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Abstract
Recently, multimodal large language models001
(MLLM) are beginning to exhibit the capabil-002
ity of in-context learning (ICL), enabling them003
to learn a new task by conditioning solely on004
some in-context examples, without updating005
the model parameters. However, existing stud-006
ies on MLLM often randomly sample a subset007
of in-context examples and then order these ex-008
amples randomly. It is still unclear what makes009
good in-context demonstrations in MLLM. In010
this paper, we empirically explore the impact of011
two key factors on the performance of ICL in012
MLLM to fill this gap: the selection and the or-013
der of demonstration examples. We conduct ex-014
tensive experiments on three multimodal tasks015
including VQA, image captioning and multi-016
modal image-text classification. Our experi-017
mental results show that the above two factors018
dramatically impact the performance of ICL.019
Additionally, we summarize our findings and020
provide takeaway suggestions on how to con-021
struct effective demonstrations in MLLM.022

1 Introduction023

One of the most surprising behaviors observed024

in foundation models is in-context learning (ICL;025

Brown et al. (2020)). ICL is an ability of a founda-026

tion model to condition on a prompt sequence con-027

sisting of in-context examples (input-output pairs028

from some task) along with a new query input, and029

generate the corresponding output. Notably, ICL030

is a post-training approach and does not require031

backward gradients and parameter updates, which032

makes it the most popular strategy for interacting033

with LLMs (Oniani and Wang, 2023).034

The research on ICL starts from Brown et al.035

(2020), which shows that the LLM such as GPT-3036

can condition on a list of input-output pairs (demon-037

stration) to learn a new task. From then on, there038

are more and more studies devoted on this topic039

(Dong et al., 2023; Dai et al., 2023; Yang et al.,040

2023). Among these studies, some researchers find041

that the performance of ICL in LLMs is sensitive 042

to the selection of in-context examples (Liu et al., 043

2022) , and order of examples Lu et al. (2022). 044

Recently, several MLLMs, such as CM3 (Agha- 045

janyan et al., 2022), Flamingo (Awadalla et al., 046

2023), Kosmos-1 (Huang et al., 2023), PaLM- 047

E (Driess et al., 2023), and multimodal GPT- 048

4 (OpenAI, 2023), have demonstrated ICL capa- 049

bilities akin to LLMs. Meanwhile, theses studies 050

have highlighted the significance of ICL in enhanc- 051

ing the performance of MLLMs across various 052

multimodal tasks. However, these existing stud- 053

ies on MLLMs often randomly sample a subset 054

of in-context examples from a pool of training ex- 055

amples and then order these examples randomly 056

to construct the demonstration prompt. This leads 057

to a question: “Is random selection and random 058

arrangement appropriate in MLLM?”. In other 059

word, a fundamental question “What Makes Good 060

In-context Demonstrations in MLLM?" is still un- 061

explored. 062

To comprehensively address this fundamental 063

question, we analyze the design space of in-context 064

demonstrations, and mainly pay attention to two 065

aspects of in-context demonstrations in this paper: 066

the selection and the order. To this end, we conduct 067

an experimental study on three popular multimodal 068

tasks including visual question answering, image 069

captioning and multimodal image-text classifica- 070

tion. Specifically, we mainly investigate the fol- 071

lowing two research questions (RQs): (1) What 072

kind of selection methods are useful for ICL in 073

MLLM? (2) How should demonstration examples 074

be arranged for ICL in MLLM? To answer the 075

RQ1, we compare a wide range of demonstration 076

selection methods, such as random selection, simi- 077

larity based selection, and diversity based selection. 078

Besides, We also analyze the impact of different 079

retrieval patterns for ICL in MLLM. To answer the 080

RQ2, we compare random ordering with two or- 081

dering methods, namely similarity and similarity 082
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reverse, towards investigating the impact of differ-083

ent ordering approach.084

From the experimental results, we have the fol-085

lowing key findings: (1) Random demonstration se-086

lection is a strong baseline among different model087

sizes ranged from 3B to 9B; (2) Among different088

retrieval pattern in demonstration selection, using089

image as the pivot could be a better strategy rather090

leveraging text information or multimodal informa-091

tion. (3) In the demonstration arrangement, em-092

ploying similarity ordering or similarity reverse093

ordering in practice is a better strategy.094

2 Preliminary095

In-context learning only requires a list of input-096

output pairs to solve a task. Formally, we can de-097

note a demonstration as demoi = (xi, yi) , where098

xi is the input instance and yi is the output label.099

For a new test instance xtest, its corresponding label100

ypredict is generated via a given MLLM as follows101

in K-shot ICL:102

MLLM(ypredict|demo1, demo2, · · · , demoK , xtest)
(1)103

In this paper, we further clarify that there are two104

types of demonstration in ICL: task-level demon-105

stration and instance-level demonstration. The106

task-level demonstration uses the same demonstra-107

tion examples for all test samples and does not take108

the difference of each test sample into considera-109

tion, while the instance-level demonstration selects110

different demonstration examples for different test111

samples.112

3 Experimental Setup113

Evaluation Tasks In this paper, our evaluation114

tasks include VQA, image captioning and mul-115

timodal image-text classification. For the VQA116

task, we use VQA v2.0 (Agrawal et al., 2016),OK-117

VQA (Marino et al., 2019) and TextVQA (Singh118

et al., 2019) as the testbed and use the VQA ac-119

cuarcy (Agrawal et al., 2016) as the metric. For the120

image captioning task, we choose Flickr30K (Plum-121

mer et al., 2015) dataset as our benchmark and122

employ CIDEr score (Vedantam et al., 2015) to123

evaluate models. For the multimodal image-text124

classification task, our evaluation dateset is Hate-125

ful Memes (Kiela et al., 2020) and we report AUC126

ROC.127

Foundation Multimodal Model In this paper,128

we select OpenFlamingo (Awadalla et al., 2023)129
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Figure 1: Illustration of task-level demonstration and
instance-level demonstration.

as our foundation model. OpenFlamingo com- 130

bines a pretrained vision encoder and a language 131

model using cross attention layers. In Open- 132

Flamingo, different size models share CLIP ViT- 133

L/14 (Radford et al., 2021) as the vision encoder, 134

while the language model can be chosen from 135

MPT-1B (MosaicML, 2023), RedPajama-3B (To- 136

gether.AI, 2023) and MPT-7B (MosaicML, 2023), 137

which correspond to OpenFlamingo of 3B, 4B, and 138

9B. 139

Task-level Demonstration Selection Method 140

For the task-level demonstration selection, we need 141

to select a group of demonstration examples for 142

the whole test set. There are two methods we used 143

in task-level demonstration selection, which are 144

Herding (Welling, 2009) and K-centering (Sener 145

and Savarese, 2018). 146

Herding: The Herding method selects data 147

points based on the distance between the demon- 148

stration set center and original dataset center in 149

the feature space. The method incrementally and 150

greedily adds one sample each time into the demon- 151

stration set that can minimize distance between two 152

centers. Herding is a similarity based selection 153

method. K-centering: Different from computing 154

a single center in Herding, K-centering selects the 155

training examples that are maximally separated, in 156

other words, K-centering is a diversity based selec- 157

2



Method Pattern #Param VQAv2 OK-VQA Text-VQA Flickr30k Hateful Memes

Herding

M-M
3B 0.09 3.18 4.53 -16.13 1.01
4B -0.18 0.88 3.84 -28.51 4.13
9B 0.94 -0.91 7.41 6.22 4.03

T-T
3B -0.91 3.01 4.52 -16.40 1.49
4B -3.23 1.28 3.84 -29.12 0.96
9B -1.10 0.75 6.90 9.02 4.89

I-I
3B -0.31 2.12 4.00 5.78 1.17
4B -1.70 1.27 5.47 0.35 3.93
9B 1.20 -0.48 7.53 -1.20 5.42

K-Centering

M-M
3B 0.29 3.17 3.60 -3.79 1.24
4B -4.69 1.13 4.41 -5.43 3.89
9B -4.39 1.16 6.35 -7.00 4.20

I-I
3B -0.26 3.31 2.13 2.78 1.90
4B -1.42 -5.22 1.47 2.91 3.42
9B 0.17 0.33 6.35 3.11 4.63

T-T
3B 0.09 2.57 3.67 -5.65 1.72
4B -2.82 0.39 4.20 -5.11 2.72
9B -0.93 0.00 6.96 -3.91 4.28

RICES

I-I
3B 1.63 4.26 2.32 -10.78 15.08
4B 0.54 1.62 1.83 -6.94 10.48
9B 1.63 2.13 5.98 -8.43 17.01

T-T
3B -0.07 4.50 1.01 * 12.34
4B -4.02 2.27 -0.26 * 6.04
9B -5.51 -0.10 3.62 * 16.68

I-T
3B -1.74 3.23 0.55 -0.08 8.10
4B -3.08 1.63 -0.05 -4.41 1.46
9B -2.62 0.31 6.05 -5.83 11.08

T-I
3B -1.34 2.53 0.99 * 4.94
4B -2.91 2.27 -0.28 * -0.86
9B -1.17 -0.06 3.61 * 10.49

M-M
3B 1.14 6.60 0.84 * 19.56
4B 0.28 3.78 -0.74 * 12.24
9B -3.08 2.49 4.00 * 21.60

Table 1: Experimental results on the demonstration selection methods. Pattern denotes retrieval pattern, and #Param
denotes the number of model parameters. To obtain this table, we conduct experiments for each model and each
retrieval pattern in the 0, 4, 8, 16 and 32 shot setting, then we average these results in various shot setting and only
report the difference values between these methods and the random selection method for presenting these results
more clearly. The details of these experiment can be find in the Appendix. Note that for RICES on the image
captioning task (Flickr30k dataset), we can not use the text (caption) in test example as the key to retrieval the whole
training set.

tion method. In detail, We randomly select a single158

sample as the initial demonstration set, and then we159

add a new sample that is furthest in Euclidean dis-160

tance within feature space from the nearest sample161

in the demonstration set until selecting K demon-162

strations.163

Instance-level Demonstration Selection Method164

For the instance-level demonstration selection, we165

need to select different demonstration examples for166

different test samples. In this paper, we employ167

the Retrieval-based In-Context Example Selection168

(RICES) method (Yang et al., 2022) to this end,169

which is still a similarity based method. In de- 170

tail, RICES selects the top-K most similar training 171

examples as demonstrations, with similarity be- 172

ing determined by cosine similarity in the feature 173

space. 174

Demonstration Ordering Method In this paper, 175

we utilize three ordering methods: random order- 176

ing, similarity based ordering, and reverse similar- 177

ity based ordering. As for the similarity based or- 178

dering, the demonstration with higher similarity to 179

the test example are placed closer to it. Conversely, 180

in the reverse similarity based ordering, the demon- 181
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Method VQAv2 OK-VQA Text-VQA Flickr30K Hateful Memes

Random 51.29 41.93 34.19 54.52 70.09
Similarity 54.08 41.82 34.79 52.64 69.71

Similarity reverse 53.87 42.25 34.28 55.60 69.60

Table 2: Experimental results of different demonstration ordering methods.

stration examples are arranged in descending order182

based on their similarity to the test sample.183

Feature Space of Demonstration Selection and184

Ordering To project both text and images into a185

shared feature space, we utilize CLIP ViT-L/14186

to extract image features and employ the text187

encoder in CLIP to extract text features. Af-188

ter that, we design five distinct retrieval pattern189

: Image-to-Image (I-I), Image-to-Text (I-T), Text-190

to-Image (T-I), Text-to-Text (T-T) and Multimodal-191

to-Multimodal (M-M) 1, where the first element192

represents the query feature, while the second ele-193

ment represents the key feature.194

4 Results on Demonstration Selection195

We present the experimental results on demonstra-196

tion selection methods in the Table 1. Based on197

theses results, we find that:198

Random demonstration selection is a strong199

baseline among different model sizes and no200

human-designed selection methods mentioned201

in this paper can consistently surpass it. As202

shown in Table 1, we find that in most datasets,203

involving sample selection and random selection204

yields mixed results. However, there are excep-205

tions, on Hateful Memes, introducing sample se-206

lection, whether the task-level or the instance level207

demonstration selection methods, can significantly208

outperforms random selection. This result is con-209

sistent with the studies in LLM (Rubin et al., 2022;210

Li et al., 2023), which show that classification tasks211

are more likely to benefit from sample selection.212

Among different retrieval pattern, Image-213

to-Image (I-I) performs quite well in most214

cases. We find that except for the Flickr30K215

dataset, Image-to-Image retrieval pattern demon-216

strated good performance across all other datasets,217

achieving the best scores in VQAv2, OK-VQA,218

and Text-VQA. The Multimodal-to-Multimodal219

(M-M) retrieval pattern also shows a similar trend220

of Image-Image pairs. We speculate that the good221

1We concatenate the text feature and image feature as the
multimodal feature

performance of M-M pattern is primarily due to the 222

influence of I-I pattern. 223

5 Results on Demonstration Arrangement 224

We present the experimental result on demonstra- 225

tion arrangement in the Table 2. From the table, we 226

can find that: (1) Demonstration arrangement can 227

dramatically impact the performance of ICL. Take 228

VQAv2 as a example, great performance boosts as 229

we move from random arrangement to similarity 230

based arrangement. (2) Across datasets, there is no 231

shared knowledge on demonstration arrangement 232

to draw upon. Even within a single task, like VQA, 233

none of the ordering methods mentioned in this 234

paper can consistently outperforms the others. (3) 235

Unlike random selection serves as a strong baseline 236

in demonstration selection, random arrangement 237

is not a wise option in practice. In the Hateful 238

Memes, random arrangement can slightly outper- 239

form than similarity based ordering and reverse 240

similarity based ordering, but in the other testbeds, 241

random arrangement usually performs poorly. 242

6 Discussion and Conclusion 243

Our research presents a timely investigation into an 244

emerging capability termed ICL for the MLLM. We 245

systematically explore the influence of in-context 246

examples on downstream performance, revealing 247

a crucial insight: the effectiveness of ICL is intri- 248

cately tied to the design of demonstrations. Surpris- 249

ingly, there is no apparent methodology in which 250

ICL consistently improves performance across all 251

tasks for the MLLM. Our study also uncovers in- 252

triguing and anomalous phenomena. Notably, we 253

demonstrate that, unlike ICL in LLMs, where a 254

good in-context example ought to exhibit semantic 255

similarity to the test example, however, the ICL in 256

MLLM presents a divergent scenario. We further 257

identify that different retrieval pattern exert vary- 258

ing impacts on distinct tasks, and certain retrieval 259

pattern may even detrimentally affect MLLM per- 260

formance. This observation prompts a critical con- 261

clusion: the conventional approaches in ICL may 262

be unreliable in MLLM. 263
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Limitations264

The choice of MLLMs. Due to the unavailability265

of open-access resources for the most contempo-266

rary MLLM, our experiments is confined to em-267

ploying OpenFlamingo. As a result, we can not268

definitively ascertain whether the ICL capabilities269

would exhibit variation in other MLLMs which em-270

ploy distinct methods for incorporating textual and271

visual information.272

The choice of testbeds. We have selected five273

datasets that encompass the three primary tasks of274

MLLM. For both the image captioning task and the275

multimodal image-text classification tasks, we only276

utilized a single dataset each. The varying results277

across these diverse datasets indicate a need for a278

broader range of datasets to fully understand the279

impact of ICL. Therefore, in our future work, we280

intend to incorporate additional datasets as testbeds281

to delve deeper into the impact of ICL.282
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