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Abstract

Recently, multimodal large language models
(MLLM) are beginning to exhibit the capabil-
ity of in-context learning (ICL), enabling them
to learn a new task by conditioning solely on
some in-context examples, without updating
the model parameters. However, existing stud-
ies on MLLM often randomly sample a subset
of in-context examples and then order these ex-
amples randomly. It is still unclear what makes
good in-context demonstrations in MLLM. In
this paper, we empirically explore the impact of
two key factors on the performance of ICL in
MLLM to fill this gap: the selection and the or-
der of demonstration examples. We conduct ex-
tensive experiments on three multimodal tasks
including VQA, image captioning and multi-
modal image-text classification. Our experi-
mental results show that the above two factors
dramatically impact the performance of ICL.
Additionally, we summarize our findings and
provide takeaway suggestions on how to con-
struct effective demonstrations in MLLM.

1 Introduction

One of the most surprising behaviors observed
in foundation models is in-context learning (ICL;
Brown et al. (2020)). ICL is an ability of a founda-
tion model to condition on a prompt sequence con-
sisting of in-context examples (input-output pairs
from some task) along with a new query input, and
generate the corresponding output. Notably, ICL
is a post-training approach and does not require
backward gradients and parameter updates, which
makes it the most popular strategy for interacting
with LLMs (Oniani and Wang, 2023).

The research on ICL starts from Brown et al.
(2020), which shows that the LLLM such as GPT-3
can condition on a list of input-output pairs (demon-
stration) to learn a new task. From then on, there
are more and more studies devoted on this topic
(Dong et al., 2023; Dai et al., 2023; Yang et al.,
2023). Among these studies, some researchers find

that the performance of ICL in LLMs is sensitive
to the selection of in-context examples (Liu et al.,
2022) , and order of examples Lu et al. (2022).

Recently, several MLLMs, such as CM3 (Agha-
janyan et al., 2022), Flamingo (Awadalla et al.,
2023), Kosmos-1 (Huang et al., 2023), PalLM-
E (Driess et al., 2023), and multimodal GPT-
4 (OpenAl, 2023), have demonstrated ICL capa-
bilities akin to LLMs. Meanwhile, theses studies
have highlighted the significance of ICL in enhanc-
ing the performance of MLLMs across various
multimodal tasks. However, these existing stud-
ies on MLLMs often randomly sample a subset
of in-context examples from a pool of training ex-
amples and then order these examples randomly
to construct the demonstration prompt. This leads
to a question: “Is random selection and random
arrangement appropriate in MLLM?”. In other
word, a fundamental question “What Makes Good
In-context Demonstrations in MLLM?" is still un-
explored.

To comprehensively address this fundamental
question, we analyze the design space of in-context
demonstrations, and mainly pay attention to two
aspects of in-context demonstrations in this paper:
the selection and the order. To this end, we conduct
an experimental study on three popular multimodal
tasks including visual question answering, image
captioning and multimodal image-text classifica-
tion. Specifically, we mainly investigate the fol-
lowing two research questions (RQs): (1) What
kind of selection methods are useful for ICL in
MLLM? (2) How should demonstration examples
be arranged for ICL in MLLM? To answer the
RQ1, we compare a wide range of demonstration
selection methods, such as random selection, simi-
larity based selection, and diversity based selection.
Besides, We also analyze the impact of different
retrieval patterns for ICL in MLLM. To answer the
RQ2, we compare random ordering with two or-
dering methods, namely similarity and similarity



reverse, towards investigating the impact of differ-
ent ordering approach.

From the experimental results, we have the fol-
lowing key findings: (1) Random demonstration se-
lection is a strong baseline among different model
sizes ranged from 3B to 9B; (2) Among different
retrieval pattern in demonstration selection, using
image as the pivot could be a better strategy rather
leveraging text information or multimodal informa-
tion. (3) In the demonstration arrangement, em-
ploying similarity ordering or similarity reverse
ordering in practice is a better strategy.

2 Preliminary

In-context learning only requires a list of input-
output pairs to solve a task. Formally, we can de-
note a demonstration as demo; = (z;,y;) , where
x; is the input instance and y; is the output label.
For a new test instance x, its corresponding label
Ypredict 18 generated via a given MLLM as follows
in K-shot ICL:

MLLM (Ypredict|demoy, demoy, - - -, demof, Tiest)

(D
In this paper, we further clarify that there are two
types of demonstration in ICL: task-level demon-
stration and instance-level demonstration. The
task-level demonstration uses the same demonstra-
tion examples for all test samples and does not take
the difference of each test sample into considera-
tion, while the instance-level demonstration selects
different demonstration examples for different test
samples.

3 Experimental Setup

Evaluation Tasks In this paper, our evaluation
tasks include VQA, image captioning and mul-
timodal image-text classification. For the VQA
task, we use VQA v2.0 (Agrawal et al., 2016),0K-
VQA (Marino et al., 2019) and TextVQA (Singh
et al., 2019) as the testbed and use the VQA ac-
cuarcy (Agrawal et al., 2016) as the metric. For the
image captioning task, we choose Flickr30K (Plum-
mer et al., 2015) dataset as our benchmark and
employ CIDEr score (Vedantam et al., 2015) to
evaluate models. For the multimodal image-text
classification task, our evaluation dateset is Hate-
ful Memes (Kiela et al., 2020) and we report AUC
ROC.

Foundation Multimodal Model In this paper,
we select OpenFlamingo (Awadalla et al., 2023)
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Figure 1: Illustration of task-level demonstration and
instance-level demonstration.

as our foundation model. OpenFlamingo com-
bines a pretrained vision encoder and a language
model using cross attention layers. In Open-
Flamingo, different size models share CLIP ViT-
L/14 (Radford et al., 2021) as the vision encoder,
while the language model can be chosen from
MPT-1B (MosaicML, 2023), RedPajama-3B (To-
gether.Al, 2023) and MPT-7B (MosaicML, 2023),
which correspond to OpenFlamingo of 3B, 4B, and
9B.

Task-level Demonstration Selection Method
For the task-level demonstration selection, we need
to select a group of demonstration examples for
the whole test set. There are two methods we used
in task-level demonstration selection, which are
Herding (Welling, 2009) and K-centering (Sener
and Savarese, 2018).

Herding: The Herding method selects data
points based on the distance between the demon-
stration set center and original dataset center in
the feature space. The method incrementally and
greedily adds one sample each time into the demon-
stration set that can minimize distance between two
centers. Herding is a similarity based selection
method. K-centering: Different from computing
a single center in Herding, K-centering selects the
training examples that are maximally separated, in
other words, K-centering is a diversity based selec-



Method Pattern | #Param ‘ VQAv2 ‘ OK-VQA ‘ Text-VQA ‘ Flickr30k | Hateful Memes
3B 0.09 3.18 453 -16.13 1.01
M-M 4B 0.18 0.88 3.84 2851 4.13
9B 0.94 -0.91 7.41 6.22 4.03
) 3B -0.91 3.01 452 -16.40 1.49
Herding T.T 4B 3.23 1.28 3.84 29.12 0.96
9B -1.10 0.75 6.90 9.02 4.89
3B -0.31 2.12 4.00 5.78 1.17
I-1 4B -1.70 1.27 5.47 0.35 3.93
9B 1.20 -0.48 7.53 -1.20 5.42
3B 0.29 3.17 3.60 -3.79 1.24
M-M 4B -4.69 1.13 4.41 -5.43 3.89
9B -4.39 1.16 6.35 -7.00 4.20
) 3B -0.26 3.31 2.13 2.78 1.90
K-Centering | 14 4B 142 522 1.47 2.91 3.42
9B 0.17 0.33 6.35 3.11 4.63
3B 0.09 2.57 3.67 -5.65 1.72
T-T 4B 2.82 0.39 420 511 2.72
9B -0.93 0.00 6.96 -3.91 428
3B 1.63 426 232 -10.78 15.08
I-1 4B 0.54 1.62 1.83 -6.94 10.48
9B 1.63 2.13 5.98 -8.43 17.01
3B -0.07 4.50 1.01 * 12.34
T-T 4B -4.02 2.27 -0.26 * 6.04
9B -5.51 -0.10 3.62 * 16.68
RICES 3B -1.74 3.23 0.55 -0.08 8.10
I-T 4B -3.08 1.63 -0.05 441 1.46
9B 2.62 0.31 6.05 5.83 11.08
3B -1.34 2.53 0.99 * 4.94
TI 4B -2.91 227 -0.28 * -0.86
9B -1.17 -0.06 3.61 * 10.49
3B 1.14 6.60 0.84 * 19.56
M-M 4B 0.28 3.78 0.74 * 12.24
9B -3.08 2.49 4.00 * 21.60

Table 1: Experimental results on the demonstration selection methods. Pattern denotes retrieval pattern, and #Param
denotes the number of model parameters. To obtain this table, we conduct experiments for each model and each
retrieval pattern in the 0, 4, 8, 16 and 32 shot setting, then we average these results in various shot setting and only
report the difference values between these methods and the random selection method for presenting these results
more clearly. The details of these experiment can be find in the Appendix. Note that for RICES on the image
captioning task (Flickr30k dataset), we can not use the text (caption) in test example as the key to retrieval the whole

training set.

tion method. In detail, We randomly select a single
sample as the initial demonstration set, and then we
add a new sample that is furthest in Euclidean dis-
tance within feature space from the nearest sample
in the demonstration set until selecting K demon-
strations.

Instance-level Demonstration Selection Method
For the instance-level demonstration selection, we
need to select different demonstration examples for
different test samples. In this paper, we employ
the Retrieval-based In-Context Example Selection
(RICES) method (Yang et al., 2022) to this end,

which is still a similarity based method. In de-
tail, RICES selects the top- K most similar training
examples as demonstrations, with similarity be-
ing determined by cosine similarity in the feature
space.

Demonstration Ordering Method In this paper,
we utilize three ordering methods: random order-
ing, similarity based ordering, and reverse similar-
ity based ordering. As for the similarity based or-
dering, the demonstration with higher similarity to
the test example are placed closer to it. Conversely,
in the reverse similarity based ordering, the demon-



Method

‘VQAVZ OK-VQA Text-VQA Flickr30K  Hateful Memes

Random 51.29 41.93
Similarity 54.08 41.82
Similarity reverse | 53.87 42.25

34.19 54.52 70.09
34.79 52.64 69.71
34.28 55.60 69.60

Table 2: Experimental results of different demonstration ordering methods.

stration examples are arranged in descending order
based on their similarity to the test sample.

Feature Space of Demonstration Selection and
Ordering To project both text and images into a
shared feature space, we utilize CLIP ViT-L/14
to extract image features and employ the text
encoder in CLIP to extract text features. Af-
ter that, we design five distinct retrieval pattern
: Image-to-Image (I-I), Image-to-Text (I-T), Text-
to-Image (T-1), Text-to-Text (T-T) and Multimodal-
to-Multimodal (M-M) !, where the first element
represents the query feature, while the second ele-
ment represents the key feature.

4 Results on Demonstration Selection

We present the experimental results on demonstra-
tion selection methods in the Table 1. Based on
theses results, we find that:

Random demonstration selection is a strong
baseline among different model sizes and no
human-designed selection methods mentioned
in this paper can consistently surpass it. As
shown in Table 1, we find that in most datasets,
involving sample selection and random selection
yields mixed results. However, there are excep-
tions, on Hateful Memes, introducing sample se-
lection, whether the task-level or the instance level
demonstration selection methods, can significantly
outperforms random selection. This result is con-
sistent with the studies in LLM (Rubin et al., 2022;
Lietal., 2023), which show that classification tasks
are more likely to benefit from sample selection.

Among different retrieval pattern, Image-
to-Image (I-I) performs quite well in most
cases. We find that except for the Flickr30K
dataset, Image-to-Image retrieval pattern demon-
strated good performance across all other datasets,
achieving the best scores in VQAvV2, OK-VQA,
and Text-VQA. The Multimodal-to-Multimodal
(M-M) retrieval pattern also shows a similar trend
of Image-Image pairs. We speculate that the good

'We concatenate the text feature and image feature as the
multimodal feature

performance of M-M pattern is primarily due to the
influence of I-I pattern.

5 Results on Demonstration Arrangement

We present the experimental result on demonstra-
tion arrangement in the Table 2. From the table, we
can find that: (1) Demonstration arrangement can
dramatically impact the performance of ICL. Take
VQAV2 as a example, great performance boosts as
we move from random arrangement to similarity
based arrangement. (2) Across datasets, there is no
shared knowledge on demonstration arrangement
to draw upon. Even within a single task, like VQA,
none of the ordering methods mentioned in this
paper can consistently outperforms the others. (3)
Unlike random selection serves as a strong baseline
in demonstration selection, random arrangement
is not a wise option in practice. In the Hateful
Memes, random arrangement can slightly outper-
form than similarity based ordering and reverse
similarity based ordering, but in the other testbeds,
random arrangement usually performs poorly.

6 Discussion and Conclusion

Our research presents a timely investigation into an
emerging capability termed ICL for the MLLM. We
systematically explore the influence of in-context
examples on downstream performance, revealing
a crucial insight: the effectiveness of ICL is intri-
cately tied to the design of demonstrations. Surpris-
ingly, there is no apparent methodology in which
ICL consistently improves performance across all
tasks for the MLLM. Our study also uncovers in-
triguing and anomalous phenomena. Notably, we
demonstrate that, unlike ICL in LLMs, where a
good in-context example ought to exhibit semantic
similarity to the test example, however, the ICL in
MLLM presents a divergent scenario. We further
identify that different retrieval pattern exert vary-
ing impacts on distinct tasks, and certain retrieval
pattern may even detrimentally affect MLLM per-
formance. This observation prompts a critical con-
clusion: the conventional approaches in ICL may
be unreliable in MLLM.



Limitations

The choice of MLLMs. Due to the unavailability
of open-access resources for the most contempo-
rary MLLM, our experiments is confined to em-
ploying OpenFlamingo. As a result, we can not
definitively ascertain whether the ICL capabilities
would exhibit variation in other MLLMs which em-
ploy distinct methods for incorporating textual and
visual information.

The choice of testbeds. We have selected five
datasets that encompass the three primary tasks of
MLLM. For both the image captioning task and the
multimodal image-text classification tasks, we only
utilized a single dataset each. The varying results
across these diverse datasets indicate a need for a
broader range of datasets to fully understand the
impact of ICL. Therefore, in our future work, we
intend to incorporate additional datasets as testbeds
to delve deeper into the impact of ICL.
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