints
Y(x) = {y ∈ Rdy |h(x, y) ≤ 0}.

5 The SFLCB Algorithm

In the last section, we have justified the validity of our reformulation for coupled constrained
BLO. In this section, we focus on a special and important case where the LL constraints are
h(x, y) = Bx+Ay− b. This particular category of constrained BLO problems encompasses a broad
range of applications, including distributed optimization [47, 18], adversarial training [52, 18], and
hyperparameter optimization for constrained learning tasks such as hyperparameter optimization in
SVM (see Section 6). For this special case h(x, y) = Bx+Ay− b, we introduce a novel single-loop,
first-order algorithm SFLCB, which achieves an improvement in the convergence rate compared to
prior works [21, 16].

First, we introduce the following slackness parameters α, β ∈ Rdh
− and define y′ = (y⊤, α⊤)⊤,

z′ = (z⊤, β⊤)⊤. With these slackness parameters, we can convert the original inequality constraints
to equality constraints, i.e. we can reformulate minx∈X ,y∈Y(x) maxz∈Y(x) ϕδ(x, y, z) as:

min
x∈X ,y′∈Sy(x)

max
z′∈Sy(x)

ϕδ(x, y, z) (6)

where Py = {y ∈ Rdy , α ∈ Rdh
− }, Sy(x) = {y, α ∈ Py|h(x, y) − α = 0}. The Lagrangian of (6)

with multiplier u, v ∈ Rdh is

Lδ(x, y
′, z′, u, v) =ϕδ(x, y, z) + u⊤(h(x, y)− α)− v⊤(h(x, z)− β).

According to Proposition 5.3.4 in [1], we know that

ϕδ(x) = min
y′∈Py,v∈Rdh

max
z′∈Py,u∈Rdh

Lδ(x, y
′, z′, u, v).

Note that when δ ≤ µg/(2lf,1), ϕδ is µg/2-strongly convex with respect y. However,
Lδ(x, y

′, z′, u, v) is only convex with respect y′ and concave with respect z′. To make the ob-
jective function strongly convex with respect to y′ and strongly concave with respect to z′, we can
construct an augmented Lagrangian K:

K(x, y′, z′, u, v) =Lδ(x, y
′, z′, u, v) +

ρ1
2
∥h(x, y)− α∥2 − ρ2

2
∥h(x, z)− β∥2.

With 0 ≤ ρ1 ≤ µg−δlf,1
σ2
max(A) and 0 ≤ ρ2 ≤ µg

σ2
max(A) , according to Lemma D.1, K is strongly convex

with respect to y′ and strongly concave with respect to z′. Moreover, we have

min
y′∈Py,v∈Rdh

max
z′∈Py,u∈Rdh

Lδ(x, y
′, z′, u, v) = min

y′∈Py,v∈Rdh

max
z′∈Py,u∈Rdh

K(x, y′, z′, u, v).

Note that Lδ and K have the same optimal points and same optimal function value. Thus, we can
reformulate the problem (6) to the minimax optimization problem over K:

min
x∈X ,y′∈Py,v∈Rdh

max
z′∈Py,u∈Rdh

K(x, y′, z′, u, v). (7)

Motivated by these theoretical analyses, and applying gradient descent ascent (GDA) over problem
(7), we propose SFLCB. A compact description can be found in Algorithm 1.
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Algorithm 1 SFLCB

Input: δ, ρ1, ρ2, ηx, ηy, ηz, ηv, ηu, T
Initialize: x0 ∈ X , y′0, z′0 ∈ Py, u0, v0 ∈ Rdh

for t = 0, 1, ..., T − 1 do
ut+1 = ut + ηu(h(xt, yt)− αt)
vt+1 = vt + ηv(h(xt, zt)− βt)
xt+1 = xt − ηx∇xK(xt, y

′
t, z

′
t, ut+1, vt+1)

y′t+1 = ΠPy
{y′t − ηy∇′

yK(xt, y
′
t, z

′
t, ut+1, vt+1)}

z′t+1 = ΠPy
{z′t + ηz∇′

zK(xt, y
′
t, z

′
t, ut+1, vt+1)}

end for

5.1 Convergence results

In this section, we provide the non-asymptotic convergence results of SFLCB (Algorithm 1) for two
constraint settings: 1) h(x, y) = Bx + Ay − b, where A is full row rank, and 2) h(y) = Ay − b,
where A is not required to be full row rank.

Note that when the LICQ condition (Definition 4.3) holds for y∗(x) and y∗δ (x), the optimal Lagrangian
multipliers of y∗(x) and y∗δ (x) are unique. Thus, we first introduce the following lemma and notations
for these optimal Lagrangian multipliers.
Lemma 5.1. When the LICQ condition (Definition 4.3) holds for y∗(x) and y∗δ (x), the optimal
Lagrangian multipliers of y∗(x) and y∗δ (x) are unique, and we have

u∗δ(x) = argmax
u∈R+

min
y∈Y(x)

gδ(x, y) + u⊤h(x, y) = argmax
u∈Rdh

min
y′∈Py

K(x, y′, z′, u, v),

v∗(x) = argmax
v∈R+

min
z∈Y(x)

g(x, z) + v⊤h(x, z) = argmin
v∈Rdh

max
z′∈Py

K(x, y′, z′, u, v).

The proof of Lemma 5.1 can be found in Appendix E.

Next, we introduce the following notations:

y′∗δ (x, u) = argmin
y′∈Py

K(x, y′, z′, u, v), z′∗(x, v) = argmax
z′∈Py

K(x, y′, z′, u, v), A′ = (A,−I).

Then, we present the convergence results of SFLCB (Algorithm 1) for coupled constraints h(x, y) =
Bx+Ay − b, where A is full row rank. Note that BLOCC in [16] that achieves the complexity of
O(ϵ−3 log(ϵ−1)) also needs the matrix A to be full row rank (See Table 1). For A that is not full row
rank and B = 0, we provide the convergence results in Theorem 5.4 and Corollary 5.5.
Theorem 5.2. When h(x, y) = Bx+Ay − b, A is full row rank, Assumption 3.1, 3.2, 3.3 hold and
δ = Θ(ϵ) ≤ µg/(2lf,1), if we apply Algorithm 1 with appropriate parameters (see Appendix E), then
we can find an ϵ-stationary point of Φδ with a complexity of O(ϵ−4).

Moreover, if we have initial points x0, y0, z0, u0, v0 such that

∥y0 − y∗δ (x0)∥ ≤ O(δ), ∥u0 − u∗δ(x0)∥ ≤ O(δ), (8)
∥z0 − z∗(x0)∥ ≤ O(δ), ∥v0 − v∗(x0)∥ ≤ O(δ), (9)

then we can find an ϵ-stationary point of Φδ with a complexity of O(ϵ−3).

The formal statement and the complete proof of Theorem 5.2 can be found in Appendix E.

Proof sketch for Theorem 5.2. The key new idea in our proof is the construction of a novel potential
function Vt and prove the descent lemma of Vt (Lemma E.4). Vt is defined as:

Vt =
1

4
K(xt, y

′
t, z

′
t, ut, vt) + 2q(xt, vt)− d(xt, z

′
t, ut, vt)

where d(x, z′, u, v) = K(x, y′∗δ (x, u), z′, u, v) and q(x, v) = ϕδ(x, y
∗
δ (x), z

∗(x, v)) −
v⊤(A′z′∗(x, v) − b) − ρ2

2 ∥A′z′∗(x, v) − b∥2. To prove Lemma E.4, we need to first prove sev-
eral novel error bounds in Lemma D.2, Lemma E.3 and Lemma E.2. Those error bounds may be of
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independent interest for solving other similar problems. The full row rank property of A is used in
Lemma E.2 to bound ∥ut+1 − u∗δ(xt)∥ and ∥vt+1 − v∗(xt)∥.

Since A has full row rank, then according to Theorem 6 in [16], we can easily find initial points
satisfying (8)-(9) with a complexity of O(log(ϵ−1)) and we have the following corollary.
Corollary 5.3. When h(x, y) = Bx + Ay − b, A has full row rank, Assumption 3.1, 3.2,
3.3 hold, and δ = Θ(ϵ) ≤ µg/(2lf,1), if we apply projected gradient descent (PGD) for
maxv∈R+

minz∈Rdy g(x0, y) + v⊤(Bx0 + Az − b) with a fixed x0, we can find v̂, ẑ such that
∥v̂ − v∗(x0)∥ ≤ δ and ∥ẑ − z∗(x0)∥ ≤ δ with a complexity of O(log(ϵ−1)). Set y0 = z0 = ẑ,
u0 = v0 = v̂, α0 = h(x0, y0), β0 = h(x0, z0). With x0, y′0, z

′
0, u0, v0 as initial points and applying

Algorithm 1, we can find an ϵ-stationary point of Φδ with a complexity of O(ϵ−3). Thus, the total
complexity is O(ϵ−3 + log(ϵ−1)) = O(ϵ−3).

The proof of Corollary 5.3 can be found in Appendix E. Thus, compared to [16], we achieve
an improvement in the convergence rate from O(ϵ−3 log(ϵ−1)) to O(ϵ−3) for the coupled linear
constraint (See Table 1).

Additionally, we have the following convergence results for constraints h(y) = Ay − b, where A is
not required to have a full row rank.
Theorem 5.4. When h(x, y) = Ay−b, Assumption 3.1, 3.2, 3.3 hold, and δ = Θ(ϵ) ≤ µg/(2lf,1), if
we apply Algorithm 1 with appropriate parameters (see Appendix D), then we can find an ϵ-stationary
point of Φδ with a complexity of O(ϵ−4).

Moreover, if we have initial points x0, y′0, z
′
0, u0, v0 such that

∥y0 − y∗δ (x0)∥ ≤ O(δ), ∥A′y′∗δ (x0, u0)− b∥ ≤ O(δ), ∥A′y′0 − b∥ ≤ O(δ) (10)

∥z0 − z∗(x0)∥ ≤ O(δ), ∥A′z′∗(x0, v0)− b∥ ≤ O(δ) ∥A′z′0 − b∥ ≤ O(δ) (11)

then we can find an ϵ-stationary point of Φδ with a complexity of O(ϵ−3).

The formal statement and the complete proof of Theorem 5.4 can be found in Appendix D.

Proof sketch for Theorem 5.4. The general proof flow of Theorem 5.4 is similar to that of
Theorem 5.2. However, since here we do not have coupled constraints, ∇xK has no relationship
to u or v, and according to the Danskin’s theorem, ∇ϕδ(x) = δ∇xf(x, y

∗
δ (x)) +∇xg(x, y

∗
δ (x))−

∇xg(x, z
∗(x)) also has no relationship to u∗δ(x) or v∗(x). Thus, we do not require Lemma E.2 or

the full row-rank assumption on A in this setting.

Next, we show that, as long as the LICQ condition (Definition 4.3) holds for the initial y∗(x0) and
y∗δ (x0), we can find initial points satisfying (10)-(11) with a complexity of O(ϵ−2) and we have the
following corollary.
Corollary 5.5. When h(x, y) = Ay − b, Assumption 3.1, 3.2, 3.3 hold, and δ = Θ(ϵ) ≤ µg/(2lf,1),
for a given initial point x0, if the LICQ condition (Definition 4.3) holds at y∗(x0) and y∗δ (x0), we
can apply Algorithm 1 with fixed x0. Then for a sufficiently small ϵ (see Appendix D), we can find
ŷ′, ẑ′, û, v̂ such that

∥ŷ − y∗δ (x0)∥ ≤ O(δ), ∥A′y′∗δ (x0, û)− b∥ ≤ O(δ), ∥A′ŷ′ − b∥ ≤ O(δ), ∥û− u∗δ(x0)∥ ≤ O(δ)

∥ẑ − z∗(x0)∥ ≤ O(δ), ∥A′z′∗(x0, v̂)− b∥ ≤ O(δ), ∥A′ẑ′ − b∥ ≤ O(δ), ∥v̂ − v∗(x0)∥ ≤ O(δ)

with a complexity of O(ϵ−2). Set y′0 = ŷ′, z′0 = ẑ′, u0 = û, v0 = v̂. With x0, y′0, z
′
0, u0, v0 as

initial points, we can find an ϵ-stationary point of Φδ with a complexity of O(ϵ−3). Thus, the total
complexity is O(ϵ−3 + ϵ−2) = O(ϵ−3).

The proof of Corollary 5.5 can be found in Appendix D. The key to proving Corollary 5.5 lies in
Lemma D.4. In Lemma D.4, we prove that, without the full row-rank assumption on A, we can bound
∥ut+1 − u∗δ(x0)∥ and ∥vt+1 − v∗(x0)∥ with a fixed x0. Thus, we can use our algorithm SFLCB to
find suitable initial points with a fixed x0.

Note that in Corollary 5.5, we only need the LICQ condition holds for the initial y∗(x0) and y∗δ (x0),
and we can achieve a total complexity of O(ϵ−3). Compared to the decoupled constrained setting
in [21], we achieve an improvement in the convergence rate from O(ϵ−3 log(ϵ−1)) to O(ϵ−3) (See
Table 1).
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6 Experiments

In this section, we evaluate the performance of our SFLCB algorithm on three tasks: a toy example,
hyperparameter optimization for SVM, and a transportation network design problem. These experi-
ments demonstrate the practical effectiveness and efficiency of SFLCB. Additional hype-parameter
sensitivity analysis experiments and detailed experimental settings can be found in Appendix F.

6.1 Toy example

Figure 1: Toy example.

We consider the same constrained BLO problem that was studied
in [16], which is:

min
x∈[0,3]

f(x, y∗(x)) =
e−y∗

g(x)+2

2 + cos(6x)
+

1

2
ln
(
(4x− 2)2 + 1

)
(12)

s.t. y∗(x) ∈ arg min
y∈Y(x)

g(x, y) = (y − 2x)2 (13)

where Y(x) = {y ∈ R|y ≤ x}. Note that this problem satis-
fies Assumption 3.1, 3.2, 3.3. Moreover, we have y∗(x) = x
and Equation (12) is equivalent to minx∈[0,3] f(x, y)|y=x. In
Figure 1, we plot the hyper-objective function f(x, y∗(x)). The
red points indicate the converged solutions obtained by our al-
gorithm with 200 different initialization values. We notice that SFLCB consistently finds the local
minima of the hyper-objective function, which validates the effectiveness of SFLCB.

6.2 Hyperparameter optimization in SVM

Figure 2: Hyperparameter optimization in SVM.

Hyperparameter optimization in SVM is a well-
known real-world application for constrained BLO
problems that has been used in many prior works
[45, 49, 48, 16]. Here we consider the same prob-
lem formulation as in [16], which formulates this
problem as a coupled linearly constrained BLO
problem. We conduct experiments comparing our
SFLCB algorithm with GAM [45], LV-HBA [49],
BLOCC [16], and BiC-GAFFA [48] on the dia-
betes dataset [6]. Results are plotted in Figure 2.
We notice that our SFLCB algorithm converges
significantly faster than other algorithms, which
demonstrates the practical efficiency of the pro-
posed SFLCB algorithm.

6.3 Transportation network design

We further conduct experiments on a transportation network design problem, following the same
setting as in [16]. In this setting, we act as the operator, whose profit serves as the upper-level
objective and is influenced by passenger behavior, which is modeled in the lower-level problem.
Detailed formulations and settings can be found in Appendix F. We consider the two synthetic
networks of 3 and 9 nodes, same as those considered in [16]. We compare SFLCB with BLOCC [16].
Results are plotted in Figure 3, which indicate that SFLCB significantly outperforms BLOCC on this
network design task.

6.3.1 Sensitivity analysis of δ

We also conduct the sensitivity analysis of the δ in SFLCB for the 3-node network. We set ρ1 =
ρ2 = 1000, ηx = ηy = ηz = ηu = ηv = 3e − 4, and T = 20000. Then, we test different δ
values from {0.01, 0.05, 0.1, 0.5, 1}. For each δ, we test with three different random seeds. The final
average results and one standard deviation are reported in Figure 4. As can be seen, larger values of
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(a) 3 nodes (b) 9 nodes

Figure 3: Results of the transportation experiments on 3 nodes and 9 nodes settings. Larger UL utility
indicates better performance.

δ lead to a faster initial decrease in the loss (increase in UL utility). In contrast, very small δ (e.g.,
δ = 0.01) results in significantly slower convergence overall. However, an overly large δ (e.g., δ = 1)
can lead to large approximation errors in later stages, causing deviation from the true optimization
objective and ultimately poor performance. We observe that moderate values of δ (such as 0.05,
0.1, and 0.5) achieve relatively good final performance. These observations are consistent with our
theoretical predictions. For example, our theory indicates that the convergence rate of SLFCB is
inversely proportional to δ: smaller δ leads to slower convergence but smaller approximation error,
whereas larger δ improves convergence speed towards the approximate problem but incurs greater
approximation error. Figure 4 indicates a properly chosen δ thus can balance convergence speed and
approximation error.

Figure 4: Comparison of different δ in SFLCB for the 3 nodes network.

7 Conclusions and future directions

In this paper, for coupled constrained BLO problem in Equation (1), we theoretically analyzed
the relationship between the original hyper-objective Φ and the reformulated function Φδ in Equa-
tion (3), providing a solid justification for the validity of the reformulation. Especially, for the
linearly constrained case, we proposed SFLCB, a single-loop, Hessian-free algorithm, improving the
convergence rate from O(ϵ−3 log(ϵ−1)) to O(ϵ−3) over previous works [21, 16]. Our experiments
on hyperparameter optimization for SVM and the transportation network design problem validated
the practical efficiency of the proposed SFLCB algorithm. One limitation of our work is that the
analysis is restricted to deterministic and linearly constrained settings. A promising direction for
future research is to extend the current results to stochastic environments or more general constraint
structures. Moreover, since the best-known complexity for first-order methods in unconstrained BLO
[12] is O(ϵ−2), it is also an interesting problem whether we can achieve this optimal rate in the
constrained cases.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state this paper’s contributions and scope in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of this work in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We clearly state all the assumptions for each theorem. The proofs can be found
in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed experimental settings in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We provide the open access to our code and provide detailed experimental
settings in Appendix F.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental settings in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the error bar in Figure 2. The definition of the error bar can be found
in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information on the computer resources in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, the research conducted in this paper fully
conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is theoretical in nature and does not have immediate direct societal
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our knowledge, we do not think our paper poses such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used diabetes dataset and cited the original paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The Appendix is organized as follows. In Appendix A, we introduce some useful lemmas that will
be utilized in the subsequent proofs. In Appendix B, we introduce some notations that will be used
throughout the Appendix. In Appendix C, we provide the proofs for the lemmas and theorems in
Section 4. In Appendix D, we provide proofs for Theorem 5.4 and Corollary 5.5. In Appendix E,
we provide proofs for Theorem 5.2 and Corollary 5.3. In Appendix F, we present the detailed
experimental settings along with additional hyperparameter sensitivity analysis experiments.

A Useful Lemmas

Lemma A.1 (Lemma 12 in [3]). Suppose f(·) is l-smooth and µ-strongly convex, X is a convex
closed set, and η ≤ 1/l. Define x∗ = argminx∈X f(x) and x+ = ΠX (x− η∇f(x)). Then, we have

∥x− x∗∥ ≤ 2

µη
∥x− x+∥

Lemma A.2 (Lemma 23 in [24]). Suppose for any fixed y ∈ Y , f(x, y) is µ-strongly convex w.r.t.
x and suppose for any y1, y2 ∈ Y, x ∈ X , ∥∇xf(x, y1) − ∇xf(x, y2)∥ ≤ l∥y1 − y2∥. Define
x∗(y) = argminx∈X f(x, y). Then, we have

∥x∗(y1)− x∗(y2)∥ ≤ l

µ
∥y1 − y2∥

Lemma A.3 (Theorem 4.1 in [50]). Suppose f(x) : Rd1 → R is l-smooth and µ-strongly convex,
P = {x|Cx ≤ e},S(r) = {x ∈ P|Ax− b = r}, where C,A ∈ Rd2×d1 , e, b, r ∈ Rd2 . Define

L(x, u) = f(x) + u⊤(Ax− b)

x∗(u) = argmin
x∈P

L(x, u)

x∗r = argmin
x∈S(r)

f(x)

where u ∈ Rd2 is the Lagrange multiplier. We have

∥x∗(u)− x∗0∥ ≤ σx∥Ax∗(u)− b∥
∥x∗r − x∗0∥ ≤ σx∥r∥

where

σx =

√
2(θ̄l2 + 1)

µ

M =

(
A⊤ C⊤

0 I

)

θ̄ = max
M̄∈B(M)

σ2
max(M̄)/σ4

min(M̄)

M̄ is the set of all submatrices of M with full row rank.

Lemma A.4. Suppose f(x) : Rdx → R is µ-strongly convex w.r.t. x. Define L(x, α, u) =
f(x)+u⊤(Ax−b−α)+ ρ

2∥Ax−b−α∥
2, where α, u, b ∈ Rdy , A ∈ Rdy×dx , ρ ∈ (0, µ/σ2

max(A)).
Denoting x′ = (x⊤, α⊤)⊤, L(x′, u) = L(x, α, u), we have L(x′, u) is µx-strongly convex w.r.t. x′,
where µx = min{µ− ρσ2

max(A),
ρ
2}.
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Proof. For any x1, x2 ∈ Rdx , α1, α2 ∈ Rdy , denoting x′1 = (x⊤1 , α
⊤
1 )

⊤, x′2 = (x⊤2 , α
⊤
2 )

⊤, A′ =
(A,−I), we have

L(x′1, u)− L(x′2, u)− ⟨∇x′L(x′2, u), x
′
1 − x′2⟩

=f(x1)− f(x2) + u⊤A′(x′1 − x′2) +
ρ

2
∥A′x′1 − b∥2 − ρ

2
∥A′x′2 − b∥2

− ⟨∇xf(x2), x1 − x2⟩ − u⊤A′(x′1 − x′2)− ρ(A′⊤A′x′2 −A′⊤b)⊤(x′1 − x′2)

≥µ
2
∥x1 − x2∥2 +

ρ

2
∥A′(x′1 − x′2)∥2

≥µ
2
∥x1 − x2∥2 +

ρ

4
∥α1 − α2∥2 −

ρ

2
∥A(x1 − x2)∥2

≥µ− ρσ2
max(A)

2
∥x1 − x2∥2 +

ρ

4
∥α1 − α2∥2

≥µx

2
∥x′1 − x′2∥2

where µx = min{µ− ρσ2
max(A),

ρ
2}.

B Notations

Denote lδ = µg/2. We introduce the following notations.

Φδ(x, y, z) =
1

δ
(δf(x, y) + g(x, y)− g(x, z))

ϕδ(x, y, z) = δf(x, y) + g(x, y)− g(x, z)

gδ(x, y) = δf(x, y) + g(x, y)

y∗δ (x) = min
y∈Y(x)

gδ(x, y)

y∗(x) = min
y∈Y(x)

g(x, y)

Lg = lδ + lg,1
Lϕ = lδ + 2lg,1
Φ(x) = f(x, y∗(x))

Φδ(x) = Φδ(x, y
∗
δ (x), y

∗(x))

ϕδ(x) = ϕδ(x, y
∗
δ (x), y

∗(x))

When δ ≤ µg/2lf,1, we have δlf,1 ≤ µg/2 = lδ and thus, gδ(x, y) is Lg-smooth and ϕδ(x, y, z) is
Lϕ-smooth.

C Reformulation

In this section, we provide the proofs for the lemmas and theorems in Section 4.

Theorem 4.1

When Assumption 3.1, 3.2 and 3.3 hold, we have

0 ≤ Φ(x)− Φδ(x) ≤
δl2f,0
2µg

∥y∗δ (x)− y∗(x)∥ ≤ 2δlf,0
µg

.

Proof. Similar results and proofs of Theorem 4.1 can also be found in [21, 16]. For completeness,
we also provide our proofs for Theorem 4.1 here.
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Note that y∗δ (x) satisfy

ΠY(x)(y
∗
δ (x)− [δ∇yf(x, y

∗
δ (x)) +∇yg(x, y

∗
δ (x))]/Lϕ) = y∗δ (x)

Since g(x, ·) is µg-strongly concave and lg,1-smooth and Lϕ ≥ lg,1, according to Lemma A.1, we
have

∥y∗δ (x)− z∗(x)∥ ≤2Lϕ

µg
∥y∗δ (x)−ΠY(x)(y

∗
δ (x)−∇yg(x, y

∗
δ (x))/Lϕ)∥

=
2Lϕ

µg
∥ΠY(x)(y

∗
δ (x)− [δ∇yf(x, y

∗
δ (x)) +∇yg(x, y

∗
δ (x))]/Lϕ)

−ΠY(x)(y
∗
δ (x)−∇yg(x, y

∗
δ (x))/Lϕ)∥

≤ 2δ

µg
∥∇yf(x, y

∗
δ (x))∥

≤2δlf,0
µg

.

For Φδ(x), we have

Φδ(x) =f(x, y
∗
δ (x)) +

1

δ
(g(x, y∗δ (x))− g(x, y∗(x)))

≤f(x, y∗(x)) + 1

δ
(g(x, y∗(x))− g(x, y∗(x)))

=Φ(x),

and

Φδ(x) =f(x, y
∗
δ (x)) +

1

δ
[g(x, y∗δ (x))− g(x, y∗(x))]

≥f(x, y∗δ (x)) +
µg

2δ
∥y∗δ (x)− y∗(x)∥2

≥f(x, y∗(x)) + µg

2δ
∥y∗δ (x)− y∗(x)∥2 − lf,0∥y∗δ (x)− y∗(x)∥

≥Φ(x)−
δl2f,0
2µg

,

where the first equality is due to the quadratic growth of a strongly convex function, the last equality
is due to ax2 + bx ≥ −b2/(4a).

Lemma 4.4

When Assumption 3.1, 3.2, 3.3 hold and δ ≤ µg/(2lf,1), if, for all x ∈ X , LICQ condition (Defini-
tion 4.3) hold for y∗(x) and y∗δ (x), then there exist the corresponding unique Lagrangian multipliers
λ∗(x) ∈ Rdh and λ∗δ(x) ∈ Rdh such that

λ∗(x) = argmax
λ∈R+

min
y∈Y(x)

g(x, y) + λ⊤h(x, y) (14)

λ∗δ(x) = argmax
λ∈R+

min
y∈Y(x)

δf(x, y) + g(x, y) + λ⊤h(x, y). (15)

Furthermore, we have

∇Φδ(x) =∇xf(x, y
∗
δ (x)) +

1

δ
[∇xg(x, y

∗
δ (x)) +∇xh(x, y

∗
δ (x))λ

∗
δ(x)

−∇xg(x, y
∗(x))−∇xh(x, y

∗(x))λ∗(x)]. (16)

Proof. The uniqueness of Lagrangian multipliers is a direct result from the LICQ condition [43].
According to Lemmas 2 and 3 in [16]. We know that when Assumption 3.1, 3.2, 3.3 hold, δ ≤
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µg/(2lf,1), if, for all x ∈ X , LICQ condition (Definition 4.3) holds for y∗(x) and y∗δ (x), defining
ψ(x) = g(x, y∗(x)) and ψδ(x) = gδ(x, y

∗
δ (x)), we have

∇xψ(x) = ∇xg(x, y
∗(x)) +∇xh(x, y

∗(x))λ∗(x)

∇xψδ(x) = δ∇xf(x, y
∗
δ (x)) +∇xg(x, y

∗
δ (x)) +∇xh(x, y

∗
δ (x))λ

∗
δ(x)

Since Φδ(x) = f(x, y∗δ (x)) +
1
δ (gδ(x, y

∗
δ (x))− g(x, y∗(x))), we have

∇Φδ(x) =∇xf(x, y
∗
δ (x)) +

1

δ
[∇xg(x, y

∗
δ (x)) +∇xh(x, y

∗
δ (x))λ

∗
δ(x)

−∇xg(x, y
∗(x))−∇xh(x, y

∗(x))λ∗(x)].

Lemma 4.7

When Assumption 3.1, 3.2, 3.3, 4.6 hold, if, for a given x, Assumption 4.5 and the LICQ condition
(Definition 4.3) holds for y∗(x), then ∇Φ(x) exists at x and can be expressed as

∇Φ(x) = ∇xf(x, y) + (∇y∗(x))⊤∇yf(x, y
∗(x))

where ∇y∗(x) can be calculated according to (20).

Proof. According to Theorem 2 in [45], we know that when Assumption 3.1, 3.2, 3.3, 4.6 hold, if,
for a given x, Assumption 4.5 and the LICQ (Definition 4.3) condition holds for y∗(x), then ∇Φ(x)
exists at x.

Moreover, we can give the explicit expression of ∇Φ(x).

With λ ∈ Rdh , we have the following Lagrangian function

L(x, y, λ) = g(x, y) + λ⊤h(x, y)

Denote λ∗(x) as the optimal Lagrangian multiplier, Ix ⊆ [dh] as the active set of y∗(x), i.e.
Ix = {i ∈ [dh][h(x, y)]i = 0} Denote h̄(x, y∗(x)) = [h(x, y∗(x))]Ix and λ̄∗(x) = [λ∗(x)]Ix . We
have the following KKT conditions:

∇yg(x, y
∗(x)) +∇yh̄(x, y

∗(x))⊤λ̄∗(x) = 0

h̄(x, y∗(x)) = 0.

Differentiating the KKT conditions with respect to x, we have

∇2
xyg(x, y

∗(x)) +∇2
yyg(x, y

∗(x))∇y∗(x) +∇2
xyh̄(x, y

∗(x))⊤λ̄∗(x)

+∇2
yyh̄(x, y

∗(x))⊤λ̄∗(x)∇y∗(x) +∇yh̄(x, y
∗(x))⊤∇λ̄∗(x) = 0

∇xh̄(x, y
∗(x)) +∇yh̄(x, y

∗(x))∇y∗(x) = 0

Thus, ∇y∗(x) and λ∗(x) satisfy the following equation.[
∇2

yyg(x, y
∗(x)) +∇2

yyh̄(x, y
∗(x))⊤λ̄∗(x) ∇yh̄(x, y

∗(x))⊤

∇yh̄(x, y
∗(x)) 0

] [
∇y∗(x)
∇λ̄∗(x)

]
(17)

=

[
−∇2

xyg(x, y
∗(x))−∇2

xyh̄(x, y
∗(x))⊤λ̄∗(x)

−∇xh̄(x, y
∗(x))

]
(18)

Denote

H =

[
∇2

yyg(x, y
∗(x)) +∇2

yyh̄(x, y
∗(x))⊤λ̄∗(x) ∇yh̄(x, y

∗(x))⊤

∇yh̄(x, y
∗(x)) 0

]
(19)

Since g is strongly convex, h is convex, ∇2
yyg(x, y

∗(x)) ≻ 0, ∇2
yy[h̄(x, y

∗(x))]i ⪰ 0. More-
over, since λ̄∗(x) > 0, we have ∇2

yyg(x, y
∗(x)) + ∇2

yyh̄(x, y
∗(x))⊤λ̄∗(x) ≻ 0. Additionally,
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∇yh̄(x, y
∗(x)) has full row rank. Thus, according to Lemma A.2 in [20], H is invertible. We can

calculate ∇y∗(x) and λ∗(x) with the following equation.[
∇y∗(x)
∇λ̄∗(x)

]
= H−1

[
−∇2

xyg(x, y
∗(x))−∇2

xyh̄(x, y
∗(x))⊤λ̄∗(x)

−∇xh̄(x, y
∗(x))

]
(20)

According to [9], we have

∇Φ(x) = ∇xf(x, y) + (∇y∗(x))⊤∇yf(x, y
∗(x)).

Theorem 4.9

When Assumption 3.1, 3.2, 3.3, 4.6 hold, and δ ≤ µg/(2lf,1), if Assumption 4.8 holds for a given x,
we have

∥∇Φ(x)−∇Φδ(x)∥ ≤ O(δ).

Proof. With λ ∈ Rdh , we have the following Lagrangian function

Lδ(x, y, λ) = gδ(x, y) + λ⊤h(x, y).

Denote λ∗δ(x) as the optimal Lagrangian multiplier. We have the following KKT conditions.

∇ygδ(x, y
∗
δ (x)) +∇yh̄(x, y

∗
δ (x))

⊤λ̄∗δ(x) = 0

h̄(x, y∗δ (x)) = 0.

Differentiating the KKT conditions with respect to δ, we have

∇yf(x, y
∗
δ (x)) +∇2

yygδ(x, y
∗
δ (x))

d

dδ
y∗δ (x) +∇2

yyh̄(x, y
∗
δ (x))

⊤λ̄∗δ(x)
d

dδ
y∗δ (x)

+∇yh̄(x, y
∗
δ (x))

⊤ d

dδ
λ̄∗δ(x) = 0

∇yh̄(x, y
∗
δ (x))

d

dδ
y∗δ (x) = 0

We have the following equation:[
∇2

yygδ(x, y
∗
δ (x)) +∇2

yyh̄(x, y
∗
δ (x))

⊤λ̄∗δ(x) ∇yh̄(x, y
∗
δ (x))

⊤

∇yh̄(x, y
∗
δ (x)) 0

] [
d
dδy

∗
δ (x)

d
dδ λ̄

∗
δ(x)

]
=

[
−∇yf(x, y

∗
δ (x))

0

]
. (21)

Denote

Hδ =

[
∇2

yygδ(x, y
∗
δ (x)) +∇2

yyh̄(x, y
∗
δ (x))

⊤λ̄∗δ(x) ∇yh̄(x, y
∗
δ (x))

⊤

∇yh̄(x, y
∗
δ (x)) 0

]
. (22)

We can notice that Hδ=0 = H , where H is defined in (19).

Then, we have

lim
δ→0

[∇xg(x, y
∗
δ (x)) +∇xh(x, y

∗
δ (x))λ

∗
δ(x)]− [∇xg(x, y

∗(x)) +∇xh(x, y
∗(x))λ∗(x)]

δ

=

[
∇2

xyg(x, y
∗(x)) +∇2

xyh̄(x, y
∗(x))⊤λ̄∗(x)

∇xh̄(x, y
∗(x))

]⊤ [ d
dδy

∗
δ (x)

d
dδ λ̄

∗
δ(x)

] ∣∣∣∣∣
δ=0

=

[
∇2

xyg(x, y
∗(x)) +∇2

xyh̄(x, y
∗(x))⊤λ̄∗(x)

∇xh̄(x, y
∗(x))

]⊤
H−1

[
−∇yf(x, y

∗(x))
0

]
=T⊤H−1

[
−∇yf(x, y

∗(x))
0

]
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where we denote

T =

[
∇2

xyg(x, y
∗(x)) +∇2

xyh̄(x, y
∗(x))⊤λ̄∗(x)

∇xh̄(x, y
∗(x))

]
.

Note that according to (20), we have

∇y∗(x) = − [1 0]H−1T

(∇y∗(x))⊤∇yf(x, y
∗(x)) = T⊤H−1

[
−∇yf(x, y

∗(x))
0

]

Thus,

lim
δ→0

[∇xg(x, y
∗
δ (x)) +∇xh(x, y

∗
δ (x))λ

∗
δ(x)]− [∇xg(x, y

∗(x)) +∇xh(x, y
∗(x))λ∗(x)]

δ

=(∇y∗(x))⊤∇yf(x, y
∗(x)) (23)

Note that, according to Lemma 4.4, we have

∇Φδ(x) =
[∇xg(x, y

∗
δ (x)) +∇xh(x, y

∗
δ (x))λ

∗
δ(x)]− [∇xg(x, y

∗(x)) +∇xh(x, y
∗(x))λ∗(x)]

δ
+∇xf(x, y

∗
δ (x)).

Then, we consider to bound ∇Φδ(x)−∇Φ(x).

∇Φδ(x)−∇Φ(x)

=∇xf(x, y
∗
δ (x))−∇xf(x, y

∗(x))

+
[∇xg(x, y

∗
δ (x)) +∇xh(x, y

∗
δ (x))λ

∗
δ(x)]− [∇xg(x, y

∗(x)) +∇xh(x, y
∗(x))λ∗(x)]

δ

− (∇y∗(x))⊤∇yf(x, y
∗(x))

=∇xf(x, y
∗
δ (x))−∇xf(x, y

∗(x))

+
[∇xg(x, y

∗
δ (x)) +∇xh(x, y

∗
δ (x))λ

∗
δ(x)]− [∇xg(x, y

∗(x)) +∇xh(x, y
∗(x))λ∗(x)]

δ

− [∇2
xyg(x, y

∗(x)) +∇2
xyh̄(x, y

∗(x))⊤λ̄∗(x)]
d

dδ
y∗δ (x)|δ=0 −∇xh̄(x, y

∗(x))
d

dδ
λ̄∗δ(x)|δ=0

(24)

where the last equality is due to (23).

For the first term in (24), we have

∥∇xf(x, y
∗
δ (x))−∇xf(x, y

∗(x))∥ ≤ lf,1∥y∗δ (x)− y∗(x)∥ ≤ 2δlf,0lf,1
µg
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For the remaindering terms in (24), we have

∇xg(x, y
∗
δ (x))−∇xg(x, y

∗(x))

δ
−∇2

xyg(x, y
∗(x))

d

dδ
y∗δ (x)|δ=0

+
∇xh(x, y

∗
δ (x))λ

∗
δ(x)−∇xh(x, y

∗(x))λ∗(x)

δ
−∇2

xyh(x, y
∗(x))

d

dδ
λ∗δ(x)|δ=0

−∇xh̄(x, y
∗(x))

d

dδ
λ̄∗δ(x)|δ=0

=
1

δ

∫ δ

t=0

(
∇2

xyg(x, y
∗
t (x))

d

dt
y∗t (x)−∇2

xyg(x, y
∗(x))

d

dδ
y∗δ (x)|δ=0

)
dt

+
1

δ

∫ δ

t=0

∇2
xyh(x, y

∗
t (x))

d

dt
y∗t (x) +∇xh(x, y

∗
t (x))

d

dt
λ∗t (x)dt

− 1

δ

∫ δ

t=0

(
∇2

xyh(x, y
∗(x))

d

ds
y∗s (x) +∇xh(x, y

∗(x))
d

ds
λ∗s(x)

)
|s=0dt

=
1

δ

∫ δ

t=0

[
∇2

xyg(x, y
∗
t (x))−∇2

xyg(x, y
∗(x))

] d
dt
y∗t (x)dt

+
1

δ

∫ δ

t=0

∇2
xyg(x, y

∗(x))

[
d

dt
y∗t (x)−

d

ds
y∗s (x)|s=0

]
dt

+
1

δ

∫ δ

t=0

[
∇2

xyh(x, y
∗
t (x))−∇2

xyh(x, y
∗(x))

] d
dt
y∗t (x)dt

+
1

δ

∫ δ

t=0

∇2
xyh(x, y

∗(x))

[
d

dt
y∗t (x)−

d

ds
y∗s (x)|s=0

]
dt

+
1

δ

∫ δ

t=0

[∇xh(x, y
∗
t (x))−∇xh(x, y

∗(x))]
d

dt
λ∗t (x)dt

+
1

δ

∫ δ

t=0

∇xh(x, y
∗(x))

[
d

dt
λ∗t (x)− λ∗s(x)|s=0

]
dt (25)

For the first term in (25), we have∥∥∥∥∥1δ
∫ δ

t=0

[∇2
xyg(x, y

∗
t (x))−∇2

xyg(x, y
∗(x))]

d

dt
y∗t (x)dt

∥∥∥∥∥
≤1

δ

∫ δ

t=0

∥ d
dt
y∗t (x)∥ · lg,2∥y∗t (x)− y∗(x)∥ · dt

≤1

δ

∫ δ

t=0

lg,2C
2
y · t · dt

=δlg,2C
2
y/2

where the last equality is due to Lemma C.1.

Similarly, for the third, fifth terms in (25), we have∥∥∥∥∥1δ
∫ δ

t=0

[
∇2

xyh(x, y
∗
t (x))−∇2

xyh(x, y
∗(x))

] d
dt
y∗t (x)dt

+
1

δ

∫ δ

t=0

[∇xh(x, y
∗
t (x))−∇xh(x, y

∗(x))]
d

dt
λ∗t (x)dt

∥∥∥∥∥
≤δ(lh,2 + lh,1)C

2
y/2
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For the second term in (25), we have

∥1
δ

∫ δ

t=0

∇2
xy(x, y

∗(x) ·
(
d

dt
y∗t (x)−

d

ds
y∗s (x)|s=0

)
dt∥

≤1

δ
∥∇2

xy(x, y
∗(x)∥ ·

∫ δ

t=0

∫ t

s=0

∥ d
2

ds2
y∗s (x)∥dsdt

≤1

δ
∥∇2

xy(x, y
∗(x)∥ · max

s∈[0,δ]
∥ d

2

ds2
y∗s (x)∥ · δ2

≤δlg,1Ly

where the last equality is due to Lemma C.1.

Similarly, for the fourth, sixth terms in (25), we have∥∥∥∥∥1δ
∫ δ

t=0

∇2
xyg(x, y

∗(x))

[
d

dt
y∗t (x)−

d

ds
y∗s (x)|s=0

]
dt

+
1

δ

∫ δ

t=0

∇xh(x, y
∗(x))

[
d

dt
λ∗t (x)− λ∗s(x)|s=0

]
dt

∥∥∥∥∥
≤δ(lh,1 + lh,0)Ly

Therefore,

∥∇Φδ(x)−∇Φ(x)∥ ≤ O(δ).

Lemma C.1. When Assumption 3.1, 3.2, 3.3, 4.6 hold, and δ ≤ µg/(2lf,1), if Assumption 4.8 holds
for a given x, we have ∥∥∥∥[ d

dδy
∗
δ (x)

d
dδ λ̄

∗
δ(x)

]∥∥∥∥ ≤ Cy∥∥∥∥∥
[

d2

dδ2 y
∗
δ (x)

d2

dδ2 λ̄
∗
δ(x)

]∥∥∥∥∥ ≤ Ly

where Cy, Ly are O(1) constants.

Proof. According to (21), we have [
d
dδy

∗
δ (x)

d
dδ λ̄

∗
δ(x)

]
= H−1

δ pδ,

where

Hδ =

[
∇2

yygδ(x, y
∗
δ (x)) +∇2

yyh̄(x, y
∗
δ (x))

⊤λ̄∗δ(x) ∇yh̄(x, y
∗
δ (x))

⊤

∇yh̄(x, y
∗
δ (x)) 0

]
,

pδ =

[
−∇yf(x, y

∗
δ (x))

0

]
.

According to Lemma C.2, we have∥∥∥∥[ d
dδy

∗
δ (x)

d
dδ λ̄

∗
δ(x)

]∥∥∥∥ ≤
∥∥H−1

δ pδ
∥∥ ≤ CH lf,0 = Cy.

Denote

∥Hδ2 −Hδ1∥ =

∥∥∥∥[B DT

D 0

]∥∥∥∥
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where
B =∇2

yygδ2(x, y
∗
δ2(x)) +∇2

yyh̄(x, y
∗
δ2(x))

⊤λ̄∗δ2(x)−∇2
yygδ1(x, y

∗
δ1(x))−∇2

yyh̄(x, y
∗
δ1(x))

⊤λ̄∗δ1(x)

=δ2∇2
yyf(x, y

∗
δ2(x))− δ1∇2

yyf(x, y
∗
δ1(x)) +∇2

yyg(x, y
∗
δ2(x))−∇2

yyg(x, y
∗
δ1(x))

+∇2
yyh̄(x, y

∗
δ2(x))

⊤λ̄∗δ2(x)−∇2
yyh̄(x, y

∗
δ1(x))

⊤λ̄∗δ1(x)

=δ1(∇2
yyf(x, y

∗
δ2(x))−∇2

yyf(x, y
∗
δ1(x))) +∇2

yyf(x, y
∗
δ2(x))(δ2 − δ1) +∇2

yyg(x, y
∗
δ2(x))

−∇2
yyg(x, y

∗
δ1(x)) + [∇2

yyh̄(x, y
∗
δ2(x))−∇2

yyh̄(x, y
∗
δ1(x))]

⊤λ̄∗δ2(x)

+∇2
yyh̄(x, y

∗
δ1(x))

⊤[λ̄∗δ2(x)− λ̄∗δ1(x)].

Thus

∥B∥ ≤
(
2µglf,2
lf,1

Cy + lf,1 + lg,2Cy + Λlh,2Cy + lf,1Cy

)
|δ2 − δ1|

∥D∥ = ∥∇yh̄(x, y
∗
δ2(x))−∇yh̄(x, y

∗
δ1(x))∥ ≤ lh,1(y

∗
δ2(x)− y∗δ1(x)) ≤ lh,1Cy|δ1 − δ2|

Therefore, we have
∥Hδ2 −Hδ1∥ ≤MH |δ1 − δ2|

Moreover, we have ∥∥∥∥[ d
dδy

∗
δ1
(x)

d
dδ λ̄

∗
δ1
(x)

]
−
[

d
dδy

∗
δ2
(x)

d
dδ λ̄

∗
δ2
(x)

]∥∥∥∥
=∥H−1

δ1
pδ1 −H−1

δ2
pδ2∥

=∥(H−1
δ1

−H−1
δ2

)pδ1 +H−1
δ2

(pδ1 − pδ2)∥
≤∥(H−1

δ1
(Hδ2 −Hδ1)H

−1
δ2

)∥∥pδ1∥+ ∥H−1
δ2

∥∥pδ1 − pδ2∥
≤
(
C2

H lf,0M
2
H + CH lf,1

)
|δ1 − δ2| = Ly|δ1 − δ2|

where Ly =
(
C2

H lf,0M
2
H + CH lf,1

)
.

Lemma C.2. For Hδ defined in (22), we have
∥H−1

δ ∥ ≤ CH ,

where CH is an O(1) constant depending on µg, lg,1, lf,1, dh, lh,1, smin, smax,Λ.

Proof. Denote A = ∇2
yygδ(x, y

∗
δ (x)) +∇2

yyh̄(x, y
∗
δ (x))

⊤λ̄∗δ(x), C = ∇yh̄(x, y
∗
δ (x)). We have

H−1
δ1

=

[
A−1 +A−1C⊤(CA−1C⊤)−1CA−1 −A−1C⊤(CA−1C⊤)−1

−(CA−1C⊤)−1CA−1 (CA−1C⊤)−1

]
.

According to Assumption 4.8, we know that ∥λ∗δ(x)∥ ≤ Λ. Thus, 0 ≤ [λ∗δ(x)]i ≤ Λ. We have

∥A−1∥ ≤ 2

µg

∥A∥ ≤ Lg + dhlh,1Λ

∥C∥ ≤ smax

∥C−1∥ ≤ 1

smin

Denote

H−1
δ1

=

[
B DT

D E

]
.

we have ∥B∥ ≤ CB , ∥D∥ ≤ CD, ∥E∥ ≤ CE and so that ∥H−1
δ1

∥ ≤ CH , where CB , CD, CE , CH

are O(1) constants depending on µg, lg,1, lf,1, dh, lh,1, smin, smax,Λ.
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D Proofs of Theorem 5.4 and Corollary 5.5

In this section, we provide proofs for Theorem 5.4 and Corollary 5.5. We first introduce the additional
notations and lemmas that will be used in this section.

Notations

K(x, y′, z′, u, v) = ϕδ(x, y, z) + u⊤(A′y′ − b)− v⊤(A′z′ − b) +
ρ1
2
∥A′y′ − b∥2 − ρ2

2
∥A′z′ − b∥2

LK = lδ + 2lg,1 +max{ρ1, ρ2}σ2
max(A

′)

µy = min{µg − lδ − ρ1σ
2
max(A),

ρ1
2
}

µz = min{µg − ρ2σ
2
max(A),

ρ2
2
}

y∗δ (x) = min
y∈Y(x)

gδ(x, y)

z∗(x) = argmin
z∈Y(x)

g(x, z)

y′∗δ (x, u) = argmin
y′∈Py

K(x, y′, z′, u, v)

z′∗(x, v) = argmax
z′∈Py

K(x, y′, z′, u, v)

[y∗δ (x, u)
⊤, α∗

δ(x, u)
⊤]⊤ = y′∗δ (x, u)

[z∗(x, v)⊤, β∗(x, v)⊤]⊤ = z′∗(x, v)

d(x, z′, u, v) = K(x, y′∗δ (x, u), z′, u, v)

q(x, v) = ϕδ(x, y
∗
δ (x), z

∗(x, v))− v⊤(A′z′∗(x, v)− b)− ρ2
2
∥A′z′∗(x, v)− b∥2

Vt =
1

4
K(xt, y

′
t, z

′
t, ut, vt) + 2q(xt, vt)− d(xt, z

′
t, ut, vt)

Lemma D.1. When δ ≤ µg/(2lf,1), 0 ≤ ρ1 ≤ µg−δlf,1
σ2
max(A) and 0 ≤ ρ2 ≤ µg

σ2
max(A) , K(x, y′, z′, u, v) is

µy-strongly convex w.r.t. y′, µz-strongly concave w.r.t. z′, and LK-smooth w.r.t. x, y′, z′.

Proof. According to Lemma A.4, we know that K(x, y′, z′, u, v) is µy-strongly convex w.r.t. y′,
µz-strongly concave w.r.t. z′. Moreover

∇xK(x, y′, z′, u, v) = ∇xϕδ(x, y, z)

∇yK(x, y′, z′, u, v) = ∇yϕδ(x, y, z) +A⊤u+ ρ1A
⊤(A′y′ − b)

∇zK(x, y′, z′, u, v) = ∇zϕδ(x, y, z)−A⊤v − ρ2A
⊤(A′z′ − b)

Thus, K(x, y′, z′, u, v) is LK-smooth w.r.t. x, y′, z′.
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Lemma D.2. When δ ≤ µg/(2lf,1), 0 ≤ ρ1 ≤ µg−δlf,1
σ2
max(A) and 0 ≤ ρ2 ≤ µg

σ2
max(A) , ηy, ηz ≤ 1/LK , we

have
∥y′∗δ (x, u1)− y′∗δ (x, u2)∥ ≤ σyu∥u1 − u2∥ (26)

∥y′∗δ (x1, u)− y′∗δ (x2, u)∥ ≤ σyx∥x1 − x2∥ (27)

∥z′∗(x, v1)− z′∗(x, v2)∥ ≤ σzv∥v1 − v2∥ (28)

∥z′∗(x1, v)− z′∗(x2, v)∥ ≤ σzx∥x1 − x2∥ (29)
∥y∗δ (x1)− y∗δ (x2)∥ ≤ σys∥x1 − x2∥ (30)
∥z∗(x1)− z∗(x2)∥ ≤ σzs∥x1 − x2∥ (31)

∥y′∗δ (x, u)− y′∗δ (x)∥ ≤ σy∥A′y′∗δ (x, u)− b∥ (32)

∥z′∗(x, v)− z′∗(x)∥ ≤ σz∥A′z′∗(x, v)− b∥ (33)

∥y′∗δ (x, u)− y′∥ ≤ σye∥∇yK(x, y′, z′, u, v)∥+ σα∥α−Π−(α− ηy∇αK(x, y′, z′, u, v))∥ (34)

∥z′∗(x, v)− z′∥ ≤ σze∥∇zK(x, y′, z′, u, v)∥+ σβ∥β −Π−(β + ηz∇βK(x, y′, z′, u, v))∥ (35)

∥y′∗δ (xt, ut+1)− y′t∥ ≤ 2

µyηy
∥y′t+1 − y′t∥ (36)

∥z′∗(xt, vt+1)− z′t∥ ≤ 2

µzηz
∥z′t+1 − z′t∥ (37)

where σyu = σmax(A
′)

µy
, σyx = LK

µy
, σzv = σmax(A

′)
µz

, σzx = LK

µz
, σye = 2

µy
, σze = 2

µz
, σα = 2

µyηy
,

σβ = 2
µzηz

, σys = 2LK

µg
, σzs = LK

µg
,

σy =

√
2(θ̄L2

K + 1)

µy

σz =

√
2(θ̄L2

K + 1)

µz

M =

(
A′⊤ G⊤

0 I

)

G =

(
0dy×dh

0
0 Idh

)

θ̄ = max
M̄∈B(M)

σ2
max(M̄)/σ4

min(M̄)

M̄ is the set of all submatrices of M with full row rank.

Proof. (26), (27), (28), (29), (30), (31) is due to Lemma A.2. (34), (35), (36), (37) is due to
Lemma A.1. (32), (33) is due to Lemma A.3.

D.1 Potential function

In this subsection, we will prove the following descent lemma for Vt.

Lemma D.3. When δ ≤ µg/(2lf,1), 0 ≤ ρ1 ≤ µg−δlf,1
σ2
max(A) , 0 ≤ ρ2 ≤ µg

σ2
max(A) , ηy = 1/(4LK), ηz =

2/(LK + 4Ld), ηx = min{ηyµ2
y/(512L

2
ϕ), ηzµ

2
z/(96L

2
ϕ), ηu/(64σ

2
yL

2
ϕ), ηv/(4σ

2
zL

2
ϕ), 2/(LK +

4Ld + 8Lq)}, ηu = ηyµ
2
y/(32σ

2
max(A)), ηv = ηzµ

2
z/(32σ

2
max(A)), we have

Vt − Vt+1 ≥ 1

4ηx
∥xt+1 − xt∥2 +

1

16ηy
∥y′t+1 − y′t∥2 +

1

8ηz
∥z′t+1 − z′t∥2

+
ηu
4
∥A′y′∗δ (xt, ut+1)− b∥2 + ηv

2
∥A′z′∗(xt, vt+1)− b∥2

+
ηu
4
∥A′y′t − b∥2 + ηv

4
∥A′z′t − b∥2 + ηx

4
∥∇ϕδ(xt)∥2
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Thus,

1

T

T−1∑
t=0

∥∇ϕδ(xt)∥2 ≤ 4

Tηx
(V0 −min

t
Vt) (38)

Proof. First, for function d, we have

d(xt, z
′
t, ut+1, vt+1)− d(xt, z

′
t, ut, vt)

=K(xt, y
′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1)−K(xt, y

′∗
δ (xt, ut), z

′
t, ut, vt)

≥K(xt, y
′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1)−K(xt, y

′∗
δ (xt, ut+1), z

′
t, ut, vt)

=(ut+1 − ut)
⊤(A′y′∗δ (xt, ut+1)− b)− (vt+1 − vt)

⊤(A′z′t − b)

=− ηv∥A′z′t − b∥2 + ηu(A
′y′∗δ (xt, ut+1)− b)⊤(A′y′t − b)

Note that

∇xd(x, z
′, u, v) = ∇xϕδ(x, y

∗
δ (x, u), z)

∇z′d(x, z′, u, v) =

[
∇zg(x, z)−A⊤v − ρ2A

⊤(A′z′ − b)
v + (A′z′ − b)

]
Thus, according to Lemma D.2, we know that ∇xd(x, z

′, u, v) is (Lϕ + Lϕσyx)-continuous w.r.t.
x, z′ and ∇′

zd(x, z
′, u, v) is LK-continuous w.r.t. x, z′. Define Ld = max{Lϕ + Lϕσyx, LK}. We

have

d(xt+1, z
′
t+1, ut+1, vt+1)− d(xt, z

′
t, ut+1, vt+1)

≥⟨∇xK(xt, y
′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1), xt+1 − xt⟩

+ ⟨∇z′K(xt, y
′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1), z

′
t+1 − z′t⟩

− Ld

2
(∥xt+1 − xt∥2 + ∥z′t+1 − z′t∥2)

≥⟨∇xϕδ(xt, y
∗
δ (xt, ut+1), zt), xt+1 − xt⟩+

1

ηz
∥z′t+1 − z′t∥2

− Ld

2
(∥xt+1 − xt∥2 + ∥z′t+1 − z′t∥2)

Then, for function q, we have

q(xt, vt)− q(xt, vt+1)

≥K(xt, y
′∗
δ (xt), z

′∗(xt, vt), ut, vt)−K(xt, y
′∗
δ (xt), z

′∗(xt, vt+1), ut, vt+1)

≥K(xt, y
′∗
δ (xt), z

′∗(xt, vt+1), ut, vt)−K(xt, y
′∗
δ (xt), z

′∗(xt, vt+1), ut, vt+1)

≥ηv(A′z′∗(xt, vt+1)− b)⊤(A′z′t − b)

Note that

∇xq(x, v) = ∇xϕδ(x, y
∗
δ (x), z

∗(x, v))

Thus, according to Lemma D.2, q(·, v) is Lq = (Lϕ + Lϕσzx + Lϕσys)-smooth. We have

q(xt, vt+1)− q(xt+1, vt+1)

≥⟨∇xϕδ(xt, y
∗
δ (xt), z

∗(xt, vt+1)), xt − xt+1⟩ −
Lq

2
(∥xt+1 − xt∥2)

Finally, for function K, we have

K(xt, y
′
t, z

′
t, ut, vt)−K(xt, y

′
t, z

′
t, ut+1, vt+1) = −ηu∥A′y′t − b∥2 + ηv∥A′z′t − b∥2

and

K(xt, y
′
t, z

′
t, ut+1, vt+1)−K(xt+1, y

′
t+1, z

′
t+1, ut+1, vt+1)

≥ 1

ηx
∥xt+1 − xt∥2 +

1

ηy
∥y′t+1 − y′t∥2 −

1

ηz
∥z′t+1 − z′t∥2

− LK

2
(∥xt+1 − xt∥2 + ∥y′t+1 − y′t∥2 + ∥z′t+1 − z′t∥2).

32



Thus, for Vt, we have

Vt − Vt+1

≥⟨∇xϕδ(xt, y
∗
δ (xt, ut+1), zt), xt+1 − xt⟩+

1

ηz
∥z′t+1 − z′t∥2

+ ηu(A
′y′∗δ (xt, ut+1)− b)⊤(A′y′t − b)− ηv∥A′z′t − b∥2 − Ld

2
(∥xt+1 − xt∥2 + ∥z′t+1 − z′t∥2)

+ 2⟨∇xϕδ(xt, y
∗
δ (xt), z

∗(xt, vt+1)), xt − xt+1⟩
+ 2ηv(A

′z′∗(xt, vt+1)− b)⊤(A′z′t − b)− Lq(∥xt+1 − xt∥2)

+
1

4ηx
∥xt+1 − xt∥2 +

1

4ηy
∥y′t+1 − y′t∥2 −

1

4ηz
∥z′t+1 − z′t∥2 −

ηu
4
∥A′y′t − b∥2 + ηv

4
∥A′z′t − b∥2

− LK

8
(∥xt+1 − xt∥2 + ∥y′t+1 − y′t∥2 + ∥z′t+1 − z′t∥2)

≥− ∥∇xϕδ(xt, y
∗
δ (xt, ut+1), zt)−∇xϕδ(xt, y

∗
δ (xt), z

∗(xt, vt+1))∥∥xt+1 − xt∥

+
(ηu
2

− ηu
4

)
∥A′y′t − b∥2 + ηu

2
∥A′y′∗δ (xt, ut+1)− b∥2 − ηu

2
∥A′y′t −A′y′∗δ (xt, ut+1)∥2

+
(
ηv +

ηv
4

− ηv

)
∥A′z′t − b∥2 + ηv∥A′z′∗(xt, vt+1)− b∥2 − ηv∥A′z′t −A′z′∗(xt, vt+1)∥2

− ηx
2
∥∇xϕδ(xt, y

∗
δ (xt), z

∗(xt, vt+1))−∇xϕδ(xt, yt, zt)∥2

+
1

2ηx
∥xt − xt+1∥2 +

ηx
2
∥∇xϕδ(xt, y

∗
δ (xt), z

∗(xt, vt+1))∥2

+

(
1

4ηx
− LK

8
− Ld

2
− Lq

)
∥xt+1 − xt∥2

+

(
1

ηz
− 1

4ηz
− LK

8
− Ld

2

)
∥z′t+1 − z′t∥2

+

(
1

4ηy
− LK

8

)
∥y′t+1 − y′t∥2

≥− 1

4ηx
∥xt+1 − xt∥2 − 2ηxL

2
ϕ∥y′∗δ (xt, ut+1)− y′∗δ (xt)∥2 − 2ηxL

2
ϕ∥z′∗(xt, vt+1)− z′t∥2

+
ηu
4
∥A′y′t − b∥2 + ηu

2
∥A′y′∗δ (xt, ut+1)− b∥2 − ηuσ

2
max(A)

2
∥y′∗δ (xt, ut+1)− y′t∥2

+
ηv
4
∥A′z′t − b∥2 + ηv∥A′z′∗(xt, vt+1)− b∥2 − ηvσ

2
max(A)∥z′∗(xt, vt+1)− z′t∥2

− 2ηxL
2
ϕ∥y′∗δ (xt)− y′∗δ (xt, ut+1)∥2 − 2ηxL

2
ϕ∥y′∗δ (xt, ut+1)− y′t∥2 − ηxL

2
ϕ∥z′∗(xt, vt+1)− z′t∥2

+
ηx
4
∥∇xϕδ(xt, y

∗
δ (xt), z

∗(xt))∥2 −
ηxL

2
ϕ

2
∥z′∗(xt)− z′∗(xt, vt+1)∥2 +

1

2ηx
∥xt − xt+1∥2

+

(
1

4ηx
− LK

8
− Ld

2
− Lq

)
∥xt+1 − xt∥2

+

(
3

4ηz
− LK

8
− Ld

2

)
∥z′t+1 − z′t∥2

+

(
1

4ηy
− LK

8

)
∥y′t+1 − y′t∥2,
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and

Vt − Vt+1

≥
(

1

2ηx
+

1

4ηx
− 1

4ηx
− LK

8
− Ld

2
− Lq

)
∥xt+1 − xt∥2

+

(
1

4ηy
− LK

8

)
∥y′t+1 − y′t∥2 −

(
4ηxL

2
ϕ +

ηuσ
2
max(A)

2

)
∥y′∗δ (xt, ut+1)− y′t∥2

+

(
3

4ηz
− LK

8
− Ld

2

)
∥z′t+1 − z′t∥2 −

(
3ηxL

2
ϕ + ηvσ

2
max(A)

)
∥z′∗(xt, vt+1)− z′t∥2

+
ηu
4
∥A′y′t − b∥2 + ηu

2
∥A′y′∗δ (xt, ut+1)− b∥2 − 4ηxL

2
ϕ∥y′∗δ (xt, ut+1)− y′∗δ (xt)∥2

+
ηv
4
∥A′z′t − b∥2 + ηv∥A′z′∗(xt, vt+1)− b∥2 −

ηxL
2
ϕ

2
∥z′∗(xt, vt+1)− z′∗(xt)∥2

+
ηx
4
∥∇ϕδ(xt)∥2

≥
(

1

2ηx
− LK

8
− Ld

2
− Lq

)
∥xt+1 − xt∥2

+

(
1

4ηy
− LK

8
−

16ηxL
2
ϕ + 2ηuσ

2
max(A)

µ2
yη

2
y

)
∥y′t+1 − y′t∥2

+

(
3

4ηz
− LK

8
− Ld

2
−

12ηxL
2
ϕ + 4ηvσ

2
max(A)

µ2
zη

2
z

)
∥z′t+1 − z′t∥2

+
(ηu
2

− 4σ2
yηxL

2
ϕ

)
∥A′y′∗δ (xt, ut+1)− b∥2

+

(
ηv −

σ2
zηxL

2
ϕ

2

)
∥A′z′∗(xt, vt+1)− b∥2

+
ηu
4
∥A′y′t − b∥2 + ηv

4
∥A′z′t − b∥2 + ηx

4
∥∇ϕδ(xt)∥2

where the last equality is due to Lemma D.2.

Thus, when δ ≤ µg/(2lf,1), 0 ≤ ρ1 ≤ µg−δlf,1
σ2
max(A) , 0 ≤ ρ2 ≤ µg

σ2
max(A) , ηy = 1/(4LK), ηz = 2/(LK +

4Ld), ηx = min{ηyµ2
y/(512L

2
ϕ), ηzµ

2
z/(96L

2
ϕ), ηu/(64σ

2
yL

2
ϕ), ηv/(4σ

2
zL

2
ϕ), 2/(LK+4Ld+8Lq)},

ηu = ηyµ
2
y/(32σ

2
max(A)), ηv = ηzµ

2
z/(32σ

2
max(A)), we have

Vt − Vt+1

≥ 1

4ηx
∥xt+1 − xt∥2 +

1

16ηy
∥y′t+1 − y′t∥2 +

1

8ηz
∥z′t+1 − z′t∥2

+
ηu
4
∥A′y′∗δ (xt, ut+1)− b∥2 + ηv

2
∥A′z′∗(xt, vt+1)− b∥2

+
ηu
4
∥A′y′t − b∥2 + ηv

4
∥A′z′t − b∥2 + ηx

4
∥∇ϕδ(xt)∥2 (39)

Thus,

1

T

T−1∑
t=0

∥∇ϕδ(xt)∥2 ≤ 4

Tηx
(V0 −min

t
Vt) (40)
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Proof of Theorem 5.4

When δ ≤ µg/(2lf,1), 0 ≤ ρ1 ≤ µg−δlf,1
σ2
max(A) , 0 ≤ ρ2 ≤ µg

σ2
max(A) , ηy = 1/(4LK), ηz = 2/(LK +4Ld),

ηx = min{ηyµ2
y/(512L

2
ϕ), ηzµ

2
z/(96L

2
ϕ), ηu/(64σ

2
yL

2
ϕ), ηv/(4σ

2
zL

2
ϕ), 2/(LK+4Ld+8Lq)}, ηu =

ηyµ
2
y/(32σ

2
max(A)), ηv = ηzµ

2
z/(32σ

2
max(A)), according to (40), we have

1

T

T−1∑
t=0

∥∇ϕδ(xt)∥2 ≤ 4

Tηx
(V0 −min

t
Vt) (41)

Note that

Vt =
1

4
K(xt, y

′
t, z

′
t, ut, vt) + 2q(xt, vt)− d(xt, z

′
t, ut, vt)

≥2q(xt, vt)−
3

4
d(xt, z

′
t, ut, vt) ≥

5

4
q(xt, vt) ≥

5

4
ϕδ(xt) ≥

5δΦ∗

4
−

5δ2l2f,0
8µg

Therefore, when δ = Θ(ϵ), with T = O(ϵ−4), we have t ∈ [T ], such that ∥∇Φδ(xt)∥ =
∥ 1
δ∇ϕδ(xt)∥ ≤ ϵ.

Moreover, if we have x0, y0, z0, u0, v0 such that

∥y0 − y∗δ (x0)∥ ≤ O(δ)

∥A′y′∗δ (x0, u0)− b∥ ≤ O(δ)

∥A′y′0 − b∥ ≤ O(δ)

∥z0 − z∗(x0)∥ ≤ O(δ)

∥A′z′∗(x0, v0)− b∥ ≤ O(δ)

∥A′z′0 − b∥ ≤ O(δ)

Then, we have

V0

=
1

4

[
δf(x0, y0) + (g(x0, y0)− g(x0, z0)) + u⊤0 (A

′y′0 − b)− v⊤0 (A
′z′0 − b)

+
ρ1
2
∥A′y′0 − b∥2 − ρ2

2
∥A′z′0 − b∥2

]
+ 2

[
δf(x0, y

∗
δ (x0)) + (g(x0, y

∗
δ (x0))− g(x0, z

∗(x0, v0)))− v⊤0 (A
′z′∗(x0, v0)− b)

− ρ2
2
∥A′z′∗(x0, v0)− b∥2

]
−
[
δf(x0, y

∗
δ (x0, u0)) + (g(x0, y

∗
δ (x0, u0))− g(x0, z0)) + u⊤0 (A

′y′∗δ (x0, u0)− b)

− v⊤0 (A
′z′0 − b) +

ρ1
2
∥A′y′∗δ (x0, u0)− b∥2 − ρ2

2
∥A′z′0 − b∥2

]
≤5δΦ(x0)

4
+O(1)lf,1(∥y0 − y∗(x0)∥+ ∥y∗δ (x0)− y∗(x0)∥+ ∥y∗δ (x0, u0)− y∗(x0)∥)

+O(1)Cg(∥z0 − y0∥+ ∥y∗δ (x0)− z∗(x0, v0)∥+ ∥y∗δ (x0, u0)− z0∥)
+O(∥A′z′0 − b∥+ ∥A′z′0 − b∥2 + ∥A′y′0 − b∥+ ∥A′y′0 − b∥2

+ ∥A′z′∗(x0, v0)− b∥+ ∥A′z′∗(x0, v0)− b∥2 + ∥A′y′∗δ (x0, u0)− b∥+ ∥A′y′∗δ (x0, u0)− b∥2)

≤5δΦ(x0)

4
+O(δ)

where G = max{g(x0, y0), g(x0, z0), g(x0, y∗δ (x0), g(x0, z∗(x0, v0)), g(x0, y∗δ (x0, u0)}, C = {y ∈
Rdy |g(x0, y) ≤ G}, Cg = supy∈C ∇yg(x0, y). Since g(x0, y) is strongly convex w.r.t y, its sub-level
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set C is compact and convex. Moreover, since g is Lipschitz smoothness, its gradient in this compact
set C is upper bounded by an O(1) constant Cg .

We can notice that

V0 −min
t
Vt ≤

5δ[Φ(x0)− Φ∗]

4
+O(δ) = O(ϵ)

and

1

T

T−1∑
t=0

∥∇Φδ(xt)∥2 =
1

Tδ2

T−1∑
t=0

∥∇ϕδ(xt)∥2 ≤ 4

Tηxδ2
(V0 −min

t
Vt) = O

(
ϵ−1

T

)
.

Therefore, we can find an ϵ-stationary point of Φδ(x) with a complexity of O(ϵ−3).

Proof of Corollary 5.5

For fixed x0, define Wt =
1
4K(x0, y

′
t, z

′
t, ut, vt) + 2q(x0, vt)− d(x0, z

′
t, ut, vt). According to (39),

with appropriate parameters, we have
Wt −Wt+1

≥ 1

16ηy
∥y′t+1 − y′t∥2 +

1

8ηz
∥z′t+1 − z′t∥2

+
ηu
4
∥A′y′∗δ (x0, ut+1)− b∥2 + ηv

2
∥A′z′∗(x0, vt+1)− b∥2

+
ηu
4
∥A′y′t − b∥2 + ηv

4
∥A′z′t − b∥2

Thus, when T = O(ϵ2), we can find t ∈ T such that
∥y′t+1 − y′t∥ ≤ δ

∥A′y′∗δ (x0, ut+1)− b∥ ≤ δ

∥A′y′t − b∥ ≤ δ

∥z′t+1 − z′t∥ ≤ δ

∥A′z′∗(x0, vt+1)− b∥ ≤ δ

∥A′z′t − b∥ ≤ δ

Denote the active set at y∗δ (x0) as Iα, J α = [dh]/I. Define ∆α = mini∈Jα |[α∗
δ(x0)]i|. De-

note the active set of z∗(x0) as Iβ , J β = [dh]/I. Define ∆β = mini∈J β |[β∗(x0)]i|. Set
ϵ ≤ min{∆α/(6σα),∆

α/(6σy),∆
β/(6σβ),∆

β/(6σz)}. According to Lemma D.4, we have
∥ut+1 − u∗δ(x0)∥ ≤ O(δ)

∥vt+1 − v∗(x0)∥ ≤ O(δ)

Then, if we set y′0 = y′t, z
′
0 = z′t, u0 = ut+1, v0 = vt+1, with x0, y′0, z

′
0, u0, v0 as initial points,

according to Theorem 5.4, we can find an ϵ-stationary point of Φδ with a complexity of O(ϵ−3).

Thus, the total complexity is O(ϵ−3 + ϵ−2) = O(ϵ−3).
Lemma D.4. For a fixed x0, denote the active set at y∗δ (x0) as Iα, J α = [dh]/I. We have
[α∗

δ(x0)]Iα = 0 and [α∗
δ(x0)]Jα < 0. Suppose sαmin = σmin(AIα) > 0. Define ∆α =

mini∈Jα |[α∗
δ(x0)]i|. When ∥y′t+1 − y′t∥ ≤ ∆α/(6σα), ∥A′y′∗δ (x0, ut+1) − b∥ ≤ ∆α/(6σy), we

have
∥ut+1 − u∗δ(x0)∥ ≤σuyx0∥y′t+1 − y′t∥+ σu2x0∥A′y′∗δ (x0, ut+1)− b∥+ σu1x0∥A′y′t − b∥

where σuyx0 = 1
ηy

+ 1+σmax

ηysαmin
+

Lgσα

sαmin
, σu2x0 =

Lgσy

sαmin
, σu1x0 = ρ1σmax(A)

sαmin
.

Similarly, for a fixed x0, denote the active set of z∗(x0) as Iβ , J β = [dh]/I. Suppose
sβmin = σmin(AIβ ) > 0. Define ∆β = mini∈J β |[β∗(x0)]i|. When ∥z′t+1 − z′t∥ ≤
∆β/(6σβ), ∥A′z′∗δ (x0, vt+1)− b∥ ≤ ∆β/(6σz), we have

∥vt+1 − v∗(x0)∥ ≤σuzx0∥z′t+1 − z′t∥+ σv2x0∥A′z′∗(x0, vt+1)− b∥+ σv1x0∥A′z′t − b∥

where σuzx0 = 1
ηz

+ 1+σmax

ηzs
β
min

+
lg,1σβ

sβmin

, σv2x0 =
lg,1σz

sβmin

, σv1x0 = ρ2σmax(A)

sβmin

.
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Proof. Denote the active set of y∗δ (x0) as I , J = [dh]/I . We have [α∗
δ(x0)]I = 0 and [α∗

δ(x0)]J <
0. Note that

∥αt − α∗
δ(x0)∥ ≤∥y′t − y′∗δ (x0)∥ ≤ ∥yt − y∗δ (x0, ut+1)∥+ ∥y∗δ (x0)− y∗δ (x0, ut+1)∥

≤σα∥y′t+1 − y′t∥+ σy∥A′y′∗δ (x0, ut+1)− b∥

Define ∆ = mini∈J |[α∗
δ(x0)]i|. When ∥y′t+1−y′t∥ ≤ ∆/(6σα), ∥A′y′∗δ (x0, ut+1)−b∥ ≤ ∆/(6σy),

we have

∥αt − α∗
δ(x0)∥ ≤ 1

3
∆

∥αt+1 − αt∥ ≤ 1

6
∆

Thus, for J , we have

[αt]J < 0

[αt+1]J < 0

Therefore, there are no projection in the update of αt+1 and we have

∥[ut+1]J − [u∗δ(x0)]J ∥ = ∥[ut+1]J ∥ = ∥ 1

ηy
([αt+1]J − [αt]J )∥ ≤ 1

ηy
∥αt+1 − αt∥

Moreover, for I, we have

∇ygδ(x0, y
∗
δ (x0)) +A⊤

I [u
∗
δ(x0)]I = 0

Thus,

∇ygδ(x0, yt) +A⊤
I [ut+1]I +A⊤

J [ut+1]J + ρ1A
⊤(A′y′t − b) =

1

ηy
(yt+1 − yt)

Suppose σmin(AI) = smin , we have

∥[ut+1]I − [u∗δ(x0)]I∥

≤ 1

smin
[
1

ηy
∥yt+1 − yt∥+ Lg∥yt − y∗δ (x0)∥+ ρ1σmax(A)∥A′y′t − b∥+ σmax(A)∥ut+1]J ∥]

≤ 1

smin

[(
1 + σmax

ηy
+ Lgσα

)
∥y′t+1 − y′t∥+ Lgσy∥A′y′∗δ (x0, ut+1)− b∥

+ ρ1σmax(A)∥A′y′t − b∥

]

Thus,

∥ut+1 − u∗δ(x0)∥ ≤σuyx0∥y′t+1 − y′t∥+ σu2x0∥A′y′∗δ (x0, ut+1)− b∥+ σu1x0∥A′y′t − b∥

where σuyx0 = 1
ηy

+ 1+σmax

ηysmin
+

Lgσα

smin
, σu2x0 =

Lgσy

smin
, σu1x0 = ρ1σmax(A)

smin

Similar conditions and conclusions also hold for ∥vt+1 − v∗(x0)∥.

E Proofs of Theorem 5.2 and Corollary 5.3

In this section, we provide proofs for Theorem 5.2 and Corollary 5.3. We first introduce the additional
notations and lemmas that will be used in this section.

37



Notations

K(x, y′, z′, u, v) = ϕδ(x, y, z) + u⊤(Bx+A′y′ − b)− v⊤(Bx+A′z′ − b)

+
ρ1
2
∥Bx+A′y′ − b∥2 − ρ2

2
∥Bx+A′z′ − b∥2

LK = lδ + 2lg,1 +max{ρ1, ρ2}max{σ2
max(A

′), σ2
max(B), σmax(B)σmax(A

′)}

µy = min{µg − lδ − ρ1σ
2
max(A),

ρ1
2
}

µz = min{µg − ρ2σ
2
max(A),

ρ2
2
}

y∗δ (x) = min
y∈Y(x)

gδ(x, y)

z∗(x) = argmin
z∈Y(x)

g(x, z)

u∗δ(x) = argmax
u∈R+

min
y∈Y(x)

gδ(x, y) + u⊤(Bx+Ay − b)

v∗(x) = argmax
v∈R+

min
z∈Y(x)

g(x, y) + v⊤(Bx+Az − b)

y′∗δ (x, u) = argmin
y′∈Py

K(x, y′, z′, u, v)

z′∗(x, v) = argmax
z′∈Py

K(x, y′, z′, u, v)

[y∗δ (x, u)
⊤, α∗

δ(x, u)
⊤]⊤ = y′∗δ (x, u)

[z∗(x, v)⊤, β∗(x, v)⊤]⊤ = z′∗(x, v)

d(x, z′, u, v) = K(x, y′∗δ (x, u), z′, u, v)

q(x, v) = ϕδ(x, y
∗
δ (x), z

∗(x, v))− v⊤(Bx+A′z′∗(x, v)− b)− ρ2
2
∥Bx+A′z′∗(x, v)− b∥2

Vt =
1

4
K(xt, y

′
t, z

′
t, ut, vt) + 2q(xt, vt)− d(xt, z

′
t, ut, vt)

Lemma 5.1

When the LICQ condition (Definition 4.3) holds for y∗(x) and y∗δ (x), the optimal Lagrangian
multipliers of y∗(x) and y∗δ (x) are unique and we have

u∗δ(x) = argmax
u∈R+

min
y∈Y(x)

gδ(x, y) + u⊤h(x, y) = argmax
u∈Rdh

min
y′∈Py

K(x, y′, z′, u, v),

v∗(x) = argmax
v∈R+

min
z∈Y(x)

g(x, z) + v⊤h(x, z) = argmin
v∈Rdh

max
z′∈Py

K(x, y′, z′, u, v).

Proof. Suppose

v1 = argmax
v∈R+

min
z∈Y(x)

g(x, y),

v2 = argmax
u∈Rdh

min
y′∈Py

K(x, y′, z′, u, v).

The KKT conditions for v1 are

∇yg(x, z
∗(x)) +A⊤v1 = 0

Bx+Az∗(x)− b ≤ 0

v1 ≥ 0

v⊤1 (Bx+Az∗(x)− b) = 0
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The KKT conditions for v2 are

∇yg(x, z
∗(x)) +A⊤v1 + ρ2(Bx+A′z′∗(x)− b) = 0

Bx+A′z′∗(x)− b = 0

β ≤ 0

v1 ∈ ∂I−(β)

Note that these two KKT conditions are equivalent. Moreover, since the LICQ condition (Defi-
nition 4.3) holds for z∗(x), we have v1 = v2. Similar conditions and conclusions also hold for
u∗δ(x).

Lemma E.1. K(x, y′, z′, u, v) is µy-strongly w.r.t. y′, µz-strongly concave w.r.t. z′, and LK -smooth
w.r.t. x, y′, z′.

Proof. According to Lemma A.4, we know that K(x, y′, z′, u, v) is µy-strongly convex w.r.t. y′,
µz-strongly concave w.r.t. z′. Moreover

∇xK(x, y′, z′, u, v) =∇xϕδ(x, y, z) +B⊤(u− v) + ρ1B
⊤(Bx+A′y′ − b)

− ρ2B
⊤(Bx+A′z′ − b)

∇yK(x, y′, z′, u, v) =∇yϕδ(x, y, z) +A⊤u+ ρ1A
⊤(A′y′ − b)

∇zK(x, y′, z′, u, v) =∇zϕδ(x, y, z)−A⊤v − ρ2A
⊤(A′z′ − b)

Thus, K(x, y′, z′, u, v) is LK-smooth w.r.t. x, y′, z′.

Lemma E.2.

∥ut+1 − u∗δ(xt)∥ ≤ σuy∥y′t+1 − y′t∥+ σu1∥Bxt +A′y′t − b∥+ σu2∥Bxt +A′y′∗δ (xt, ut+1)− b∥
∥vt+1 − v∗(xt)∥ ≤ σvz∥z′t+1 − z′t∥+ σv1∥Bxt +A′z′t − b∥+ σv2∥Bxt +A′z′∗(xt, vt+1)− b∥

where σuy = 1
σmin(A) (

1
ηy

+ σαlg,1), σu1 = ρ1, σu2 =
σylg,1

σmin(A) , σvz = 1
σmin(A) (

1
ηz

+ σβlg,1),

σv1 = ρ2, σv2 =
σzlg,1

σmin(A)

Proof. By the optimality condition at y∗δ (xt), we have

∇ygδ(xt, y
∗
δ (xt)) +A⊤u∗δ(xt) = 0.

The update rule of yt:

−yt+1 − yt
ηy

= ∇ygδ(xt, yt) +A⊤ut+1 + ρ1A
⊤(Bxt +Ayt − b− αt),

Putting together, we have

A⊤(u∗δ(xt)− ut+1)

=
yt+1 − yt

ηy
+∇ygδ(xt, yt)−∇ygδ(xt, y

∗
δ (xt)) + ρ1A

⊤(Bxt +Ayt − b− αt)

Since A has full row rank, we have

u∗δ(xt)− ut+1 =(AA⊤)−1A

[
yt+1 − yt

ηy
+∇ygδ(xt, yt)−∇ygδ(xt, y

∗
δ (xt))

]
+ ρ1(Bxt +Ayt − b− αt),

and

∥ut+1 − u∗δ(xt)∥

≤ 1

σmin(A)ηy
∥yt+1 − yt∥+

lg,1
σmin(A)

∥yt − y∗δ (xt)∥+ ρ1∥Bxt +Ayt − b− αt∥
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Moreover,
∥yt − y∗δ (xt)∥ ≤∥yt − y∗δ (xt, ut+1)∥+ ∥y∗δ (xt)− y∗δ (xt, ut+1)∥

≤σα∥y′t+1 − y′t∥+ σy∥Bxt +A′y′∗δ (xt, ut+1)− b∥
where the last equality is due to Lemma D.2.

Thus,
∥ut+1 − u∗δ(xt)∥ ≤ σuy∥y′t+1 − y′t∥+ σu1∥Bxt +A′y′t − b∥+ σu2∥Bxt +A′y′∗δ (xt, ut+1)− b∥

where σuy = 1
σmin(A) (

1
ηy

+ σαlg,1), σu1 = ρ1, σu2 =
σylg,1

σmin(A) .

Similarly, we have
∥vt+1 − v∗(xt)∥ ≤ σvz∥z′t+1 − z′t∥+ σv1∥Bxt +A′z′t − b∥+ σv2∥Bxt +A′z′∗(xt, vt+1)− b∥

where σvz = 1
σmin(A) (

1
ηz

+ σβlg,1), σv1 = ρ2, σv2 =
σzlg,1

σmin(A) .

Lemma E.3.
∥z′∗(x1)− z′∗(x2)∥ ≤ σzb∥x1 − x2∥
∥y′∗δ (x1)− z′∗δ (x2)∥ ≤ σyb∥x1 − x2∥
∥v∗(x1)− v∗(x2)∥ ≤ σvb∥x1 − x2∥
∥u∗δ(x1)− u∗δ(x2)∥ ≤ σub∥x1 − x2∥

where σzb = σmax(A)σz + σzx, σyb = σmax(A)σy + σyx, σvb =
lg,1σzb

σmin(A) , σub =
Lgσyb

σmin(A) .

Proof. Here, we introduce an additional notation: z′∗(x;w) = argminz′∈G(w) g(x, z) +
ρ2

2 ∥Bx+

A′z′ − b∥2, where G(w) = {z′ ∈ Py|Bw + A′z′ − b = 0}. We can notice that z′∗(x;x) = z′∗(x).
According to Lemma A.3, we have ∥z′∗(x1;x1)− z′∗(x1;x2)∥ ≤ σz∥Ax1 −Ax2∥. Moreover, we
have ∥z′∗(x1;x2) − z′∗(x2;x2)∥ ≤ σzx∥x1 − x2∥. Thus, ∥z′∗(x1) − z′∗(x2)∥ ≤ [σmax(A)σz +
σzx]∥x1 − x2∥. Moreover,

∇yg(x, z
∗(x1)) +A⊤v∗(x1) = 0

∇yg(x, z
∗(x2)) +A⊤v∗(x2) = 0

Thus,

∥v∗(x1)− v∗(x2)∥ ≤ lg,1σzb
σmin(A)

∥x1 − x2∥

Similarly, we have ∥y′∗δ (x1)− y′∗δ (x2)∥ ≤ [σmax(A)σy + σyx]∥x1 − x2∥ and ∥u∗δ(x1)− u∗δ(x2)∥ ≤
Lgσyb

σmin(A)∥x1 − x2∥

E.1 Potential function

In this subsection, we will prove the following descent lemma for Vt.

Lemma E.4. When δ ≤ µg/(2lf,1), 0 ≤ ρ1 ≤ µg−δlf,1
σ2
max(A) , 0 ≤

ρ2 ≤ µg

σ2
max(A) , ηy = 1/(4LK), ηz = 2/(LK + 4Ld), ηx =

min{ηyµ2
y/(640L

2
K), ηzµ

2
z/(640L

2
K), ηu/(240(σ

2
y + σ2

u2 + σ2
u1)L

2
K), ηv/(240(σ

2
z +

σ2
v2 + σ2

v1)L
2
K), 2/(LK + 4Ld + 8Lq), 1/(1920ηyL

2
Kσ

2
uy), 1/(1920ηzL

2
Kσ

2
uz)}, ηu =

ηyµ
2
y/(256σ

2
max(A)), ηv = ηzµ

2
z/(256σ

2
max(A)), we have

Vt − Vt+1 ≥ 1

4ηx
∥xt+1 − xt∥2 +

1

16ηy
∥y′t+1 − y′t∥2 +

1

8ηz
∥z′t+1 − z′t∥2

+
ηu
4
∥Bx+A′y′∗δ (xt, ut+1)− b∥2 + ηv

2
∥Bx+A′z′∗(xt, vt+1)− b∥2

+
ηu
4
∥Bx+A′y′t − b∥2 + ηv

4
∥Bx+A′z′t − b∥2 + ηx

4
∥∇ϕδ(xt)∥2 (42)
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Thus,

1

T

T−1∑
t=0

∥∇ϕδ(xt)∥2 ≤ 4

Tηx
(V0 −min

t
Vt) (43)

Proof. First, for function d, we have
d(xt, z

′
t, ut+1, vt+1)− d(xt, z

′
t, ut, vt)

=K(xt, y
′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1)−K(xt, y

′∗
δ (xt, ut), z

′
t, ut, vt)

≥K(xt, y
′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1)−K(xt, y

′∗
δ (xt, ut+1), z

′
t, ut, vt)

≥− ηv∥Bxt +A′z′t − b∥2 + ηu(Bxt +A′y′∗δ (xt, ut+1)− b)⊤(Bxt +A′y′t − b)

Note that
∇xd(x, z

′, u, v) =∇xϕδ(x, y
∗
δ (x, u), z) +B⊤(u− v) + ρ1B

⊤(Bx+A′y′∗δ (x, u)− b)

− ρ2B
⊤(Bx+A′z′ − b)

∇z′d(x, z′, u, v) =

[
∇zg(x, z)−A⊤v − ρ2A

⊤(Bx+A′z′ − b)
v + (Bx+A′z′ − b)

]
Thus, according to Lemma D.2, we know that ∇xd(x, z

′, u, v) is (LK + LKσyx)-continuous w.r.t.
x, z′ and ∇′

zd(x, z
′, u, v) is LK -continuous w.r.t. x, z′. Define Ld = max{LK + LKσyx, LK}. We

have
d(xt+1, z

′
t+1, ut+1, vt+1)− d(xt, z

′
t, ut+1, vt+1)

≥⟨∇xK(xt, y
′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1), xt+1 − xt⟩+ ⟨∇z′K(xt, y

′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1), z

′
t+1 − z′t⟩

− Ld

2
(∥xt+1 − xt∥2 + ∥z′t+1 − z′t∥2)

≥⟨∇xK(xt, y
′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1), xt+1 − xt⟩+

1

ηz
∥z′t+1 − z′t∥2

− Ld

2
(∥xt+1 − xt∥2 + ∥z′t+1 − z′t∥2)

Then, for function q, we have
q(xt, vt)− q(xt, vt+1)

≥K(xt, y
′∗
δ (xt), z

′∗(xt, vt), ut, vt)−K(xt, y
′∗
δ (xt), z

′∗(xt, vt+1), ut, vt+1)

≥K(xt, y
′∗
δ (xt), z

′∗(xt, vt+1), ut, vt)−K(xt, y
′∗
δ (xt), z

′∗(xt, vt+1), ut, vt+1)

≥ηv(Bxt +A′z′∗(xt, vt+1)− b)⊤(Bxt +A′z′t − b)

Note that
∇xq(x, v) =∇xϕδ(x, y

∗
δ (x), z

∗(x, v)) +B⊤(u∗δ(x)− v) + ρ1B
⊤(Bx+A′y′∗δ (x)− b)

− ρ2B
⊤(Bx+A′z′∗(x, v)− b)

Thus, according to Lemma D.2 and E.3, q(·, v) is Lq = (LK + LKσzx + LKσyb + σmax(B)σub)-
smooth. We have

q(xt, vt+1)− q(xt+1, vt+1)

≥⟨∇xK(xt, y
′∗
δ (xt), z

′∗(xt, vt+1), u
∗(xt), vt+1), xt − xt+1⟩ −

Lq

2
(∥xt+1 − xt∥2)

Finally, for function K, we have
K(xt, y

′
t, z

′
t, ut, vt)−K(xt, y

′
t, z

′
t, ut+1, vt+1) = −ηu∥Bxt +A′y′t − b∥2 + ηv∥Bxt +A′z′t − b∥2,

and
K(xt, y

′
t, z

′
t, ut+1, vt+1)−K(xt+1, y

′
t+1, z

′
t+1, ut+1, vt+1)

≥ 1

ηx
∥xt+1 − xt∥2 +

1

ηy
∥y′t+1 − y′t∥2 −

1

ηz
∥z′t+1 − z′t∥2

− LK

2
(∥xt+1 − xt∥2 + ∥y′t+1 − y′t∥2 + ∥z′t+1 − z′t∥2).
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Thus, for Vt, we have

Vt − Vt+1

≥⟨∇xK(xt, y
′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1), xt+1 − xt⟩+

1

ηz
∥z′t+1 − z′t∥2

+ ηu(Bxt +A′y′∗δ (xt, ut+1)− b)⊤(Bxt +A′y′t − b)− ηv∥Bxt +A′z′t − b∥2

− Ld

2
(∥xt+1 − xt∥2 + ∥z′t+1 − z′t∥2) + 2⟨∇xK(xt, y

′∗
δ (xt), z

′∗(xt, vt+1), u
∗(xt), vt+1), xt − xt+1⟩

+ 2ηv(Bxt +A′z′∗(xt, vt+1)− b)⊤(Bxt +A′z′t − b)− Lq(∥xt+1 − xt∥2)

+
1

4ηx
∥xt+1 − xt∥2 +

1

4ηy
∥y′t+1 − y′t∥2 −

1

4ηz
∥z′t+1 − z′t∥2 −

ηu
4
∥Bxt +A′y′t − b∥2

+
ηv
4
∥Bxt +A′z′t − b∥2 − LK

8
(∥xt+1 − xt∥2 + ∥y′t+1 − y′t∥2 + ∥z′t+1 − z′t∥2)

≥− ∥∇xK(xt, y
′∗
δ (xt, ut+1), z

′
t, ut+1, vt+1)−∇xK(xt, y

′∗
δ (xt), z

′∗(xt, vt+1), u
∗(xt), vt+1)∥∥xt+1 − xt∥

+
(ηu
2

− ηu
4

)
∥Bxt +A′y′t − b∥2 + ηu

2
∥Bxt +A′y′∗δ (xt, ut+1)− b∥2 − ηu

2
∥A′y′t −A′y′∗δ (xt, ut+1)∥2

+
(
ηv +

ηv
4

− ηv

)
∥Bxt +A′z′t − b∥2 + ηv∥Bxt +A′z′∗(xt, vt+1)− b∥2 − ηv∥A′z′t −A′z′∗(xt, vt+1)∥2

− ηx
2
∥∇xK(xt, y

′∗
δ (xt), z

′∗(xt, vt+1), u
∗(xt), vt+1)−∇xK(xt, y

′
t, z

′
t, ut+1, vt+1)∥2

+
1

2ηx
∥xt − xt+1∥2 +

ηx
2
∥∇xK(xt, y

′∗
δ (xt), z

′∗(xt, vt+1), u
∗(xt), vt+1)∥2

+

(
1

4ηx
− LK

8
− Ld

2
− Lq

)
∥xt+1 − xt∥2

+

(
1

ηz
− 1

4ηz
− LK

8
− Ld

2

)
∥z′t+1 − z′t∥2

+

(
1

4ηy
− LK

8

)
∥y′t+1 − y′t∥2,

and

Vt − Vt+1

≥− 1

4ηx
∥xt+1 − xt∥2 − 3ηxL

2
K∥y′∗δ (xt, ut+1)− y′∗δ (xt)∥2 − 3ηxL

2
K∥z′∗(xt, vt+1)− z′t∥2

− 3ηxL
2
K∥ut+1 − u∗(xt)∥2

+
ηu
4
∥Bxt +A′y′t − b∥2 + ηu

2
∥Bxt +A′y′∗δ (xt, ut+1)− b∥2 − ηuσ

2
max(A)

2
∥y′∗δ (xt, ut+1)− y′t∥2

+
ηv
4
∥Bxt +A′z′t − b∥2 + ηv∥Bxt +A′z′∗(xt, vt+1)− b∥2 − ηvσ

2
max(A)∥z′∗(xt, vt+1)− z′t∥2

− 2ηxL
2
K∥y′∗δ (xt)− y′∗δ (xt, ut+1)∥2 − 2ηxL

2
K∥y′∗δ (xt, ut+1)− y′t∥2 − 2ηxL

2
K∥ut+1 − u∗(xt)∥2

− 2ηxL
2
K∥z′∗(xt, vt+1)− z′t∥2 +

1

2ηx
∥xt − xt+1∥2

+
ηx
4
∥∇xK(xt, y

′∗
δ (xt), z

′∗(xt), u
∗(xt), v

∗(xt))∥2 − ηxL
2
K∥z′∗(xt)− z′∗(xt, vt+1)∥2

− ηxL
2
K∥vt+1 − v∗(xt)∥2

+

(
1

4ηx
− LK

8
− Ld

2
− Lq

)
∥xt+1 − xt∥2

+

(
3

4ηz
− LK

8
− Ld

2

)
∥z′t+1 − z′t∥2

+

(
1

4ηy
− LK

8

)
∥y′t+1 − y′t∥2,
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and

Vt − Vt+1

≥
(

1

2ηx
+

1

4ηx
− 1

4ηx
− LK

8
− Ld

2
− Lq

)
∥xt+1 − xt∥2

+

(
1

4ηy
− LK

8

)
∥y′t+1 − y′t∥2 −

(
5ηxL

2
K +

ηuσ
2
max(A)

2

)
∥y′∗δ (xt, ut+1)− y′t∥2

+

(
3

4ηz
− LK

8
− Ld

2

)
∥z′t+1 − z′t∥2 −

(
5ηxL

2
K + ηvσ

2
max(A)

)
∥z′∗(xt, vt+1)− z′t∥2

+
ηu
4
∥Bxt +A′y′t − b∥2 + ηu

2
∥Bxt +A′y′∗δ (xt, ut+1)− b∥2 − 5ηxL

2
K∥y′∗δ (xt, ut+1)− y′∗δ (xt)∥2

+
ηv
4
∥Bxt +A′z′t − b∥2 + ηv∥Bxt +A′z′∗(xt, vt+1)− b∥2 − ηxL

2
K∥z′∗(xt, vt+1)− z′∗(xt)∥2

+
ηx
4
∥∇xK(xt, y

′∗
δ (xt), z

′∗(xt), u
∗(xt), v

∗(xt))∥2 − 5ηxL
2
K∥ut+1 − u∗(xt)∥2 − ηxL

2
K∥vt+1 − v∗(xt)∥2

≥
(

1

2ηx
− LK

8
− Ld

2
− Lq

)
∥xt+1 − xt∥2

+

(
1

4ηy
− LK

8
− 20ηxL

2
K + 2ηuσ

2
max(A)

µ2
yη

2
y

− 15ηxL
2
Kσ

2
uy

)
∥y′t+1 − y′t∥2

+

(
3

4ηz
− LK

8
− Ld

2
− 20ηxL

2
K + 4ηvσ

2
max(A)

µ2
zη

2
z

− 3ηxL
2
Kσ

2
vz

)
∥z′t+1 − z′t∥2

+
(ηu
2

− 5σ2
yηxL

2
K − 15ηxL

2
Kσ

2
u2

)
∥Bxt +A′y′∗δ (xt, ut+1)− b∥2

+
(
ηv − σ2

zηxL
2
K − 3ηxL

2
Kσ

2
v2

)
∥Bxt +A′z′∗(xt, vt+1)− b∥2

+
(ηu
4

− 15ηxL
2
Kσ

2
u1

)
∥Bxt +A′y′t − b∥2 +

(ηv
4

− 3ηxL
2
Kσ

2
v1

)
∥Bxt +A′z′t − b∥2 + ηx

4
∥∇ϕδ(x)∥2

where the last equality is due to Lemma D.2, E.2 and ∇xK(xt, y
′∗
δ (xt), z

′∗(xt), u
∗(xt), v

∗(xt)) =
∇ϕδ(x).

Proof of Theorem 5.2

When δ ≤ µg/(2lf,1), 0 ≤ ρ1 ≤ µg−δlf,1
σ2
max(A) , 0 ≤ ρ2 ≤ µg

σ2
max(A) , ηy = 1/(4LK), ηz = 2/(LK +

4Ld), ηx = min{ηyµ2
y/(640L

2
K), ηzµ

2
z/(640L

2
K), ηu/(240(σ

2
y + σ2

u2 + σ2
u1)L

2
K), ηv/(240(σ

2
z +

σ2
v2 + σ2

v1)L
2
K), 2/(LK + 4Ld + 8Lq), 1/(1920ηyL

2
Kσ

2
uy), 1/(1920ηzL

2
Kσ

2
uz)}, ηu =

ηyµ
2
y/(256σ

2
max(A)), ηv = ηzµ

2
z/(256σ

2
max(A)), according to (43), we have

1

T

T−1∑
t=0

∥∇ϕδ(xt)∥2 ≤ 4

Tηx
(V0 −min

t
Vt) (44)

Note that

Vt =
1

4
K(xt, y

′
t, z

′
t, ut, vt) + 2q(xt, vt)− d(xt, z

′
t, ut, vt)

≥2q(xt, vt)−
3

4
d(xt, z

′
t, ut, vt) ≥

5

4
q(xt, vt) ≥

5

4
ϕδ(xt) ≥

5δΦ∗

4
−

5δ2l2f,0
8µg

Therefore, when δ = Θ(ϵ), with T = O(ϵ−4), we have t ∈ [T ], such that ∥∇Φδ(xt)∥ =
∥ 1
δ∇ϕδ(xt)∥ ≤ ϵ.
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Moreover, if we have x0, y0, z0, u0, v0 such that
∥y0 − y∗δ (x0)∥ ≤ O(δ)

∥u0 − u∗δ(x0)∥ ≤ O(δ)

∥z0 − z∗(x0)∥ ≤ O(δ)

∥v0 − v∗(x0)∥ ≤ O(δ)

Then, set α0 = h(x0, y0), β0 = h(x0, z0), we can easily prove that
∥Bx0 +A′y′∗δ (x0, u0)− b∥ ≤ ∥Bx0 +A′y′∗δ (x0, u

∗
δ(x0))− b∥+ σmax(A

′)σyu∥u0 − u∗δ(x0)∥ ≤ O(δ)

∥Bx0 +A′y′0 − b∥ ≤ σmax(A
′)∥y′0 − y′∗(x0)∥ ≤ O(δ)

and similarly,
∥Bx0 +A′z′∗(x0, v0)− b∥ ≤ O(δ)

∥Bx0 +A′z′0 − b∥ ≤ O(δ).

Then, we have

V0 =
1

4
[δf(x0, y0) + (g(x0, y0)− g(x0, z0)) + u⊤0 (Bx0 +A′y′0 − b)− v⊤0 (Bx0 +A′z′0 − b)

+
ρ1
2
∥Bx0 +A′y′0 − b∥2 − ρ2

2
∥Bx0 +A′z′0 − b∥2]

+ 2[δf(x0, y
∗
δ (x0)) + (g(x0, y

∗
δ (x0))− g(x0, z

′∗(x0, v0)))− v⊤0 (Bx0 +A′z′∗(x0, v0)− b)

− ρ2
2
∥Bx0 +A′z′∗(x0, v0)− b∥2]− [δf(x0, y

′∗
δ (x0, u0)) + (g(x0, y

′∗
δ (x0, u0))− g(x0, z0))

+ u⊤0 (Bx0 +A′y′∗δ (x0, u0)− b)− v⊤0 (Bx0 +A′z′0 − b)

+
ρ1
2
∥Bx0 +A′y′∗δ (x0, u0)− b∥2 − ρ2

2
∥Bx0 +A′z′0 − b∥2]

≤5δΦ(x0)

4
+O(1)lf,1(∥y0 − y∗(x0)∥+ ∥y∗δ (x0)− y∗(x0)∥+ ∥y∗δ (x0, u0)− y∗(x0)∥)

+O(1)Cg(∥z0 − y0∥+ ∥y∗δ (x0)− z∗(x0, v0)∥+ ∥y∗δ (x0, u0)− z0∥)
+O(∥Bx0 +A′z′0 − b∥+ ∥Bx0 +A′z′0 − b∥2 + ∥Bx0 +A′y′0 − b∥+ ∥Bx0 +A′y′0 − b∥2

+ ∥Bx0 +A′z′∗(x0, v0)− b∥+ ∥Bx0 +A′z′∗(x0, v0)− b∥2

+ ∥Bx0 +A′y′∗δ (x0, u0)− b∥+ ∥Bx0 +A′y′∗δ (x0, u0)− b∥2)

≤5δΦ(x0)

4
+O(δ)

where G = max{g(x0, y0), g(x0, z0), g(x0, y∗δ (x0), g(x0, z∗(x0, v0)), g(x0, y∗δ (x0, u0)}, C = {y ∈
Rdy |g(x0, y) ≤ G}, Cg = supy∈C ∇yg(x0, y). Since g(x0, y) is strongly convex w.r.t y, its sub-level
set C is compact and convex. Moreover, since g is Lipschitz smooth, its gradient in this compact set
C is upper bounded by an O(1) constant Cg .

We can notice that

V0 −min
t
Vt ≤

5δ[Φ(x0)− Φ∗]

4
+O(δ) = O(ϵ)

and

1

T

T−1∑
t=0

∥∇Φδ(xt)∥2 =
1

Tδ2

T−1∑
t=0

∥∇ϕδ(xt)∥2 ≤ 4

Tηxδ2
(V0 −min

t
Vt) = O

(
ϵ−1

T

)
.

Therefore, we can find an ϵ-stationary point of Φδ(x) with a complexity of O(ϵ−3).

Proof of Corollary 5.3

When h(x, y) = Bx + Ay − b, A is full row rank and under Assumption 3.1, 3.2, 3.3 and δ =
O(ϵ) ≤ µg/(2lf,1) if we apply PGD for maxv∈R+

minz∈Rdy g(x0, y) + v⊤(Bx0 +Az − b) with a
fixed x0, then according to Theorem 6 in [16], we can find v̂, ẑ such that

∥v0 − v∗(x0)∥ ≤ δ

∥z0 − z∗(x0)∥ ≤ δ
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with a complexity of O(log(ϵ−1)).

Set y0 = z0 = ẑ, u0 = v0 = v̂, α0 = h(x0, y0), β0 = h(x0, z0). We have

∥y0 − y∗δ (x0)∥ ≤ O(δ)

∥Bx0 +A′y′∗δ (x0, u0)− b∥ ≤ O(δ)

∥Bx0 +A′y′0 − b∥ ≤ O(δ)

∥u0 − u∗δ(x0)∥ ≤ O(δ)

∥Bx0 +A′z′∗(x0, v0)− b∥ ≤ O(δ)

∥Bx0 +A′z′0 − b∥ ≤ O(δ)

with x0, y′0, z
′
0, u0, v0 as initial points and apply Algorithm 1, according to Theorem 5.2, we can find

an ϵ-stationary point of Φδ with a complexity of O(ϵ−3).

Thus, the total complexity is O(ϵ−3 + log(ϵ−1)) = O(ϵ−3).

F Detailed Experimental Settings and Additional Experiments

We adapt and modify the code from [16]. The experiments on the toy example and hyperparameter
optimization for SVM are conducted on an AMD EPYC 9554 64-Core Processor. The experiments
on transportation network design are conducted on an Intel(R) Xeon(R) Platinum 8375C CPU. For
the toy example, we set the hyperparameters for our algorithm as δ = 0.1, ηx = ηy = ηz = ηu =
ηv = 0.01, ρ1 = ρ2 = 1.

F.1 Hyperparameter optimization in SVM

Support Vector Machines (SVMs) construct a machine learning model by identifying the best possible
hyperplane that maximizes the separation margin between data points from different classes. In a
hard-margin SVM, no misclassification is allowed, ensuring that all samples are correctly classified.
Conversely, soft-margin SVMs allow certain samples to be misclassified to accommodate cases where
a perfect separation is not feasible. To achieve this, slack variables ξ are introduced to quantify
classification violations for each sample.

We consider the same problem formulation as in [16], which is

min
c

LDval(w
∗, b∗) =

∑
(zval,lval)∈Dval

exp
(
1− lval

(
z⊤valw

∗ + b∗
))

+
1

2
∥c∥2

w∗, b∗, ξ∗ = arg min
w,b,ξ

1

2
∥w∥2

s.t. ltr,i(z
⊤
tr,iw + b) ≥ 1− ξi, ∀i ∈ {1, . . . , |Dtr|}

ξi ≤ ci, ∀i ∈ {1, . . . , |Dtr|}.

where Dtr ≜ {(ztr,i, ltr,i)}|Dtr|
i=1 is the training dataset, Dval ≜ {(zval,i, lval,i)}|Dval|

i=1 is the validation
dataset, with ztr,i (zval,i) being the features of sample i and ltr,i (lval,i) being its corresponding labels.
The hyperparameter ci is introduced to bound the soft margin violation ξi. Note that the LL problem
is equivalent to

w∗, b∗ = arg min
w,b,ξ

1

2
∥w∥2

s.t. ltr,i(z
⊤
tr,iw + b) ≥ 1− ci, ∀i ∈ {1, . . . , |Dtr|}

Then upper level variables are c, and the lower level variables are w, b. Thus, we have a coupled
linear constraint for the lower level problem.

We compared our algorithm SFLCB with GAM [45], LV-HBA [49], BLOCC [16], and BiC-GAFFA
[48] on the diabetes dataset. For GAM, we follow the same implementation approach and hyper-
parameters as [16], setting α = 0.05, ϵ = 0.005 and using a different formulation as introduced

45



in [45]. For BLOCC and SFLCB, we set the LL objective as 1
2∥w∥

2 + µ
2 b

2, where µ = 0.01
serves as a regularization term to make the LL problem strongly convex w.r.t w, b. For LV-HBA,
we set α = 0.01, γ1 = 0.1, γ2 = 0.1, η = 0.001. For BLOCC, we set γ = 12, η = 0.01, T =
20, Ty = 20, η1g = 0.001, η1F = 0.00001, η2g = 0.0001, η2F = 0.0001. For BiC-GAFFA, we set
p = 0.3, γ1 = 10, γ2 = 0.01, η = 0.01, α = 0.001, β = 0.001, c0 = 10, R = 10. For our algorithm
SFLCB, we set δ = 0.01, ηx = ηy = ηz = ηu = ηv = 0.001, ρ1 = ρ2 = 0.01. The hyperparameters
of LV-HBA, BLOCC are the same as those used in [16] and the hyperparameters of BiC-GAFFA
are the same as those used in their original paper [48]. The experiments are conducted across 10
different random train-validation-test splits, and the average results along with one standard deviation
are reported in Figure 2.

F.2 Transportation network design

We consider the same setting as in [16]. In this setting, we act as the operator to design a new network
that connects a set of stations S. Passengers then decide whether to use this network based on their
rational decisions (lower level). The objective is to maximize the operator’s benefit (upper level).
The operator can select a set of potential links A ⊆ S × S, and for each link (i, j) ∈ A, determine
its capacity xij . A link is constructed if xij > 0; a larger xij attracts more travelers, generating
more revenue but incurring higher construction costs cij . Passenger demand is defined over a set of
origin-destination pairs K ⊆ S × S. For each (o, d) ∈ K, there is a known traffic demand wod and
existing travel times textod . We assume a single existing network. The fraction of passengers choosing
the new network for each (o, d) pair is denoted by yod, and yijod represents the proportion using link
(i, j).

We summarize the notation as follows. We keep the notation the same as in [16].

• xij ∈ R+, the capacity of the new network for the link (i, j) ∈ A.

• yod ∈ [0, 1], the proportion of passengers from (o, d) ∈ K choosing the new network for
their travel.

• yodij ∈ [0, 1], the proportion of passengers from (o, d) ∈ K choosing the new network and
use the link (i, j) ∈ A

• x = {xij}∀(i,j)∈A are the upper-level variables to be optimized.

• X = R|A|
+ represents the domain of x.

• y = {yod, {yodij }∀(i,j)∈A}∀(o,d)∈K are the lower-level variables to be optimized

• Y = [ε, 1 − ε]|K| × [ε, 1 − ε]|A||K|, where ε is a small positive number, represents the
domain of y.

• wod, the total estimated demand for (o, d) ∈ K.

• mod, the revenue obtained by the operator from a passenger in (o, d) ∈ K.

• cij , the construction cost per passenger for link (i, j) ∈ A.

• tij , the travel time for link (i, j) ∈ A.

• todext, travel time on the existing network for passengers in (o, d) ∈ K.

• ωt < 0, the coefficient associated with the travel time for passengers.

With these notions, we can introduce the bilevel formulations of this problem. At the upper level, the
network operator seeks to maximize the overall profit by attracting more passengers while minimizing
construction costs; thus, its objective is

min
x∈X

f(x, y∗g(x)) := −

( ∑
∀(o,d)∈K

modyod∗(x)

︸ ︷︷ ︸
profit

−
∑

∀(i,j)∈A

cijxij︸ ︷︷ ︸
cost

)
, (45)
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where yod∗(x) are optimal lower-level passenger flows. For the lower-level, the objective is defined
as finding the flow variables that maximize passenger utility and minimize flow entropy cost.

min
y∈Y

g(x, y) :=−

( ∑
(o,d)∈K

∑
(i,j)∈A

wodωttijy
od
ij +

∑
(o,d)∈K

wodωtt
od
ext(1− yod)

︸ ︷︷ ︸
passengers utility

(46)

+
∑

(o,d)∈K

wodyod(ln(yod)− 1) +
∑

(o,d)∈K

wod(1− yod)(ln(1− yod)− 1)

︸ ︷︷ ︸
flow entropy cost

)

s.t.
∑

∀j|(i,j)∈A

yodij −
∑

∀j|(j,i)∈A

yodji =


yod if i = o

−yod if i = d

0 otherwise
∀i, (o, d) ∈ S × K

(47)∑
∀(o,d)∈K

wodyodij ≤ xij ∀(i, j) ∈ A (48)

where (47) are the flow-conservation constraints and (48) are the capacity constraints.

We consider the same 3 nodes and 9 nodes settings as in [16] and use the same lower level feasibility
criteria. The hyperparameter settings used in Figure 3 are listed below. For the 3 nodes setting, we
set the hyperparameters of our method SFLCB as: δ = 0.1, ρ1 = ρ2 = 1000, ηx = ηy = ηz = ηu =
ηv = 3e − 4, and T = 30000. For the 9 nodes setting, we set the hyperparameters of our method
SFLCB as: δ = 0.25, ρ1 = ρ2 = 50, ηx = ηy = ηz = ηu = ηv = 3e − 5, and T = 300000. For
BLOCC, we used the same hyperparameters as those used in [16].
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